
An Algorithm for High Accuracy Name
Pronunciation by Parametric Speech
Synthesizer

T o n y Vitale"
Digital Equipment Corporation

Automatic and accurate pronunciation of personal names by parametric speech synthesizer has
become a crucial limitation for applications within the telecommunications industry, since the
technology is needed to provide new automated services such as reverse directory assistance
(number to name).

Within text-to-speech technology, however, it was not possible to offer such functionality.
This was due to the inability of a text-to-speech device optimized for a specific language (e.g.,
American English) to accurately pronounce names that originate from very different language
families. That is, a telephone book from virtually any section of the country will contain names
from scores of languages as diverse as English and Mandarin, French and Japanese, Irish and
Polish. All such non-Anglo-Saxon names have traditionally been mispronounced by a speech
synthesizer resulting in gross errors and unintelligible speech.

This paper describes how an algorithm for high accuracy name pronunciation was imple-
mented in software based on a combination of cryptanalysis, statistics, and linguistics. The
algorithm behind the utility is a two-stage procedure: (1) the decoding of the name to determine
its etymological grouping; and (2) specific letter-to-sound rules (both segmental rules as well
as stress-assignment rules) that provide the synthesizer parameters with sufficient additional
information to accurately pronounce the name as would a typical speaker of American En-
glish. Default language and thresholds are settable parameters and are also described. While
the complexity of the software is invisible to applications writers as well as users, this function-
ality now makes possible the automation of highly accurate name pronunciation by parametric
speech synthesizer.

1. Background

There has been a great deal of interest recently in the generation of accurate phonetic
equivalences for proper names. New and enhanced services in the telecommunica-
tions industry as well as the increasing interest in speech I /O for the workstation
has renewed interest in applications such as the automation of name pronunciation
by speech synthesizer in reverse directory assistance (number to name) applications
(Karhan et al. 1986). In addition, speech recognition research can benefit by automatic
lexicon construction to be ultimately used in such applications as directory assistance
(name to number) and a variety of workstation applications (Cole et al. 1989).

• 30 Forbes Rd. (NRO5/I4), Northboro, MA 01532 USA

(~) 1991 Association for Computational Linguistics

Computational Linguistics Volume 17, Number 3

The inaccuracy of name pronunciation by parametric speech synthesizer has been
a problem often addressed in the literature (Church 1986; Golding and Rosenbloom
1991; Liu and Haas 1988; Macchi and Spiegel 1990; Spiegel 1985, 1990; Spiegel and
Macchi 1990; Vitale 1987, 1989a, 1989b, and others). The difficulty stemmed from the
fact that high-quality speech synthesizers were so optimized for a particular language
(e.g., American English), that a non-English form such as an unassimilated or partially
assimilated loanword would be processed according to English letter-to-sound rules
only) Since non-Anglo-Saxon personal names fall into the category of loanwords, the
pronunciation of these forms ranged from slightly inaccurate to grossly unintelligible.

1.1 General Letter-to-Sound Rules
Letter-to-sound rules are a requirement in any text-to-speech architecture and take
slightly different forms from system to system; however, they typically follow a stan-
dard linguistic format such as x - . y/z, where x is some grapheme sequence, y some
phoneme sequence, and z the environment, usually graphemic. The following is a
typical example of a set of letter to sound rules:

C ~ I s / /-{Eft,Y}
C --* / k /

This set would handle all such forms as CELLAR, CILIA, CY, CAT, COD, etc., but
clearly not loanwords such as CELLO for exactly the same reasons that make the pro-
nunciation of last names so difficult for a synthesizer having only English letter-to-
sound rules. A number of letter-to-sound rule sets are in the public domain, (e.g.,
Hunnicutt 1976; Divay 1984, 1990). However, many rule sets that are currently in use
in commercial speech synthesizers remain confidential. Venezky (1970) contains an
extensive discussion of issues involving phoneme-grapheme correspondence.

The accuracy of pronunciation of normal text in high-quality speech synthesizers
using exclusively or primarily letter-to-sound processing can now range as high as
9 5 + % . 2 In tests we ran, however, this accuracy (without dictionary lookup), was de-
graded by as much as 30% or more when the corpus changed to high-frequency proper
names. The degradation was even higher when the names were chosen at random and
could be from any language group. Spiegel (1985) cites the average error rate for the
pronunciation of names over four synthesizers as 28.7%, which was consistent with
our results.

The reason for this degradation is due to the fact that the phonological intelligence
of a speech synthesizer for a given language cannot discriminate among loanwords
that are not contained in its memory (i.e., dictionary). In the Case of names, these are
really loanwords ranging from the commonly found Indo-European languages such as
French, Italian, Polish, Spanish, German, Irish, etc. to the more "exotic" ones such as
Japanese, Armenian, Chinese, Latvian, Arabic, Hungarian, and Vietnamese. Clearly,
the pronunciation of these names from the many ethnic groups does not conform
to the phonological pattern of English. For example, as pronounced by the average
English speaker, most German names have syllable-initial stress, Japanese and Spanish
names tend to have penultimate stress, and some French names have word-final stress.

1 That is, phonemic rules. Obviously, the phonetics output by a synthesizer would not be sufficient for
multiple languages.

2 In an informal study, Klatt (personal communication) tested our rule set for English by replicating a
study by Bill Huggins (Bolt, Beranek and Newman) using letter to sound rules without dictionary over
1678 complex polysyllabic forms. The algorithm tested (and the one used in this study) had an error
rate of 5.1%. The error rate using a dictionary would be much lower.

258

Vitale Algorithm for High Accuracy Name Pronunciation

Chinese names tend to be monosyllabic and consequently stress is a non-issue; in
Italian names, stress may be penultimate or antepenultimate as is the case with Slavic
languages and certain other groups.

But while stress patterns are relatively few in number, the letter-to-sound corre-
spondences are extremely varied. For example, the orthographic sequence CH is pro-
nounced [~] in English names e.g., CHILDERS, [~] in French names e.g., CHARPENTIER,
and [k] in Italian names e.g. BRONCHETTI or the anglicized version of some German
names e.g., BACH. This means that letter-to-sound must account for a potentially large
number of diverse languages in order to output the correct phonetics.

