
Generalized Probabilistic LR Parsing of
Natural Language (Corpora) with
Unification-Based Grammars

Ted Briscoe*
University of Cambridge

John Carroll*
University of Cambridge

We describe work toward the construction of a very wide-coverage probabilistic parsing system for
natural language (NL), based on LR parsing techniques. The system is intended to rank the large
number of syntactic analyses produced by NL grammars according to the frequency of occurrence
of the individual rules deployed in each analysis. We discuss a fully automatic procedure for
constructing an LR parse table from a unification-based grammar formalism, and consider the
suitability of alternative LALR(1) parse table construction methods for large grammars. The
parse table is used as the basis for two parsers; a user-driven interactive system that provides
a computationally tractable and labor-efficient method of supervised training of the statistical
information required to drive the probabilistic parser. The latter is constructed by associating
probabilities with the LR parse table directly. This technique is superior to parsers based on
probabilistic lexical tagging or probabilistic context-free grammar because it allows for a more
context-dependent probabilistic language model, as well as use of a more linguistically adequate
grammar formalism. We compare the performance of an optimized variant of Tomita's (1987)
generalized LR parsing algorithm to an (efficiently indexed and optimized) chart parser. We
report promising results of a pilot study training on 150 noun definitions from the Longman
Dictionary of Contemporary English (LDOCE) and retesting on these plus a further 55
definitions. Finally, we discuss limitations of the current system and possible extensions to deal
with lexical (syntactic and semantic)frequency of occurrence.

1. Wide-Coverage Parsing of Natural Language

The task of syntactically analyzing substantial corpora of naturally occurring text and
transcribed speech has become a focus of recent work. Analyzed corpora would be of
great benefit in the gathering of statistical data regarding language use, for example to
train speech recognition devices, in more general linguistic research, and as a first step
toward robust wide-coverage semantic interpretation. The Alvey Natural Language
Tools (ANLT) system is a wide-coverage lexical, morphological, and syntactic analysis
system for English (Briscoe et al. 1987). Previous work has demonstrated that the ANLT
system is, in principle, able to assign the correct parse to a high proportion of English
noun phrases drawn from a variety of corpora. The goal of the work reported here
is to develop a practical parser capable of returning probabilistically highly ranked
analyses (from the usually large number of syntactically legitimate possibilities) for
material drawn from a specific corpus on the basis of minimal (supervised) training
and manual modification.

* University of Cambridge, Computer Laboratory, Pembroke Street, Cambridge, CB2 3QG, UK. (Tel.
+44-223-334600), (ejb / jac @cl.cam.ac.uk).

(~) 1993 Association for Computational Linguistics

Computational Linguistics Volume 19, Number 1

The first issue to consider is what the analysis will be used for and what constraints
this places on its form. The corpus analysis literature contains a variety of proposals,
ranging from part-of-speech tagging to assignment of a unique, sophisticated syntactic
analysis. Our eventual goal is to recover a semantically and pragmatically appropriate
syntactic analysis capable of supporting semantic interpretation. Two stringent require-
ments follow immediately: firstly, the analyses assigned must determinately represent
the syntactic relations that hold between all constituents in the input; secondly, they
must be drawn from an a priori defined, well-formed set of possible syntactic analyses
(such as the set defined by a generative grammar). Otherwise, semantic interpretation
of the resultant analyses cannot be guaranteed to be (structurally) unambiguous, and
the semantic operations defined (over syntactic configurations) cannot be guaranteed
to match and yield an interpretation. These requirements immediately suggest that ap-
proaches that recover only lexical tags (e.g. de Rose 1988) or a syntactic analysis that
is the 'closest fit' to some previously defined set of possible analyses (e.g. Sampson,
Haigh, and Atwell 1989), are inadequate (taken alone). "

Pioneering approaches to corpus analysis proceeded on the assumption that com-
putationally tractable generative grammars of sufficiently general coverage could not
be developed (see, for example, papers in Garside, Leech, and Sampson 1987). How-
ever, the development of wide-coverage declarative and computationally tractable
grammars makes this assumption questionable. For example, the ANLT word and
sentence grammar (Grover et al. 1989; Carroll and Grover 1989) consists of an English
lexicon of approximately 40,000 lexemes and a 'compiled' fixed-arity term unification
grammar containing around 700 phrase structure rules. Taylor, Grover, and Briscoe
(1989) demonstrate that an earlier version of this grammar was capable of assigning
the correct analysis to 96.8% of a corpus of 10,000 noun phrases extracted (without
regard for their internal form) from a variety of corpora. However, although Taylor,
Grover, and Briscoe show that the ANLT grammar has very wide coverage, they ab-
stract away from issues of lexical idiosyncrasy by formimg equivalence classes of noun
phrases and parsing a single token of each class, and they do not address the issues
of 1) tuning a grammar to a particular corpus or sublanguage 2) selecting the correct
analysis from the set licensed by the grammar and 3) providing reliable analyses of
input outside the coverage of the grammar. Firstly, it is clear that vocabulary, idiom,
and conventionalized constructions used in, say, legal language and dictionary defini-
tions, will differ both in terms of the range and frequency of words and constructions
deployed. Secondly, Church and Patil (1982) demonstrate that for a realistic grammar
parsing realistic input, the set of possible analyses licensed by the grammar can be
in the thousands. Finally, it is extremely unlikely that any generative grammar will
ever be capable of correctly analyzing all naturally occurring input, even when tuned
for a particular corpus or sublanguage (if only because of the synchronic idealization
implicit in the assumption that the set of grammatical sentences of a language is well
formed.)

In this paper, we describe our approach to the first and second problems and
make some preliminary remarks concerning the third (far harder) problem. Our ap-
proach to grammar tuning is based on a semi-automatic parsing phase during which
additions to the grammar are made manually and statistical information concerning
the frequency of use of grammar rules is acquired. Using this statistical information
and modified grammar, a breadth-first probabilistic parser is constructed. The latter
is capable of ranking the possible parses identified by the grammar in a useful (and
efficient) manner. However, (unseen) sentences whose correct analysis is outside the
coverage of the grammar ren,.~in a problem. The feasibility and usefulness of our ap-
proach has been investigated in a preliminary way by analyzing a ~small corpus of

26

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

noun definitions drawn from the Longman Dictionary of Contemporary English (LDOCE)
(Procter 1978). This corpus was chosen because the vocabulary employed is restricted
(to approximately 2,000 morphemes), average definition length is about 10 words (with
a maximum of around 30), and each definition is independent, allowing us to ignore
phenomena such as ellipsis. In addition, the language of definitions represents a rec-
ognizable sublanguage, allowing us to explore the task of tuning a general purpose
grammar. The results reported below suggest that probabilistic information concern-
ing the frequency of occurrence of syntactic rules correlates in a useful (though not
absolute) way with the semantically and pragmatically most plausible analysis.

In Section 2, we briefly review extant work on probabilistic approaches to cor-
pus analysis and parsing and argue the need for a more refined probabilistic model
to distinguish distinct derivations. Section 3 discusses work on LR parsing of natu-
ral language and presents our technique for automatic construction of LR parsers for
unification-based grammars. Section 4 presents the method and results for construct-
ing a LALR(1) parse table for the ANLT grammar and discusses these in the light of
both computational complexity and other empirical results concerning parse table size
and construction time. Section 5 motivates our interactive and incremental approach
to semi-automatic production of a disambiguated training corpus and describes the
variant of the LR parser used for this task. Section 6 describes our implementation of
a breadth-first LR parser and compares its performance empirically to a highly op-
timized chart parser for the same grammar, suggesting that (optimized) LR parsing
is more efficient in practice for the ANLT grammar despite exponential worst case
complexity results. Section 7 explains the technique we employ for deriving a proba-
bilistic version of the LR parse table from the training corpus, and demonstrates that
this leads to a more refined and parse-context-dependent probabilistic model capa-
ble of distinguishing derivations that in a probabilistic context-free model would be
equally probable. Section 8 describes and presents the results of our first experiment
parsing LDOCE noun definitions, and Section 9 draws some preliminary conclusions
and outlines ways in which the work described should be modified and extended.

2. Probabilistic Approaches to Parsing

In the field of speech recognition, statistical techniques based on hidden Markov mod-
eling are well established (see e.g. Holmes 1988:129f for an introduction). The two main
algorithms utilized are the Viterbi (1967) algorithm and the Baum-Welch algorithm
(Baum 1972). These algorithms provide polynomial solutions to the tasks of finding
the most probable derivation for a given input and a stochastic regular grammar, and
of performing iterative re-estimation of the parameters of a (hidden) stochastic regu-
lar grammar by considering all possible derivations over a corpus of inputs, respec-
tively. Baker (1982) demonstrates that Baum-Welch re-estimation can be extended to
context-free grammars (CFGs) in Chomsky Normal Form (CNF). Fujisaki et al. (1989)
demonstrate that the Viterbi algorithm can be used in conjunction with the CYK pars-
ing algorithm and a CFG in CNF to efficiently select the most probable derivation
of a given input. Kupiec (1991) extends Baum-Welch re-estimation to arbitrary (non-
CNF) CFGs. Baum-Welch re-estimation can be used with restricted or unrestricted
grammars/models in the sense that some of the parameters corresponding to possible
productions over a given (non-)terminal category set/set of states can be given an
initial probability of zero. Unrestricted grammars/models quickly become impracti-
cal because the number of parameters requiring estimation becomes large and these
algorithms are polynomial in the length of the input and number of free parameters.

27

Computational Linguistics Volume 19, Number 1

Typically, in applications of Markov modeling in speech recognition, the derivation
used to analyze a given input is not of interest; rather what is sought is the best
(most likely) model of the input. In any application of these or similar techniques
to parsing, though, the derivation selected is of prime interest. Baum (1972) proves
that Baum-Welch re-estimation will converge to a local optimum in the sense that the
initial probabilities will be modified to increase the likelihood of the corpus given
the grammar and 'stabilize' within some threshold after a number of iterations over
the training corpus. However, there is no guarantee that the global optimum will be
found, and the a priori initial probabilities chosen are critical for convergence on useful
probabilities (e.g. Lari and Young 1990). The main application of these techniques to
written input has been in the robust, lexical tagging of corpora with part-of-speech
labels (e.g. Garside, Leech, and Sampson 1987; de Rose 1988; Meteer, Schwartz, and
Weischedel 1991; Cutting et al. 1992).

Fujisaki et al. (1989) describe a corpus analysis experiment using a probabilistic
CNF CFG containing 7550 rules on a corpus of 4206 sentences (with an average sen-
tence length of approximately 11 words). The unsupervised training process involved
automatically assigning probabilities to each CF rule on the basis of their frequency
of occurrence in all possible analyses of each sentence of the corpus. These probabil-
ities were iteratively re-estimated using a variant of the Baum-Welch algorithm, and
the Viterbi algorithm was used in conjunction with the CYK parsing algorithm to effi-
ciently select the most probable analysis after training. Thus the model was restricted in
that many of the possible parameters (rules) defined over the (non-)terminal category
set were initially set to zero and training was used only to estimate new probabilities
for a set of predefined rules. Fujisaki et al. suggest that the stable probabilities will
model semantic and pragmatic constraints in the corpus, but this will only be so if
these correlate with the frequency of rules in correct analyses, and also if the 'noise'
in the training data created by the incorrect parses is effectively factored out. Whether
this is so will depend on the number of 'false positive' examples with only incorrect
analyses, the degree of heterogeneity in the training corpus, and so forth. Fujisaki et
al. report some results based on testing the parser on the corpus used for training.
In 72 out of 84 sentences examined, the most probable analysis was also the correct
analysis. Of the remainder, 6 were false positives and did not receive a correct parse,
while the other 6 did but it was not the most probable. A success rate (per sentence)
of 85% is apparently impressive, but it is difficult to evaluate properly in the absence
of full details concerning the nature of the corpus. For example, if the corpus con-
tains many simple and similar constructions, unsupervised training is more likely to
converge quickly on a useful set of probabilities.

