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The Tree Adjoining Grammar formalism, both its single- as well as multiple-component ver- 
sions, has recently received attention as a basis for the description and explication of natural 
language. We show in this paper that the number-name system of Chinese is generated neither 
by this formalism nor by any other equivalent or weaker ones, suggesting that such a task 
might require the use of the more powerful Indexed Grammar formalism. Given that our formal 
results apply only to a proper subset of Chinese, we extensively discuss the issue of whether 
they have any implications for the whole of that natural language. We conclude that our re- 
sults bear directly either on the syntax of Chinese or on the interface between Chinese and the 
cognitive component responsible for arithmetic reasoning. Consequently, either Tree Adjoining 
Grammars, as currently defined, fail to generate the class of natural languages in a way that 
discriminates between linguistically warranted sublanguages, or formalisms with generative 
power equivalent to Tree Adjoining Grammar cannot serve as a basis for the interface between 
the human linguistic and mathematical faculties. 

1. Introduction 

In recent years, we have seen in the linguistic literature a number of arguments; 
e.g., Culy (1985), Huybregts (1984), Shieber (1985), which purport to demonstrate 
that the class of N(atural) L(anguage)s is not generated by formalisms of C(ontext)- 
F(ree) power. In the context of NLs, little has been said regarding the generative 
inadequacy of formalisms such as single- or multiple-component T(ree) A(djoining) 
G(rammar)s (Joshi 1985, 1987), H(ead) G(rammar)s (Pollard 1984; Roach 1987), L(inear) 
I(ndexed) G(rammar)s (Gazdar 1988), or Combinatory Categorial Grammars (Steed- 
man 1985, 1987). These formalisms are among the so-called Mildly C(ontext)-S(ensitive) 
G(rammar)s since they are non-CF; i.e., strictly CS, but only to a limited extent. More 
will be said about these grammars and their object languages below. 

Notable exceptions to the trend of demonstrating only non-context-freeness are 
Kac (1987) for English and Manaster-Ramer (1987a) for Dutch and German. In addition 
to demonstrating non-context-freeness, both these studies argue that the constructions 
used for their respective argumentations can serve as a basis for demonstrating that 
the NLs in question are generated neither by TAGs nor by HGs. However, these 
constructions rely crucially on coordination, and our current understanding of the 
properties of coordination is far from satisfactory. In this paper we show that the 
number-name system of Chinese, specifically of the Mandarin dialect, is neither a 
single- nor a multiple-component TAL, 1 raising doubts about whether it could be 
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considered a Mildly CSL at all. Our argument relies in no way on overt coordination 
operators. 

In Section 2 we present an argument originally proposed in Zwicky (1963) wherein 
he showed that the English naming system for cardinal numbers is a non-CFL. We 
discuss possible objections to his claims. Some Chinese data are presented in Section 
3. In Section 4 we deal with a few Mildly CS formalisms and show that the Chinese 
number-name system (henceforth N(umeric) C(hinese)) is a non-TAL. In Section 5, 
we discuss additional grammar formalisms and show that NC is not a M(ultiple) 
C(omponent) TAL. We also investigate if NC can be characterized as a Mildly CSL. 
We discuss the linguistic relevance of our formal results in Section 6. Finally, Section 
7 presents the conclusions of this study. 

2. Zwicky (1963) and Objections Thereunto 

Zwicky (1963) discusses some constructions of names for cardinal numbers that are 
not generated by a CFG. The one he labels (1) resembles the structure of very large 
number-names in English (and other NLs): 

NTn(, NTn-1)...  (, NT)(, N) (1) 

In this construction, N indicates a number between I and 999, T is an abbreviation for 
thousand, commas indicate an intonational pause, and everything within parentheses 
is optional. This construction could be characterized as follows: 

(i) Given a system in English, for example, where thousand is used as the 
largest single word for a number, million would be represented as 
thousand thousand, (Amer.) billion as thousand thousand thousand, (Amer.) 
trillion as thousand thousand thousand thousand, etc., ad infinitum. 

(ii) In a system like (i), larger clusters of thousand must precede smaller 
clusters of thousand in the same manner that decillion must precede 
trillion, which must precede million, which must precede thousand in the 
standard English number-name system using single-words for numbers 
of higher values. 

Zwicky relates construction (1) to the formal language P: 

P = {xlx = bn(abn-1)... (ab2)(ab), where n = 1,2,3,. . .} 

He proceeds, inter alia, to prove that P is non-context-free. A conclusion from his study 
is that the sublanguage of English encompassing the names for cardinal numbers is 
strictly context-sensitive. 

Although Zwicky's mathematical argumentation is sound, room is left for some 
investigators to cast doubts on whether his claims bear in any significant way on NL. 
The empirical basis for Zwicky's argument rests largely on whether characteristics (i) 
and (ii) are indeed linguistically real. There has been much controversy over the status 
of these characteristics. For example, Merrifield (1968, p. 91) states the following: 

In working with a language isolate such as a system for naming numbers, 
several things should be kept in mind. 
In the first place, such a system differs from the larger grammar of which it is 
but a segment in not being indefinitely recursive. A grammar of a natural 
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language accounts for an infinite number of utterances; a grammar of number 
names apparently does not. The latter is limited by the number of linguistic 
primitives of the sort 'billions,' 'trillions,' 'quadrillions,' etc., which it includes. 
And though a mathematician is presumably able to write down in mathematical 
notation an infinitely large set of numbers, when he attempts to give names to 
the members of the set in a natural language, he is limited by the number of 
primitives at his disposal. 

Greenberg  (1978, p. 253) expresses Merrifield 's  assertion as the general izat ion that, 
"every  language  has a numera l  sys tem of finite scope." Greenberg  then proceeds  to 
claim that the largest  expressible natural  n u m b e r  in Amer ican  English is 1036-1 "as- 
suming  that, as in mos t  dictionaries of AMERICAN ENGLISH, the lexical i tem with 
the highest  numerical  value is 'decillion'.  "2 

Thus, Merrifield and Greenberg  take the v iew that  there is an u p p e r  limit on 
linguistically expressible number -names .  Hence,  by  this view, characteristic (i) appears  
not to be linguistically warranted.  Hur fo rd  (1975, p. 4) suggests  otherwise: 

Now it can be argued that the class of number expressions in any given 
language is infinite. Intuitions of language users differ on the matter of whether 
the set of number expressions in their language is infinite. The crux of the matter 
is the question whether the names for very high numbers are in fact wellformed. 
In English, for example, the expression two billion billion, five hundred and five may 
be felt by some speakers to be quite wellformed, though of course unlikely to be 
observed, whereas other speakers may object that it is not wellformed. 

Accordingly, characteristic (i) is linguistically war ran ted  for at least some speakers.  
Hur fo rd  (ibid.) takes in fact this position: 

It will become obvious as we proceed that the particular systematic 
characteristics which are evident in natural language number-name systems tend 
to project the existence of infinite sets of number-names and a higher limit to the 
value of wellformed number-names can only be stated in a fairly ad hoc arbitrary 
manner. 

Epstein (1978, p. 123) contests this claim by  arguing: 

Contrary to what Hurford claims, there are a finite number of these [numerical 
expressions in English]. Ten to the trillionth power, for example, has no 
corresponding counting expression. 

Hur ford  (1979, p. 42) responds:  

This is a misconception. It would be similarly wrong to assert that there is no 
single English sentence giving the full names, addresses, heights, weights, and 
IQ's of all UK citizens at midnight on March 1st, 1978. Such a sentence would be 
impossibly long to utter, but that is not a restriction which need be stated as part 
of English grammar, or indeed of general linguistic theory. If the highest-valued 
number word in your vocabulary is trillion, and you want to express higher 
numbers, you just string together enough trillions to get you there. Nobody, as a 

2 Incidentally, Merriarn-Webster's Third New International Dictionary of the English Language (in the 
Fifteenth Edition of Encyclopedia Britannica) has a table on p. 1549 labeled "DENOMINATIONS ABOVE 
ONE MILLION." This table contains entries up to 'centillion,' which happens to be 103o3 in the 
American system and 1036 in the British one. The number 1036 is expressed in the American system as 
'undecillion.' 
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matter of performance could possibly utter enough trillions in sequence to make 
a counting expression expressing ten to the trillionth power, but no grammatical 
theory need concern itself with this fact. 

Whi le  we  ful ly  agree wi th  H u r f o r d  on  this mat ter ,  the con t r i ved  n a t u r e  of " s t rung-  
toge the r"  tr i l l ions or t h o u s a n d s  or a n y  o ther  s ing le -word  n u m b e r - n a m e  seems  to lead 
some  inves t iga tors  in to  reject ing its empi r i ca l  va l id i ty  in  Engl ish.  For  example ,  Brain-  
erd (1971, p. 208) m e n t i o n s  the fo l lowing:  

The collection of numerical expressions in most languages, as in English, are 
basically finite. Thus in English we must  ultimately coin new 'illions' if we are to 
transcend our [finite] system of number  names. And where are these to come 
from when we have run out of Latin prototypes? 3 In some languages there are, 
however, purely linguistic devices which allow for an infinitude of numerical 
expressions. For example, in Chinese, wan is used for 104 and wan wan for 108 . 
Presumably we can continue ad infinitum, wan wan wan 1012, wan wan wan wan 
1016 , etc. 

