
Computation of the Probability of
Initial Substring Generation by Stochastic
Context-Free Grammars

F r e d e r i c k Jelinek*
J o h n D. Laffer ty*
IBM T. J. Watson Research Center

Speech recognition language models are based on probabilities P(Wk+I = v [W l W 2 ~ . . . , W k)

that the next word Wk+l will be any particular word v of the vocabulary, given that the
word sequence Wl, w 2 , . . . , Wk is hypothesized to have been uttered in the past. If probabilistic
context-free grammars are to be used as the basis of the language model, it will be necessary
to compute the probability that successive application of the grammar rewrite rules (beginning
with the sentence start symbol s) produces a word string whose initial substring is an arbitrary
sequence wl, w2, . . . , Wk+l. In this paper we describe a new algorithm that achieves the required
computation in at most a constant times k3-steps.

1. Introduction

The purpose of this article is to develop an algorithm for computing the probability
that a stochastic context-free grammar (SCFG) (that is, a grammar whose production
rules have attached to them a probability of being used) generates an arbitrary initial
substring of terminals. Thus, we treat the same problem recently considered by Wright
and Wrigley (1989) from the point of view of LR grammars.

Probabilistic methods have been shown most effective in automatic speech recog-
nition. Recognition (actually transcription) of natural unrestricted speech requires a
"language model" that attaches probabilities to the production of all possible strings
of words (Bahl et al. 1983). Consequently, if we believe that word generation can be
modeled by context-free grammars, and if we want to base speech recognition (or
handwriting recognition, optical character recogition, etc.) on such models, then it
will become necessary to embed them into a probabilistic framework.

In speech recognition we are presented with words one at a time, in sequence, and
so we would like to calculate the probability P(s --* w~w2. . . Wk. . .) that an arbitrary
string w l w 2 . . . Wk is the initial substring of a sentence generated by the given SCFG. I

* P.O. Box 218, Yorktown Heights, NY 10598
1 In fact, in speech recognition (Bahl et al. 1983) we are presented wi th a hypothesized past text (the

history) WlW2 .. • Wk and are interested in computing, for any arbitrary word v, the condit ioned
probability P(Wk+ 1 ---- v [w l w 2 . . , wk) that the next word uttered will be v given the hypothes ized past
wl w2 . . . Wk. Assuming that successive sentences s are independent of each other (a rather dubious
assumption justifiable only by a lack of adequate unders tanding of how one sentence influences
another), we may as well take the view that wl is the first word of the current sentence and that Wk is
not the last. Then

P(s --* wlw2.., wkv...)
P(Wk+I = v I W l W 2 . . . W k) =

P(s --* wlw2... Wk...)

Hence our interest in the calculation of P(s --~ wlw2 • .. Wk...).

(~) 1991 Association for Computat ional Linguistics

Computational Linguistics Volume 17, Number 3

2. Definition of Stochastic Context-Free Grammars

We will now define stochastic context free grammars (SCFGs) and establish some
notation. We will use script symbols for sets, lowercase letters for elements of the
sets or specific string items, and capitals for variables. We start with a vocabulary
V = {Vl, V2,. . . ,VN} whose elements, words vi, are the terminal symbols of the lan-
guage. We next list a set of nonterminals g = {gl = s, g2~... ~gM} whose elements
gj are grammatical phrase markers. They include the distinguished phrase marker s,
the sentence "start" symbol. The purpose of our grammar is to generate sentences
WlW2... w n of varying length n. The generation is accomplished by use of production
rules, belonging to a set 2"4, that rewrite individual phrase markers as sequences of
phrase markers or words. For simplicity of manipulation but without loss of general-
ity, we will limit the productions to the Chomsky Normal Form (CNF). That is, only
the following types of productions will be allowed:

1. H --+ GIG2

2. H - + V (1)

The grammar is stochastic, because to each rule there is assigned a probability of its
use. Let H be any nonterminal, and let #(H) be the number of productions rewriting
H. The ith of these productions will then take place with probability P(i I H). It is
assumed that for all i = 1,2 , #(H), P(i I H) is a strictly positive number and that

#(~)

P(i l H) = 1
i=1

(2)

It will be convenient to denote the probabilities P(i I H) by the productions they
refer to, e.g., P(H --+ GIG2) or P(H --+ V).