Most researchers understand that in order to process the name accurately, at least
two parameters must be known: (1) that the string is a name and thus needs to be
processed by a special algorithm; and (2) that the string must be identified with a
particular set of languages or language groups such that the specifics of the pronunci-
ation (i.e., the letter-to-sound rules) can be formally described (Church 1986; Liu and
Haas 1988; and others). While there has been some interest in attempting to identify
a word as a name from random text, this present work assumes a database in which
name fields are indexed as such (e.g., a machine-readable telephone directory) and no
further mention of this will be made. This paper simply describes an implementation
of this two-stage process, and details the first stage - - the correct identification of a
name as belonging to a certain language group. It should be stressed that there have
been other attempts to implement similar algorithms, although few descriptions of
such implementations are available.

1.2 Language Groups
For purposes of identification, sets of similar languages are more efficiently grouped
together. However, the language groups used in this study may not always corre-
spond to the set of language families familiar to most linguists. For example, while
Japanese or Greek may be in groups by themselves, languages such as Spanish and
Portuguese may be grouped together into a So. Romance group and this set may be
different from, Say, Italian, which may be grouped with Rumanian, or French, which
may be grouped by itself. This is done to reduce the complexity of letter-to-sound (Sec-
tion 4.1). However, the software is set up such that groupings can be moved around
to accommodate different letter-to-sound rule sets. In addition, the number of groups
is a variable parameter and could be modified as would the inclusion of any new rule
sets in the letter-to-sound subsystem. Thus, for n language groups, the probability P
of some language group Li being the correct etymology is P (L i) - 1 - - ~ .

1.3 Etymology
Identification of a particular language group in the United States and many countries of
Western Europe is not an easy task. According to the United States Social Security files
(Smith 1969), there are approximately 1.5 million different last names in the United
States, with about one-third of these being unique in that they occur only once in
the register. 3 Furthermore, the etymologies of the names span the entire range of the
world's languages, although the spread of these groupings is obviously related to
geopolitical units and historical patterns of immigration and is different in the United
States than it is, say, in Iceland, Ireland, or Italy.

3 Spiegel (1985) points this out. This is an excellent article that contains a number of useful statistics on
personal names.

259

Computational Linguistics Volume 17, Number 3

2. Role of the Dictionary

The first step in the process was the construct ion of a dict ionary that contained both
c o m m o n and unusua l names in their or thographic representat ion and phonet ic equiv-
alent. All sophist icated speech synthesizers today use: a lexical database for dict ionary
lookup to process words that are, for one reason oi" another, exceptions to the rule.
In generic synthesizers, these are typically functors that undergo vowel or stress re-
duction, part ial ly assimilated or unassimilated loanwords that cannot be processed
by language-specific let ter- to-sound rules, abbreviat ions that are bo th generic and
domain-specific, h o m o g r a p h s that need to be dis t inguished phonetically, and selected
proper nouns, such as geographical place names or c o m p a n y names.

In the case of p roper surnames , however , dict ionary lookups, while necessary, are
of l imited use. There are a n u m b e r of reasons for this. First, while the mos t c o m m o n
names wou ld have an ext remely high hit rate (much like functors in a generic sys-
tem), the curve quickly becomes asymptot ic . Church (1986) has shown that while the
mos t c o m m o n 2,000 names can account for 46% of the Kansas City te lephone book, it
wou ld take 40,000 entries to obtain a 93% accuracy rate. Fur thermore , accuracy wou ld
decrease if one considers that geographic area has a p ro found influence on name
grouping, and thus the figures for a large East or West Coast met ropol i tan area wou ld
certainly be significantly lower. It can be easily shown that the functional load of each
name changes wi th the geographical location. 4 The name SCHMIDT, for example , is
not in the list of the mos t frequent 2,000 names, yet it appears in the Social Security
files as the mos t c o m m o n name in Mi lwaukee (Spiegel 1985). Liu and Haas (1988)
conducted a similar exper iment that included 75 mill ion households in the U.S. The
first few thousand names account for 60% of the database, but the curve flattens out
after 50,000 names and it would take 175,000 names in a dict ionary to cover 88.7% of
the populat ion. This would m e a n that even wi th an ext remely large dict ionary (each
entry of which wou ld have to be phoneticized), there wou ld still be an error rate of
over 11%.

Even with these limitations, dict ionary lookups are still quite important . Fre-
quent ly occurring names, like functors, have a high functional load (above). Spiegel
(1985) claims that if the mos t c o m m o n 5,000 names are used in a dict ionary for a
popula t ion of 10 mill ion people, even if let ter- to-sound had an accuracy of only 75%
(which is ext remely low for a high-qual i ty speech synthesizer), the error rate wou ld be
< 2.5%. Most other researchers have also a s sumed a dict ionary lookup as par t of any
procedure to increase the accuracy of name pronunciat ion. Therefore the general f low
of text f rom the g r a p h e m e space to the phonet ic realization mus t proceed first th rough
a dictionary. C o m m o n last names such as SMITH, JOHNSON, WILLIAMS, BROWN, JONES,
MILLER, DAVIS, WILSON, ANDERSON, TAYLOR, etc. and c o m m o n names (both first and
last names) f rom a var ie ty of other languages should be included. The size of this
dict ionary is up to its creator. The dict ionary used in this sof tware contained about
4,000 lexical entries that were p roper names, s There is, however , no reason to exclude

4 Functional load here is used in a slightly different sense than in linguistics. The functional load of a
grapheme is its frequency of occurrence, in relation to other graphemes in the language, weighted
equally, as measured over a sizable corpus of orthographic data.

5 In practice, the name dictionary could be contained within a larger dictionary that would be part of a
genetic text-to-speech system. Moreover, the dictionary should be easily modifiable by an applications
writer. Functions such as add, remove, find, modify, and the like can be used to maximize the effect of the
dictionary, especially if some preliminary analysis has been done on population statistics. Experience
has also shown that a programmer should be able to easily merge new word or name lists with a base
dictionary and quickly examine a variety of statistics including the size in entries, bytes, or blocks as

260

Vitale Algorithm for High Accuracy Name Pronunciation

very large dictionaries (e.g., > 50,000 words) although the choice of a search algorithm
then becomes more important in real-time implementations.