Thus ,  whi le  the l inguis t ic  s ta tus  of s t rung - toge the r  n u m b e r - n a m e s  in  Eng l i sh  m i g h t  
be  ques t ionab le ,  Bra inerd  sugges ts  on  the basis  of empi r i ca l  ev idence  that  this is no t  
so in  Chinese .  Character is t ic  (i) appea r s  t h e n  to be l ingu is t i ca l ly  w a r r a n t e d  in  at least  
one  NL, cu r r en t l y  the mos t  w i d e l y  na t i ve ly  s p o k e n  one.  4 In  the next  sect ion,  we  take a 
look at some  more  da ta  o n  n u m b e r - n a m e s  in  Chinese .  This  wi l l  he lp  us  to s u p p o r t  ou r  
conc lus ion  r ega rd ing  the l inguis t ic  real i ty  of character is t ic  (i) as wel l  as to d e t e r m i n e  
the empi r i ca l  s ta tus  of character is t ic  (ii). Fu r the rmore ,  the da ta  wi l l  serve as a basis  
for the fo rmal  a r g u m e n t s  to be  p r e s e n t e d  in  Sect ions 4 a n d  5. In  Sect ion 6, w e  shal l  
r e t u r n  to d iscuss  the l inguis t ic  s ta tus  of character is t ic  (ii). 

3. D a t a  5 

The  n u m b e r - n a m e  in  Ch inese  for '10,000' is w a n .  The n u m b e r - n a m e  for '100,000,000' is 
e i ther  w a n  w a n  or yi.  6 C o n t r a r y  to Bra ine rd ' s  (1971) p r e s u m p t i o n ,  some  na t ive  speakers  
f ind  longe r  n u m b e r - n a m e s  such  as w a n  w a n  w a n  for 1012 or w a n  w a n  w a n  w a n  for 1016 

a w k w a r d  d u e  to the exis tence of the n u m e r i c a l l y  h i g h e r - v a l u e d  s i ng l e - w or d  n u m b e r -  

3 Alexis Manaster-Ramer (p.c.) has provided an answer to this question: These are to come from 
indefinite iteration. In other words, once we have reached the limit of Latin prototypes, we can still 
form new number-names by stringing together Latin prototypes word-internaUy. In fact, such a 
number-word-formation process would be a morphological analogue of (i) at the single-word level. 

4 We also find the following claims in the literature: (a) Menninger (1969, p. 129) reports: "The Gothic 
word for 'hundred'... is not hund but is represented by two full word forms: taihun-taihund, 'a ten of 
tens,' in which the grouping 'ten' is counted." Nevertheless, since Gothic is dead, our knowledge of it 
is limited to a finite nonproductive corpus of items. From this one example, we cannot conclude that 
the Gothic cardinal number-name system permitted an indefinite amount of concatenations of number 
names. (b) Brainerd (1967, p. 43) reports: (due to Gr. C. Moisil) "It has been suggested that by using the 
expressions milioane de milioane, milioane de milioane de milioane, etc. a name can be given for every 
natural number [in Rumanian]." Strung-together number-names in Rumanian sound less awkward 
due, most likely, to the phonetically realized separator de between the single-words. Yet, while such 
expressions sound fine, Rumanian has no direct analogue of Chinese's wan wan, in the sense of a 
commonly-used strung-together number-name. As will be shown in Section 3, wan wan is a perfectly 
common and natural name for 108 in Chinese. 

5 For elaborations on Chinese names for cardinal numbers beyond what we present here, see, for 
example, Chao (1968, pp. 567-575) or Henne et al. (1977, pp. 239-242). For grammars generating 
Chinese number-names, see Brainerd (1966a) and Brainerd and Peng (1968). For a historical survey, see 
Needham (1959, pp. 1-90). 

6 When used as the number-name for '100,000,000,' yi is usually pronounced in the fourth tone. If used 
as the number-name for '1,' it is pronounced in the first tone. 
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n a m e  yi .  Thus ,  1012 is m o r e  n a t u r a l l y  e x p r e s s e d  as  w a n  y i  a n d  1016, as  y i  yi .  Yet the re  
exis ts  a s i n g l e - w o r d  n u m b e r - n a m e  w i t h  a h i g h e r  n u m e r i c a l  v a l u e  t h a n  yi .  This  s ing le -  
w o r d  is zhao,  m e a n i n g  1012, i.e., Amer .  ' t r i l l ion . '  This  n u m b e r - n a m e  a p p e a r s  to be  the  
n u m e r i c a l l y  h i g h e s t - v a l u e d  s i n g l e - w o r d  n u m b e r - n a m e  in u se  in  the  m o d e r n  l a n g u a g e .  7 
The  m o s t  n a t u r a l  w a y  of  l i ngu i s t i c a l l y  e x p r e s s i n g  a n u m b e r  e x p o n e n t i a l l y  g r e a t e r  t han  
' t r i l l i o n ' - - a s  " n a t u r a l "  as  one  ge ts  w i t h  such  h i g h  n u m b e r s - - i s  b y  s t r i n g i n g  t o g e t h e r  
i n s t ances  of  zhao. This is the  s a m e  tool  u s e d  for  e x p r e s s i n g  108 as  w a n  wan ,  w h i c h  
is, as  p r e v i o u s l y  m e n t i o n e d ,  a f r e q u e n t l y  u s e d  s y n o n y m  for  yi.  Thus ,  the  u n b o u n d e d  
s t r i n g i n g - t o g e t h e r  of  i n s t ances  of  zhao is s i m p l y  an  e x t e n d e d  i n s t a n t i a t i o n  of  a m e t h o d  
f r e q u e n t l y  u s e d  in  C h i n e s e  for  e x p r e s s i n g  a m o r e  c o m m o n  l o w e r - v a l u e d  n u m b e r .  

E x a m p l e s  (a) a n d  (b) b e l o w  are  w e l l - f o r m e d  C h i n e s e  n u m b e r - n a m e s ,  w h i l e  e x a m -  
p l e  (c) is not:  8 

(a) wu zhao zhao wu zhao 
five trillion trillion five trillion 

(i.e. 5,000,000,000,000,005,000,000,000) 

(b) wu zhao zhao zhao zhao zhao wu zhao zhao 
five trillion trillion trillion trillion trillion five trillion trillion 

zhao zhao wu zhao zhao zhao wu zhao zhao 
trillion trillion five trillion trillion trillion five trillion trillion 

wu zhao 
five trillion 

(c) *wu zhao zhao wu zhao zhao zhao 
five trillion trillion five trillion trillion trillion 

Simi lar ly ,  e x a m p l e  (d) is w e l l - f o r m e d ,  w h i l e  (e) is not .  Both  of  these  are  e x a m p l e s  of  
n u m b e r - n a m e s  c o n t a i n i n g  a d j a c e n t  ' c o l u m n s '  in  w h i c h  the  n u m b e r  of  i n s t ances  of zhao  

in  one  of  the  ' c o l u m n s '  is n e i t h e r  the  p r e d e c e s s o r  n o r  the  successo r  of  the  n u m b e r  of 
i n s t ances  of  zhao in  the  o t h e r  co lumn :  

(d) wu zhao zhao zhao zhao wu zhao zhao 
five trillion trillion trillion trillion five trillion trillion 

(e) *wu zhao zhao wu zhao zhao wu zhao zhao 
five trillion trillion five trillion trillion five trillion trillion 

zhao zhao 
trillion trillion 

The  w e l l - f o r m e d  n u m b e r - n a m e s  tha t  w e  h a v e  seen  all  f o l l ow  a p a t t e r n  in  w h i c h  l a rge r  
c lus te r s  of zhao p r e c e d e ,  f r om left  to r igh t ,  s m a l l e r  c lus te r s  of  zhao,  w h i l e  the  i l l - f o r m e d  
n u m b e r - n a m e s  d o  n o t  a d h e r e  to such  a r e q u i r e m e n t .  A l l  the  w e l l - f o r m e d  n u m b e r -  

7 Needham (1959, p. 87) (also reproduced in Brainerd (1966a, p. 42)), gives a list of single-word 
number-names up to 1044. Yet all those beyond zhao are extremely archaic and are most likely not part 
of the vocabulary of a present-day native speaker. 

8 In all of our examples, we omit possible instances of ling. This is a morpheme with numerous 
meanings--as is not uncommon in Chinese---including 'zero; 'remainder,' and, when used in between 
other morphemes in a number-name, we could say it serves as a type of conjunction. It is used in case 
of a gap of more than one decimal order within a number-name. Yet, if there is more than one such 
gap in a number-name, generally only one ling is used and this is in place of the rightmost gap. 
Number-names for multiples of "10,' as are all of our examples, generally, though not necessarily, lack 
such use of ling. In any case, its use would not affect in any significant way the formal argumentation 
to be presented in Sections 4 and 5. (On the semantic evolution of ling, see Needham (1959, pp. 16-17)). 
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names composed only of instances of w u  and zhao form the set J: 

J = {w u  zhao kl w u  zhaok2. . ,  w u  zhaoknlk l  > k2 > . . .  > kn > 0}. 