A context-free grammar is assumed to generate sentences from top to bottom,
starting with some rule s --+ G1G2 that rewrites the sentence symbol s and is used with
probability P(s --+ GIG2). The generated nonterminals G1 and G 2 are then rewritten,
and the rewriting process continues until no nonterminals remain to be rewritten, all
having been replaced by words through use of rewrite rules of type (1). The probability
of the entire process is equal to the product of the probabilities of the individual re-
write rules used.

We say that a SCFG is well defined in case it forms a language model; that is, the
total probability of strings of terminals generated by the grammar is equal to 1:

OO

XI P(s---+ WlW2...Wn)-~- 1
n=l wlw2...wnEV.

A context-free grammar is said to be proper if starting from the distinguished nontermi-
nal s, the only nonterminals produced are those whose further rewriting can eventually
result in a string of terminals. In fact, condition (2) is necessary and sufficient for a
SCFG to be well defined if the underlying grammar is proper. 2

The solutions to the following four problems are of interest.

2 The following simple algorithm determines whether or not a g rammar may be made proper by the
elimination of rules.

Let 8 be the set of all nonterminals itt such that a rule H --+ V exists for some nonterminal V.

316

Jelinek and Lafferty Probability of Initial Substring Generation

. What is the probability P(s --, WlW2... Wn) that the grammar, beginning
with the start nonterminal s, generates a given word string (sentence)
WlW2...Wn, Wi E ~?

The desired probability is computed by the Inside Algorithm (Baker 1979), which is a
modification of the well-known CYK parsing algorithm (Younger 1967; Graham et al.
1980).

. What is the most probable parse of a given word string w l w 2 . . . Wk? That
is, which sequence of rewrite rules resulting in w l w 2 . . . Wk is such that
the product of its probabilities is maximal?

This parse is computed by the Viterbi Algorithm (Jelinek 1985), which uses the same
chart as the CYK algorithm.

. What is the probability P(s --* WlW2. . . Wn...) that the grammar,
beginning with the start nonterminal s, generates a word string
(sentence) whose initial substring is w l w 2 . . , wn?

The algorithm providing the answer to this question is developed in the present paper.

4. Given the set of rules specifying a context-free grammar, how should the
probabilities of their use be determined?

An answer to this question requires a criterion by which to judge it. The maxi-
mum likelihood criterion is as follows: given a "training corpus" WT (that is, a set of
sentences), determine the production probabilities so as to maximize the probability
that the grammar generated WT. The Inside-Outside Algorithm (Baker 1979) extracts
probabilities that locally (i.e., not necessarily globally) maximize the likelihood of Wv.

3. Development of the Left-to-Right Inside (LRI) Algorithm

In this section we will develop the Left-to-Right (LRI) Algorithm, which will allow us
to calculate the desired probabilities P(s --* w l w 2 . . . Wk. . .) . In order to present the LRI
Algorithm, we will introduce some notation that will simplify the appearance of the
following formulas. Let P(H(i~j>) denote the probability P (H --~ w i . . . wj) that starting
with the nonterminal H, successive application of grammar rules has produced the
sequence wiwi+l . . . Wj. That is, if the SCFG production process is represented by the
usual tree diagram, then P(H(i~j)) is the sum of the probabilities of all trees whose
root is H and whose leaves are wi, wi+l ~ wj.

1. If S = ~, the grammar is proper. Stop.

Else if S ~ G, then find the set ,,4 of all nonterminals H not belonging to S that rewrite as H --* G1 G2
with G1 and G2 belonging to S.

2. If ,,4 is not empty, include the set A in S and go to 1.

3. If s C S, eliminate from U all nonterminals not belonging to S and purge all rules involving
nonterminals not belonging to S. The resulting grammar is proper.

Else if s ~ S , the grammar cannot be made proper by purging.