When a dictionary lookup is used and a match occurs, the result is simply a
translation from graphemes to phonemes, and the phoneme string (along with many
other acoustic parameters picked up along the way) is output to the synthesizer. 6 When
there is no match, (i.e., most cases), however, some algorithm is needed to increase
pronunciation accuracy.

3. Identif icat ion Pass

It is assumed that certain textual elements are identified as names and are intentionally
processed as such. This algorithm does not address the identification of proper names
in random text, although there has been some activity in this area in recent years with
the increased attention to voice prosthesis, remote access to electronic mail, and other
applications. In database retrieval applications this is not usually a problem, since
names fields in a database are typically marked by some field identifier. Similarly, the
syntax of electronic mail message headers can often be used to mark a personal name.

The first stage in the identification procedure is the analysis of the sequence of
graphemes that makes up the name, and its indexing as belonging to some language
group. The concept of identification by orthographic trigram is by no means new and
has been discussed in the literature (e.g., Church 1986; Liu and Haas 1988; and others).
In our implementation, the identification is a complex procedure that includes filter
rules for identification or elimination, graphemic (non-trigram) and morphological
analysis, as well as trigram analysis. While this scheme may seem complex, it will run
in real time, and thus the complexity is invisible to the user.

3.1 Filter Rules
It is well known in both linguistics and cryptanalysis that a text string from a lan-
guage Li will have unique sequence characteristics that distinguish Li from all other
languages in the set {Li, Lj,... Ln }. All alphabetic languages (as opposed to syllabaries
or ideographic systems) have a quantifiable functional load of graphemes as well as
phonemes, and this functional load will differ greatly from language to language. We
have therefore created a set of rules that we call filter rules. Filter rules are rules that
may positively identify a name or positively eliminate a name from further consider-
ation. The use of nonoccurrence is not new but is refined to include a more elaborate
filter mechanism for variable length grapheme sequences. When scanning the name to
determine etymology, if the name cannot be positively identified, it is more efficient to
eliminate some groups from consideration, thereby increasing the speed of the search
(below).

There are some unique identification characteristics of grapheme strings from cer-
tain languages. In these cases, a grapheme G may help identify a string as being from
Li. For example, the grapheme E in English is well known as the most common letter,
and has a functional load of 12.4% (Daly 1987). Scrabble and similar games are interest-
ing indicators of this and mark functional load of graphemes by values of individual
letters; the lower the value, the higher the functional load. Naturally, quantitative dif-
ferences occur from language to language. While z has an extremely low functional
load in English, it is one of the most common letters in Polish. As an example of this

well as the average length of each field of an entry.
6 A dictionary entry in currently-used generic text-to-speech algorithms is really nothing more than a

complex context-free letter-to-sound rule.

261

Computational Linguistics Volume 17, Number 3

metric, if we take 1+ occurrences of the letter K in a name over the total number of
unique names in a corpus, in Japanese, the frequency of this letter is 40.1%, in Ger-
man it is only 18.9% and in Italian, the letter does :not occur. Since the distribution
of letters in proper names will differ from that of the general lexicon, statistics on
letter f requency in names should be compiled independent ly but could be used for
determining probabilities. Similarly, the or thographic length of a name, like the length
of a common noun, could, in a more elaborate scheme, be also used as a factor in
determining probabilities. In the dict ionary used in this study, both names and non-
names together had an average length of slightly under 7.5 graphemes. This coincides
with the findings of Daly (1987), in which normal words had an average length of 7.35
graphemes. 7 Nei ther of these were used as factors in determining probabilities in this
implementat ion.

Sequences of graphemes are much more useful in determining the identification
of a language group. Sequences of 2 or more letters including larger morphological el-
ements within a name may be considered characteristic of a language group al though
each of these may also effectively exclude a set of other language groups. For exam-
ple, sequences such as cz , PF, SH, EE (or longer ones) unambiguous ly define certain
language groups. A trivial example of this would be the sequence #MC (where # is
a word-boundary) , which unambiguous ly identifies the word as Irish resulting in a
probabil i ty of 1 for the identification of the corresponding language group.

However , even if a sequence cannot identify a language group unambiguously, the
filter rules often eliminate one or more groups from consideration, thereby drastically
altering the statistical chances of an incorrect guess. As might be expected, the longer
the (legal) sequence in Li, the less likely it is to occur in another language group. In
some languages, either alphabetic ones or those that are transliterated into alphabetic
systems (e.g., Japanese), certain letters do not occur. For example, the letter L does not
occur in Japanese, x does not occur in Polish, J does not occur in Italian, and so on.
The occurrence of any of these graphemes in a name string would then immediate ly
eliminate that language from consideration. Thus, if m language groups have been
eliminated, the probabili ty of some language group Li being the correct e tymology is
now P(Li) = ~_-~. Analysis has shown that the filter rules eliminate an average of 54%
of all possible language groups, s

Filter rules, therefore, consist of (a) identification rules and (b) elimination rules.
Identification rules match a grapheme sequence against an identical sequence in the
name. A match is a positive identification and the filter routines stop. Elimination rules
also match a g rapheme sequence against an identical g rapheme sequence in the name.
A match eliminates that language group from consideration. There are a number of
different ways these rules could be applied. One of the more efficient methods is to
create a hash table of g rapheme strings and search for substrings for identification and
elimination at the same time. Whichever way a compiler for these rules is written, it is
clear that the routines stop after a positive identification occurs. The benefit of using
filter rules prior to the t r igram analysis (below) is one of speed.

One minor problem that had to be examined was the fact that m an y names have
been anglicized from their original form, resulting in varied and disparate pronuncia-

7 The average length of an English word is 3.98 letters when the words are weighted by frequency of
appearance (Daly 1987) clearly due to the shorter length of commonly occurring forms such as function
words. While no similar statistics have been compiled for names, it is doubtful whether the
discrepancy in length between weighted and unweighted would be as large.