Sharman, Jelinek, and Mercer (1990) conducted a similar experiment with a gram-
mar in ID/LP format (Gazdar et al. 1985; Sharman 1989). ID/LP grammars separate the
two types of information encoded in CF rules--immediate dominance and immediate
precedence--into two rule types that together define a CFG. This allows probabilities
concerning dominance, associated with ID rules, to be factored out from those con-
cerning precedence, associated with LP rules. In this experiment, a supervised training
regime was employed. A grammar containing 100 terminals and 16 nonterminals and
initial probabilities based on the frequency of ID and LP relations was extracted from
a manually parsed corpus of about one million words of text. The resulting probabilis-
tic ID/LP grammar was used to parse 42 sentences of 30 words or less drawn from
the same corpus. In addition, lexical syntactic probabilities were integrated with the
probability of the ID/LP relations to rank parses. Eighteen of the parses were identical
to the original manual analyses, while a further 19 were 'similar,' yielding a success
rate of 88%. What is noticeable about this experiment is that the results are no better

28

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

than Fujisaki et al.'s unsupervised training experiment discussed above, despite the
use of supervised training and a more sophisticated grammatical model. It is likely
that these differences derive from the corpus material used for training and testing,
and that the results reported by Fujisaki et al. will not be achieved with all corpora.

Pereira and Schabes (1992) report an experiment using Baum-Welch re-estimation
to infer a grammar and associated rule probabilities from a category set containing
15 nonterminals and 48 terminals, corresponding to the Penn Treebank lexical tagset
(Santorini 1990). The training data was 770 sentences, represented as tag sequences,
drawn from the treebank. They trained the system in an unsupervised mode and also
in a 'semi-supervised' mode, in which the manually parsed version of the corpus was
used to constrain the set of analyses used during re-estimation. In supervised training
analyses were accepted if they produced bracketings consistent but not necessarily
identical with those assigned manually. They demonstrate that in supervised mode,
training not only converges faster but also results in a grammar in which the most
probable analysis is compatible with the manually assigned analysis of further test
sentences drawn from the tree bank in a much greater percentage of cases--78% as
opposed to 35%. This result indicates very clearly the importance of supervised train-
ing, particularly in a context where the grammar itself is being inferred in addition to
the probability of individual rules.

In our work, we are concerned to utilize the existing wide-coverage ANLT gram-
mar; therefore, we have concentrated initially on exploring how an adequate proba-
bilistic model can be derived for a unification-based grammar and trained in a super-
vised mode to effectively select useful analyses from the large space of syntactically
legitimate possibilities. There are several inherent problems with probabilistic CFG
(including ID/LP)-based systems. Firstly, although CFG is an adequate model of the
majority of constructions occurring in natural language (Gazdar and Mellish 1989),
it is clear that wide-coverage CFGs will need to be very large indeed, and this will
lead to difficulties of (manual) development of consistent grammars and, possibly, to
computational intractability at parse time (particularly during the already computa-
tionally expensive training phase). Secondly, associating probabilities with CF rules
means that information about the probability of a rule applying at a particular point
in a parse derivation is lost. This leads to complications distinguishing the probability
of different derivations when the same rule can be applied several times in more than
one way. Grammar 1 below is an example of a probabilistic CFG, in which each pro-
duction is associated with a probability and the probabilities of all rules expanding a
given nonterminal category sum to one.

Grammar 1

i) s' -~ S (i.O)

2) S -~ NP VP (I.0)

3) VP -~ Vt NP (.4)

4) VP -+ Vi (.6)

5) NP -~ ProNP (.4)

6) NP -+ Det N (.3)

7) NP -~ NP PP (.3)

8) N --+ N N (. 3)

9) PP --+ P NP (1 . 0)

~o) N -+ N© (.7)

29

Computational Linguistics Volume 19, Number 1

a)
s

NP VP

Det N Vt NP

I I
N@ ProNP

b)

d) e)

N

N N

N N

c)
N

N N

N N

0
NP NP

NP pp NP pp NP

P NP NP PP ProNP

NP PP P NP

Figure 1
Probabilistic context-free derivations.

VP

vt NP

Det N

I

The probability of a particular parse is the product of the probabilities of each
rule used in the derivation. Thus the probability of parse a) in Figure 1 is 0.0336. The
probability of parse b) or c) must be identical though (0.09), because the same rule is
applied twice in each case. Similarly, the probability of d) and e) is also identical (0.09)
for essentially the same reason. However, these rules are natural treatments of noun
compounding and prepositional phrase (PP) attachment in English, and the different
derivations correlate with different interpretations. For example, b) would be an ap-
propriate analysis for toy coffee grinder, while c) would be appropriate for cat food tin,
and each of d) and e) yields one of the two possible interpretations of the man in the
park with the telescope. We want to keep these structural configurations probabilistically
distinct in case there are structurally conditioned differences in their frequency of oc-
currence; as would be predicted, for example, by the theory of parsing strategies (e.g.
Frazier 1988). Fujisaki et al. (1989) propose a rather inelegant solution for the noun
compound case, which involves creating 5582 instances of 4 morphosyntactically iden-
tical rules for classes of word forms with distinct bracketing behavior in noun-noun
compounds. However, we would like to avoid enlarging the grammar and eventually
to integrate probabilistic lexical information with probabilistic structural information
in a more modular fashion.

Probabilistic CFGs also will not model the context dependence of rule use; for
example, an NP is more likely to be expanded as a pronoun in subject position than
elsewhere (e.g. Magerman and Marcus 1991), but only one global probability can
be associated with the relevant CF production. Thus the probabilistic CFG model
predicts (incorrectly) that a) and f) will have the same probability of occurrence. These
considerations suggest that we need a technique that allows use of a more adequate
grammatical formalism than CFG and a more context-dependent probabilistic model.
Our approach is to use the LR parsing technique as a natural way to obtain a finite-
state representation of a non-finite-state grammar incorporating information about
parse context. In the following sections, we introduce the LR parser and in Section 8

30

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

we demonstrate that LR parse tables do provide an appropriate amount of contextual
information to solve the problems described above.

3. LR Parsing in a Unification-Based Grammar Framework

The heart of the LR parsing technique is the parse table construction algorithm, which
is the most complex and computationally expensive aspect of LR parsing. Much of
the attraction of the technique stems from the fact that the real work takes place in a
precompilation phase and the run time behavior of the resulting parser is relatively
simple and directed. An LR parser finds the 'rightmost derivation in reverse,' for a
given string and CF grammar. The precompilation process results in a parser control
mechanism that enables the parser to identify the 'handle,' or appropriate substring
in the input to reduce, and the appropriate rule of the grammar with which to per-
form the reduction. The control information is standardly encoded as a parse table
with rows representing parse states, and columns terminal and nonterminal symbols
of the grammar. This representation defines a finite-state automaton. Figure 2 gives
the LALR(1) parse table for Grammar 1. (LALR(1) is the most commonly used variant
of LR since it usually provides the best trade-off between directed rule invocation and
parse table size.) If the grammar is in the appropriate LR class (a stronger restric-
tion than being an unambiguous CFG), the automaton will be deterministic; however,
some algorithms for parse table construction are also able to build nondeterministic
automata containing action conflicts for ambiguous CFGs. Parse table construction is
discussed further in Section 4.

Actions

State $ Det N@ P ProNP Vi Vt
...

0 s3 s2
...

1 rl
...

2 r5 r5 r5 r5
...

3 s4
...

4 rl0 rl0 r10 rl0 rl0
...

5 r6 s4 r6 r6 r6
...

6 r8 rS/s4 r8 r8 r8
...

7 s8 s13 sll
...

8 s3 s2
...

9 r9 rg/s8 r9 r9
...

i0 r7 r7 r7 r7
...

ii s3 s2
...

12 r3 s8
...

13 r4
...

14 r2
...

15 acc

Figure 2
LALR(1) parse table for Grammar 1.

Gotos

State N NP PP S S' VP
.......................................

0 7 1 15
.......................................

1
.......................................

2
.......................................

3 5
.......................................

4
.......................................

5 6
.......................................

6 6
.......................................

7 I0 14
.......................................

8 9
.......................................

9 i0
.......................................

i0
.......................................

ii 12
.......................................

12 i0
.......................................

13
.......................................

14
.......................................

15

31

Computational Linguistics Volume 19, Number 1

3.1 Creating LR Parse Tables from Unification Grammars
Tomita (1987) describes a system for nondeterministic LR parsing of context-free gram-
mars consisting of atomic categories, in which each CF production may be augmented
with a set of tests (which perform similar types of operations to those available in
a unification grammar). At parse time, whenever a sequence of constituents is about
to be reduced into a higher-level constituent using a production, the augmentation
associated with the production is invoked to check syntactic or semantic constraints
such as agreement, pass attribute values between constituents, and construct a rep-
resentation of the higher-level constituent. (This is the standard approach to parsing
with attribute grammars). The parser is driven by an LR parse table; however, the
table is constructed solely from the CF portion of the grammar, and so none of the
extra information embodied in the augmentations is taken into account during its
construction. Thus the predictive power of the parser to select the appropriate rule
given a specific parse history is limited to the CF portion of the grammar, which must
be defined manually by the grammar writer. This requirement places a greater load
on the grammar writer and is inconsistent with most recent unification-based gram-
mar formalisms, which represent grammatical categories entirely as feature bundles
(e.g. Gazdar et al. 1985; Pollard and Sag 1987; Zeevat, Calder, and Klein 1987). In
addition, it violates the principle that grammatical formalisms should be declarative
and defined independently of parsing procedure, since different definitions of the CF
portion of the grammar will, at least, effect the efficiency of the resulting parser and
might, in principle, lead to nontermination on certain inputs in a manner similar to
that described by Shieber (1985).

In what follows, we will assume that the unification-based grammars we are con-
sidering are represented in the ANLT object grammar formalism (Briscoe et al. 1987).
This formalism is a notational variant of Definite Clause Grammar (e.g. Pereira and
Warren 1980), in which rules consist of a mother category and one or more daughter
categories, defining possible phrase structure configurations. Categories consist of sets
of feature name-value pairs, with the possibility of variable values, which may be
bound within a rule, and of category-valued features. Categories are combined using
fixed-arity term unification (Prolog-style). The results and techniques we report be-
low should generalize to many other unification-based formalisms. An example of a
possible ANLT object grammar rule is:

IN -, V +, BAR 2, PER x, PLU y, VFORM z] --+
[N +, V -, BAR 2, PER x, PLU y, CASE Nom]
[N -, V +, BAR i, PER x, PLU y, VFORM z]

This rule provides a (simple) analysis of the structure of English clauses, corresponding
to S --* NP VP, using a feature system based loosely on that of GPSG (Gazdar et al.
1985). In Tomita's LR parsing framework, each such rule must be manually converted
into a rule of the following form in which some subpart of each category has been
replaced by an atomic symbol.

Vb[BAR 2, PER x, PLU y, VFOKM z] -~
Nn[BAR 2, PER x, PLU y, CASE Nom]
Vb[BAR I, PER x, PLU y, VFORM z]

However, it is not obvious which features should be so replaced--why not include
BAR and CASE? It will be difficult for the grammar writer to make such substitutions
in a consistent way, and still more difficult to make them in an optimal way for the
purposes of LR parsing, since both steps involve consideration and comparison of all
the categories mentioned in each rule of the grammar.

32

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Constructing the LR parse table directly and automatically from a unification
grammar would avoid these drawbacks. In this case, the LR parse table would be
based on complex categories, with unification of complex categories taking the place
of equality of atomic ones in the standard LR parse table construction algorithm (Os-
borne 1990; Nakazawa 1991). However, this approach is computationally prohibitively
expensive: Osborne (1990:26) reports that his implementation (in HP Common Lisp
on a Hewlett Packard 9000/350) takes almost 24 hours to construct the LR(0) states
for a unification grammar of just 75 productions.

3.2 Construct ing a CF Backbone from a Unif icat ion Grammar
Our approach, described below, not only extracts unification information from complex
categories, but is computationally tractable for realistic sized grammars and also safe
from inconsistency. We start with a unification grammar and automatically construct
a CF 'backbone' of rules containing categories with atomic names and an associated
'residue' of feature name-value pairs. Each backbone grammar rule is generally in di-
rect one-to-one correspondence with a single unification grammar rule. The LR parse
table is then constructed from the CF backbone grammar. The parser is driven by this
table, but in addition when reducing a sequence of constituents the parser performs
the unifications specified in the relevant unification grammar rule to form the cate-
gory representing the higher-level constituent, and the derivation fails if one of the
unifications fails. Our parser is thus similar to Tomita's (1987), except that it performs
unifications rather than invoking CF rule augmentations; however, the main difference
between our approach and Tomita's is the way in which the CF grammar that drives
the parser comes into being.

Even though a unification grammar will be, at best, equivalent to a very large
(and at worst, if features are employed in recursive or cyclic ways, possibly infinite)
set of atomic-category CF productions, in practice we have obtained LR parsers that
perform well from backbone grammars containing only about 30% more productions
than the original unification grammar. The construction method ensures that for any
given grammar the CF backbone captures at least as much information as the optimal
CFG that contains the same number of rules as the unification grammar. Thus the
construction method guarantees that the resulting LR parser will terminate and will
be as predictive as the source grammar in principle allows.