317

Computational Linguistics Volume 17, Number 3

Next, let P(H << i,j) denote the ,.sum of the probabilities of all trees with root node
H resulting in word strings whose initial substring is wiwi+ 1 . . . Wj. Thus

P(H << i,j) P(H(i,j)) + ~.:P(H --* wi... WjXl)
Xl

+ y ~ P(H ---* w i . . . wjxlx2) + " "
XIX2

+ ~_~ P (H ~ w i . . . W j X l . . . X n) + " "
Xl ...X n

(3)

Note that the first sum in (3) is. over all possible words xl, the second is over all
possible word pairs xlx2, and the third sum (the general term) is over all possible word
n-tuples XlX2... Xn. Using the notation (3), the desired probability P(s ~ wlw2. . . Wk...)
is denoted by P(s << 1, k).

In what follows we will need PL(H ~ G), the sum of the probabilities of all the
rules H --* GIG2 whose first r ighthand side element is G1 = G. That is,

PL(H -=' G) = E P(H --* GG2) (4)
G2

Next we define the quantity

QL(H - c) = PL(H --* G) + y~PL(H ~ A1)PL(A1 -* G)
A1

+ y ~ PL(H -* A1)PL(A1 ~ A2)PL(A2 --* G) + . . .
A1 ,A2

+ Z PL(H A)P (A1 C) + . . .
A1 ,...,Ak

= ~ P (H * , G a)
ot

(5)

which is the sum of probabilities of all trees with root node H that produce G as the
leftmost (first) nonterminal. Note that the last displayed (general) term accounts for
all trees whose leftmost leaf has depth k. Note further that the above sum converges
since we assume that our underlying grammar is proper, and that rule probabilities
are non-zero.

We are now ready to compute

P(H <K i, i)=P(H--*wi) +~_PL(H-+ G)P(G --* wi)
G

+ ~ ~_, PL(H --* A1)PL(A1 ~ G)P(G --~ wi)
G A~

+~_~ ~ PL(FI --* A1)PL(A1 ~ A2)PL(A2 ~ G)P(G --* wi)
G A1 ,A2

+~_~ ~ PL(H ---* A1)PL(A1 ~ A2)...PL(Ak --* G)P(G ---+ wi)
G A1,...,Ak

.-]-. . .

318

Jelinek and Lafferty Probability of Initial Substring Generation

Thus, using definition (5) we get

P(H << i, i) = P(H -+ wi) + Y~ QL(H ~ G)P(G --+ wi)
G

(6)

To compute P(H << i, i + n) for n > 0, we will need to define

QL(H ~ G1G2) = P(H ~ GIG2) q- Z QL(H ~ A)P(A ~ GiG2)
A

(7)

which can be seen to be the sum of probabilities of all trees with root node H whose
last leftmost production results in leaves G1 and G2. To compute P(H << i, i + n) we
will rely on the strict CN form of the grammar. Obviously,

P(H << i,i + n) P(H --+ GIG2) [P(G 1 (i, i))P(G2 ((i + 1, i + n)
G1 ,G2

+ P(G~(i,i+ 1})P(G2 << i + 2 , i + n) + . . -

+ P (G l (i , i + n - 1))P(G2 << i + n , i + n)

+ P(G1 <<i , i+n)] (8)

since to generate the initial substring wiwi+l... Wi+n, some rule H -+ GIG2 must first
be applied and then the first part of the substring must be generated from G2 and its
remaining part (and perhaps more!) from G2.

Defining the function

R(G1, G2) = [P (Gl (i , i))P(G2 << i + 1, i + n) + P(G1 (i, i + 1))P(G2 << i + 2, i + n) + . . .

+P(GI(i, i + n - 1))P(G2 << i + n, i + n)] (9)

we can next rearrange (8) as follows:

P(H << i,i + n) Z P(H ~ G1G2)R(G1, G2)
G1 ,G2

+ ~ PL (H ~ A1)P(A1 << i, i + n)
A1

(lO)

where we took advantage of the definition (4) and denoted the variable in the last
sum by A1 instead of by G1.