This clearly lends empirical support to characteristics (i) and (ii) of Section 2. Yet, 
whether characteristic (ii) is a consequence of a linguistic constraint or of some other 
type of constraint is a question we leave open till Section 6. 

4. Numeric Chinese and Tree Adjoining Languages 

In light of recent, and not so recent, definitions of languages lying between CFLs 
and CSLs, we are now capable of demonstrating that it is not only CFGs that fail 
to generate Numeric Chinese, but even more powerful grammars as well. We shall 
argue here that Numeric Chinese is not a TAL. The weak equivalence of TAGs, a 
modified version of Head Grammars and Linear Indexed Grammars has been shown 
in Vijayashanker (1988), while the weak equivalence of these three formalisms and 
Combinatory Categorial Grammars has been shown in Weir (1988) and Weir and Joshi 
(1988). 

TAGs perform certain manipulative adjunction operations on tree structures. HGs 
are similar to CFGs except that they allow head-wrapping operations in addition to the 
usual concatenation operation used in CFGs. LIGs are a restricted type of IGs, which 
were introduced by Aho (1968) as an extension of CFGs. In addition to terminals and 
nonterminals, IGs also have indices, or flags, which can be used in rewrite operations. 
Their use may lead to the generation of non-CFLs. LIGs restrict the way in which 
indices may be used. Combinatory Categorial Grammars are an extension of classical 
Categorial Grammars. The latter were introduced into the linguistic literature by Bar- 
Hillel (1953), based largely on the work of Lesniewski (1929) and Ajdukiewicz (1935) 
in the context of philosophical logic. The classical Categorial Grammar formalism is 
characterized by the use of the combinatory operation of functional application, and 
is extensionally equivalent to the CF formalism. Combinatory Categorial Grammars 
are augmented with the combinatory operation of functional composition used in a 
restricted way. 

In addition to generating all CFLs, these four types of grammars generate non- 
CFLs such a s  {anbncn}, {anbncndn}, and {WWIW E (a + b)*}. They exclude, however, 
languages such as {a"bnc"dne n } and others exhibiting a dependency of more than four 
columns, and {WWWIW E (a + b)*} and other languages exhibiting more than a single 
copy. Since these four formalisms have been proved to be weakly equivalent, i.e. they 
generate the exact same stringsets, we will limit our discussion below to TAGs. 

We now proceed to prove that NC is not a TAL in the weak sense. We begin by 
considering the following regular language R: 

R = { w u  zhao + w u  zhao + w u  zhao + w u  zhao + w u  zhao + } 

Strings of R may be described as the concatenation of five columns, each column 
comprising one instance of w u  followed by one or more instances of zhao. Let H -- 
NC N R. Clearly, 

H = { w u  zhao n w u  zhao m w u  z h a J  w u  zhao k w u  zhao j In > m > I > k > j > 0} 

Strings of H may be described as the concatenation of five columns, each column 
comprising one instance of w u  followed by one or more instances of zhao and each 
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co lumn hav ing  more  instances of zhao  than any  co lumn to its right. For notat ional  
convenience,  we  n o w  define the h o m o m o r p h i s m  h such that: 

h(wu) = a 

h ( z h a o )  = b 

Let L = h(H). Clearly, 

L = {abnabmablabkab / ] n > m > l > k > j > O} 

L e m m a  1 
L is not  a TAL. 

Proof  
We app ly  the p u m p i n g  l e m m a  for TALs and arr ive at a contradiction. This p u m p i n g  
l e m m a  is g iven in Vijayashanker (1988, pp. 96-101) as Theorem 4.7: 

Pumping Lemma for TALs 

If L is a TAL, then there is a constant n such that if z E L and Izl > n then z may 
be written as z = UlVlWlV2uav3w2v4u3 with [~)lWlV2V3W2V41 ~ n, ]VlV2?dB?d41 ~ 1 such 
that for all i > 0, UlV~WlVi2u2vi3w2?di4u 3 , L. 

It follows f rom this theorem that for any  string in a TAL longer than a deter- 
mined  constant  for that  TAL, the string has at mos t  four  p u m p a b l e  substrings. We 
n o w  demons t ra te  that some long strings of L require more  than four p u m p a b l e  sub- 
strings in order  to remain  within L after pumping .  Assume  L is a TAL. Where  n is 
the constant  referred to by  the lemma,  corresponding to our  L, consider the string 
z -= abn+4abn+3abn+2abn+lab  n which is in L. Let us n o w  n u m b e r  the columns of z 1-5 
f rom left to right, where  a co lumn is an a fol lowed by  bs. Since all strings of L contain 
exactly five instances of a, VlV2vgv4  cannot  contain as, else these could be p u m p e d ,  
yielding strings outside of L. Thus, VlV2V3V 4 mus t  consist solely of bs. Since there are 
at mos t  four  p u m p a b l e  substrings (Vl, v2, v3, and v4) and z comprises  five columns,  at 
least one co lumn of z will not contain a p u m p a b l e  substring. We can n o w  look at the 
following two exhaust ive cases: 

A. A column c wi th  no p u m p a b l e  substrings to the left of some column d 
with  at least one p u m p a b l e  substring. 

B. A column c with no p u m p a b l e  substrings to the right of some co lumn d 
with  at least one p u m p a b l e  substring. 

Case A. Let c be co lumn 1 and  let vl, v2, v3, and v4 be in columns 2, 3, 4 and 5, 
respectively. Let d be co lumn 2. It suffices to p u m p  up  once, i.e. set i = 2, in order  for 
co lumn 1 to cease being longer than co lumn 2, a necessary condit ion for all strings in 
L. As long as there is at least one p u m p a b l e  substr ing in some column d to the right 
of c, any  other instantiation of VlV2V3V 4 will yield a result  in which a co lumn will not  
be longer than another  co lumn to its r ight when  setting i = 2. 

Case B. Let c be co lumn 5 and let vl, v2, v3, and v 4 be in columns 1, 2, 3, and 4, 
respectively. Let d be co lumn 4. Here  p u m p i n g  up  once or more,  i.e. setting i > 1, 
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will not suffice, because the newly created strings remain in L, since they meet  the 
well-formedness conditions of L: Each column contains more  instances of b than any 
one of the columns to its right. What  we need in th is  case is to resort to pumping  
down,  i.e. setting i = 0. In such a case, column 5 will cease being shorter than column 
4, a necessary well-formedness condit ion for all strings in L. As long as there is at least 
one pumpable  substring in some column d to the left of c, any other instantiation of 
VlV2VgV 4 will yield a result in which a column will not  be longer than another  column 
to its right when  i = 0. 

These two cases exhaust  all possible pumpings  of non-fixed positions. Both lead to 
contradictions. Hence,  the assumption that L is a TAL cannot  be true. 9 • 

Theorem 1 
NC is not  a TAL. 

Proof 
L = h(NC N R). R is an RL. TALs are closed under  intersection with regular languages 
(cf. Theorem 3.6 in Vijayashanker (1988 pp. 76-77)) and unde r  arbitrary homomor-  
phism (cf. Corollary 4.1 in ibid., p. 94). By Lemma 1, L is not  a TAL. Therefore, neither 
is NC. • 

5. NC, ILs, MCTALs and Mildly CSLs 

After demonstra t ing in the previous section that NC is not  a TAL, we are now faced 
with the following question: What  type of non-TAL is it? Under  the assumption that 
the only nonfinite phenomena  in NC are s trung-together  number-names  (of the type 
we have investigated), we would  conjecture it is included in the class of Indexed 
Languages. The following IG(H) generates H, NC's  proper  subset responsible in our  
argument  for NC's being a non-TAL: (our notat ion is a minor  variant of the one used 
by  Hopcrof t  and Ullman 1979, pp. 389-390). 

