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1. Introduction 

For those of us who belonged to the "Bay Area (Computational) Linguistics Commu- 
nity," the early eighties were a heady time. Local researchers working on linguistics, 
computational linguistics, and logic programming were investigating notions of cat- 
egory, type, feature, term, and partial specification that appeared to converge to a 
powerful new approach for describing (linguistic) objects and their relationships by 
monotonic accumulation of constraints between their features. The seed notions had 
almost independently arisen in generalized phrase structure grammar (GPSG) (Gazdar 
et al. 1985), lexical-functional grammar (LFG) (Bresnan and Kaplan 1982), functional- 
unification grammar (FUG) (Kay 1985), logic programming (Colmerauer 1978, Pereira 
and Warren 1980), and terminological reasoning systems (Ait-Kaci 1984). It took, how- 
ever, a lot of experimental and theoretical work to identify precisely what the core no- 
tions were, how particular systems related to the core notions, and what were the most 
illuminating mathematical accounts of that core. The development of the unification- 
based formalism PATR-II (Shieber 1984) was an early step toward the definition of the 
core, but its mathematical analysis, and the clarification of the connections between 
the various systems, are only now coming to a reasonable closure. The Logic of Typed 
Feature Structures is the first monograph that brings all the main theoretical ideas into 
one place where they can be related and compared in a unified setting. Carpenter's 
book touches most of the crucial questions of the developments during the decade, 
provides proofs for central results, and reaches right up to the edge of current research 
in the field. These contributions alone make it an indispensable compendium for the 
researcher or graduate student working on constraint-based grammatical formalisms, 
and they also make it a very useful reference work for researchers in object-oriented 
databases and logic programming. 

Having discharged the main obligation of the reviewer of saying who should read 
the book under review and why, I will now survey each of the book's four parts while 
raising some more general questions impinging on the whole book as they arise from 
the discussion of each part. 

2. Basics 

From the beginning, Carpenter emphasizes the strong links between attribute-value 
formalisms in computational linguistics and in knowledge representation (KR). This 
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is a welcome conceptual connection. Historically, however, the two strands developed 
fairly independently of each other. Ait-Kaci's dissertation (1984) arose from an attempt 
to define a computationally tractable core of inheritance and frame-based reasoning, 
but its relevance to the analysis of linguistic categories was not appreciated as early as 
it should have been. Interestingly, systemic and dependency grammars had the lead 
in bringing inheritance and featural classification notions together on the linguistic 
side, but their influence in the particulars of the linguistic formalisms under consid- 
eration was slight, if any. Inheritance reasoning played no direct role in LFG, GPSG, 
PATR-II, or logic grammars, and it came into play first as a lexicon organization disci- 
pline (Flickinger, Pollard, and Wasow 1985; Sheiber 1985), not as a central part of the 
formalism. 

The organization of the first part of the book follows naturally from the emphasis 
on KR ideas. Types and inheritance are discussed first, followed by feature (attribute- 
value) structures and the relations and operations that they inherit from the under- 
lying type system: subsumption and join (unification). The last introductory chapter 
addresses in detail the crucial move of Kasper and Rounds (1986) to clarify the mean- 
ing of feature structures by viewing them as models of appropriately chosen modal 
logics. 

2.1 Feature Structures and Feature Logics 
The fruitful connection between feature structures and feature logics is pursued 
throughout the book, with soundness and completeness results for the basic system 
and all the major extensions and variations considered later. If something is missing 
in that comprehensive development, it might be some effort to relate feature logics 
to modal logics, and feature structures to modal frames. I believe that the original 
Kasper-Rounds logic was to some extent inspired by modal logics of concurrency, in 
particular the modal Hennessy-Milner logic for CCS (Hennessy and Milner 1985). It 
has also been argued that the connection to modal logic is an important route for 
easier and more general proofs of the required normal form and completeness results 
(Blackburn 1991). 