8 The ISO-Latin character set (or an equivalent) could also be utilized in situations where proper names
can be written with special symbols (e.g., i~, o, 6 and others), since these orthographic symbols could
be used to eliminate or positively identify language groups.

262

Vitale Algorithm for High Accuracy Name Pronunciation

tions (not to mention some rather strange spellings, including graphemes that do not
exist in the source language). For example, a Polish name such as ALEXANDROWICZ
contains the grapheme x, although x does not occur in Polish (i.e. KS --* X). The ortho-
graphic sequence scI (= [~]) in Italian is occasionally anglicized as SH even through
the sequence StI does not occur in the language. Therefore, the elimination rules have
to be carefully tailored to take such phenomena into consideration. Sequences that
positively identify a language must also be carefully screened for the same reason.
Names like O'SHINSKI are not uncommon. 9 In this case, whether the name is consid-
ered Irish or Polish may not matter in terms of the phonemic output, but there are
cases where it would make enough of a difference to cause intelligibility problems in
the final output.

3.2 Trigram Analysis 1°
The job of the filter is to positively identify a language or to effectively eliminate one or
more groups within the set of possible language groups when positive identification is
not possible. Elimination obviously reduces the complexity of the task of the remaining
analysis of the input name. Assuming that no language group is positively identified
as the language group of origin by the filter, some further analysis is needed. This
further analysis is performed by a trigram analyzer, which receives the input name
string and a vector of uneliminated language groups. The trigram analyzer parses the
string into trigrams. If word boundary symbols are included as part of the string, then
the number of trigrams in the string will always be equal to the number of elements
(graphemes). Thus, the name SMITH ==~ #SMITH# will contain five trigrams: #SM, SMI,
MIT, ITH, a n d TH#.

A trigram table is a four-dimensional array of trigram elements and language
group. This array contains numbers that are probabilities (generated from a large
reference corpus of names labeled as belonging to a particular language group) that
the trigram is a member of that language group. Probabilities are taken only to four
decimal places, although there is no empirical reason for this.

3.2.1 Creation of Trigram Databases. The creation of a trigram database would be an
extensive and time-consuming task if it were to be done manually. Nevertheless, it
was initially necessary to hand-label a large list of names with language group tags
associated with each name. Fortunately, this was expedited with country-specific per-
sonnel lists from a large company. 11 Once these lists were completed, computational
analysis was performed on the list, decomposing each name into grapheme sequences
of varying lengths, including trigrams, and searching for recurring morphological ele-
ments as well. This analysis, in turn, created a set of tables (language-specific n-grams,
trigrams, etc.), which was then used for further analysis. The language identifier itself
can be utilized as a tool to pre-filter a new database in order to refine the probability
table. This is illustrated in Figure 1. The name, language group tag, and statistics from
the language identifier are received as input. This analysis block takes this information
and outputs the name and language group tag to a master language file and produces
rules to a filter rule-set. In this way, the database of the system is expanded as new

9 Murray Spiegel (personal communication) has pointed out that there are 79 households in the U.S. that
have this name.

10 For our purposes here, trigram will be used synonymously with the term trigraph. Trigram analysis is
by no means new and has been discussed often in the literature (e.g., Church 1986).

11 Although these had to be carefully verified because of the increasing numbers of expatriates living and
working in any given country.

263

Computational Linguistics Volume 17, Number 3

Figure 1

I !

name I Language Id &
J Phonetic
- Realization

rules

name/Lang, tag/phonemics

'[' trigram
probabilities

Compute Probabilities

name Lang. tag
stats Analysis

Master
Language File

Elimination & [
Identification
Rules [

name
Lang. ta!

input names are processed so that new names can be more accurately recognized.
The filter rule store provides the filter rules to the filter module for identification or
elimination.

3.2.2 Trigram Array and Statistical Analysis. The final trigram table itself then has
four dimensions: one for each grapheme of the trigram and one for the language group.
The trigram probabilities are sent to the language group blocks, phonetic realization
block, and to the trigram analysis, which produces a vector of probabilities that the
grapheme string belongs to the various language groups.

The master file contains all grapheme strings and their language group tag. The
trigram probabilities are arranged in a data structure designed for ease of searching a
given input trigram. For example, if we use an n-deep three-dimensional matrix where
n is the number of language groups, then trigram probabilities can be computed from
the master file using the following algorithm:

compute total number of occurrences of each trigram for

all language groups L (l-n)

for all grapheme strings S in L

for all trigrams T in S

if (count [T] [L] = O)

uniq [L] + = 1

count [T] [L] + = i

for all possible trigrams T in master

sum= 0

for all language groups L

sum + = count [T] [L] /uniq [L]

for all language groups L

if sum > 0, prob[T] [L]=count [T] [L] /uniq [L] /sum

else prob[T] [L]=O.O;

264

Vitale Algorithm for High Accuracy Name Pronunciation

Table 1
Sample matrix of probabilities.

Trigram Li L i ... Ln
#VI .0679 . 4 6 5 9 2093
VIT .0263 . 4 1 4 5 0000
ITA .0490 . 7 8 5 1 0564
TAL .1013 . 4 4 2 2 2384
ALE .0867 . 2 6 0 2 2892
LE# .1884 . 3 1 8 1 0688
AV. .0866 . 4 4 7 7 1437

In any case, the result of the trigram analysis is a vector of probabilities for a given
trigraph over the number of language groups. Table 1 shows an example of what the
probability matrix would look like for the name string VITALE.

In the matrix shown in Table 1, L is a language group, and n is the number of
language groups not eliminated by the filter rules. The probability that the grapheme
string #VITALE# belongs to a particular language group is actually produced as a vector
of probabilities from the total probability line. In this case, the trigram #vI has a
probability of .0679 of being from language group Li .4659 of being from the language
group Lj and only .2093 of being from the language group Ln. The average of the
probability table entries identifies Lj as being the most probable language group. In
this case, Lj was Italian.