IG(H)=({S,T,U,V,W,X,Z}, {wu,  zhao},{f ,g},  P, S) where  P comprises: 

S --* Tg W --* Wf 
T --~ Tf W --* Xf wu Z 
T --* Uf wu Z X --* Xf 
U --* Uf X --* wu Z 
U ~ Vf wu Z Zf --* zhao Z 
V ---* Vf Zg ~ zhao 
V --* Wf wu Z 

However ,  H is not the only proper  subset of NC having the characteristic of more  
than four columns. We could just as well have intersected NC with a different regular 
language containing more  than five sequences of wu zhao +, thus yielding a proper  

9 Since our proof has made no use of the condition in Theorem 4.7 requiring the length of VlWlV2V3W2V4 
to be less than or equal to the constant n, perhaps even some weaker version of the pumping lemma 
for Tree Adjoining Languages lacking that condition would suffice for our purposes. In fact, such a 
version, attributed to Vijayashanker, is mentioned in passing by Weir (1987, p. 5). Furthermore, the 
pumping lemma for Head Languages, Theorem 45 in Roach (1987, pp. 321-325), lacks a condition of 
this sort (though added subsequently on p. 336). We have nevertheless opted for Vijayashanker's (1988) 
Theorem 4.7 because of its succinctness and perspicuity. 
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subset of NC with a number of columns equal to the number of wu zhao + sequences 
in the intersected regular language. If this number were fixed, then we could simply 
define more nonterminals and add more productions to IG(H) yielding a language of, 
say, 6, 275, or 109438 columns, all depending on the fixed number of columns we wish 
to have. But since the number of columns in our construction is indefinite, such an 
IG would not suffice. For a proper subset J of NC, with arbitrarily many columns as 
described in Section 3, we need the following simpler IG(J): 

IG(J) = ({S,T,Z}, {wu, zhao}, {f, g}, P, S) where P comprises: 

S--* Tg 
T--+ Tf 
T --* Tf wuZ 
T --+ wuZ  
Zf ~ zhao Z 
Zg ~ zhao 

Are there known formalisms that generate NC, but not the entire class of ILs (or 
some non-ILs)? We attempt to answer this question by first considering M(ultiple) 
C(omponent) TAGs and other similar formalisms. MCTAGs have been discussed in 
the literature; for example, in Joshi (1987, pp. 110-113), Joshi et al. (1989, pp. 13-15), 
Vijayashanker et al. (1987, pp. 106-107), and Weir (1987, pp. 30-33; 1988, pp. 31-39). 
These are grammars whose generative capacity exceeds that of TAGs, since adjunction 
in MCTAGs is performed simultaneously on sequences of trees rather than on single 
trees. Pollard (1984, pp. 210-215) has defined a formalism called Generalized CFG. 
This formalism is an extension of CFG wherein the compositional operations in the 
grammar's production set need not be limited to functions of concatenation or syn- 
categorematic insertion of terminals. Kasami et al. (1988, pp. 9-11) have shown that 
Generalized CFGs generate all the recursively enumerable sets. In addition, they have 
defined a restricted Generalized CFG called M(ultiple) CFG, which is stronger than 
Head Grammar. (HG is a Generalized CFG whose compositional operations are re- 
stricted to those of CFG plus head-wrapping.) Independent of Kasami et al.'s research, 
Vijayashanker et al. (1987, pp. 108-111) and Weir (1988, pp. 90-110) have introduced 
a formalism called L(inear) C(ontext-)F(ree) R(ewriting) S(ystem)s, whose definition 
turns out to be the same as that of MCFG. The composition operations in LCFRSs, or 
MCFGs, are restricted to being linear and nonerasing. In other words, they lack func- 
tions that 'copy,' 'erase,' or 'restructure' unbounded components of their arguments, 
and as such are 'size' preserving. Weir (1988, pp. 101-106) has shown that the classes 
of stringlanguages generated by MCTAGs and LCFRSs are the same. Given the equiv- 
alence of MCTALs, LCFRLs, and MCFLs, we focus our discussion below on MCTAGs, 
yet refer to LCFRSs and MCFGs if necessary or convenient. 

Manaster-Ramer (1987a, p. 233) has pointed out that "[the MCTAG formalism] 
can handle quintuple and higher counting dependencies, but it still cannot deal with 
... unbounded counting dependencies." That is, this formalism generates languages 
with a fixed number of columns, and not ones with an arbitrary number of them. Thus, 
while MCTAGs generate H, they do not generate J. Accordingly, Numeric Chinese 
cannot be accounted for by any MCTAG. We now proceed to prove this claim. We 
begin by considering the regular language R': 

R' = {(wu zhao+) +} 
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S t r i ngs  of  R '  m a y  b e  d e s c r i b e d  as  t h e  c o n c a t e n a t i o n  of  a n y  a r b i t r a r y  n o n - z e r o  n u m b e r  

of  c o l u m n s ,  e a c h  c o l u m n  c o m p r i s i n g  o n e  i n s t a n c e  of  w u  f o l l o w e d  b y  o n e  or  m o r e  
i n s t a n c e s  of  zhao. Let  J = N C  N R' .  Clear ly ,  as  p r e s e n t e d  a l r e a d y  i n  S e c t i o n  3, 

J = { w u  zhaoklwu z h a o k 2 . . . w u  zhao kn I k l  > k2 > . . .  > kn  > 0}. 

S t r i ngs  of  J m a y  b e  d e s c r i b e d  as  t h e  c o n c a t e n a t i o n  of  a n y  a r b i t r a r y  n o n - z e r o  n u m b e r  
of  c o l u m n s ,  e a c h  c o l u m n  c o m p r i s i n g  o n e  i n s t a n c e  of  w u  f o l l o w e d  b y  o n e  or  m o r e  
i n s t a n c e s  of  zhao, a n d  e a c h  c o l u m n  h a s  m o r e  i n s t a n c e s  of zhao t h a n  a n y  c o l u m n  to 
i ts  r igh t .  Fo r  n o t a t i o n a l  c o n v e n i e n c e ,  le t  K = h(J), w h e r e  t he  h o m o m o r p h i s m  h is as  
d e f i n e d  p r e v i o u s l y  i n  S e c t i o n  4. Clear ly ,  

K = {abklabk2. . .  ab kn I k l  > k2 > . . .  > kn > 0}. 

Lemma 2 
K is n o t  a M C T A L .  

Proof 
W e  a p p l y  a p u m p i n g  l e m m a  for  M C T A L s  a r r i v i n g  at  a c o n t r a d i c t i o n .  A p u m p i n g  
l e m m a  for  M u l t i p l e  CFLs  is g i v e n  i n  K a s a m i  et al. (1988, p p .  18-20)  as  L e m m a  3.4. I n  or-  
d e r  to  a c h i e v e  m a x i m u m  a n a l o g y  a n d  u n i f o r m i t y  w i t h  V i j a y a s h a n k e r ' s  (1988) p u m p i n g  
l e m m a  for  TALs,  w e  r e p h r a s e  K a s a m i  et al. 's L e m m a  3.4, m a k i n g  it  a p p l i c a b l e  to 
M C T A L s :  1° 

Pumping Lemma for MCTALs 

If L is a MCTAL, then  there are constants  n and  m such that if z E L and  ]z I > n 
then  z may  be wri t ten  as z = UlVlWlSlU2V2W2S2U 3 . . .  UmVmWmSmUm+ 1 with  
~ j = l  Ivjsjl > 1 such that  for all i >__ 0, i i i i i i m bIlVlWlSlbI2V2W2S21"13 • • ,  blmldmWmSml,lm+l ~- L. 

10 In fact, Kasami et al.'s pumping lemma is weaker than ours. Their Lemma 3.4 (p. 18) is phrased as 
follows: For any ... mcfl L, if L is an infinite set then there exist some uj E T* [where T is a finite set of 
terminals] (1 <_ j < m + 1) [for a fixed m associated with L], vj, wj, sj E T* (1 <_ j G m) which satisfy 

m the following conditions: (1) ~ j = l  Ivjsj I > 0, (2) for any non-negative integer i, 

A i i i i i i 
Z l  = UlVlWlS l ld2V2W2S2U3. . .  UmVmWmSmUm+l E L. 

There is an essential quantificational difference between Lemma 3.4 and our lemma. Lemma 3.4 claims 
that every infinite Multiple CFL has some strings, i.e. at least one and maybe more, which satisfy the 
pumping conditions. Such a lenLma suffices, for example, for proving the non-MCFness of a language 
with an indefinite amount of columns in which all columns are equal in length, since such a language 
does not contain a single string with a fixed number of pumpable substrings. [See Lemma 3.5 in Kasami 
et al. (1988, p. 20).] However, such a lemma is not strong enough to show that a language, such as K, 
with an indefinite amount of columns in which every column is longer than any column to its right, is 
not an MCFL. For example, the following string z E K, satisfies the pumping conditions of Lemrna 3.4: 

z = a b l ° ° ° ° ° ° ( n + 2 m ) a b n + 2 m - l a b n + 2 m - 2 . . ,  a b n + 2 m - ( 2 m - 1 ) a b  n 

If vl is in the leftmost column of z and we only pump vl, as allowed by the lemrna, then we still 
remain in the language, for all i > 0. Our lernma, on the other hand, claims that the pumping 
conditions must be satisfied by a~ the strings of a MCTAL longer than a determined constant for that 
MCTAU With our lemma, it is enough to find even one single string, longer than the constant, that 
does not satisfy the pumping conditions, in order to prove, as we do below, that the language 
containing that string is not a Multiple Component Tree Adjoining Language. 