2.2 Representations versus Algorithms 
The introductory part establishes the algebraic, denotational semantics orientation of 
the book, and throughout the book, the more computational aspects of feature logics 
receive little attention. In purely conjunctive feature logics such as those arising from 
PATR-II, there is a simple connection between formulas and models. An almost linear 
satisfiability procedure, based on the UNION-FIND algorithm (Aho, Hopcroft, and 
Ullman 1976, Ait-Kaci 1984, Jaffar 1984), can be used to build the unique most-general 
feature structure satisfying a formula. There is thus relatively little to say about com- 
putational complexity (but not about practical computation costs, as will be observed 
below when rational unification is discussed), and the algebraic approach is direct and 
instructive. When we move to more-expressive feature logics, however, the situation 
changes radically. There are no longer unique most-general models, the algebraic ap- 
proach becomes more labored, and satisfiability becomes NP-hard or worse. Computa- 
tional complexity results were a central part of the development of the more-expressive 
feature logics by Rounds, Kasper, Moshier (Kasper and Rounds 1986, Moshier and 
Rounds 1987) and others, but they are barely mentioned in Carpenter's book. One 
feels that those results, being of a more traditional (finite) model-theoretic character, 
may have been left out because they do not fit the book's algebraic plan. 
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2.3 Feature Logic Intractability and Natural Language Processing 
A more general point arises from the computational issues just discussed. The in- 
tractability of satisfiability for expressive feature logics might seem a serious roadblock 
in the practical application of those logics in grammatical description systems. Two 
escape routes, one pragmatic and the other more radical, suggest themselves. The 
pragmatic route involves trying to identify more tractable subcases that may cover 
most of the situations of interest in actual grammatical description. Such "optimistic" 
algorithms were already suggested in Kasper's dissertation (1987), and have been ex- 
tensively investigated since (Maxwell and Kaplan 1989; Eisele and D6rre 1988). 

The more radical route, which as far as I know has not been pursued vigor- 
ously, looks more closely at the search control aspects of language processing systems 
based on feature computations. It takes conjunctive description as the only one that 
can have global extent in a computation. Nonconjunctive aspects of a description are 
then ephemeral in that nonconjunctive connectives introduced in a derivation must 
be eliminated within a bounded number of steps by a committed choice operation 
based on some preference-based search control mechanism. Such a view can be seen 
as a mild generalization of the ideas of deterministic parsing (Marcus 1980), and also 
closely related to the flat-guard committed choice logic programming languages (Ueda 
1987; Saraswat 1990). In both of those frameworks a single conjunctive constraint is 
constructed incrementally on the basis of local committed choices among alternatives. 
Search completeness is of course sacrificed, but the computational intractability aris- 
ing from having to consider all the combinations of smaller alternative constraints 
into larger consistent constraints is bypassed. Finally, the radical route suggests a dis- 
cipline of trying to replace as much as possible disjunctive or negative constraints by 
somewhat weaker kinds of underspecification that admit of purely conjunctive formu- 
lations. That program was already suggested in the context of deterministic parsing 
(d-theory) (Marcus, Hindle, and Fleck 1983), and more recently in the context of in- 
cremental monotonic semantic interpretation (Alshawi and Crouch 1992), and might 
also be profitably employed in the more abstract feature-logic setting. 

2.4 Prerequisites 
I am well aware of the difficulties in determining what should be taken as a reasonable 
common background for readers in an interdisciplinary topic. There is little enough 
commonality in the theoretical backgrounds of computer scientists trained in different 
schools, and the common background becomes even more difficult to find when one 
wants to reach also theoretical linguists and AI researchers. Still, the introductory chap- 
ters, including their historical portions, seem to assume more than is strictly necessary, 
and in fact sometimes seem to assume what is later explained in the text in careful 
detail. This kind of forward reference might confuse readers as to what the book's 
prerequisites are, and what they should know as a matter of course. This is especially 
the case with respect to concepts of domain theory such as complete partial orders, 
conditional completeness, and powerdomains, which the great majority of potential 
readers (even, I believe, many U.S.-trained theoretical computer scientists) will not be 
familiar with. The early mentions will thus be confusing to them, even though there is 
later in the book a good introduction to those prerequisites. Another instance is the re- 
peated mentions to intensionality and extensionality before their careful discussion in 
Chapter 8. Those have simply too many (admittedly related) meanings for the reader 
who would most benefit from the book to grasp what they refer to in feature logics 
before the in-depth discussion. 
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2.5 Quibbles 
2.5.1 Up or Down? Following much of the literature on feature structures, Carpenter 
adopts the domain-theoretic convention that places more-specific objects "higher up" 
in informational partial orders. This conflicts with the conventions of model theory 
and knowledge representation, and leads to occasionally distracting dissonances in 
notation, terminology, and figures--for instance, inheritance hierarchies with the most 
specific elements at the top. 