Building the backbone grammar is a two-stage process:

. Compute the largest maximally specific set (in terms of subsumption) of
disjoint categories covering the whole grammar and assign to each
category a distinct atomic category name. That is:

initialize disjoint-set to be empty;

for each category C in grammar

let disjoint-merge be the categories in disjoint-set

which unify with C;

if disjoint-merge is empty

then add C to disjoint-set;

else replace all elements of disjoint-merge in disjoint-set
with the single most specific category which subsumes C

and all categories in disjoint-merge;
assign a distinct name to each category in disjoint-set.

33

Computational Linguistics Volume 19, Number 1

IN -, V +, BAR 2, PER x, PLU y, VFORM z] -->

[N +, V -, BAR 2, PER x, PLU y, CASE Nom]

[N -, V +, BAR i, PER x, PLU y, VFOKM z]

IN +, V -, BAR 2, PER x, PLU y, CASE c] -->

[SUBCAT DET]

[N +, V -, BAR I, PER x, PLU y, CASE c]

[N -, V +, BAR I, PER x, PLU y, VFORM z] -->

[N -, V +, BAR O, PER x, PLU y, VFORM z, SUBCAT INTRANS]

IN -, V +, BAR i, PER x, PLU y, VFORM z] -->

[N -, V +, BAR O, PER x, PLU y, VFOKM z, SUBCAT TRANS]

[N +, V -, BAR 2, PER x, PLU y, CASE Acc]

Figure 3
ANLT object grammar rules.

{S-l:

NP-2:

VP-3:

DET-4:

NI-5:

V-6:

V-7:

[N -, V +, BAR 2, PER x, PLU y, VFORM z]

[N +, V -, BAR 2, PER x, PLU y, CASE c]

IN -, V +, BAR i, PER x, PLU y, VFORM z]

[SUBCAT DET]

IN +, V -, BAR i, PER x, PLU y, CASE c]

[N -, V +, BAK O, PER x, PLU y, VFOKM z, SUBCAT INTRANS]

[N -, V +, BAR O, PEK x, PLU y, VFOR/~ z, SUBCAT TKANS]}

Figure 4
Categories in disjoint-set.

S-1 - - > NP-2 VP-3
NP-2 - - > DET-4 N$-5
VP-3 - - > V-6
VP-3 - - > V-7 NP-2

Figure 5
Backbone grammar corresponding to object grammar.

. For each unification g r a m m a r rule, create a backbone g r a m m a r rule
containing atomic categories, each atomic category being the name
assigned to the category in the disjoint category set that unifies wi th the
cor responding category in the unification g r a m m a r rule:

for each rule K of form C1 -~ C2 ... Cn in unification grammar

add a rule B of form B1 -~ B2 ... Bn to backbone grammar

where Bi is the name assigned to the (single) category in

disjoint-set which unifies with Ci, for i=l, n.

For example, for the rules in Figure 3 (corresponding loosely to S ---* NP VP, NP -~
Vi and VP --* Vt NP), step 1 wou ld create the disjoint-set shown in Figure 4. (Note
that the value for CASE on the NP categories in the g r a m m a r has 'col lapsed ' d o w n to a

34

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

N2

either kin
N2 -OR N2 -OR+

or lee N2-OR

or sandy

Figure 6
Backbone parse tree for either kim or lee or sandy using rule N2 --> N2 [C0NJ EITHER],
N2 [CONJ OR] +.

variable, but that the two V categories remain distinct). Figure 5 shows the backbone
rules that would be built in step 2.

Algorithms for creating LR parse tables assume that the terminal vocabulary of
the grammar is distinct from the nonterminal one, so the procedure described above
will not deal properly with a unification grammar rule whose mother category is
assumed elsewhere in the grammar to be a lexical category. The modification we
make is to automatically associate two different atomic categories, one terminal and
one nonterminal, with such categories, and to augment the backbone grammar with
a unary rule expanding the nonterminal category to the terminal.

Two other aspects of the ANLT grammar formalism require further minor elabora-
tions to the basic algorithm: firstly, a rule may introduce a gap by including the feature
specification [NULL +] on the gapped daughter--for each such daughter an extra rule
is added to the backbone grammar expanding the gap category to the null string;
secondly, the formalism allows Kleene star and plus operators (Gazdar et al. 1985)--
in the ANLT grammar these operators are utilized in rules for coordination. A rule
containing Kleene star daughters is treated as two rules: one omitting the daughters
concerned and one with the daughters being Kleene plus. A new nonterminal cate-
gory is created for each distinct Kleene plus category, and two extra rules are added to
the backbone grammar to form a right-branching binary tree structure for it; a parser
can easily be modified to flatten this out during processing into the intended flat se-
quence of categories. Figure 6 gives an example of what such a backbone tree looks
like. Grammars written in other, more low-level unification grammar formalisms, such
as PATR-I1 (Shieber 1984), commonly employ treatments of the type just described to
deal with phenomena such as gapping, coordination, and compounding. However,
this method both allows the grammar writer to continue to use the full facilities of the
ANLT formalism and allows the algorithmic derivation of an appropriate backbone
grammar to support LR parsing.

The major task of the backbone grammar is to encode sufficient information (in
the atomic categoried CF rules) from the unification grammar to constrain the appli-
cation of the latter's rules at parse time. The nearly one-to-one mapping of unification
grammar rules to backbone grammar rules described above works quite well for the
ANLT grammar, with only a couple of exceptions that create spurious shift-reduce con-
flicts during parsing, resulting in an unacceptable degradation in performance. The

35

Computational Linguistics Volume 19, Number 1

phenomena concerned are coordination and unbounded dependency constructions.
In the ANLT grammar three very general rules are used to form nominal, adjec-

tival, and prepositional phrases following a conjunction; the categories in these rules
lead to otherwise disjoint categories for conjuncts being merged, giving rise to a set of
overly general backbone grammar rules. For example, the rule in the ANLT grammar
for forming a noun phrase conjunct introduced by a conjunction is

N2[CONJ @con] --> [SUBCAT @con, C0NJN +], H2.

The variable value for the C0NJ feature in the mother means that all N2 categories
specified for this feature (e.g. N2 [C0NJ EITHER], N2 [C0NJ NULL]) are generalized to the
same category. This results in the backbone rules, when parsing either kim or lee helps,
being unable, after forming a N2 [C0NJ EITHER] for either kim, to discriminate between
the alternatives of preparing to iterate this constituent (as in the phrase kim, lee, or sandy
helps where kim would be N2 [C0NJ NULL]), or shifting the next word or to start a new
constituent. We solve this problem by declaring C0NJ to be a feature that may not have
a variable value in an element of the disjoint category set. This directs the system to
expand out each unification grammar rule that has a category containing this feature
with a variable value into a number of rules fully specified for the feature, and to
create backbone rules for each of these. There are eight possible values for C0NJ in the
grammar, so the general rule for forming a nominal conjunct given above, for example,
ends up being represented by a set of eight specialized backbone grammar rules.

In the grammar, unbounded dependency constructions (UBCs) are analyzed by
propagating the preposed constituent through the parse tree as the value of the SLASH
feature, to link it with the 'gap' that appears in the constituent's normal position. All
nonlexical major categories contain the feature, rules in the grammar propagating it
between mother and a single daughter; other daughters are marked [SLASH [NOSLASH
+]] indicating that the daughter is not 'gapped." Backbone grammar construction
would normally lose the information in the unification grammar about where gaps
are allowed to occur, significantly degrading the performance of a parser. To carry
the information over into the backbone we declare that wherever SLASH occurs with a
variable value, the value should be expanded out into two values: [NOSLASH +], and
a notional value unifying with anything except [NOSLASH +]. We have also experi-
mented with a smaller grammar employing 'gap threading' (e.g. Pereira and Shieber
1987), an alternative treatment of UBCs. We were able to use the same techniques for
expanding out and inference on the values of the (in this case atomic) features used
for threading the gaps to produce a backbone grammar (and parse table) that had the
same constraining power with respect to gaps as the original grammar.

To date, we have not attempted to compute CF backbones for grammars written
in formalisms with minimal phrase structure components and (almost) completely
general categories, such as HPSG (Pollard and Sag 1987) and UCG (Zeevat, Calder,
and Klein 1987); more extensive inference on patterns of possible unification within
nested categories and appropriate expanding-out of the categories concerned would
be necessary for an LR parser to work effectively. This and other areas of complexity
in unification-based formalisms need further investigation before we can claim to have
developed a system capable of producing a useful LR parse table for any unification-
based grammar. In particular, declaring certain category-valued features so that they
cannot take variable values may lead to nontermination in the backbone construction
for some grammars. However, it should be possible to restrict the set of features that
are considered in category-valued features in an analogous way to Shieber's (1985)
restrictors for Earley's (1970) algorithm, so that a parse table can still be constructed.

36

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

4. Building LR Parse Tables for Large NL Grammars

The backbone grammar generated from the ANLT grammar is large: it contains al-
most 500 distinct categories and more than 1600 productions. When we construct
the LALR(1) parse table, we therefore require an algorithm with practical time and
space requirements. In the LR parsing literature there are essentially two approaches
to constructing LALR(1) parse tables. One approach is graph-based (DeRemer and
Pennello 1982), transforming the parse table construction problem to a set of well-
known directed graph problems, which in turn are solvable by efficient algorithms.
Unfortunately this approach does not work for grammars that are not LR(k) for any
k (DeRemer and Pennello 1982:633), for example, ambiguous grammars. We therefore
broadly follow the alternative approach of Aho, Sethi, and Ullman (1986), but with a
number of optimizations:

.

.

.

Constructing the LR(0) sets of items: we compute LR(0) states containing
only kernel items (the item IS' --> S], where S' is the start symbol,
and all items that have a symbol to the left of the dot), since nonkernel
items can be cached in a table and retrieved only if needed. Being able to
partition the items in this way is especially useful with the ANLT
grammar, since the mean number of kernel items in each LR(0) set is
about 9, whereas the mean number of nonkernel items per state is more
than 400.

Computing the LALR(1) lookaheads for each item: the conventional
approach is to compute the LR(1) closure of each kernel item in order to
determine the lookaheads that are generated spontaneously and those that
propagate from other items. However, in an initial implementation we
found that the LR(1) closure operation as described by Aho et al. was
too expensive to be practicable for the number and size of LR(0) states
we deal with, even with schemes for caching the closures of nonkernel
items once they had been computed. Instead, we have moved to an
algorithm devised by Kristensen and Madsen (1981), which avoids
performing the LR(1) closure operation. The crucial advantage of this
algorithm is the ability, at any stage in the computation, to tell whether
the calculation of the lookahead set for a particular item has been
completed, is underway, or has not yet started. This means that even
partially computed lookahead sets can be cached (with the computation
yet to be done explicitly marked), and that items whose lookahead sets
are found to subsume those of others are able to just copy the results
from the subsumed sets.

Constructing the parse table: the LALR(1) parse table is derived
straightforwardly from the lookahead sets, although to keep the size of
the parse table within reasonable bounds we chose appropriate data
structures to represent the goto entries and shift and reduce actions. For
the ANLT backbone grammar there are approximately 150,000 goto
entries (nonterminal--state pairs), 440,000 shift actions (terminal--state
pairs), and 670,000 reduce actions (terminal--rule-number pairs);
however, of the goto entries only 2,600 are distinct and of the shift
actions only 1,100 are distinct; most states contain just reduce or just
shift actions, and in any one state very few different rules are involved

37

Computational Linguistics Volume 19, Number 1

in reduce actions. 1 The majority of states contain just reduce or just shift
actions, and in any one state very few different rules are involved in
reduce actions. Taking advantage of the characteristics of this
distribution, in each state we represent (in Co m m o n Lisp)

(a) a set of goto entries as a list of (nonterminal--state) conses
sorted into a canonical order, list elements and tails of lists
shared where possible be tween states,

(b) a set of shift actions as a list containing a single (large) integer
(the list shared when possible be tween states), where if the state
shifts to state s on lookahead t, the element indexed by t in an
auxiliary array will contain s together with a number n, and bit
n in the binary representat ion of the integer will be 1,

(c) a set of reduce actions as, for each rule involved, a cons whose
second element is the rule number and whose first is a bit-vector
(shared when possible be tween states) whose nth bit is 1 if the
reduce should occur with the nth terminal as lookahead,

(d) an accept action as a cons with the first e lement being the
lookahead symbol.