Interestingly, it is not necessary for us to prove our version of the pumping lemma: Kasami et al. 
have already done so! Their proof crucially depends on the following assumption (p. 19): "Let us 
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It fol lows f rom this l e m m a  that,  for a n y  s t r ing  in  a MCTAL that  is l onge r  t h a n  a de-  
t e r m i n e d  cons t an t  n associa ted w i th  this MCTAL, the s t r ing  has at m o s t  2m p u m p a b l e  
subs t r ings ,  where  m is a fixed n u m b e r  associa ted w i th  the pa r t i cu la r  MCTAL. We n o w  
d e m o n s t r a t e  that  some  long  s t r ings  of K requi re  m o r e  t han  2m p u m p a b l e  subs t r i ngs  
in  order  to r e m a i n  w i t h i n  K after p u m p i n g .  A s s u m e  K is a MCTAL. Whe r e  n a n d  m 
are the cons tan t s  for K c o r r e s p o n d i n g  to those referred to b y  the l e m m a ,  cons ide r  the 
s t r ing  z = abn+2mabn+2m-labn+2m-2.., abn+2m-(2m-1)abn w h i c h  is i n  K (since the n u m b e r  

of c o l u m n s  in  s t r ings  of K is no t  necessar i ly  fixed). Let us  n o w  n u m b e r  the c o l u m n s  
of z 1 th ru  2m + 1 f rom left to right.  The p u m p a b l e  subs t r ings ,  i.e. vjsj for all j = 1 
to m, c a n n o t  con ta in  a n y  ins tances  of a, s ince p u m p i n g  as w o u l d  y ie ld  n e w  s t r ings  
wi th  c o l u m n s  longe r  t han  c o l u m n s  to their  left, c o l u m n s  shor ter  t han  c o l u m n s  to their  
r ight,  c o l u m n s  equa l  in  l eng th  to o ther  c o l u m n s ,  or two  ad jacent  as. N o n e  of these are 
in  K. Thus ,  the p u m p a b l e  subs t r ings  m u s t  consis t  solely of bs. The r e m a i n d e r  of this 
p roof  is ana logous  to that  of L e m m a  1, mutat is  mutandis .  • 

Theorem 2 
N C  is no t  a MCTAL. 

Proof 
K = h (NC A R'). R' is an  RL. MCFLs are closed u n d e r  in te r sec t ion  w i th  regu la r  lan-  
guages  a n d  u n d e r  subs t i t u t i on  [cfo T h e o r e m  3.9 in  Kasami  et al. (1988, p. 21)]. H o m o -  
m o r p h i s m  is s i m p l y  a special  case of subs t i tu t ion .  MCFLs = MCTALs.  By L e m m a  2, 
K is no t  a MCTAL. Therefore,  N C  is no t  a MCTAL. • 

We m a y  n o w  beg in  to a n s w e r  the ques t i on  posed  at  the outse t  of this section: N C  
is no t  a MCTAL, b u t  still appea r s  to be  an  IL. 11 We fail, however ,  to f ind  a we l l - s tud ied  
a n d  at t ract ive fo rma l i sm  that  w o u l d  seem to genera te  N C  w i t h o u t  g e n e r a t i n g  the ent i re  
class of ILs (or some  non-ILs)22 Now,  we  are faced wi th  the fo l lowing  ques t ion:  if N C  

consider a derivation tree t of z E L such that Iz] ~ q INf+l." A consequence of this assumption is that z 
satisfies the pumping conditions, hence there is at least one such string in any infinite Multiple 
Context-Free Language. Yet, their z was chosen arbitrarily from the set of strings in L longer than a 
determined constant for L (in their c a s e  qINt+l). Hence, all strings longer than that constant satisfy the 
pumping conditions. Thus, in fact, Kasami et al. proved implicitly something stronger than what they 
had claimed to prove. 

11 Kac (1987, p. 451) mentions: "It nonetheless remains to be seen what sort of increase in power over that 
possessed by these classes of grammars [i.e. HG and TAG] is sufficient to handle respectively 
sentences." The issue is raised after noting that certain instances of the English respectively construction 
map on to the five-column language {bhanbmdd k I 2 ~ h ~ n ~ m ~ 1 ~ k} and to additional 
multicolumn languages without limit on the number of columns they contain. An indirect consequence 
of our last conclusion is that, given the close resemblance between Kac's five-column language and our 
L, as well as, of course, between any of his other multicolumn languages and our corresponding 
subsets of K, we can now suggest that the increase in power sought will have to be of the type that 
allows for the generation of non-MCTALs without allowing for the generation of the entire class of ILs 
(or some non-ILs). 

12 Such a formalism might be of the type similar to an augmented version of Combinatory Categorial 
Grammar as proposed by Steedman (1985) and discussed in Weir (1988, pp. 128-131) (together with 
suggested extensions to Linear Indexed Grammars) and Weir and Joshi (1988, p. 284). There do exist, in 
fact, two formalisms known to the author, which are restricted types of IGs, that generate the 
phenomena under discussion: 

a) If we make one simple change to the definition of our IG(J) so that Z is not a member of the set of 
nonterminals, but rather forms a singleton of intermediates, then what we end up with is an R-grammar. 
R-grammars are discussed in Aho (1968, p. 670). Only intermediates can consume indices and once an 
index is consumed, no new indices can be generated by the intermediates. Also, all productions 
involving an index consumption must be right linear in form (as are such rules in our IG(J)). 
Nevertheless, neither Aho (1968) nor Aho (1969), wherein these restrictions on IG are also discussed, 
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is no t  a MCTAL,  t hen  is it  M i l d l y  Con tex t -Sens i t i ve?  To a n s w e r  this ,  w e  m u s t  c o n s i d e r  
the  p r o p e r t i e s  tha t  m a k e  a CSL mi ld .  O n  this  mat te r ,  Joshi  (1985, p. 225) wr i tes :  

I would like to propose that the three properties 

1. limited cross-serial dependencies,  
2. constant growth, and 
3. polynomial  parsing 

roughly characterize a class of grammars  (and associated languages) that are only 
slightly more powerful  than context-free grammars  (context-free languages). I 
will call these mildly context-sensitive grammars (languages). 

A c c o r d i n g l y ,  the  en t i re  c lass  of M C T A L s  is M i l d l y  CS, b u t  no t  the  en t i r e  c lass  of  ILs, 
wh ich ,  inter alia, i n c l u d e s  l a n g u a g e s  tha t  a re  n o n - c o n s t a n t  g r o w t h  such  as  a 2" . We  n o w  
i n v e s t i g a t e  if N C  p o s s e s s e s  the  M i l d l y  CS p r o p e r t i e s .  

Polynomial Parsing. Since p a r s i n g  is d e p e n d e n t  on  a g r a m m a r  a n d  w e  are  no t  
d e a l i n g  he re  w i t h  a specif ic  g r a m m a r  b u t  r a t h e r  w i t h  a l a n g u a g e ,  w e  can  o n l y  c o n s i d e r  
p o l y n o m i a l  r ecogn i t ion .  Wei r  (1988, p p .  98-101) g ives  the  f o l l o w i n g  t h e o r e m :  

Theorem 4.4.1 If L is a language generated by a grammar  of some formalism 
that is a LCFRS, then L can be recognized in polynomial  t ime on a turing 
machine. 

By W e i r ' s  T h e o r e m  4.4.1, s t r ings  in  N C  g e n e r a t e d  b y  a M C T A G  are  p o l y n o m i -  
a l ly  r ecogn izab l e .  We wi l l  n o w  s h o w  tha t  th is  is t rue  for  s t r i ngs  in  N C  n o t  g e n e r a t e d  
b y  a M C T A G .  Such  s t r ings  are  p r e c i s e l y  t hose  tha t  c on t a in  a n  i nde f in i t e  a m o u n t  of  
c o l u m n s  of s t r u n g - t o g e t h e r  n u m b e r - n a m e s ,  a n d  the  set  of  these  s t r ings  can  be  m a p p e d  
to K v ia  s i m p l e  h o m o m o r p h i s m s .  The  f o l l o w i n g  t r ans i t i ons  of a T(wo-)  H ( e a d )  F(ini te)  

shows explicitly and unequivocally that the class of languages generated by such restricted IGs is 
indeed properly included within the class of ILs. In other words, although not intuitively likely, it may 
still be the case that the stringlanguage classes are equivalent. 

b) Fischer (1968) discusses Macro-like Grammars. One type of these is the O(utside) I(n) Grammars, 
which Fischer proves to be weakly equivalent to IGs. A particular restriction on the definition of OI 
Grammars yields Basic Grammars, whose class of object stringlanguages is properly contained in the 
class of ILs. This is because Basic Grammars generate only those languages that are generated both by 
OI Grammars and I(nside) O(ut) Grammars, i.e. their intersection, and there are OI languages (i.e. ILs) 
that are not IO languages. A restriction on the definition of Basic Grammars yields Linear Basic 
Grammars. Proper inclusion of the latter in the former is only conjectured. The following rather simple 
Linear Basic Grammar (and, of course, Basic Grammar) productions generate J (where the symbol 'A' 
refers to the empty string and the symbol '1' is a disjunction of right-hand sides of rules having a 
common left-hand side): 

S ---+ F(wu zhao, ,k) 