2.5.2 Abstract Feature Structures and Path Congruences. The discussion of abstract 
feature structures raises a historical difficulty. While I do not dispute that the full 
theoretical investigation of feature structures modulo renaming is correctly attributed 
to Moshier, the idea of representing renaming classes by equivalence relations over 
paths seems an obvious variant of the representation of such classes as deductively 
closed sets of path equations in Pereira and Shieber's account (1984) of the semantics 
of PATR-II, which is further explored in Shieber's dissertation (1989). 

2.5.3 Unification Tradeoffs. The discussion of the tradeoffs between acyclic and ra- 
tional term unification at various points in the book might be a bit misleading. The 
original Prolog used a weakened pointer-based version of Robinson's (1965) unification 
algorithm (conceivably attributable to Boyer and Moore) without the occurs check. Re- 
moving the occurs check, which blocks the binding of a variable to a term containing 
the variable, from Robinson's algorithm allows cyclic unifiers to be built. This not only 
changes the interpretation of unification, but is also a source of potential nontermina- 
tion when cyclic unifiers are applied. Nevertheless, in the early development of Prolog 
the occurs check was seen as too costly to be involved in the basic computational step 
of a programming language, and few if any examples were known in which the lack 
caused problems for knowledgeable Prolog programmers. The development of linear 
acyclic unification algorithms such as Paterson and Wegman's (1978) or Martelli and 
Montanari's (1982) did not change that assessment. Those algorithms require far heav- 
ier data structures and constant factors than Prolog's unification, they do not interface 
well with Prolog's backtracking control regime, and, most importantly, they are linear 
on the sum of the sizes of the terms involved. In contrast, for most practical purposes, 
Prolog's algorithm is linear on the size of the smaller term involved, which depends 
only on program size and not on the length of the computation. This was crucial for 
the acceptance of Prolog as a programming language, since it was felt that the cost of a 
procedure call in a reasonable programming language should not depend on the sizes 
of the actual parameters. In Prolog II, Colmerauer and his colleagues side-stepped the 
main weakness of Prolog's unification, nontermination, by moving to rational term 
unification, which also has added representational value for certain applications (al- 
though for other applications, particularly those derived from theorem proving, only 
acyclic unification makes sense). The best rational term unification algorithms are al- 
most linear in all cases, and may be linear on the size of the smaller term in the same 
cases as Prolog's algorithm. However, the data structure complexity and constant fac- 
tors are still higher than in Prolog's algorithm, and the interaction with backtracking 
is less straightforward. 

3. Extensions 

The second part of the book concerns extensions and specializations: acyclic feature 
structures, type constraints, inequations, extensionality, and groundedness. I found 
most interesting in this part the very thorough accounts of type constraints and of 
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inequations. With type constraints restricting what features are appropriate for a type 
(so, for instance, an agreement feature is only appropriate for types of phrases that 
are subject to agreement constraints, and must yield a value of appropriate agreement 
type), we move decisively beyond what was provided by all earlier formalisms with 
the exception of GPSG (which was limited in other ways). Type constraints support 
good engineering practice in writing large systems such as wide-coverage grammars. 
Furthermore, in certain cases type information can lead to more efficient implementa- 
tion. If the set of features for each type can be determined at compile time, the normal 
open-ended attribute-value representation of features can be replaced by the kind of 
positional representation used for record structures in programming languages such 
as C. 

Carpenter starts the discussion of inequations from the Prolog II inequation (dif) 
mechanism (Colmerauer 1986), and extends it elegantly to feature logics. The simplicity 
of the account shows that the earlier exposition was carefully orchestrated to allow 
extensions and alterations of the core framework without major upheavals. 

3.1 Extensionality 
I was somewhat less happy about the chapters on extensionality and groundedness. 
That material seems less definitive, and indeed various points of the discussion are 
confusing or unclearly targeted. 