For the grammars we have investigated, this representat ion achieves a similar
order of space saving to the comb vector representat ion suggested by Aho, Sethi, and
Ullman (1986:244ff) for unambiguous grammars (see Klein and Martin [1989] for a
survey of representat ion techniques). The parse table for the ANLT grammar occupies
approximately 360 Kbytes of memory, and so represents each action (shift, reduce, or
goto) in an average of less than 2.3 bits. In contrast to conventional techniques, though,
we maintain a faithful representat ion of the parse table, not replacing error entries with
more convenient nonerror ones in order to save extra space. Our parsers are thus able
to detect failures as soon as theoretically possible, an impor tant efficiency feature when
parsing nondeterminist ically with ambiguous grammars, and a t ime-saving feature
when parsing interactively with them (see next section).

Table 1 compares the size of the LALR(1) parse table for the ANLT grammar
with others reported in the literature. From these figures, the ANLT grammar is more
than twice the size of Tomita's (combined morphological and syntactic) g rammar for
Japanese (Tomita 1987:45). The grammar itself is about one order of magni tude bigger
than that of a typical p rogramming language, but the LALR(1) parse table, in terms
of number of actions, is two orders of magni tude bigger. Al though Tomita (1984:357)
anticipates LR parsing techniques being applied to large NL grammars writ ten in
formalisms such as GPSG, the sizes of parse tables for such grammars grow more
rapidly than he predicts. However , for large real-world NL grammars such as the
ANLT, the table size is still quite manageable despite Johnson's (1989) worst-case
complexity result of the number of LR(0) states being exponential on g rammar size
(leading to a parser with exponential ly bad time performance). We have, therefore,
not found it necessary to use Schabes' (1991a) LR-like tables (with number of states
guaranteed to be polynomial even in the worst case).

1 of the 3,710 states, 2,200 contain at least 1 action conflict, with a median of 34 conflicts per state. There
are a total of 230,000 shift-reduce conflicts and 220,000 reduce-reduce conflicts, fairly uniformly
distributed across the terminal lookahead symbols. In half of the latter conflicts, the rules involved
have an identical number of daughters. One implication of this finding is that an approach to conflict
resolution such as that of Shieber (1983) where reduce-reduce conflicts are resolved in favor of the
longer reduction may not suffice to select a unique analysis for realistic NL grammars.

38

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Table 1
Sizes of grammar and LALR(1) parse tables.

Grammar Number of CFG Number of Number of Total number
rules/categories LR(0) states kernel items of actions

Pascal 2 158 / 124 275 ? 2883
Modula-23 227 / 194 373 420 3238
Tomita, Japanese 800 / ? ? ? ?
ANLT (689 PS rules) 1641 / 496 3710 34836 1258451

Table 2
Timings for LALR(1) parse table construction (in seconds of CPU time on
a Sparc-Server 390 running Sun Common Lisp).

Grammar Backbone LR(0) state lookahead parse table
computation construction computation construction

ANLT 150 710 4200 780

As might be expected, and Table 2 illustrates, parse table construction for large
grammars is CPU-intensive. As a rough guide, Grosch (1990) quotes LALR(1) table
construction for a grammar for Modula-2 taking from about 5 to 50 seconds, so scaling
up two orders of magnitude, our timings for the ANLT grammar fall in the expected
region.

5. Interactive Incremental Deterministic Parsing

5.1 Constructing a Disambiguated Training Corpus
The major problem with attempting to employ a disambiguated training corpus is to
find a way of constructing this corpus in an error-free and resource-efficient fashion.
Even manual assignment of lexical categories is slow, labor-intensive, and error-prone.
The greater complexity of constructing a complete parse makes the totally manual ap-
proach very unattractive, if not impractical, Sampson (1987:83) reports that it took 2
person-years to produce the 'LOB tree bank' of 50,000 words. Furthermore, in that
project, no attempt was made to ensure that the analyses were well formed with re-
spect to a generative grammar. Attempting to manually construct analyses consistent
with a grammar of any size and sophistication would place an enormous additional
load on the analyst. Leech and Garside (1991) discuss the problems that arise in manual
parsing of corpora concerning accuracy and consistency of analyses across time and
analyst, the labor-intensive nature of producing detailed analyses, and so forth. They
advocate an approach in which simple 'skeleton' parses are produced by hand from
previously tagged material, with checking for consistency between analysts. These
skeleton analyses can then be augmented automatically with further information im-
plicit in the lexical tags. While this approach may well be the best that can be achieved

2 Figures given by Klein and Martin (1989).
3 Grammar from Spector (1983) with optionality expanded out; statistics taken from a parse table

constructed by the second author.

39

Computational Linguistics Volume 19, Number 1

with fully manual techniques, it is still unsatisfactory in several respects. Firstly, the
analyses are crude, while we would like to automatically parse with a grammar capa-
ble of assigning sophisticated semantically interpretable ones; but it is not clear how
to train an existing grammar with such unrelated analyses. Secondly, the quality of
any grammar obtained automatically from the parsed corpus is likely to be poor be-
cause of the lack of any rigorous checks on the form of the skeleton parses. Such a
grammar might, in principle, be trained from the parsed corpus, but there are still
likely to be small mismatches between the actual analysis assigned manually and any
assigned automatically. For these reasons, we decided to attempt to produce a training
corpus using the grammar that we wished ultimately to train. As long as the method
employed ensured that any analysis assigned was a member of the set defined by the
grammar, these problems during training should not arise.

Following our experience of constructing a substantial lexicon for the ANLT gram-
mar from unreliable and indeterminate data (Carroll and Grover 1989), we decided
to construct the disambiguated training corpus semi-automatically, restricting manual
interaction to selection between alternatives defined by the ANLT grammar. One obvi-
ous technique would be to generate all possible parses with a conventional parser and
to have the analyst select the correct parse from the set returned (or reject them all).
However, this approach places a great load on the analyst, who will routinely need to
examine large numbers of parses for given sentences. In addition, computation of all
possible analyses is likely to be expensive and, in the limit, intractable.

Briscoe (1987) demonstrates that the structure of the search space in parse deriva-
tions makes a left-to-right, incremental mode of parse selection most efficient. For
example, in noun compounds analyzed using a recursive binary-branching rule (N
--* N N) the number of analyses correlates with the Catalan series (Church and Patil,
1982), 4 so a 3-word compound has 2 analyses, 4 has 5, 5 has 14, 9 has 1430, and so
forth. However, Briscoe (1987:154f) shows that with a simple bounded context parser
(with one word lookahead) set up to request help whenever a parse indeterminacy
arises, it is possible to select any of the 14 analyses of a 5-word compound with a
maximum of 5 interactions and any of the 1430 analyses of a 9-word compound with
around 13 interactions. In general, resolution of the first indeterminacy in the input
will rule out approximately half the potential analyses, resolution of the next, half
of the remaining ones, and so on. For 'worst case' CF ambiguities (with O(n 3) com-
plexity) this approach to parse selection appears empirically to involve numbers of
interactions that increase at little more than linear rate with respect to the length of
the input. It is possible to exploit this insight in two ways. One method would be to
compute all possible analyses represented as a (packed) parse forest and ask the user
to select between competing subanalyses that have been incorporated into a success-
ful analysis of the input. In this way, only genuine global syntactic ambiguities would
need to be considered by the user. However, the disadvantage of this approach is that
it relies on a prior (and perhaps CPU-intensive) on-line computation of the full set of
analyses. The second method involves incremental interaction with the parser during
the parse to guide it through the search space of possibilities. This has the advantage
of being guaranteed to be computationally tractable but the potential disadvantage
of requiring the user to resolve many local syntactic ambiguities that will not be

4 The nth Catalan number is given by

Cn=(2n) 1
n n + l "

40

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

incorporated into a successful analysis. Nevertheless, using LR techniques this prob-
lem can be minimized and, because we do not wish to develop a system that must
be able to compute all possible analyses (at some stage) in order to return the most
plausible one, we have chosen the latter incremental method.

5.2 The Interactive LR Parsing System
The interactive incremental parsing system that we implemented asks the user for a
decision at each choice point during the parse. However, to be usable in practice, such
a system must avoid, as far as possible, presenting the user with spurious choices
that could be ruled out either by using more of the left context or by looking at
words yet to be parsed. Our approach goes some way to addressing these points,
since the parser is as predictive as the backbone grammar and LR technique allow,
and the LALR(1) parse table allows one word lookahead to resolve some ambiguities
(although, of course, the resolution of a local ambiguity may potentially involve an
unlimited amount of lookahead; e.g. Briscoe 1987:125ff). In fact, LR parsing is the most
effectively predictive parsing technique for which an automatic compilation procedure
is known, but this is somewhat undermined by our use of features, which will block
some derivations so that the valid prefix property will no longer hold (e.g. Schabes
1991b). Extensions to the LR technique, for example those using LR-regular grammars
(Culic and Cohen 1973; Bermudez 1991), might be used to further cut down on inter-
actions; however, computation of the parse tables to drive such extended LR parsers
may prove intractable for large NL grammars (Hektoen 1991).

An LR parser faces an indeterminacy when it enters a state in which there is more
than one possible action, given the current lookahead. In a particular state there cannot
be more than one shift or accept action, but there can be several reduce actions, each
specifying a reduction with a different rule. When parsing, each shift or reduce choice
must lead to a different final structure, and so the indeterminacy represents a point of
syntactic ambiguity (although it may not correspond to a genuinely global syntactic
ambiguity in the input, on account of the limited amount of lookahead).

In the ANLT grammar and lexicon, lexical ambiguity is at least as pervasive as
structural ambiguity. A naive implementation of an interactive LR parser would ask the
user the correct category for each ambiguous word as it was shifted; many open-class
words are assigned upwards of twenty lexical categories by the ANLT lexicon with
comparatively fine distinctions between them, so this strategy would be completely
impracticable. To avoid asking the user about lexical ambiguity, we use the technique
of preterminal delaying (Shieber 1983), in which the assignment of an atomic preterminal
category to a lexical item is not made until the choice is forced by the use of a particular
production in a later reduce action. After shifting an ambiguous lexical item, the parser
enters a state corresponding to the union of states that would be entered on shifting
the individual lexical categories. (Each union of states will in practice be small, since
it being otherwise would imply that the current context was completely failing to
constrain the following input). Since, in general, several unification grammar categories
for a single word may be subsumed by a single atomic preterminal category, we extend
Shieber's technique so that it deals with a grammar containing complex categories by
associating a set of alternative analyses with each state (not just one), and letting the
choice between them be forced by later reduce actions, just as with atomic preterminal
categories.

In order not to overload the user with spurious choices concerning local ambi-
guities, the parser does not request help immediately after it reaches a parse action
conflict. Instead the parser pursues each option in a limited breadth-first fashion and
only requests help with analysis paths that remain active. In our current system this

41

Computational Linguistics Volume 19, Number 1

Table 3
Amount of user interaction parsing the act of putting an end to
something with the ANLT grammar using different amounts of
action conflict lookahead.

action conflict number of
lookahead choices

mean number of options
in each choice

none 6 2.3
1 choice 5 2.2
2 choices 3 2.0
3 choices 2 2.0
4 choices 1 2.0

type of lookahead is limited to up to four indeterminacies ahead. Such checking is
cheap in terms of machine resources and very effective in cutting down both the
number of choice points the user is forced to consider and also the average num-
ber of options in each one. Table 3 shows the reduction in user interaction achieved
by increasing the amount of lookahead in our system. Computation of the backbone
grammar generates extra rules (as previously described to deal with lexical categories
used as rule mothers and daughters specified to be repeatable an indefinite number of
times) that do not correspond directly to single unification grammar rules. At choice
points, reductions involving these rules are not presented to the user; instead the
system applies the reductions automatically, proceeding until the next shift action or
choice point is reached, including these options in those presented to the user.

The final set of measures taken to reduce the amount of interaction required with
the user is to ask if the phrase being parsed contains one or more gaps or instances of
coordination before presenting choices involving either of these phenomena, blocking
consideration of rules on the basis of the presence of particular feature-value pairs.
Figure 7 shows the system parsing a phrase with a four-choice lookahead. The result-
ing parse tree is displayed with category aliases substituted for the actual complex
categories.

The requests for manual selection of the analysis path are displayed to the ana-
lyst in as terse a manner as possible, and require knowledge of the ANLT grammar
and lexicon to be resolved effectively. Figure 8 summarizes the amount of interaction
required in the experiment reported below for parsing a set of 150 LDOCE noun def-
initions with the ANLT grammar. To date, the largest number of interactions we have
observed for a single phrase is 55 for the (30-word) LDOCE definition for youth hostel:

a hostel for usu young people walking around country areas on holiday for
which they pay small amounts of money to the youth hostels association or the
international yha.