The probability of a trigram being a member of a particular language group can
be derived by a number of different methods. For example, one could use a standard
Bayesian formula that would derive the probability of a language group, given a
trigraph T, as P(LilT) where

P(TILi)P(Li)
P(Li)IT) = Y~,k P(TILk)P(Lk)

Furthermore, where x is the number of times the token T occurred in the language
group Li and y is the number of uniquely occurring tokens in the language group Li,
always, where n is the number of language groups (nonoverlapping). Therefore,

P(Li]T) -
P(TILi) P(TfLi)

~k=l P(~ ~Lk) Ek=l P(TILk)

While this is not the most mathematically optimal or elegant method (since averag-
ing tends to favor a noneven distribution of trigram probabilities) and is certainly a
simplistic method of performing such calculations, it works reasonably well and is
computationally inexpensive. It should be noted, however, that multiplying proba-
bilities, calculating and adding log probabilities, or even averaging the two highest
probabilities, may all work, but each of these approaches assumes that trigrams are
independent of one another. It is beyond the scope of this paper to discuss the elegance
of one mathematical solution over another but it would be interesting to examine other
options, such as higher order conditional probabilities, e.g.,

P(LiIT1, T2, T3) = P(TIlT2, T3, Li)P(T21T3, Li)P(T3 Li)P(Li)
P(T1, T2, T3)

although these would clearly be computationally quite expensive.

265

Computational Linguistics Volume 17, Number 3

Table 2
Name pronunciation statistics.

Name Identified Language Highest Probability
Partington English .4527
Bischeltsrieder German 1.000
Villalobos Spanish .4377
Kuchenreuther German .6973
O'Banion Irish 1.000
Zecchitella Italian 1.000
Pederson English .3258
Hashiguchi Japanese 1.000
Machiorlatti Italian 1.000
Andruszkiewicz Polish 1.000
Fujishima Japanese 1.000
Macutkiewicz Polish .6153
Fauquembergue French .4619
Zwischenberger German 1.000
Youngblood English .8685
Laracuente Italian .2675
Laframboise French .3778
McAllister Irish 1.000
Abbruzzese Italian .5113
Rodriguez Spanish .6262
Yanagisako Japanese .7074
Migneault French 1.000
Znamierowski Polish 1.000
Shaughnessy Irish .6239

Table 2 is an example of the ou tpu t of the language group identification module.
The table consists of twenty-four proper names randomly but equally selected from
the eight separate language groups. 12 Twenty-three out of twenty-four were correctly
identified. The only error is on the name LARACUENTE, which is the lowest score and
is identified as Italian instead of Spanish.

Note also that .2675 is the lowest score in the list. In practice, this would not
have presented a problem, since the letter-to-sound rules for language groups such as
Italian and Spanish are very similar (e.g., the stress pat tern would be penult imate, etc.)
and thus the phonetic realization would be almost identical. When pronuncia t ion is
included in the evaluation, the scores would be slightly higher in certain cases, since
an incorrect identification does not always result in an incorrect pronunciat ion.

3.3 Thresholding
Since the output of the e tymology analyzer is a vector of probabilities and only the
highest score is chosen (i.e., a best guess), a number of different situations can arise
regarding the total spread among the numbers, the difference in spread between any
two numbers, or the spread between some number and 0 (i.e. an absolute comparison).
For this reason, and to make use of this information, thresholding has been applied.

Essentially, thresholding allows for analysis to be made over the vector of proba-
bilities such that statistical information can be used to help determine the confidence
level for the language group with the highest score (i.e., the best guess). Two types of
threshold criteria have been applied: absolute and relative.

12 Randomly selected from names over 7 graphemes in length to increase complexity somewhat.

266

Vitale Algorithm for High Accuracy Name Pronunciation

3.3.1 Absolute Thresholding. Absolute thresholding can apply when the highest prob-
ability determined by the trigram analyzer is less than a predetermined threshold that
is variable or can be set programmatically. This would mean that the trigram analyzer
could not determine, from among the language groups, a single language group with
a specified degree of confidence. For example, if empirical evidence (i.e., over a given
corpus) suggests that P < n (where P is the highest probability and n is some number
predetermined to be too low for an adequate confidence level), then some other action
should be taken, n should be set by analysis of data. While this "other action" is vari-
able, one approach would be to choose a default language that may or may not be the
same as the language group identified by the highest probability. Evidence suggests
that typically it is not.

As an example, if the absolute threshold were set at P < .1000 and the highest
score were .0882 for some language Li, then the default language is chosen whether
or not this is the same as Li. There may be circumstances where the accuracy might be
able to be tuned by adjusting the absolute threshold. 13 However, this parameter should
be construed more as a partial filter which, if set to some reasonable value, will filter
out only scores showing a very low confidence level, and thus it would rarely affect
the result.

3.3.2 Relative Thresholding. Another type of thresholding scheme that was imple-
mented is a relative thresholding. In this case, A spans a number of probabilities
provided that the distance between the highest score and the default language is < n.
Therefore, if Pj was the probability assigned to the default language group, no matter
where this occurred relative to the best guess Pi, if A(Pi, Pj) < n, the default language
is chosen. (Typically, n is a smaller number than it was for absolute thresholding.) This
is, of course, empirical and should be judged according to an analysis of the database
used. It is our impression that if the default language group falls within the A, the
algorithm should force a choice of the default language.

It should be noted, however, that there are other ways in which relative threshold-
ing could have been implemented, e.g., when the distance in probabilities between the
language group identified as having the highest probability and that identified as hav-
ing the second highest probability is < n, where again n is some number determined
by analysis of the data. Thus where Pi is the highest probability and Pj the second
highest, then, if A(Pi, Pj), < n, the default language is chosen. The problem with this
approach is that it would result in two close scores (i.e. between similar languages),
forcing a default to a third and possibly structurally dissimilar language. For example,
a name for which the scores for Italian or Spanish fell within the A might then be
forced into the default language, say English. This is clearly not optimal for a generic
use of the algorithm, although it might be useful under certain application-specific
circumstances.

3.4 Default Language
To solve practical application problems of name pronunciation, it was necessary to
define a default language group. The concept of using a default language proves
to be useful for several reasons: (1) it is consistent with the philosophy that where

13 Such a priori probabilities for thresholding can either be adjusted once early in the application or may
even be biased by a running average based on the population that used the application within some
particular time frame.