There are conceptual and formal reasons for taking seriously the extensionality 
question. Different researchers in the field started with different intuitions of feature 
structures, with different identity conditions. GPSG categories, for example, were seen 
purely extensionally as labeled trees. As the area developed, mismatches between 
pointer-based implementations of feature structures and conceptual choices, and fail- 
ures of completeness for various feature logics, pushed for increasing intensionaliza- 
tion. However, Carpenter goes directly into technical aspects of extensionality without 
much attention to the examples and intuitions that brought the question forward in 
the first place. It would have been better if alternative feature-structure models, for 
instance various tree and domain-theoretic models, had been compared with respect 
to their computational and logical implications, even if they were to be ultimately 
discarded in favor of the now standard DFA models. As it is, the reader must turn 
elsewhere, for instance Shieber's (1985) monograph, for a broader comparative analy- 
sis of feature models. 

As a minor problem related to the above, the discussion of feature structures as a 
solution for a (domain) equation over partial functions seems unclear as to whether 
that is the most intensional model or the most extensional one (which would seem to 
be the case). 

The relationship between extensionality and Prolog II unification is hinted at re- 
peatedly, but its computational implications are not discussed. The differences in ex- 
tensionality of feature structures and Prolog II terms are directly reflected in the differ- 
ences between the corresponding unification algorithms. Feature-structure unification 
requires the identification of all corresponding feature-structure nodes, while term uni- 
fication (leaving aside issues of computational complexity and termination in certain 
algorithms) only needs to install pointers from leaf (variable) nodes to corresponding 
nodes (Jaffar 1984). 

Other algorithmic connections are not noted either, such as that between feature 
structure collapsing and DFA minimization. Finally, issues of extensionality and indi- 
viduation may be most important for object-oriented databases, but that application 
is not discussed. 
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4. Alternatives 

The third part of the book, named "Alternatives," is really an introduction to technical 
tools needed in later applications. Variables and assignments add nothing to the power 
of previous systems, but are convenient when discussing grammars and in another 
form were historically important in Ait-Kaci's system. Feature algebras, on the other 
hand, simplify and generalize radically certain mathematical arguments about feature 
structures. In fact, they might have been introduced sooner in the text to improve 
conceptual unity and eliminate some repetition in proofs. 

4.1 Domain Theory 
The last chapter of "Alternatives" discusses infinite feature structures and their for- 
malization through domains. While the topic is potentially important for rounding out 
the theory of feature structures and the sketch of domain theory is for the most part 
on target, one wonders again whether the uninitiated reader will not stumble on refer- 
ences to notions that are discussed only later or not at all. For instance, compactness is 
mentioned informally before its definition, without suitable intuitions being provided. 
Scott's information systems are mentioned, without definition, although they are quite 
relevant to the material at hand, particularly abstract feature structures. And some of 
the proofs are too sketchy for a reader who presumably is not yet familiar with typ- 
ical argument patterns in domain theory. The chapter concludes with the suggestive 
comment that a formalization of feature structures in terms of abstract closure opera- 
tors on domains would eliminate the repetitiveness of completeness proofs for feature 
logics. One wishes the suggestion had been tested in the book, although one might 
also wonder whether the full apparatus of domain theory would be needed to take 
advantage of the convenience of closure operators. After all, closure operators arise 
naturally in logic from the notions of deductive closure and of logical consequence 
(Tarski 1983), so one might imagine that the simpler proofs could be carried out in a 
model-theoretic setting short of domain theory. 

5. Applications 

The last part of the book applies the theory developed earlier in three important ar- 
eas: the semantics of unification-based phrase structure formalisms, the semantics of 
feature-based definite clause programs, and the specification of recursive type con- 
straints. 

5.1 Semantics of Grammar Formalisms 
Carpenter's account of the denotational semantics of unification-based phrase structure 
grammars benefits greatly from the extensive use of feature algebras and feature- 
algebra morphisms to connect derivation steps. Earlier treatments were much less 
perspicuous, because they were based on complex encodings of phrase-structure rules 
as feature structures and of derivation steps as formal manipulations on rule encodings 
(Pereira and Shieber 1984; Shieber 1984; Rounds and Manaster-Ramer 1987). 