Renaming H in (10) as A1, and A1 as A2, we get

P(A~ << i,i + n) E P(al --~ GIG2)R(G1, G2)
G1, G2

q- Z PL(A1 ---+ a2)P(a 2 << i, i + n)
A2

(11)

319

Computational Linguistics Volume 17, Number 3

Substituting (11) into (10) and collecting and factoring out common terms, we get

P(H ~ i,i + n) ~ [P(H--~ GIG2) + ~PL(H--* A1)P(A1--~ G1G2)I R(G1,G2)
G1 ,G2 A1

+ E PL(H -* A1)PL(A1 ~ A2)P(A2 << i, i + n) (12)
A1 ,A2

Next, renaming A1 in (11) as A2, and A2 as A3, and substituting the result into (12),
we get

P(H KK i, i + n) [P(H ---* G1G2) -}- ~ PL(H --* A1)P(A1 ---* G1G2)
G1 ,G2 A1

q- A1 ~,A2 PL(H --, A1)PL(A1 ---* A2)P(A2 --~ G1G2)J R(G1, G2) (13)

+ y~ PL(H ---* A1)PL(A1 --~ A2)PL(A2 ~ A3)P(A3 << i,i + n)
A1 ,A2,A3

The pattern is now clear. Since

y~ PL(H ---* A1)PL(A1 ---* A2)...PL(Ak-1 ~ Ak)P(Ak ~ i,i + n)
A1 ,...,Ak

tends to 0 as k grows without limit, then using definition (7) and successive re-
substitutions, we get the final formula

P(H ~ i, i + n) = ~ QL(H ~ G1G2)R(GIG2) (14)
G1 ,G2

where the last equality follows from (9), the definition of R(G1, G2).
We can now notice that formula (14) is very similar to the well-known formula

P(H(i,i+n))= c,~P(H---~G1G2) I~-~P(GI(i'i+j-1))P(G2(i+j'i+n))] , G 2 j=l (15)

that allows an iterative calculation of the (inside) probabilities P(H(i, i+ n)) ((15) serves
as the basis for the Inside Algorithm (Baker 1979)). There are two differences between
(14) and (15): instead of the rule probability P(H ~ G1G2) in (15), we have in (14)
the sum-of-tree-probability function QL(H ~ G1G2) (defined in (7)), and instead of the
simple span generation probability P(G2Ii +j, i+ n)) in (15), we have in (14) the initial
substring generation probability P(G2 ~ i + j, i + n) (defined in (3)). It follows that
once we determine how to calculate the values of QL(H ~ G1G2) (this is discussed in
the next section), we will be able to compute iteratively all the other quantities (that

320

Jelinek and Lafferty Probability of Initial Substring Generation

is, P(H << i,j) and P(Hli, j))). In fact, it follows from (14) that to calculate P(s << 1,k)
one proceeds as follows:

.

.

3.

Calculate probabilities P(G(i, i + n)) for i = 1 ,2 , . . . , k - 1,
n = 0, 1 ,2 , . . . , k - i - 1, iteratively by formula (15).

Calculate probabilities P(H << k, k) by formula (6).

Calculate probabilities

P(H << k - 1,k) = Z QL(H ~ G1G2)P(GI{k - 1,k - 1))P(G2 << k,k)
G1 ,G2

4. Calculate probabilities

P(H << k - 2, k) QL(H :=~ G1G2)
G1,G2

P(C Ik 2,k+j - 3/)P(C << k+] - 2 , k)

kj=l

k. Calculate probabilities

r k-2]
P(H << 2, k) = ~ QL(H ~ G1G2) , y~P (G , (2 , 1 +j))P(G2 << 2 + j ,k)

GI,G2 kJ=l
k+ 1. Calculate the probability

IY~k-1 q- 1,k)]
P(s << 1,k) = G1Z, G2 QL(S ---+ GIG2) L~=I P(GI(1,j))P(G2 << j

4. Determination of the Functions QL(H ~ G1G2) and P (H << i, i)

Let us first observe that if wi = v then P(H << i, i) = P(H --* v . . .) which, consistent
with previous notation (5), we denote by QL (H =~ v). We then get from (6)

QL(H ~ v) = P(H ---, v) + Z QL(H ~ G)P(G --~ v)
G

(16)

It follows from (16) and (7) that to calculate the desired quantities P(H << i, i) and
QL(H ~ GIG2) we must first determine the left corner probability sums QL(H =~ G).
We will use matrix algebra to compute them.