F(x,y) --* F(xzhao, y) I F(xzhao, xy) I xy 

However, Fischer conjectures that the class of Linear Basic Languages does not include the class of 
CFLs. A formalism that does not generate all CFLs would, most likely though perhaps arguably, seem 
unattractive for our purposes. Furthermore, although the class of Basic Languages does include the 
class of CFLs, both the class of Basic Languages and the class of Linear Basic Languages are not closed 
under inverse homomorphism and, as such, do not each form a full A(bstract) F(amily of) L(anguages). 
As Savitch (1989, p. 255) comments, "... in some circles [being a full AFL] invests the class [of 
languages] with a certain respectability." Thus, again, a formalism whose class of object languages does 
not form a full AFL would, most likely though perhaps subject to counterarguments, seem unattractive 
for our purposes. The other language classes discussed in this paper each form a full AFL. (For more 
on Macro-like Grammars, see Fischer (1968).) 
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A(utomaton)  efficiently accept exactly K in linear t ime (less than 2n), ipso facto, poly-  
nomial  time: 

(q0,a,a,ql) 

(ql,&,b,q2) 

(q2,A,b,q2) 

(q2,A,#,qf) 

(q2,k,a,q3) 

(q3,b,b,q4) 

(q4,b,b,q4) 

(q4,b,a, q5) 

(q4,b,#,qf) 

(q5,b,A,q5) 

(q5,a,A,q3) 

A THFA consists of a finite control, an input  tape, and two read-only heads  that m o v e  
only left to right. It is s tarted in state q0 with both heads  on the tape ' s  lef tmost  square. 
Transitions are of the fo rm (qi, w, x, qj) where  qi is the current  state, w the string to 
be read by  head 1, x the string to be read by  head 2, and q/' the state to enter. We use 
the symbol  '&' to refer to the null string, i.e. "do not  read," and  '#' as a r ight-edge 
marker.  An input  string is accepted iff one of the heads  (or both) falls off the right 
edge and enters the final state qf.13 Our  THFA(K) s imul taneous ly  uses its two heads  in 
order  to compare  the n u m b e r  of bs in every  two adjacent columns.  It accepts a string 
iff the string has no co lumn whose  length is greater  than or equal to the length of 
a column to its left. THFAs for acceptance of actual NC strings will be analogous to 
THFA(K). 

C(onstant) G(rowth). Based on work  by  Aravind  Joshi and  by  Bob Berwick, Weir 
(1988, p. 3) presents  a definition of CG as foUows: TM 

L is constant growth if there is a constant c0 and a finite set of constants C such 
that for all w c L where Iwl > Co there is a w' E L such that [w I ~ ]w'[ + c  for some 
cEC. 

He also gives the following theorem: (ibid., pp.  96-97) 

Theorem 4.3.1 If L is a language generated by a grammar of some formalism that 
is a LCFRS, then L is a semilinear language. 

CG is a consequence of semilinearity. By Weir 's  Theorem 4.3.1, the set of strings in 
NC generated by  a MCTAG is CG. We show n o w  that  the set of strings in N C  not 

" genera ted by  a MCTAG is also CG, according to the Joshi-Berwick definition. Such 

13 Our definition of a Two-Head Finite Automaton differs slightly from that given in Lewis and 
Papadimitriou (1981, pp. 306-307) wherein acceptance requires both heads to simultaneously move off 
the right end of the tape while entering a designated final state. 

14 A similar definition is given in Berwick (1984, p. 198) and in Berwick and Weinberg (1984, p. 113). 
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strings are precisely those that contain an indefinite amount  of columns of strung- 
together number-names. To these, we can always add one more instance of the strung- 
together element, whether zhao, yi,  wan ,  or what  have you, immediately to the left of 
the leftmost instance of that element, yielding a wellformed Chinese number-name. 
Thus, the set of strings in NC not generated by a MCTAG can "grow" by a constant 
of 1. Hence, by the Joshi-Berwick definition of CG, NC is CG. 

However, according to Alexis Manaster-Ramer (p.c.), the Joshi-Berwick definition 
of Constant Growth is flawed. While the Joshi-Berwick definition excludes languages 
such as {a n I n is prime} from being CG, it nonetheless includes the language {b*a n I n 
is prime}, since strings in the latter can "grow" by any constant due to b*. Yet, these 
two languages are rather similar and one would  not expect them to differ in terms of 
CG. To avoid this state of affairs, Manaster-Ramer proposes the following embellished 
definition of Constant Growth: 

A language L over {al,... ,an} is Constant Growth iff there is a set C of n-tuples 
of constants {(Cu,..., Cnl),..., (Clm . . . . .  Cnm)} , and for any string in L the number 
of occurrences of the different letters can be increased by the constants of such 
an n-tuple, respectively. Moreover, for every Constant Growth language there is a 
constant k such that any string containing at least k occurrences of a letter ai can 
be increased by at least one such n-tuple which has a non-zero value for the 
corresponding ci. 

Thus, if L is infinite and there is, in particular, no upper  bound on the number  of ais 
in its sentences, then there is a way of obtaining longer strings by means of increasing 
the number  of occurrences thereof (possibly, but not necessarily, in conjunction with 
that of some other letter or letters). According to this definition, {b*a n I n is prime} 
is not CG, since given a string with enough as in it, it no longer suffices to increase 
the number  of bs, as is possible under  the Joshi-Berwick definition. Likewise, under  
Manaster-Ramer's definition, Numeric Chinese is not CG: Let c be the greatest of the 
constants by which the number  of zhaos may  be increased. Let p = max(k + 1, c + 1). 
Now consider the following string z in NC: 

z = w u  z h a o P w u  z h a o  p - 1  . . .  w u  zhao 

By the embellished definition, if NC is CG then it must  have some string with a greater 
number  of w u s  and of zhaos than in z. Now in order to increase the number  of w u s ,  
one must  at least create a new column of zhaos whose length must  be at least p + 1. But 
that would mean an increase by more than c, which is the greatest of the constants. 
There is, thus, no way of increasing the number  of zhaos while both remaining in NC 
and satisfying Manaster-Ramer's definition of CG. Hence, NC is not CG under  the 
embellished definition, but is under  the Joshi-Berwick definition. 

However, as pointed out by David Weir (p.c.), Manaster-Ramer's definition is 
also flawed. While it excludes both {a n I n is prime} and {b*a n I n is prime} from 
being Constant Growth, it nonetheless includes {a*b*a n I n is prime}, since in this last 
language, both the as as well as the bs, i.e. all the members of its alphabet, can "grow" 
by any constant due to a'b*.  But here again, the three of these languages are rather 
similar and one would not expect them to differ in terms of CG. All this suggests that 
perhaps these types of definitions will not lead us to capture the intuitive notion of 
CG in its entirety. While Manaster-Ramer's definition attempts to be as analogous as 
possible to some definitions of semilinearity, it still does not model  all and only that 
which CG is intuitively meant  to include. 15 

15 An anonymous referee has aptly indicated that the main intuition behind CG is the linear growth of 
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Limited Cross-Serial Dependencies. This property rests largely on how a grammar 
handles some particular dependency. Moreover, what  is considered 'limited' may  be 
open to more than one interpretation. Joshi et al. (1989, p. 3) suggest that the cross- 
serial dependencies in Dutch subordinate clauses, homomorphic  to the single-copy 
language {WW I W E (a + b)* }, could be considered an instance of a limited cross- 
serial dependency, but not the language MIX, which consists of an equal number  of 
as, bs, and cs in any linear order. The dependencies in NC are of multiple columns 
correlated in length. These are considered Mildly CS, as MCTAGs capture them. What  
MCTAGs fail to do is generate a language with such dependencies, such as NC, that 
also places no fixed limits on the number  of columns in its strings. We ask then whether 
a dependency that leads to an indefinite number  of columns correlated in length is to be 
considered "limited" or not. Since, as mentioned earlier, what  is "limited" may  be open 
to numerous interpretations, we leave this question unanswered for the time being. 
Thus, a grammar  for NC will have the Mildly CS property of limited dependencies, 
in case a dependency between an indefinite number  of columns correlated in length 
is to be considered limited. 

We conclude then that it is not entirely clear whether  NC is Mildly CS, al though 
intuitively it appears most likely not to be so. While NC is polynomially recognizable, 
we can say nothing about polynomial-time parsing for this language, as this would 
require reference to a particular grammar  generating the language. It is constant-growth 
under  one known definition, but not so under  a somewhat  better embellished one. Last, 
we cannot determine whether  its dependencies of indefinite columns of correlated 
length are limited or not, lacking a straightforward and lucid definition for "limited." 
However, in contrast to what  we can conclude regarding NC and the vague notion of 
mild context-sensitivity, we do at least know for certain that NC is not a MCTAL. 