As a minor terminological point, the qualifier unification-based used here is some- 
what unfortunate, because unification is just a particular constraint-solving algorithm 
applicable for certain kinds of constraint-based grammars. The term constraint-based 
grammar is both less biased and more appropriate to modern formalisms in which 
unification is only one of several constraint-solving methods. Historically, neither LFG 
nor GPSG were originally thought of in terms of unification. GPSG features and fea- 
ture constraints were seen as abbreviatory conventions for large collections of context- 
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free terminal categories (Gazdar 1982). LFG F-structures were seen as the result of a 
congruence-closure equation-solving process after a sentence was fully analyzed into 
constituents (C-structures; Bresnan and Kaplan 1982). Even the term unification in func- 
tional unification grammar was chosen by Martin Kay as intuitively suggestive, and not 
by analogy with Robinson's notion of unification. 

Constraint-based grammar formalisms would not have gained the attention they 
did if they did not have practical parsing and generation algorithms. As is the case 
for programming languages, the impetus for giving a sound denotational semantics 
to those formalisms arose in part from the need to prove the correctness of particular 
implementation methods. However, Carpenter concentrates only in giving the denota- 
tional semantics for a typical formalism, and does not show its correspondence to its 
operational realization. Proofs of equivalence between denotational and operational 
semantics are useful not only as examples of what needs to be done to show the cor- 
rectness of a parsing or generation algorithm, but also for the insights they give on 
the connections between the semantics of constraint-based formalisms, of logic pro- 
grams, and of traditional formal language representations. The reader interested in 
those aspects will have to turn elsewhere, especially again to Shieber's monograph 
(1985). 

5.2 Logic Programs and Recursive Types 
Carpenter's semantics of constraint-based grammars extends straightforwardly to the 
form of definite-clause programming in A~t-Kaci and Nasr's (1986) LOGIN language, 
although one might have hoped for a bit more information on the connection to con- 
straint logic programming. 

The formalization of recursive type constraints, which were first introduced in Ait- 
Kaci's dissertation, is more challenging. Carpenter clarifies and completes Ait-Kaci's 
work, and relates it nicely to the computational interpretation of the constraint-based 
grammatical formalism, HPSG (Pollard and Sag 1987). 

6. Details 

The book is remarkably free of editorial errors, which can be particularly confusing 
but difficult to catch in a mathematical text. Here are a few problems that seem to 
have slipped through and could confuse the reader momentarily. The agr type seems 
to be missing in the Conc set (13) for the example of Figure 2.11. In Definition 4.2, 
and in a few other places, the convention that x = y is intended to mean x and y are 
both defined and equal seems to be used without comment, but in other places the 
definedness is explicitly stated. On page 130, first sentence, the reference must be to 
"Prolog II and Prolog III", not to "Prolog II and Prolog II." On page 170, paragraph 
before Lemma 12.6, the first sentence should read "Note that even for countably based 
domains, there may be an uncountably infinite number of domain objects." The term 
"most-general morphism" used in definition 13.14 was not defined anywhere that I 
could find, although there is some mention of pointwise ordering of morphisms (but 
are there lubs in the order?). There seems to be something wrong in Definition 15.13. I 
believe G@~r should be G~, where G~ is the result of resolving F along path ~r. Finally, 
the initial point in the discussion of fan-out resolution in the limit on page 244 should 
be F0, not Fi. 
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7. Conclusion 

I believe that The Logic of Typed Feature Structures is essential for any practicing or 
prospective researcher on feature-based grammar or knowledge representation for- 
malisms and also very useful to researchers or graduate students in the grammar 
formalisms area of computational linguistics. Nowhere else can one find all the main 
mathematical analysis tools related to each other and all the central results carefully 
proved. Many readers, however, will need to come equipped with the support  of a 
careful instructor or an attentive reading of a good introduction to the mathematical 
theory of partial orders, for instance, Davey and Priestley's (1990) Introduction to Lat- 
tices and Order. And those readers interested in the complexity of decision procedures 
for feature logics or in implementing systems based on them will have to look else- 
where for detailed algorithmic descriptions and complexity analyses of operations on 
feature structures and formulas. Carpenter 's  book is more in the European tradition 
that emphasizes algebraic models for formalisms than in the American tradition of 
complexity analyses for deductive procedures. Both are important. The Logic of Typed 
Feature Structures is the first systematic mapping of the landscape of feature logics, 
but many  of the underlying processes and mechanisms still await an equally adept 
analysis. 
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