Achieving the correct analysis interactively took the first author about 40 minutes
(including the addition of two lexical entries). Definitions of this length will often
have many hundreds or even thousands of parses; computing just the parse forest
for this definition takes of the order of two hours of CPU time (on a DEC 3100 Unix
workstation). Since in a more general corpus of written material the average sentence
length is likely to be 30--40 words, this example illustrates clearly the problems with
any approach based on post hoc on-line selection of the correct parse. However, using

42

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Parse>> the act of putting an end to something

Are there any gaps in this phrase? n

Ambiguity in state 27/193 with (of putting an end to

something $) remaining in buffer. Analysis so far is the, act.

I: Shift word 'of' onto stack.

2: Reduce end I analyses with rule NI/N (giving category NI-9).

Which choice (i - 2 / abort / finish)? 2

2384 msec CPU

2700 unifications, 2025 failures, i parse

(N2 the

(N2 (NI act

(P2 (PI of

(VP (V putting) (N2 an (N2 (NI end)))

(P2 (PI to (N2 something)))))))))

Figure 7
An interactive parse.

2 0 -

Number of
def'mitions

i0-

I I i i

0 l0 20 30 40

Number of interactions

Figure 8
Numbers of definitions requiring particular amounts of interaction.

I '1
I
50

43

Computational Linguistics Volume 19, Number 1

the incremental approach to semi-automatic parsing we have been able to demonstrate
that the correct analysis is among this set. Furthermore, a probabilistic parser such as
the one described later may well be able to compute this analysis in a tractable fashion
by extracting it from the parse forest. (To date, the largest example for which we have
been able to compute all analyses had approximately 2500).

The parse histories resulting from semi-automatic parsing are automatically stored
and can be used to derive the probabilistic information that will guide the parser after
training. We return to a discussion of the manner in which this information is utilized
in Section 7.

6. Non-Deterministic LR Parsing with Unification Grammars

As well as building an interactive parsing system incorporating the ANLT grammar
(described above), we have implemented a breadth-first, nondeterministic LR parser
for unification grammars. This parser is integrated with the Grammar Development
Environment (GDE; Carroll et al. 1988) in the ANLT system, and provided as an
alternative parser for use with stable grammars for batch parsing of large bodies of
text. The existing chart parser, although slower, has been retained since it is more
suited to grammar development, because of the speed with which modifications to
the grammar can be compiled and its better debugging facilities (Boguraev et al. 1988).

Our nondeterministic LR parser is based on Kipps' (1989) reformulation of Tomi-
ta's (1987) parsing algorithm and uses a graph-structured stack in the same way. Our
parser is driven by the LALR(1) state table computed from the backbone grammar,
but in addition on each reduction the parser performs the unifications appropriate to
the unification grammar version of the backbone rule involved. The analysis being
pursued fails if one of the unifications fails. The parser performs sub-analysis sharing
(where if two or more trees have a common sub-analysis, that sub-analysis is repre-
sented only once), and local ambiguity packing (in which sub-analyses that have the
same top node and cover the same input have their top nodes merged, being treated
by higher level structures as a single sub-analysis). However, we generalize the tech-
nique of atomic category packing described by Tomita, driven by atomic category
names, to complex feature-based categories following Alshawi (1992): the packing of
sub-analyses is driven by the subsumption relationship between the feature values in
their top nodes. An analysis is only packed into one that has already been found if
its top node is subsumed by, or is equal to that of the one already found. An analy-
sis, once packed, will thus never need to be unpacked during parsing (as in Tomita's
system) since the value of each feature will always be uniquely determined.

Our use of local ambiguity packing does not in practice seem to result in exponen-
tially bad performance with respect to sentence length (cf. Johnson 1989) since we have
been able to generate packed parse forests for sentences of over 30 words having many
thousands of parses. We have implemented a unification version of Schabes' (1991a)
chart-based LR-like parser (which is polynomial in sentence length for CF grammars),
but experiments with the ANLT grammar suggest that it offers no practical advan-
tages over our Tomita-style parser, and Schabes' table construction algorithm yields
less fine-grained and, therefore, less predictive parse tables. Nevertheless, searching
the parse forest exhaustively to recover each distinct analysis proved computationally
intractable for sentences over about 22 words in length. Wright, Wrigley, and Shar-
man (1991) describe a Viterbi-like algorithm for unpacking parse forests containing
probabilities of (sub-)analyses to find the n-best analyses, but this approach does not
generalize (except in a heuristic way) to our approach in which unification failure
on the different extensions of packed nodes (resulting from differing super- or sub-

44

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Table 4
Chart and LR parse times for the LDOCE definition the state of being
away or of not being present with the ANLT grammar (in CPU seconds
on a DEC 3100).

Parser Parse time

GDE (bottom-up) chart parser 7.9
LR semi-automatic (with 4-choice lookahead) 6.0
LR nondeterministic 5.8

analyses) cannot be computed 'locally.' In subsequent work (Carroll and Briscoe 1992)
we have developed such a heuristic technique for best-first search of the parse for-
est which, in practice, makes the recovery of the most probable analyses much more
efficient (allowing analysis of sentences containing over 30 words).

We noticed during preliminary experiments with our unification LR parser that it
was often the case that the same unifications were being performed repeatedly, even
during the course of a single reduce action. The duplication was happening in cases
where two or more pairs of states in the graph-structured stack had identical complex
categories between them (for example due to backbone grammar ambiguity). During a
reduction with a given rule, the categories between each pair of states in a backwards
traversal of the stack are collected and unified with the appropriate daughters of the
rule. Identical categories appearing here between traversed pairs of states leads to
duplication of unifications. By caching unification results we eliminated this wasted
effort and improved the initially poor performance of the parser by a factor of about
three.

As for actual parse times, Table 4 compares those for the GDE chart parser, the
semi-automatic, user-directed LR parser, and the nondeterministic LR parser. Our gen-
eral experience is that although the nondeterministic LR parser is only around 30-50%
faster than the chart parser, it often generates as little as a third the amount of garbage.
(The relatively modest speed advantage compared with the substantial space saving
appears to be due to the larger overheads involved in LR parsing). Efficient use of
space is obviously an important factor for practical parsing of long and ambiguous
texts.

7. LR Parsing with Probabilistic Disambiguation

Several researchers (Wright and Wrigley 1989; Wright 1990; Ng and Tomita 1991;
Wright, Wrigley, and Sharman 1991) have proposed using LR parsers as a practi-
cal method of parsing with a probabilistic context-free grammar. This approach as-
sumes that probabilities are already associated with a CFG and describes techniques
for distributing those probabilities around the LR parse table in such a way that a
probabilistic ranking of alternative analyses can be computed quickly at parse time,
and probabilities assigned to analyses will be identical to those defined by the original
probabilistic CFG. However, our method of constructing the training corpus allows
us to associate probabilities with an LR parse table directly, rather than simply with
rules of the grammar. An LR parse state encodes information about the left and right
context of the current parse. Deriving probabilities relative to the parse context will
allow the probabilistic parser to distinguish situations in which identical rules reapply

45

Computational Linguistics Volume 19, Number 1

in different ways across different derivations or apply with differing probabilities in
different contexts.

Semi-automatic parsing of the training corpus yields a set of LR parse histories that
are used to construct the probabilistic version of the LALR(1) parse table. The parse
table is a nondeterministic finite-state automaton so it is possible to apply Markov
modeling techniques to the parse table (in a way analogous to their application to
lexical tagging or CFGs). Each row of the parse table corresponds to the possible
transitions out of the state represented by that row, and each transition is associated
with a particular lookahead item and a parse action. Nondeterminism arises when
more than one action, and hence transition, is possible given a particular lookahead
item. The most straightforward technique for associating probabilities with the parse
table is to assign a probability to each action in the action part of the table (e.g. Wright
1990). 5 If probabilities are associated directly with the parse table rather than derived
from a probabilistic CFG or equivalent global pairing of probabilities to rules, then
the resulting probabilistic model will be more sensitive to parse context. For example,
in a derivation for the sentence he loves her using Grammar 1, the distinction between
reducing the first pronoun and second pronoun to NP--using rule 5 (NP --> ProNP)--
can be maintained in terms of the different lookahead items paired with the reduce
actions relating to this rule (in state 5 of the parse table in Figure 2); in the first case, the
lookahead item will be Vi, and in the second $ (the end of sentence marker). However,
this approach does not make maximal use of the context encoded into a transition
in the parse table, and it is possible to devise situations in which the reduction of
a pronoun in subject position and elsewhere would be indistinguishable in terms of
lookahead alone; for example, if we added appropriate rules for adverbs to Grammar 1,
then this reduction would be possible with lookahead Adv in sentences such as he
passionately loves her and he loves her passionately.

A slightly less obvious approach is to further subdivide reduce actions according
to the state reached after the reduce action has applied. This state is used together
with the resultant nonterminal to define the state transition in the goto part of the
parse table. Thus, this move corresponds to associating probabilities with transitions
in the automaton rather than with actions in the action part of the table. For example,
a reduction of pronoun to NP in subject position in the parse table for Grammar 1 in
Figure 2 always results in the parser returning to state 0 (from which the goto table
deterministically prescribes a transition to state 7 with nonterminal RP). Reduction to
NP of a pronoun in object position always results in the parser returning to state 11.
Thus training on a corpus with more subject than nonsubject pronominal NPs will now
result in a probabilistic preference for reductions that return to 'pre-subject' states with
'post-subject' lookaheads. Of course, this does not mean that it will be impossible to
devise grammars in which reductions cannot be kept distinct that might, in principle,
have different frequencies of occurrence. However, this approach appears to be the
natural stochastic, probabilistic model that emerges when using a LALR(1) table. Any
further sensitivity to context would require sensitivity to patterns in larger sections of
a parse derivation than can be defined in terms of such a table.

The probabilities required to create the probabilistic version of the parse table can
be derived from the set of parse histories resulting from the training phase described
in Section 5, by computing the frequency with which each transition from a particular
state has been taken and converting these to probabilities such that the probabilities

5 In our implementation, the probabilities are actually stored separately from the parse table to ensure
that otherwise-sharable transitions in the table can still be represented compactly even if their
probabilities differ.

46

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

State $ Det N@ p ProNP Vi Vt
..

0 s3 s2

(.50) (.50)
..

1 rl

(0 .83)
..

2 r5 r5 r5 r5
(8 .33) (0 .50)

..

3 s4

(i. 00)
..

4 rl0 rl0 rl0 rl0 rl0

(3 .Ii 6 .ii) (3 .17 5 .22) (3 .ii) (3 .ii 5 .ii)
..

5 r6 84 r6 r6 r6

(8 .13 Ii .13) (.33) (ii .13) (0 .20)
..

6 r8 r8 r8 r8 r8

(3 .17 5 .17) (3 .25) (3 .17)

s4

(.17)
..

7 88 s13 sll

(.43) (.43)
..

8 83 s2

(.50) (.50)
..

9 r9 r9 r9 r9

(12 .40) (12 .40)

88
..

i0 r7 r7 r7 r7

(11 .40) (11 .40)
..

ii 83 82

(.75)
..

12 r3 88

(7 .43) (.43)
..

13 r4

(7 .75)
..

14 r2

(0 .84)
..

15 acc

(l.00)

Figure 9
A probabilistic version of the parse table for Grammar 1.

assigned to each transition from a given state sum to one. In Figure 9 we show a
probabilistic LALR(1) parse table for Grammar 1 der ived from a simple, partial (and
artificial) training phase. In this version of the table a probability is associated with each
shift action in the s tandard way, but separate probabilities are associated with reduce

47

Computational Linguistics Volume 19, Number 1

o) o

i) 0 Det 3

2) 0 Det 3 N@ 4

3) 0 Det 3 N

4) 0 Det 3 N 5

5) 0 Det 3 N 5 N@ 4

6) 0 Det 3 N 5 N

7) 0 Det 3 N 5 N 6

(Det)

(N@I) .50

(N@2) 1.00

(N@2)

(N@2) .17

(N@3) .33

(N@3)

(N@3) .22

8a) 0 Det 3 N 5 N 6 N@ 4 (Vi) .17

9a) 0 Det 3 N 5 N 6 N (Vi)

10a) 0 Det 3 N 5 N 6 N 6 (Vi) .06

lla) 0 Det 3 N 5 N (Vi)

12a) 0 Det 3 N 5 N 6 (Vi) .08

13a) 0 Det 3 N (Vi)

8b) 0 Det 3 N (N@3)

9b) 0 Det 3 N 5 (N@3) .25

10b) 0 Det 3 N 5 N@ 4 (Vi) .33

llb) 0 Det 3 N 5 N (Vi)

12b) 0 Det 3 N 5 N 6 (Vi) .ii

13b) 0 Det 3 N (Vi)

14) 0 Det 3 N 5 (Vi) .17

15) 0 NP (Vi)

16) 0 NP 7 (Vi) .20

17) 0 NP 7 Vi 13 ($) .43
18) 0 NP 7 VP ($)

19) 0 NP 7 VP 14 ($) .75

2o) o s ($)

21) 0 S 1 ($) .83

22) 0 S' ($)

23) 0 S' 15 ($) 1.00

Figure 10
Parse derivations for the winter holiday camp closed.

actions, depending on the state reached after the action; for example, in state 4 with
lookahead N~ the probability of reducing with rule 10 is 0.17 if the state reached is 3 and
0.22 if the state reached is 5. The actions that have no associated probabilities are ones
that have not been utilized during the training phase; each is assigned a smoothed
probability that is the reciprocal of the result of adding one to the total number of
observations of actions actually taken in that state. Differential probabilities are thus
assigned to unseen events in a manner analogous to the Good-Turing technique. For
this reason, the explicit probabilities for each row add up to less than one. The goto
part of the table is not shown because it is always deterministic and, therefore, we do
not associate probabilities with goto transitions.