6. The Linguistic Relevance of Our Formal Results 

In the previous sections, we have shown that Numeric Chinese can be generated 
neither by a single- nor a multiple-component TAG. What  are the implications of 
this for its proper superset Chinese, a natural language? These are not immediately 
obvious. After discussing Zwicky's (1963) argument,  which, albeit weaker, resembles 
our own due to the similarity between his language P and our language K, in a s tudy 
which surveyed and refuted earlier arguments calling for the non-context-freeness of 
NL, Pullum and Gazdar (1982, p. 502) mention: 

The interest of this argument [i.e., Zwicky (1963)] in the context of the study of 
natural languages is, however, greatly lessened by the fact that it deals with the 
internal structure of elements of a representational system for mathematics. We 
would maintain that knowledge of how to construct such number names (which, 
of course, has to be explicitly taught to children who speak English perfectly 
well) is knowledge of mathematics rather than of language. 

However, simply "maintaining," with no further argumentation, that we are dealing 
here with "knowledge of mathematics rather than of language," is far from clear. More 
evidence is needed in order to sustain this claim. We intend to show below that, in 
any case, maintaining this position resolves little. 

'structures' (and not necessarily 'strings') and, therefore, any redefinition of this property would have 
to reflect the structure-based intuition. 
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Our formal argumentation, as well as that of Zwicky's, relies crucially on char- 
acteristics (i) and (ii) discussed in Section 2. These characteristics have been shown 
in Section 3 to hold for the Chinese number-name system. The issue now is whether 
they hold because of some linguistic constraint or because of some other constraint, 
perhaps mathematical in nature. 

Let us assume, for the sake of argument, that these characteristics, particularly 
(ii), are mathematical in nature. In other words, the reason that larger clusters of zhao 
precede smaller ones is due to some constraint within the mathematical component 
of the human cognitive faculty. This would make little sense, however, since addition 
is commutative. In other words, in purely arithmetical terms wu zhao zhao wu zhao 
is equivalent in value to wu zhao wu zhao zhao. But while the former is empirically 
acceptable in the language, the latter is not. Thus, the linear order constraint that larger 
clusters of zhao must precede smaller ones cannot be based on pure mathematics. 

If the nature of the constraint is mathematical in any way, it must be one that 
relates to the interface between the cognitive linguistic component and the cognitive 
mathematical one. 16 Since, for purposes of cognitive numerical computing, number- 
names must ultimately be translated somehow into some encoding of their particular 
arithmetic values, an NL-math interface is necessary. Let us assume that the linear 
order constraint applies in the interface. Two possibilities then exist: the constraint is 
either string-based or value-based. We explore these below. 

String-based. What we mean by this is the following: The syntax of some NL, 
in our case Chinese, generates cardinal number-names. These are passed to the cog- 
nitive mathematical component for further computation, via the NL-math interface. 
In this interface, a test is performed on strings of type (i) to see that they adhere to 
characteristic (ii). Yet, given our result from Section 5, an automaton with the power 
of, or weaker than, a MCTAG will not be able to perform such a test, since it cannot 
discriminate between these strings and those of type (i) that do not adhere to charac- 
teristic (ii) (hence cannot accept J). Our results, then, are directly translatable to apply 
not to the "pure" syntax of Chinese, but rather to the interface between Chinese and 
mathematics. We will have said then something substantially interesting about the in- 
terface between NL and mathematics, namely, that this interface must have tools that 
are weakly more powerful than a MCTAG. 

Value-based. Here again, the syntax generates cardinal number-names that are 
then passed on to the cognitive math component via the NL-math interface. However, 
in this case the interface performs a test not on the basis of substring length, but rather 
on the basis of the numeric content of each column. In other words, when encountered 
with a strung-together number-name, the interface calculates, say right-to-left, the nu- 
meric value of each column and compares this value with the numeric value of its 
adjacent left column. The numeric value of columns must increase from right to left. 
However, in order to calculate the numeric value of a column, the interface must have 
the capacity to compute expressions such as a trillion raised to the power of n and save 
the result for further comparison. If a machine performs this task, as most Turing-like 
machines do, by means of strings whose length is in direct proportion to the numeric 
value they encode, then this case is essentially equivalent to a string-based test, as 
discussed earlier. Yet, if the length of the encodings is not proportional to their value, 

16 In this paper, we  do not use "interface" to refer necessarily to some 'psychologically (or neurologically) 
real' processing model ,  but  rather to a model  emulating cognitive competence (in the same way  that 
the syntax-semantics interface and syntax-phonology interface are understood).  
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then we cannot  conclude that a machine with more  power  than a MCTAG must  be nec- 
essary for the task. Perhaps transducers weaker  than, or incomparable with, MCTAGs 
would do. Yet, are we to expect the interface to be capable of doing computat ions 
like these? If it can compute  xY then it can, most  likely, deal with m an y  sophisticated 
computations.  But if so, then how does it differ in any substantial way  from the "pure"  
cognitive mathematical  component  (assumed to be Turing-equivalent)? In other words,  
w h y  would the interface need the power  to perform multiple multiplications if the 
math  component  does this anyway? We would  expect the interface to be far weaker, if 
possible. It is indeed possible for it to be weaker, if we assume the test is string-based. 
But then, our  result regarding non-MCTALs holds again. 

Thus, if the linear order  constraint applies in the NL-math  interface, then this 
interface will either have to be more  powerful  than a MCTAG in terms of string 
recognition, or powerful  enough to per form calculations that are complex in terms of 
comput ing capacity. Given the lack of pars imony in having an NL-math interface that 
can perform the same tasks that the cognitive mathematical  component  performs,  we 
conclude that, if the test applies in the interface, this test must  be string-based, forcing 
the interface to be more powerful  than, or at least incomparable with, a MCTAG. 

Another  possibility exists: that the constraint is purely  syntactic in nature. If so, 
we encounter  the problem created by what  Manaster-Ramer (1988, p. 102) refers to 
as Ziff's Law: while, for instance, wu zhao wu zhao zhao is not a well-formed number-  
name, nothing blocks it from being some other well-formed proper  name, such as the 
title of a book, for example. Thus the grammar  of Chinese can generate a string such 
as wu zhao wu zhao zhao, albeit not  as a number -name but still as some acceptable 
proper  name that can function as a noun-phrase  in a sentence. If so, the intersection of 
R or R' and Chinese is not  H or J, respectively, but  rather R or R', respectively. Since L 
and K are not homomorph isms  of R and R', respectively, an intersection-based proof  
would fail to say much  about  the weak generative capacity of the whole of Chinese. 
That is, in the weak sense, we have not shown that Chinese is beyond the generative 
power  of a TAG or a MCTAG, al though we have shown this to be true for its proper  
subset Numer ic  Chinese. 

The consequences of Ziff's Law are avoided,  however,  by invoking considerations 
of classificatory capacity. This notion was introduced in Manaster-Ramer (1987a, p. 238) 
and preliminarily defined there as "the measure of a formalism's ability [to] classify a 
set of strings (and substrings) and specify which ones are like which other ones." In 
Radzinski (1990a, p. 122 and 1990b, pp. 85-86), we have further  refined this definition 
to apply  to CFGs: 

Let some nonterminal in the grammar ultimately be rewritten only as a string 
belonging to some particular construction. For example, if passive sentences are 
to be considered a construction in some NL £, then let the CFG G(£) include a 
member PASS in its set of nonterminal symbols which yields in one or more steps 
all and only passive sentences of £. We say then that G(£) classifies passives. 

According to the definitions of Linear Context-Free Rewriting Systems given in Weir 
(1988), (including CFGs, Tree Adjoining Grammars,  Head Grammars,  Linear Indexed 
Grammars,  Combinatory  Categorial Grammars,  and Multiple Componen t  TAGs) any 
LCFRS contains a set of nonterminals.  We can thus extend our  definition to apply  to 
all LCFRSs, in addit ion to CFGs. 17 What  we would  wish to test then is whether  any 

17 Also, as mentioned in Radzinski (1990a, p. 122 and 1990b, p. 94), there no doubt exist other means for 
defining classification within CFGs. This point applies to all other LCFRSs as well. Rather than using a 
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LCFRS for Chinese can classify NC, whose strings clearly constitute a construction in 
Chinese separate f rom other noun-phrases.  Such a test would  fail, since, given our  
formal results, an arbitrary MCTAG, or other LCFRS, G(Chinese) could not include a 
nonterminal  yielding all Chinese number-names  in one or more steps. Hence, if the 
linear order  constraint is purely  syntactic in nature,  then Chinese is a non-MCTAL on 
grounds of classificatory capacity. 

No matter  which position one takes with respect to where  the linear order  con- 
straint applies, interesting conclusions follow: either Chinese is not  a Multiple Compo-  
nent  Tree Adjoining Language by  classificatory capacity considerations or the interface- 
language between Chinese and cognitive math,  something we know little of, is not  
an MCTAL when  v iewed as a formal language. In his "Topic . . .  Comment"  column, 
Pul lum (1986, p. 410) once wondered:  

... neither the mathematics nor the facts [discussed in Zwicky (1963)] are in 
dispute, yet the issue still seems hard to resolve . . . .  We have to be taught [the 
constraint] in math classes at school, and we do not acquire it with our language 

" per  se. O n  odd dates I still think this is right, but on even dates I think the 
argument has been unjustly overlooked. Zwicky thinks we [i.e. Pullum and 
Gazdar] were correct to dismiss it, but maybe he is wrong and it was the first 
valid argument that English is non-CF. The problem here is that we are not 
entirely sure what is a fact about a language and what is a fact about the culture 
associated with it. 