Let PL and QL denote the square matrices (their dimension is equal to the number
of nonterminals) whose elements in the Hth row and Gth column are PL(H --~ G)
(defined in (4)) and QL(H =~ G), respectively. Then equation (5) can be rewritten in
matrix form as

QL = PL + p2 + p3 + . . . prk + . . . (17)

321

Computational Linguistics Volume 17, Number 3

where Pi L denotes i-fold multiplication of the matrix PL with itself. Post-multiplying
both sides of (17) by the matrix PL, subtracting the resulting equation from (17), and
cancelling terms, we get

QL - Q L P L == PL (18)

Finally, denoting by I the diagonal unit matrix of the same dimension as PL, we
get from (18) the desired solution

QL = e g [I -- PL] - 1 (19)

where [I - PL]-I denotes the inverse of the matrix [I - PL].
Equation (16) can also be stated in matrix form. Denoting by Pw and Qw the

rectangular matrices with elements P(H ~ w) and QL(H --* w) in the Hth row and wth
column, respectively, we get from (16) that

Qw = [I + QL]Pw (20)

5. C o n c l u s i o n

While the LRI algorithm together with formulas (19) and (20) constitutes the solution
to the stated problem, its practicality is limited to grammars whose total number
of nonterminals is sufficiently limited so as to allow the calculation of the inverse
[I - PL] - 1

The algorithm itself has exactly twice the complexity of the Inside Algorithm
computing P(Hli , i + hi) by formula (15), and is thus of order n 3. In fact, once all the
probabilities required for the computation of P(s ~ 1, k) are computed, to get the next
probability of interest, P(s ~ 1, k + 1), one needs to compute the following quantities:

1. The probabilities P(Gli, kl) for i = k, k - 1 , . . . , 1, in that order.

2. The probabilities P(H KK i, k + 1) for i = k + 1, k ,2, in that order.

3. The probability P(s ~ 1, k + 1).

Let us finally recall that the language model of speech recognition provides to the
recognizer the probability P(Wk = v [wlw2. . .Wk-1) for all possible words v, and that
we therefore must be able to compute the probability P(s --+ w lw2 . . . Wk-lV. . .) for all
N words v of the vocabulary. Fortunately, this does not mean carrying out the LRI
algorithm N times for each word position k, but only M times, where M is the number
of nonterminals of the grammar.

In fact, a simple modification of the algorithm allows one to compute the proba-
bilities of P(s --* w lw2 . . . Wk-1 gi . . .) where gi is an element of the set of nonterminals

= {gl = s~ g2~...,g~}. This may be done, for example, by setting

1 if H = g i (21)
P(H KK k, k) = 0 otherwise

in the algorithm of Section 3. Our desired LRI probabilities can then be computed by
the formula

M

P(s --* w lw2 . . . Wk-lV...) = ~ QL(gi ~ v)P(s ~ w lw2 . . . Wk-lgi . . .) (22)
i=1

This modification is particularly practical when the size of the vocabulary greatly
exceeds the number of nonterminals in the grammar.

322

Jelinek and Lafferty Probability of Initial Substring Generation

References
Bahl, L. R.; Jelinek, F.; and Mercer, R. L.

(1983). "A maximum likelihood approach
to continuous speech recognition." IEEE
Transactions on Pattern Analysis and
Machine Intelligence, Vol PAMI-5, No 2,
1798-1790.

Baker, J. K. (1979). "Trainable grammars for
speech recognition." Proceedings, Spring
Conference of the Acoustical Society of
America, Boston, MA, 547-550.

Graham, S. L.; Harrison, M. A.; and Ruzzo,
W. L. (1980). "An improved context-free
recognizer," ACM Transactions on

Programming Languages and Systems, Vol 2,
No 3, 415-462.

Jelinek, E (1985). "Markov source modeling
of text generation." In The Impact of
Processing Techniques on Communications,
edited by J. K. Skwirzinski. Dordrecht:
Nijhoff.

Wright, J. H.; and Wrigley, E. N. (1989).
"Probabilistic LR parsing for speech
recognition." International Workshop on
Parsing Technologies. 105-114.

Younger, D. H. (1967). "Recognition and
parsing of context free languages in time
N3, " Information and Control 10, 1980-208.

323