267

Computational Linguistics Volume 17, Number 3

mistakes are made, they will reflect human errors in pronunciation; 14 (2) the software
underlying this algorithm is designed to be used in speech communities anywhere in
the world; and (3) the default language could be adjusted for communities in the U.S.
or elsewhere where one language group predominates.

If Pi or A(Pi~Pj) falls within some range, it signals, for whatever reason, a low
confidence level. Humans, when faced with a decision in these circumstances, often
opt for the "familiar," in this case, some predefined default pronunciation. This would
almost always be the language of the speech community in which the application is
running. In other words, if the confidence level is measured as low via some thresh-
olding mechanism, then a conservative approach would be to default to some "safe"
language group, even if this might result in an error in the correct pronunciation (see
fn. 14).

Secondly, whether an application is running in Berlin, Paris, Dublin, or Milan, the
default language setting could be changed to reflect the predominant language group.
In Germany, for example, in cases where threshold confidence level scores are too low
for the language group identifier, the default (presumably German) would reflect a
reasonable guess.

The default language parameter could also be used in other cases where the pre-
dominant linguistic base of an area is known to be different from that of the wider
speech community. In telecommunications applications, for example, telephone num-
ber prefixes are unambiguous indicators of geographical areas, some of which are
relatively homogeneous in ethnic makeup. In cases like these, an application might
make use of an automatic default language change for calls pertaining to these areas.
Thus, in a Hispanic neighborhood, the default would be to Spanish. This could also
be used for homographic first and last names in an elaboration of this system such
that ambiguities like JULIO, JESUS, and the like could be resolved. The default lan-
guage setting is certainly the most important of any of the settable parameters, since
it determines the base language that is used in all cases of low confidence.

4. Letter-to-Sound Rules

Much of the discussion of this paper has been devoted to an explanation of the identifi-
cation of the etymology of the name. While this is certainly the more difficult problem
to solve, there is a great deal more that needs to be done to arrive at some reasonable
approximation of a phonetic realization. The identifier merely takes an orthographic
sequence and adds a tag that marks it as a member of a particular language group.
The output remains a graphemic sequence. It is the tag, however, that forces the name
through one of a special set of letter-to-sound rules optimized for the languages of
that particular group. Therefore, the sole difference between a name run through the
identifier and a word from generic English text is that the name is tagged as a special
case and undergoes different letter-to-sound rules.

4.1 Optimization of Rule Sets
The letter-to-sound module is a knowledge-rich complex subsystem that takes a graph-
eme input and converts it into its appropriate phonemic equivalent. In normal letter-
to-sound systems that apply to generic text (see Klatt 1987 p. 767ff), an orthographic se-
quence is, according to some rule set, converted into symbols that typically correspond

14 As Spiegel (1985) has pointed out, "the guiding principal behind all work should be that the synthesis
rules should make errors that are similar to human mistakes."

268

Vitale Algorithm for High Accuracy Name Pronunciation

1
Dictionary]

,L
Elimination &
Identification
Rules

Tagnm
Analysis

C

Let~er-to-soun
Language
Group 1

Letter-to-sound
Language
Group 2

~ p
~ p n

Figure 2

to segmental phonemes and stress patterns for that form. In this case, however, the
task becomes much more complex because of the many language groups involved
(Section 1.1).

When the tag (above) is attached to some name thereby identifying it as belonging
to some language group Li, the orthographic sequence is funneled through a special
set of letter-to-sound rules for Li, and similarly for Lj, . . . , Ln. Figure 2 is a block di-
agram of the entire flow of the procedure with the letter-to-sound modules (slightly
oversimplified) occurring after identification has been completed.

While the concept of separate rule sets is a valid one, in practice this would be
an unnecessarily complex system since it is obvious that there would be a great deal
of redundancy and overlapping of rules from one rule set to the other. For example,
the simple rule (K ~ / k / might be valid for many of the language groups. This
would fail to capture the generalization that this rule can be shared by a subset of the
total number of language groups, would therefore waste computing resources, and
consequently is architecturally suboptimal.

As a result of this need for rule-sharing, a slightly different strategy can be devised.
Using a complex rule-set, a single rule can contain from 1 to n language identifica-
tion tags, n again being equal to the total number of language groups. In practice,
there are rarely more than four tags on a single rule. However, this does reduce the
computational complexity and redundancy of having separate rule sets.

269

Computational Linguistics Volume 17, Number 3

5. Some Further Issues

5.1 First Names
Historically, su rnames in m a n y par ts of the wor ld are s imply extensions of the first
n a m e to dist inguish different owners of the same first name. As a consequence of this,
first names have a higher f requency of occurrence than su rnames since the list of first
names is a smaller set for mos t languages. ~s Therefore, m a n y of these are appropr ia te ly
included in the lexicon or dictionary. In addit ion, the same first n a m e m a y span a wide
var ie ty of languages. C o m m o n European first names are found in disparate regions
of the world , due to extralinguistic factors such as the g e o g r a p h y of fo rmer colonial
powers . Put another way, more people in ang lophone countries have the first n a m e
JOHN than have the last name SMITH. 16 For this reason, the mos t c o m m o n first names
in each language g roup are included in the dictionary. However , in the event that
there is no dict ionary match on first names , they should still be processed, like the
surname, by the language identification m odu le (below).

Processing the first name can be done independen t ly or, in an elaborat ion of the
algori thm, m a y be done in conjunction with the surname. For example , if the name
YUKIO KOBAYASHI were processed and one name was found by a dict ionary lookup,
that identification could assist in the identification of the other. If the probabi l i ty of
both names were low but the best guess showed the same language g roup identified
for both, this could also be used as a factor in the de te rmina t ion of the correct ety-
mology. In this scheme, caution mus t be used especially wi th female names in m a n y
countries wi th a he te rogeneous ethnic m a k e u p (e.g. the Uni ted States) since a su rname
(taken f rom a husband) and female first n a m e will often be f rom different language
groups. This, of course, can be overcome by mark ing such names in the lexicon as
female. However , it was found that such addit ional loading is not necessary since
the e tymology of names can be accurately ascertained wi thout utilizing informat ion
outside of the name itself.