Yet it is hard to believe that the constraint is explicitly taught  in math  classes at 
school, since children rarely deal with numbers  with such values. Also, there is no 
reason to assume that w a n  w a n  is taught  in school, given its natural  and co m m o n  
use by  Chinese native speakers, regardless of their educational level. TM Moreover,  the 
p h e n o m e n o n  is completely irrelevant to the culture associated with Chinese or with 
any other natural  language exhibiting a similar behavior. It is a constraint related 
either to the "pure"  syntax of Chinese or to the component  interfacing be tween this 
syntax and the cognitive faculty for arithmetic reasoning. Both of these are hardly 
culture-based. 19 

We end this section by  presenting, for purposes  of contrast, two mathematics-  
based formal  arguments  that are quite irrelevant to the s tudy of natural  language, 
a l though their proponents  may  have laid claims, or at least hinted, otherwise. The 
first of these is an argument  against the context-freeness of English presented in Elster 
(1978, pp. 42-44) and refuted by  Pul lum and Gazdar  (1982, pp. 479-481). Elster bases 

single nonterminal as a basis, classification can be achieved via a set of nonterminals or via some 
production rule that applies in all and only the derivations of a particular construction. These 
definitions, however, would be merely similar alternative formalizations of the same intuitive notion. 

18 An anonymous referee has indicated that while this may be true for wan wan, forms such as zhao are 
surely taught (originally) in school. Yet, we believe that even if the single-word number-name zhao is 
learned explicitly only via formal education, its use within a strung-together number-name and the 
linear order pattern exhibited by such a long number-name is not. Rather, the constraints for forming 
strung-together number-names using zhao are the same as those for forming long number-names using 
wan. As mentioned in Section 3, the use of zhao instead of wan in long number-names results in better 
acceptability, as the former appears to be the highest valued number denoted by a single-word in 
modern Chinese. 

19 It may very well be the case that the constraint could be shown to be a consequence of some other 
independent cognitive strategy, such as a version of Hurford's (1975) Packing Strategy, for example. 
This strategy for number-names suggests roughly that arithmetically higher-valued chunks belong 
higher up in the tree than do the lower-valued ones, analogous to the way one packs a suitcase of 
books: first the big fat heavy ones and then the lighter ones. However, formal claims (with 
mathematical rigor) are made precisely in order to get a better understanding and give a better 
description of what strategies are meant to account for informally. 
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his argument  on sentences like the following: 

BI: The first two million numbers  in the decimal expansion of 7r are ala2.. ,  a2000000. 

B2: The first two million million numbers  in the decimal expansion of 7r are 
ala2...a2000000000000.2o 

Bk: The first two (million) k numbers  in the decimal expansion of 7r are ala2.. ,  a2.106k. 

According to the pumping  lemma for CFLs, any sufficiently long sentence of a CFL 
can be extended by  indefinite repetition of, at most, two subparts  wi thout  violation of 
grammaticality. The only possible pumpable  substrings in sentences like Bk are within 
the cluster of millions and al ...an. If we p u m p  the substrings 'millionq' and "ar...at" 
up  once, then we end up  with a sentence like C: 

C: The [first] two millionk+q.., numbers  in the decimal expansion of p are 
111 . .  o a t a r  . . . a t . . .  a2.106k 

Elster claims (p. 44) that C is not  a grammatical  sentence in English because: 

... the number 'two million k+q' must be the same as the number 
'2.10 6k q- t -- r + 1', i.e. the same as the number of numbers in the decimal 
expansion. Note that this is a requirement not of mathematics, but of linguistics, 
just as the lack of grammaticality of the sentence, 

D: the two largest animals in the zoo are a mouse, 

is a matter of linguistics, and not of mathematics ... 

But, according to Elster, in order  for C to be "grammatical," the length of its decimal 
expansion must  be longer: 2.106(k+q) . Thus, since there is a sufficiently long sentence 
in English that lacks, at most, two pumpable  substrings, English is not  CE 

As Pullum and Gazdar  (1982, pp. 480-481) claim, Elster is wrong since he is as- 
suming that English grammar  requires, as seen from the ungrammatical i ty  of D versus 
the grammaticali ty of the B sentences above, that the number  of entities listed in a 
predicate correspond to the number  named in the subject. Yet if D is ungrammati -  
cal, it is not  because of such a requirement,  but  rather because of the number  (i.e., 
s ingular /plural)  disagreement  it exhibits. If Elster were right, then the sentence "The 
two largest animals in the zoo are Mickey, Minnie, and Donald" would  be ungram- 
matical. Yet this sentence is clearly grammatical,  albeit infelicitous. Elster is confusing 

20 The reproduction of this sentence in Pullum and Gazdar (1982, p. 479) lacks one instance of m i l l i o n .  

Thus, Elster's argument becomes largely incomprehensible if read only there. The version reproduced 
in Savitch e t  a l .  (1987, p. 149) contains the same typographical error. Also, notice that Elster's 
acceptance of sentences of this sort with strung-together m i l l i o n s ,  indicates that he too is of the opinion 
that strung-together number-names are empirically attested in English. 
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grammaticality with arithmetical felicity. His argument, thus, bears little on natural 
language. 

The second argument, this time not discussed by Pullum and Gazdar (1982), is one 
presented in Brainerd (1966b, pp. 119-124). Brainerd discusses "verbal expressions," 
i.e. number-names, for rational numbers of the following type: 

zero point three six five four six five three six five three etc. 

three point two seven seven two seven seven two seven seven etc. 

These number-names for repeated decimals contain subparts of indefinite length that 
are repeated ad infinitum. However, given the periodicity of the repetition, the number, 
and hence its name, may be expressed by a convention requiring only a fixed amount 
of repetitions. A convention using merely one repetition suffices to argue that the set 
comprising the names for repeated decimals constitutes a non-CFL (two repetitions: a 
non-TAL). As Brainerd claims on p. 122: 

... it is easy to show that the language L(R) [comprising the numeral names for 
non-negative rational numbers in English] possesses no context-free grammar. 

Indeed, such a language can be shown to be a non-CFL, via the strong pumping lemma 
for Context-Free Languages. Brainerd later writes on p. 124: 

It is perhaps not out of place to observe that if repeated decimals (in their 
English verbal form) are a part of the natural language, then repeated decimals 
constitute an example of a duplication-structure of arbitrary length in English. 

Thus, Brainerd suggests, albeit equivocally, that English, a natural language, is affected 
by the non-context-freeness of its sub-language consisting of the names for rational 
numbers. Yet, this could hardly have any basis whatsoever. On grounds of weak gener- 
ative capacity, claiming that English is non-CF because it has "a duplication-structure 
of arbitrary length," is as absurd as claiming that the regular language {a*b*c*} is a 
non-CFL because it is a proper superset of the non-CFL {anbncn}. Although pumping 
a string in L(R), longer than some constant, in accordance with the conditions set forth 
by the strong pumping lemma for CFLs, yields a string outside of L(R), it neverthe- 
less yields one that is a well-formed number-name, albeit corresponding perhaps to 
an irrational number. However, considerations of classificatory capacity will not help 
here, since there is absolutely no linguistically based reason to assume that the set of 
names for rational numbers constitutes a construction distinct from names for other 
types of numbers. Thus, as with Elster's argument, Brainerd's has little bearing on 
natural language. Contrary to these two arguments, our claims, as we have already 
seen and discussed, definitely do bear either on the syntax of a natural language or on 
the interface between that natural language and the cognitive mathematical faculty. 

7. Conclus ions  

• We have shown that, when viewed as a formal language, the number-name system of 
Chinese is neither a single- nor a multiple-component Tree Adjoining Language, due 
to its strung-together number-names of indefinite length. As a consequence, it cannot 
be generated by any Linear Context-Free Rewriting System, including Context-Free 
Grammars, Head Grammars, Linear Indexed Grammars, or Combinatory Categorial 
Grammars. It appears also not to be Mildly Context-Sensitive at all, notwithstanding its 
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recognition in linear time. Our  formal results relate directly either to  the syntax proper  
of Chinese or to the interface between that natural  language, the most  widely  natively 
spoken one, and the mathematical  component  of the human  cognitive endowment .  
Similar results hold, most  likely, for other natural  languages, perhaps even for English. 
Consequently, it ma y  be the case that Zwicky (1963) did expound  after all, at least in 
spirit if not in letter, the first valid argument  that English is non-context-free.  On 
a practical side, then, our  s tudy may  help Geoff Pullum untangle himself from his 
odd/even  dates dilemma. On a more theoretical side, we have discovered something 
quite interesting about  the nature of human  language and its relationship to numeral  
systems. 
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