The difference between our approach and one based on probabilistic CFG can be
brought out by considering various probabilistic derivations using the probabilistic
parse table for Grammar 1. Assuming that we are using probabilities simply to rank
parses, we can compute the total probability of an analysis by mult iplying together
the probabilities of each transition we take during its derivation. In Figure 10, we give
the two possible complete derivations for a sentence such as the winter holiday camp
closed consisting of a determiner, three nouns, and an intransitive verb. The ambiguity
concerns whether the noun compound is left- or right-branching, and, as we saw in
Section 2, a probabilistic CFG cannot distinguish these two derivations. The probability
of each step can be read off the action table and is shown after the lookahead item in
the figure.

In step 8 a shift-reduce conflict occurs so the stack 'splits' while the left- and right-
branching analyses of the noun compound are constructed. The a) branch corresponds

48

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

to the right-branching derivation and the product of the probabilities is 4.6 x 10 -8,
while the product for the left-branching b) derivation is 5.1 x 10 -7. Since the table
was constructed from parse histories with a preponderance of left-branching struc-
tures this is the desired result. In practice, this technique is able to distinguish and
train accurately on 3 of the 5 possible structures for a 4-word noun-noun compound;
but it inaccurately prefers a completely left-branching analysis over structures of the
form ((n n)(n n)) and ((n (nn)) n). Once we move to 5-word noun-noun compounds,
performance degrades further. However, this level of performance on such structural
configurations is likely to be adequate, because correct resolution of most ambiguity
in such constructions is likely to be dominated by the actual lexical items that occur
in individual texts. Nevertheless, if there are systematic structural tendencies evident
in corpora (for example, Frazier's [1988] parsing strategies predict a preference for
left-branching analyses of such compounds), then the probabilistic model is sensitive
enough to discriminate them. 6

In practice, we take the geometric mean of the probabilities rather than their prod-
uct to rank parse derivations. Otherwise, it would be difficult to prevent the system
from always developing a bias in favor of analyses involving fewer rules or equiva-
lently 'smaller' trees, almost regardless of the training material. Of course, the need
for this step reflects the fact that, although the model is more context-dependent than
probabilistic CFG, it is by no means a perfect probabilistic model of NL. 7 For exam-
ple, the stochastic nature of the model and the fact that the entire left context of a
parse derivation is not encoded in LR state information means that the probabilistic
model cannot take account of, say, the pattern of resolution of earlier conflicts in the
current derivation. Another respect in which the model is approximate is that we are
associating probabilities with the context-free backbone of the unification grammar.
Successful unification of features at parse time does not affect the probability of a
(partial) analysis, while unification failure, in effect, sets the probability of any such
analysis to zero. As long as we only use the probabilistic model to rank successful
analyses, this is not particularly problematic. However, parser control regimes that
attempt some form of best-first search using probabilistic information associated with
transitions might not yield the desired result given this property. For example, it is not
possible to use Viterbi-style optimization of search for the maximally probable parse
because this derivation may contain a sub-analysis that will be pruned locally before a
subsequent unification failure renders the current most probable analysis impossible.

In general, the current breadth-first probabilistic parser is more efficient than its
nonprobabilistic counterpart described in the previous section. In contrast to the parser
described by Ng and Tomita (1991), our probabilistic parser is able to merge (state and
stack) configurations and in all cases still maintain a full record of all the probabilities
computed up to that point, since it associates probabilities with partial analyses of the
input so far rather than with nodes in the graph-structured stack. We are currently

6 Although we define our probabilistic model relative to the LR parsing technique, it is likely that there
is an equivalent encoding in purely grammatical terms. In general our approach corresponds to
making the probability of rule application conditional on other rules having applied during the parse
derivation (e.g. Magerman and Marcus 1991) and the lexical category of the next word; for example, it
would be possible to create a grammatical representation of the probabilistic model that emerges from
a LR(0) table by assigning a set of probabilities associated with rule numbers to each right-hand side
category in each rule of a CFG that would encode the probability of a rule being used to expand that
category in that context.

7 Magerrnan and Marcus (1991) argue that it is reasonable to use the geometric mean when computing
the probability of two or more sub-analyses because the independence assumptions that motivate using
products do not hold for such an approximate model. In Carroll and Briscoe (1992) we present a more
motivated technique for normalizing the probability of competing sub-analyses in the parse forest.

49

Computational Linguistics Volume 19, Number 1

experimenting with techniques for probabilistically unpacking the packed parse forest
to recover the first few most probable derivations without the need for exhaustive
search or full expansion.

8. Parsing LDOCE Noun Definitions

In order to test the techniques and ideas described in previous sections, we undertook
a preliminary experiment using a subset of LDOCE noun definitions as our test corpus.
(The reasons for choosing this corpus are discussed in the introduction.) A corpus of
approximately 32,000 noun definitions was created from LDOCE by extracting the
definition fields and normalizing the definitions to remove punctuation, font control
information, and so forth, s A lexicon was created for this corpus by extracting the
appropriate lemmas and matching these against entries in the ANLT lexicon. The
10,600 resultant entries were loaded into the ANLT morphological system (Ritchie et
al. 1987) and this sublexicon and the full ANLT grammar formed the starting point
for the training process.

A total of 246 definitions, selected without regard for their syntactic form, were
parsed semi-automatically using the parser described in Section 5. During this process,
further rules and lexical entries were created for some definitions that failed to parse.
Of the total number, 150 were successfully parsed and 63 lexical entries and 14 rules
were added. Some of the rules required reflected general inadequacies in the ANLT
grammar; for example, we added rules to deal with new partitives and prepositional
phrase and verb complementation. However, 7 of these rules cover relatively idiosyn-
cratic properties of the definition sublanguage; for example, the postmodification of
pronouns by relative clause and prepositional phrase in definitions beginning some-
thing that that o f . . . , parenthetical phrases headed by adverbs, such as the period.. .
esp the period, and coordinations without explicit conjunctions ending with etc., and
so forth. Further special rules will be required to deal with brackets in definitions to
cover conventions such as a man (monk) or woman (nun) who lives in a monastery, which
we ignored for this test. Nevertheless, the number of new rules required is not great
and the need for most was identified very early in the training process. Lexical entries
are more problematic, since there is little sign that the number of new entries required
will tail off. However, many of the entries required reflect systematic inadequacies in
the ANLT lexicon rather than idiosyncrasies of the corpus. It took approximately one
person-month to produce this training corpus. As a rough guide, it takes an average
of 15 seconds to resolve a single interaction with the parser. However, the time a parse
takes can often be lengthened by incorrect choices (and the consequent need to back
up manually) and by the process of adding lexical entries and occasional rules.

The resultant parse histories were used to construct the probabilistic parser (as
described in the previous section). This parser was then used to reparse the training
corpus, and the most highly ranked analyses were automatically compared with the
original parse histories. We have been able to reparse in a breadth-first fashion all
but 3 of the 150 definitions that were parsed manually. 9 (These three are each over

8 The corpus contains about 17,000 unique headwords and 13,500 distinct word forms in the definitions.
Its perplexity (PP) measures based on bigram and trigram word models and an estimate of an infinite
model were PP(2) = 104, PP(3) = 41, and PP(inf) = 8 (Sharman 1991).

9 The results we report here are from using the latest versions of the ANLT grammar and LR parsing
system. Briscoe and Carroll (1991) report an earlier version of this experiment using different versions
of the grammar and parser in which results differed in minor ways. Carroll and Briscoe (1992) report a
third version of the experiment in which results were improved slightly through the use of a better
normalization and parse forest unpacking technique.

50

i~i~!ii!iiii@!

2 0 -

Number of
definitions

1 0 -

0

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Figure 11

h
i0 20

Definition length

I-1

1st ranked analysis correct

2nd ranked analysis correct

3rd ranked analysis correct

correct analysis not ranked
either 1st, 2nd or 3rd

Correctness of results for reparsed definitions with respect to length.

I

30

25 words in length.) There are 22 definitions one word in length: all of these trivially
receive correct analyses. There are 89 definitions between two and ten words in length
inclusive (mean length 6.2). Of these, in 68 cases the correct analysis (as defined by
the training corpus) is also the most highly ranked. In 13 of the 21 remaining cases the
correct analysis is the second or third most highly ranked analysis. Looking at these
21 cases in more detail, in 8 there is an inappropriate structural preference for ' low' or
'local' a t tachment (see Kimball 1973), in 4, an inappropriate preference for compounds ,
and in 6 of the remaining 9 cases, the highest ranked result contains a misanalysis of a
single constituent two or three words in length. If these results are interpreted in terms
of a goodness of fit measure such as that of Sampson, Haigh, and Atwell (1989), the
measure would be better ttian 96%. If we take correct parse / sen tence as our measure
then the result is 76%. For definitions longer than 10 words this latter figure tails off,
mainly due to misapplication of such statistically induced, but nevertheless structural,
a t tachment preferences. Figure 11 summarizes these results.

We also parsed a further 55 LDOCE noun definitions not d rawn from the training
corpus, each containing up to 10 words (mean length 5.7). Of these, in 41 cases the
correct parse is the most highly ranked, in 6 cases it is the second or third most highly
ranked, and in the remaining 8 cases it is not in the first three analyses. This yields a
correct parse /sentence measure of 75%. Examination of the failures again reveals that
a preference for local at tachment of postmodifiers accounts for 5 cases, a preference
for compounds for 1, and the misanalysis of a single constituent for 2. The others
are most ly caused by the lack of lexical entries with appropriate SUBCAT features. In
Figure 12 we show the analysis for the unseen definition of affectation, which has 20
parses of which the most highly ranked is correct.

51

Computational Linguistics Volume 19, Number 1

N2

N2

i
N1

N1

N1 CONJNI N2 VP

feelinc or N1 that is VP

I i
manner pretende¢

Figure 12
Parse tree for afeelingormanner that is pretended.

N1

N1/N CONJNI

p e r s o n o r N1 N2

I I
t h ing t h a t

N2
\

N2

I
N1

S

I
S

VP

VP CONJVP

support~ E or VP

helps E

Figure 13
Parse tree for a person or thing that supports or helps.

Figure 13 shows the highest-ranked analysis assigned to one definition of aid. This
is an example of a false positive which, in this case, is caused by the lack of a lexical
entry for support as an intransitive verb. Consequently, the parser finds, and ranks
highest, an analysis in which supports and helps are treated as transitive verbs forming
verb phrases with object NP gaps, and that supports or helps as a zero relative clause
with that analyzed as a prenominal subject--compare a person or thing that that supports
or helps. It is difficult to fault this analysis and the same is true for the other false
positives we have looked at. Such false positives present the biggest challenge to the
type of system we are attempting to develop. One hopeful sign is that the analyses
assigned such examples appear to have low probabilities relative to most probable
correct analyses of other examples. However, considerably more data will be required
before we can decide whether this trend is robust enough to provide the basis for
automatic identification of false positives.