5.2 Hyphenated Surnames
H y p h e n a t e d names would be processed as if they were two separate names. Again,
this is because of the potent ial confusion that could occur where par t of the hyphena ted
n a m e is a mar r ied name and the other a bir th name. Thus, su rnames such as ARRO¥O-
PETERSEN, MAHONEY-RIZZO, KILBURY-MEISNER, and the like should be treated as if the
h y p h e n were a language separator. Fur thermore , in such combinat ions, the sequence
is often unpredictable. Some cultures adop t the convent ion (for women) of bir th name-
marr ied name (e.g., English, Polish), while others have the opposi te order of mar r ied
name-b i r th name (e.g., German) . 17

5.3 Homographs
A classic p rob lem that faces let ter- to-sound algor i thms is the existence of homographs .
These are words that are spelled the same but have two different pronunciat ions, usu-
ally signaling a difference in fo rm class. English contains, in its general vocabulary,

15 Certain languages, however, have a more open-ended system than those of the familiar Indo-European
languages. In Chinese languages, for example, individuals have a wide variety of names which derive
from the general lexicon. A female name might be WANG MEI HWA where WANG is the surname,
MEI "beautiful' and HWA 'flower'. Her sister might be WANG MEI YEH "beautiful leaves.'

16 Liu and Haas (1988) point out that the name SMITH occurs 676,080 times for a database of 75 million
households in the U.S. representing 1% of the total.

17 In certain Slavic languages, names function as adjectives and are marked for gender. In Polish, for
example, the common name KOWALSKA is the female counterpart of the male name KOWALSKI.

270

Vitale Algorithm for High Accuracy Name Pronunciation

over 300 of these, some of which are high frequency forms. Examples of this are DE-
LIBERATE, ARITHMETIC, REFUSEr PRODUCE, COORDINATE, SOW, BASS, and many others.
Modern-day text-to-speech systems do not yet process these automatically. An even
more difficult problem faces a proper name pronunciation algorithm. Whereas one
could, in principle, devise a method for generic text using form class or part of speech
to distinguish pairs such as those just mentioned, it is not always possible to predict
which variant will occur in a proper name. TM

5.4 Free Variation and Cross-Language Variation
5.4.1 Homographic Variation and Cross-Language Variation. Different pronuncia-
tions may occur in either free variation or in cross-language variation, with the two
occasionally overlapping. Free variation occurs when the same last name occurs with
two or more different pronunciations but these are from the same language group.
One person with the name BERNSTEIN may pronounce it [br'nstaYn], whereas a second
person may pronounce it [br.'nstl~n]. This is true free variation where typically one pro-
nunciation represents something closer to the source language. In a slightly different
type of variation, one name may indeed be from a different language group or else the
alternation reflects a radical anglicization of the name, e.g., PACE may be pronounced
either [pds] or [pd~i]. Stress patterns also vary greatly depending upon the degree of
assimilation into English. For example, Slavic names show a great deal of variation
from penultimate stress (which is the canonical stress pattern) to antepenultimate (the
assimilated pattern). E.g., ANDRUSZKIEWICZ could be [andru~kY6vi~] or [andrt~kYevi~].
Often, cues such as orthography may give a hint as to the degree of assimilation. If
the native Slavic phoneme Iv] is written orthographically as W, for example, it has a
higher chance of retaining the source (i.e. penultimate) stress pattern than if the same
phoneme were written orthographically as V.

Cross-language variation causes greater problems in this regard, since names are
listed in the dictionary in only one way. However, this algorithm is not language-
specific but can be used anywhere in the world. While the entry could be modified,
no procedure that would allow for different lexical entries for the same spelling has
been implemented. In any case, names like ROBERT could be [rdbrt] or [rob&] depend-
ing upon whether the name is English or French. Similarly, names like JULIO, PETER,
WALTER, GILES, BERNARD, GUY, RICHARD, JAN, CLAUDE, and hundreds of others have
different segmental forms or stress patterns depending upon where they originate
from and whether the name has been assimilated into English. One way in which this
could be handled is by marking these in a dictionary and then using the 'loading"
strategy of last name etymology as discussed above (Section 5.1). Another method is
simply to adopt one variant as the default with the others also listed as homographs
and marked for language type with the corresponding phonetic equivalents. Since the
default language is a settable parameter (Section 3.4), multiple phonetic entries could,
in principle, be used.

5.5 Loanword Assimilation and Segmental Modification
It is obvious that the segmental phonetic output of letter-to-sound rules is restricted
to the inventory of allophones of the synthesizer. That is, an English-based speech
synthesizer should not be expected to make a French uvular [R] or a German velar
fricative. Moreover, it would be counterproductive to even attempt to approximate

18 Distinguishing non-name homographs automatically could, in principle, be done with a front-end
parser, which would provide the syntactic information necessary to choose one pronunciation or the
other.

271

Computational Linguistics Volume 17, Number 3

these sounds, since the listener would not be expecting this and intelligibility of the
name would certainly decrease. For this same reason, even the segmental phonemes
of the source language can distract the listener's attention and reduce intelligibility.
For example, while the name CARBONE must have penultimate stress to be considered
correct, it would be inappropriate to phonemicize the final orthographic vowel as a mid
front / e / , as would be the case in the target language (i.e., Italian). This is because
the assimilation of this and other similar names into English has raised the vowel
phonemically t o / i / (and diphthongized it phonetically to [iy]. Thus, while CARBONE
would b e / k a r b 6 n e / i n Italian, it would be / k a r b 6 n i / i n anglophone countries such
as the United States.

Furthermore, the different degrees of assimilation can be formally described in
an elaboration of the algorithm presented here. For example, assuming allophones as
produced by a speech synthesizer are optimized to American English, one could apply
a number of rules to the name CARBONE as follows:

1. Orthography --* (CARBONE)

2. Phonemicization ~ /karb6ne/

3. Assimilation Rule 1 --+ /karb6ni/

4. Assimilation Rule 2 (optional) ~ /karb6n/

Thus, we can place different degrees of assimilation on the target language (i.e.
English) using formal (ordered) rules. This would allow a generic synthesizer's letter
to sound (and allophonic) rules the ability to change degree of assimilation in much
the same way that we will eventually be able to specify shifts in style and register
within text-to-speech systems.