52

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Using a manually disambiguated training corpus and manually tuned grammar
appears feasible with the definitions sublanguage. Results comparable to those ob-
tained by Fujisaki et al. (1989) and Sharman, Jelinek, and Mercer (1990) are possible
on the basis of a quite modest amount of manual effort and a very much smaller
training corpus, because the parse histories contain little 'noise' and usefully reflect
the semantically and pragmatically appropriate analysis in the training corpus, and
because the number of failures of coverage were reduced to some extent by adding the
rules specifically motivated by the training corpus. Unlike Fujisaki et al. or Sharman,
Jelinek, and Mercer, we did not integrate information about lexemes into the rule prob-
abilities or make use of lexical syntactic probability. It seems likely that the structural
preference for local attachment might be overruled in appropriate contexts if lexeme
(or better, word sense) information were taken into account. The slightly worse results
(relative to mean definition length) obtained for the unseen data appear to be caused
more by the nonexistence of a correct analysis in a number of cases, rather than by
a marked decline in the usefulness of the rule probabilities. This again highlights the
need to deal effectively with examples outside the coverage of the grammar.

9. Conclusions and Further Work

The system that we have developed offers partial and practical solutions to two of
the three problems of corpus analysis we identified in the introduction. The problem
of tuning an existing grammar to a particular corpus or sublanguage is addressed
partly by manual extensions to the grammar and lexicon during the semi-automatic
training phase and partly by use of statistical information regarding frequency of rule
use gathered during this phase. The results of the experiment reported in the last
section suggest that syntactic peculiarities of a sublanguage or corpus surface quite
rapidly, so that manual additions to the grammar during the training phase are prac-
tical. However, lexical idiosyncrasies are far less likely to be exhausted during the
training phase, suggesting that it will be necessary to develop an automatic method of
dealing with them. In addition, the current system does not take account of differing
frequencies of occurrence of lexical entries; for example, in the LOB corpus the verb
believe occurs with a finite sentential complement in 90% of citations, although it is
grammatical with at least five further patterns of complementation. This type of lexical
information, which will very likely vary between sublanguages, should be integrated
into the probabilistic model. This will be straightforward in terms of the model, since
it merely involves associating probabilities with each distinct lexical entry for a lex-
eme and carrying these forward in the computation of the likelihood of each parse.
However, the acquisition of the statistical information from which these probabilities
can be derived is more problematic. Existing lexical taggers are unable to assign tags
that reliably encode subcategorization information. It seems likely that automatic ac-
quisition of such information must await successful techniques for robust parsing of,
at least, phrases in corpora (though Brent [1991] claims to be able to recognize some
subcategorization patterns using large quantities of untagged text).

The task of selecting the correct analysis from the set licensed by the grammar
is also partially solved by the system. It is clear from the results of the preliminary
experiment reported in the previous section that it is possible to make the semanti-
cally and pragmatically correct analysis highly ranked, and even most highly ranked
in many cases, just by exploiting the frequency of occurrence of the syntactic rules in
the training data. However, it is also clear that this approach will not succeed in all
cases; for example, in the experiment the system appears to have developed a prefer-
ence for local attachment of prepositional phrases (PPs), which is inappropriate in a

53

Computational Linguistics Volume 19, Number 1

significant number of cases. It is not surprising that probabilities based solely on the
frequency of syntactic rules are not capable of resolving this type of ambiguity; in an
example such as John saw the man on Monday again it is the temporal interpretation of
Monday that favors the adverbial interpretation (and thus nonlocal attachment). Such
examples are syntactically identical to ones such as John saw the man on the bus again,
in which the possibility of a locative interpretation creates a mild preference for the
adjectival reading and local attachment. To select the correct analysis in such cases it
will be necessary to integrate information concerning word sense collocations into the
probabilistic analysis. In this case, we are interested in collocations between the head
of a PP complement, a preposition and the head of the phrase being postmodified. In
general, these words will not be adjacent in the text, so it will not be possible to use
existing approaches unmodified (e.g. Church and Hanks 1989), because these apply
to adjacent words in unanalyzed text. Hindle and Rooth (1991) report good results
using a mutual information measure of collocation applied within such a structurally
defined context, and their approach should carry over to our framework straightfor-
wardly.

One way of integrating 'structural' collocational information into the system pre-
sented above would be to make use of the semantic component of the (ANLT) gram-
mar. This component pairs logical forms with each distinct syntactic analysis that
represent, among other things, the predicate-argument structure of the input. In the
resolution of PP attachment and similar ambiguities, it is 'collocation' at this level of
representation that appears to be most relevant. Integrating a probabilistic ranking
of the resultant logical forms with the probabilistic ranking of the distinct syntactic
analyses presents no problems, in principle. However, once again, the acquisition of
the relevant statistical information will be difficult, because it will require considerable
quantities of analyzed text as training material. One way to ameliorate the problem
might be to reduce the size of the 'vocabulary' for which statistics need to be gathered
by replacing lexical items with their superordinate terms (or a disjunction of such
terms in the case of ambiguity). Copestake (1990, 1992) describes a program capable
of extracting the genus term of a definition from an LDOCE definition, resolving the
sense of such terms, and constructing hierarchical taxonomies of the resulting word
senses. Taxonomies of this form might be used to replace PP complement heads and
postmodified heads in corpus data with a smaller number of superordinate concepts.
This would make the statistical data concerning trigrams of head-preposition-head
less sparse (cf. Gale and Church 1990) and easier to gather from a corpus. Never-
theless, it will only be possible to gather such data from determinately syntactically
analyzed material.

The third problem of dealing usefully with examples outside the coverage of the
grammar even after training is not addressed by the system we have developed. Nev-
ertheless, the results of the preliminary experiment for unseen examples indicate that it
is a significant problem, at least with respect to lexical entries. A large part of the prob-
lem with such examples is identifying them automatically. Some such examples will
not receive any parse and will, therefore, be easy to spot. Many, though, will receive
incorrect parses (one of which will be automatically ranked as the most probable) and
can, therefore, only be identified manually (or perhaps on the basis of relative improb-
ability). Jensen et al. (1983) describe an approach to parsing such examples based on
parse 'fitting' or rule 'relaxation' to deal with 'ill-formed' input. An approach of this
type might work with input that receives no parse, but cannot help with the identifica-
tion of those that only receive an incorrect one. In addition, it involves annotating each
grammar rule about what should be relaxed and requires that semantic interpretation
can be extended to 'fitted' or partial parses (e.g. Pollack and Pereira 1988).

54

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Sampson, Haigh, and Atwell (1989) propose a more thorough-going probabilistic
approach in which the parser uses a statistically defined measure of 'closest fit' to
the set of analyses contained in a 'tree bank' of training data to assign an analysis.
This approach attempts to ensure that analyses of new data will conform as closely as
possible to existing ones, but does not require that analyses assigned are well formed
with respect to any given generative grammar implicit in the tree bank analyses.
Sampson, Haigh, and Atwell report some preliminary results for a parser of this type
that uses the technique of simulated annealing to assign the closest fitting analysis
on the basis of initial training on the LOB treebank and automatic updating of its
statistical data on the basis of further parsed examples. Sampson, Haigh, and Atwell
give their results in terms of a similarity measure with respect to correct analyses
assigned by hand. For a 13-sentence sample the mean similarity measure was 80%,
and only one example received a fully correct analysis. These results suggest that the
technique is not reliable enough for practical corpus analysis, to date. In addition,
the analyses assigned, on the basis of the LOB treebank scheme, are not syntactically
determinate (for example, syntactic relations in unbounded dependency constructions
are not represented).

A more promising approach with similar potential robustness would be to infer
a probabilistic grammar using Baum-Welch re-estimation from a given training cor-
pus and predefined category set, following Lari and Young (1990) and Pereira and
Schabes (1992). This approach has the advantage that the resulting grammar defines
a well-defined set of analyses for which rules of compositional interpretation might
be developed. However, the technique is limited in several ways; firstly, such gram-
mars are restricted to small (maximum about 15 nonterminal) CNF CFGs because
of the computational cost of iterative re-estimation with an algorithm polynomial in
sentence length and nonterminal category size; and secondly, because some form of
supervised training will be essential if the analyses assigned by the grammar are to
be linguistically motivated. Immediate prospects for applying such techniques to real-
istic NL grammars do not seem promising--the ANLT backbone grammar discussed
in Section 4 contains almost 500 categories. However, Briscoe and Waegner (1992)
describe an experiment in which, firstly, Baum-Welch re-estimation was used in con-
junction with other more linguistically motivated constraints on the class of grammars
that could be inferred, such as 'headedness'; and secondly, initial probabilities were
heavily biased in favor of manually coded, linguistically highly plausible rules. This
approach resulted in a simple tag sequence grammar often able to assign coherent and
semantically/pragmatically plausible analyses to tag sequences drawn from the Spo-
ken English Corpus. By combining such techniques and relaxing the CNF constraint,
for example, by adopting the trellis algorithm version of Baum-Welch re-estimation
(Kupiec 1991), it might be possible to create a computationally tractable system oper-
ating with a realistic NL grammar that would only infer a new rule from a finite space
of linguistically motivated possibilities in the face of parse failure or improbability. In
the shorter term, such techniques combined with simple tag sequence grammars might
yield robust phrase-level 'skeleton' parsers that could be used as corpus analysis tools.

The utility of the system reported here would be considerably improved by a more
tractable approach to probabilistically unpacking the packed parse forest than exhaus-
tive search. Finding the n-best analyses would allow us to recover analyses for longer
sentences where a parse forest is constructed and would make the approach generally
more efficient. Carroll and Briscoe (1992) present a heuristic algorithm for parse for-
est unpacking that interleaves normalization of competing sub-analyses with best-first
extraction of the n most probable analyses. Normalization of competing sub-analyses
with respect to the longest derivation both allows us to prune the search probabilisti-

55

Computational Linguistics Volume 19, Number 1

cally and to treat the probability of analyses as the product of the probability of their
sub-analyses, without biasing the system in favor of shorter derivations. This modi-
fied version of the system presented here is able to return analyses for sentences over
31 words in length, yields slightly better results on a replication of the experiment
reported in Section 8, and the resultant parser is approximately three times faster at
returning the three highest-ranked parsers than that presented here.

In conclusion, the main positive points of the paper are that 1) LR parse tables can
be used to define a more context-dependent and adequate probabilistic model of NL,
2) predictive LR parse tables can be constructed automatically from unification-based
grammars in standard notation, 3) effective parse table construction and representation
techniques can be defined for realistically sized ambiguous NL grammars, 4) semi-
automatic LR based parse techniques can be used to efficiently construct training
corpora, and 5) the LR parser and ANLT grammar jointly define a useful probabilistic
model into which probabilities concerning lexical subcategorization and structurally
defined word sense collocations could be integrated.

Acknowledgments
This research is supported by
SERC/DTI-IED project 4/1/1261
'Extensions to the Alvey Natural Language
Tools' and by ESPRIT BRA 3030
'Acquisition of Lexical Information from
Machine-Readable Dictionaries.' We would
like to thank Longman Group Ltd. for
allowing us access to the LDOCE MRD and
Ann Copestake and Antonio Sanfilippo for
considerable help in the analysis of the
LDOCE noun definition corpus. Richard
Sharman kindly calculated the perplexity
measures for this corpus. In addition, Hiyan
Alshawi, David Weir, and Steve Young have
helped clarify our thinking and made
several suggestions that have influenced the
way this research has developed. Alex
Lascarides and four anonymous reviewers'
comments on earlier drafts were very
helpful to us in preparing the final version.
All errors and mistakes remain our
responsibility.

References
Aho, A.; Sethi, R.; and Ullman, J. (1986).

Compilers: Principles, Techniques and Tools.
Addison-Wesley.

Alshawi, H., ed. (1992). The Core Language
Engine. MIT Press.

Baker, J. (1982). "Trainable grammars for
speech recognition." Speech
Communication Papers for the 97th
Meeting of the Acoustical Society of
America, 547-550.

Baum, L. (1972). "An inequality and
associated maximization technique in
statistical estimation for probabilistic
functions of Markov processes."

Inequalities, III, 1-8.
Bermudez, M. (1991). "A unifying model for

lookahead LR parsing." Computer
Languages, 16(2), 167-178.

Boguraev, B.; Carroll, J.; Briscoe, E.; and
Grover, C. (1988). "Software support for
practical grammar development." In
Proceedings, 12th International Conference on
Computational Linguistics, Budapest,
Hungary, 54-58.

Brent, M. (1991). "Automatic acquisition of
subcategorization frames from untagged
text." In Proceedings, 29th Annual Meeting
of the Association for Computational
Linguistics, Berkeley, CA, 209-214.

Briscoe, E. (1987). Modelling Human Speech
Comprehension: A Computational Approach.
Ellis Horwood and Wiley.

Briscoe, E.; Grover, C.; Boguraev, B.; and
Carroll, J. (1987). "A formalism and
environment for the development of a
large grammar of English. In Proceedings,
l Oth International Joint Conference on
Artificial Intelligence, Milan, Italy, 703-708.

Briscoe, E., and Carroll, J. (1991).
"Generalized probabilistic LR parsing of
natural language (corpora) with
unification-based grammars." Technical
Report 224, Computer Laboratory,
Cambridge University.

Briscoe, E., and Waegner, N. (1992). "Robust
stochastic parsing using the
inside-outside algorithm." In Proceedings,
AAAI Workshop on Statistically-based NLP
Techniques, San Jose, CA.

Carroll, J., and Grover, C. (1989). "The
derivation of a large computational
lexicon for English." In Computational
Lexicography for Natural Language

56

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

Processing, edited by B. Boguraev and
E. Briscoe, 117-134. Longman.

Carroll, J.; Boguraev, B.; Grover, C.; and
Briscoe, E. (1988). "The grammar
development environment: a user guide."
Technical Report 127, Computer
Laboratory, Cambridge University.

Carroll, J., and Briscoe, E. (1992).
"Probabilistic normalisation and
unpacking of packed parse forests for
unification-based grammars." In
Proceedings, AAAI Fall Symposium on
Probabilistic Approaches to Natural Language,
Cambridge, MA, 33-38.

Chapman, N. (1987). LR Parsing: Theory and
Practice. Cambridge University Press.

Church, K., and Hanks, P. (1989). "Word
association norms, mutual information,
and lexicography." In Proceedings, 27th
Annual Meeting of the Association for
Computational Linguistics, Vancouver,
British Columbia, 76-83.

Church, K., and Patil, R. (1982). "Coping
with syntactic ambiguity or how to put
the block in the box on the table."
Computational Linguistics, 8, 139-149.

Copestake, A. (1990). "An approach to
building the hierarchical element of a
lexical knowledge base from a
machine-readable dictionary." In
Proceedings, Workshop on Inheritance in
Natural Language Processing, Tilburg, 19-29.

Copestake, A. (1992). "Defaults in lexical
representation." In Default Inheritance in
Unification-based Approaches to the Lexicon,
edited by E. Briscoe, A. Copestake, and
V. de Paiva. Cambridge University Press.

Culic, K. II, and Cohen, R. (1973).
"LR-regular grammars--an extension of
LR(k) grammars." Journal of Computer and
System Sciences, 7, 66-96.

Cutting, D.; Kupiec, J.; Pedersen, J.; and
Sibun, P. (1992). "A practical
part-of-speech tagger." 3rd Applied ACL,
Trento, Italy, 133-140.

DeRemer, E, and Pennello, T. (1982).
"Efficient computation of LALR(1)
look-ahead sets." ACM Transactions on
Programming Languages and Systems, 4(4),
615-649.

de Rose, S. (1988). "Grammatical category
disambiguation by statistical
optimization." Computational Linguistics,
14(1), 31-39.

Earley, J. (1970). "An efficient context-free
parsing algorithm." Communications of the
ACM, 13(2), 94-102.

Frazier, L. (1988). "Grammar and language
processing." In Linguistics: The Cambridge
Survey, Volume 2, edited by F. Newmeyer,
14-45. Cambridge University Press.

Fujisaki, T.; Jelinek, E; Cocke, J.; Black E.;
and Nishino, T. (1989). "A probabilistic
method for sentence disambiguation." In
Proceedings, 1st International Workshop on
Parsing Technologies, Carnegie-Mellon
University, Pittsburgh, PA, 105-114.

Gale, W., and Church, K. (1990). "Poor
estimates of context are worse than
none." DARPA Speech and Natural Language
Workshop, Hidden Valley, PA, 283-287.

Garside, R.; Leech, G.; and Sampson, G.
(1987). The Computational Analysis of
English: A Corpus-Based Approach.
Longman.

Gazdar, G.; Klein, E.; Pullum, G.; and Sag, I.
(1985). Generalized Phrase Structure
Grammar. Blackwell.

Gazdar, G., and Mellish, C. (1989). Natural
Language Processing in Lisp.
Addison-Wesley.

Grosch, J. (1990). "Lalr--A generator for
efficient parsers." Software--Practice and
Experience, 20(11), 1115-1135.

Grover, C.; Briscoe, E.; Carroll, J.; and
Boguraev, B. (1989). "The Alvey natural
language tools grammar (second
release)." Technical Report 162, Computer
Laboratory, Cambridge University.

Hektoen, E. (1991). "LAR processing for
natural language grammars." Masters
dissertation, Computer Laboratory,
Cambridge University, Cambridge, U.K.

Hindle, D., and Rooth, M. (1991).
"Structural ambiguity and lexical
relations." In Proceedings, 29th Annual
Meeting of the Association for Computational
Linguistics, Berkeley, CA, 229-236.

Holmes, J. (1988). Speech Synthesis and
Recognition. Van Nostrand Reinhold.
Workingham, UK.

Jensen, K.; Heidorn, G.; Miller, L.; and
Ravin, Y. (1983), "Parse fitting and prose
fixing: getting a hold on ill-formedness."
Computational Linguistics, 9, 147-153.

Johnson, M. (1989). "The computational
complexity of Tomita's algorithm." In
Proceedings, Ist International Workshop on
Parsing Technologies, Carnegie-Mellon
University, Pittsburgh, PA, 203-208.

Kimball, J. (1973). "Seven principles of
surface structure parsing in natural
language." Cognition, 2, 15-47.

Kipps, J. (1989). "Analysis of Tomita's
algorithm for general context-free
parsing." In Proceedings, 1st International
Workshop on Parsing Technologies,
Carnegie-Mellon University, Pittsburgh,
PA, 193-202.

Klein, E., and Martin, M. (1989). "The parser
generating system PGSU." Software--
Practice and Experience, 19(11), 1015-1028.

57

Computational Linguistics Volume 19, Number 1

Kristensen, B., and Madsen, O. (1981).
"Methods for computing LALR(k)
lookahead." ACM Transactions on
Programming Languages and Systems, 3(1),
60-82.

Kupiec, J. (1991). "A trellis-based algorithm
for estimating the parameters of a hidden
stochastic context-free grammar," DARPA
Speech and Natural Language Workshop,
Asilomar, CA.

Lari, K., and Young, S. (1990). "The
estimation of stochastic context-free
grammars using the Inside-Outside
algorithm." Computer Speech and Language
Processing, 4, 35-56.

Leech, G., and Garside, R. (1991). "Running
a grammar factory: the production of
syntactically analysed corpora or
'treebanks'." In English Computer Corpora:
Selected Papers and Bibliography, edited by
S. Johansson and A. Strenstrom. Mouton
de Gruyter.

Magerman, D., and Marcus, M. (1991).
"Pearl: A probabilistic chart parser." In
Proceedings, 2nd International Workshop on
Parsing Technologies, Cancun, Mexico,
193-199.

Meteer, M.; Schwartz, R.; and Weischedel, R.
(1991). "POST: Using probabilities in
language processing." In Proceedings, 12th
International Joint Conference on Artificial
Intelligence, Sydney, Australia, 960-965.

Nakazawa, T. (1991). "An extended LR
parsing algorithm for grammars using
feature-based syntactic categories." In
Proceedings, 5th European Conference of the
Association for Computational Linguistics,
Berlin, Germany, 69-74.

Ng, S.-K., and Tomita, M. (1991).
"Probabilistic parsing for general
context-free grammars." In Proceedings,
2nd International Workshop on Parsing
Technologies, Cancun, Mexico, 154-163.

Osborne, M. (1990). "Corpus parsing."
Masters dissertation, University of
Cambridge, Cambridge, U.K.

Pereira, E, and Shieber, S. (1987). Prolog and
Natural Language Analysis. University of
Chicago Press.

Pereira, F., and Warren, D. (1980). "Definite
clause grammars for language analysis--a
survey of the formalism and a
comparison with augmented transition
networks." Artificial Intelligence, 13(3),
231-278.

Pereira, E, and Schabes, Y. (1992).
"Inside-outside re-estimation for partially
bracketed corpora." In Proceedings, 30th
Annual Meeting of the Association for
Computational Linguistics, Newark, DE,
128-135.

Pollack, M., and Pereira, E (1988). "An
integrated framework for semantic and
pragmatic interpretation." In Proceedings,
26th Annual Conference of the Association for
Computational Linguistics, Buffalo, NY,
75-86.

Pollard, C., and Sag, I. (1987).
Information~Based Syntax and Semantics:
Volume 1--Fundamentals. Chicago
University Press.

Procter, P., ed. (1978). The Longman Dictionary
of Contemporary English. Longman.

Ritchie, G.; Pulman, S.; Russell, G.; and
Black, A. (1987). "A computational
framework for lexical description."
Computational Linguistics, 13, 290-307.

Sampson, G. (1987). "The grammatical
database and parsing scheme." In The
Computational Analysis of English: A
Corpus-Based Approach, edited by
R. Garside; G. Leech; and G. Sampson,
82-96. Longman.

Sampson, G.; Haigh, R.; and Atwell, E.
(1989). "Natural language analysis by
stochastic optimization: a progress report
on Project APRIL." Journal of Experimental
and Theoretical Artificial Intelligence, 1,
271-287.

Santorini, B. (1990). "Penn treebank tagging
and parsing manual." University of
Pennsylvania, CIS Dept. Unpublished
manuscript.

Schabes, Y. (1991a). "Polynomial time and
space shift-reduce parsing of arbitrary
contexbfree grammars." In Proceedings,
29th Annual Meeting of the Association for
Computational Linguistics, Berkeley, CA,
106-113.

Schabes, Y. (1991b). "The valid prefix
property and left to right parsing of
tree-adjoining grammar." In Proceedings,
2nd International Workshop on Parsing
Technologies, Cancun, Mexico, 21-30.

Sharman, R. (1989). "Probabilistic ID/LP
grammars for English." Report 217, IBM
UK Scientific Centre, Winchester, England.

Sharman, R. (1991). "An introduction to
language modelling." Unpublished
manuscript, IBM UK Scientific Centre,
Winchester, England.

Sharman, R.; Jelinek, F.; and Mercer, R.
(1990). "Generating a grammar for
statistical training." DARPA Speech and
Natural Language Workshop, Hidden Valley,
PA, 267-274.

Shieber, S. (1983). "Disambiguation by a
shift-reduce parsing technique." In
Proceedings, 21st Annual Meeting of the
Association for Computational Linguistics,
MIT, Cambridge, MA, 113-118.

Shieber, S. (1984). "The design of a

58

Ted Briscoe and John Carroll Generalized Probabilistic LR Parsing

computer language for linguistic
information." In Proceedings, l Oth
International Conference on Computational
Linguistics, Stanford, CA, 362-366.

Shieber, S. (1985). "Using restriction to
extend parsing algorithms for complex
feature-based formalisms." In Proceedings,
23rd Annual Meeting of the Association for
Computational Linguistics, Chicago, IL,
145-152.

Spector, D. (1983). "Lexing and parsing
modula-2." SIGPLANNotices, 18(10),
25-32.

Taylor, L.; Grover, C.; and Briscoe, E. (1989).
"The syntactic regularity of English noun
phrases." In Proceedings, 4th European
Meeting of the Association for Computational
Linguistics, UMIST, Manchester, U.K.,
256-263.

Tomita, M. (1984). "Parsers for natural
languages." In Proceedings, lOth
International Conference on Computational
Linguistics, Stanford, CA, 354-357.

Tomita, M. (1987). "An efficient augmented
context-free parsing algorithm."
Computational Linguistics, 13(1), 31--46.

Viterbi, A. (1967). "Error bounds for

convolutional codes and an
asymptotically optimum decoding
algorithm." IEEE Trans. Information Theory,
IT-13, 260-269.

Wright, J. (1990). "LR parsing of
probabilistic grammars with input
uncertainty for speech recognition."
Computer Speech and Language, 4, 297-323.

Wright, J., and Wrigley, E. (1989).
"Probabilistic LR parsing for speech
recognition." In Proceedings, 1st
International Workshop on Parsing
Technologies, Carnegie-Mellon University,
Pittsburgh, PA, 193-202.

Wright, J.; Wrigley, E.; and Sharman, R.
(1991). "Adaptive probabilistic
generalized LR parsing." In Proceedings,
2nd International Workshop on Parsing
Technologies, Cancun, Mexico, 154-163.

Zeevat, H.; Calder, J.; and Klein, E. (1987).
Unification categorial grammar. In
Edinburgh Working Papers in Cognitive
Science, 1: Categorial Grammar, Unification
Grammar, and Parsing, edited by
N. Haddock, E. Klein, and G. Morrill,
Centre for Cognitive Science, Edinburgh
University, U.K., 195-222.

59