6. Testing and Evaluation

6.1 Performance
The performance goal of the software developed around this algorithm was real-time
processing. We benchmarked the performance on a Digital Equipment Corporation
Vax 8800 running VMS V5.1. A total of 34,337 names were processed in 25 minutes
and 27 seconds, or equivalently 22.65 names per second. After some code optimization
and streamlining of the filter rules, we later ran similar tests using the same databases
on an 33 MHz PC running MS-DOS V5.0. While these tests were run on the iden-
tification portion only, we were able to process several thousand names per second.
Large commercial applications will have similar compute power, and thus real-time
processing is not a problem. It should be noted that many applications do not require
real-time processing since the processed name and address can be simply stored in a
separate field in the database. The routines can thus be used to create a database of
phonemicized names by preprocessing the name, storing the phonemic equivalent of
the name in some field, and sending that field to the synthesizer at some later time.

6.2 Pronunciation Accuracy
A number of different tests were conducted for accuracy of pronunciation. Accuracy
here was measured in terms of the level of segmental and suprasegmental (i.e., stress
placement) output determined by a linguist to be reasonable behavior. A more elabo-
rate (and possibly more practical) criterion for accuracy might include the transcrip-
tion (by a linguist) of a number of pronunciation tokens provided by nonlinguists.

272

Vitale Algorithm for High Accuracy Name Pronunciation

Table 3
Names vs. generic lexical items.

Lexical type % Error before % Error after Dictionary
All function words
2000 common surnames
Complex poly test
828 Single L-group surnames

0 0 +
31.9 0 +

5.1 5.1 -
92 6.3 -

Our reasoning was that the output should minimally model human behavior. How-
ever, because the algorithm contains more linguistic information than is known by the
average person, the software has the potential to be more accurate than a person (i.e.,
make fewer gross pronunciat ion errors). Testing of human vs. computer pronunciat ion
of names from a test database is being conducted independent ly at the present time
within the artificial intelligence communi ty (Golding and Rosenbloom 1991) as well
as within the telephone industry.

One of the problems we faced is a definition of what constitutes correctness. Very
often, more than one pronunciat ion is acceptable and m an y readers of this paper
have had their own names pronounced differently by other individuals. Even profes-
sional linguists faced with names such as MOUDRY, FUCHS, SOUTO, D'ANGELO, BADKE,
DUJMUCH, SMYTHE, and others cannot say definitively whether one pronunciat ion is
correct or not (Hochberg et al. 1990). For the purposes of our evaluation, in cases
like these, a pronunciat ion was accepted if linguists felt that the segmental phonemic
output and stress placement were reasonable. Again, another and possibly more re-
alistic approach might be to phonemicize a set of names from the pronunciat ion of
a group of individuals who are not owners of the name. These pronunciat ions could
then be phonemicized by a linguist and correctness could then be evaluated by a
simple matching of the majority pronunciation. In any case, both [fyuks] and [fu6]
were considered correct for FUCHS but [ffi~iz] and [f^ks] were not; [smaYO] and [smIO]
for SMYTHE but not [smIOiI; [diY~njelo] and [degnjelo] for D'ANGELO but not [daenj61o]
and so on. Similarly, because of homographic variation (Section 5.4.1) and the at tempt
to make errors replicate what humans might say, we would accept certain pronunci-
ations for names that we knew came from two very different sources as long as one
were reasonable. For example, [p6s] would be an acceptable pronunciat ion for PACE
even if the first name were Antonio. In fact, often one cannot say definitively that
one pronunciat ion or the other is the one used wi thout asking the person who owns
the name. Again, with the loading strategy factoring in first name (above), one might
increase the probabili ty of a reasonable pronunciation.

Testing was done with several databases that were not used to compile the tri-
grams. Some degradat ion was expected when using a new (test) database. However ,
as shown in Figure 1, after testing, a new database could be merged with the reference
database, and new and more complete tr igram statistics calculated.

Table 3 shows the error rate with and without a dict ionary over different subsets
of a corpus. The dictionary covered all functors and the 2000 most common surnames.
The complex polysyllabic test (see fn. 3) is simply a benchmark for the generic letter
to sound rules without use of a dictionary. The last line of the table suggests the
improvement possible in name pronunciat ion (in this case, Japanese names were used).
Note the degradat ion in performance (without the name pronunciat ion software) from
common names to Japanese names.

273

Computational Linguistics Volume 17, Number 3

Table 4
Database tests - - no dictionary.

Database % Error no ident. % Error with ident.
Reference - set 1 18% 8%
Reference - set 2 24% 8%
Test - hardcopy 32% 15%
Test - softcopy 22% 12%

Table 5
First, last, and street names.

Word type No dictionary Dictionary
Last names 12% 7%
Street names 24% 7%
First names 23% 1%

In a second test, we had a subject r a n d o m l y choose two sets of 100 names f rom
our reference database and two fur ther sets of 100 names f rom each of two te lephone
books. One te lephone book was ha rdcopy f rom a large region in the East and the
second was an on-line directory f rom a large region in the mid-West. In the case of the
ha rdcopy listings, the data were pu t on line to be analyzed. The sof tcopy was edited to
r emove u n w a n t e d mate r iaU 9 We included the sof tcopy database to min imize any bias,
conscious or otherwise, that the subject m a y have had and these names were chosen
wi th a s imple p r o g r a m that pul led out the required n u m b e r of names f rom the name
field. In spite of the fact that t r igrams tend to be repeated over a database (above), we
nevertheless expected some degrada t ion going to new test lists, as the data in Table 4
illustrate. The error rate was calculated with and wi thout the identification a lgor i thm
on four databases of 100 names each using no dictionary lookup.

Because of the high functional load of dict ionary entries (see Section 2), scores were
expected to be considerably higher w h e n the dict ionary lookup modu le was included.
We tested this hypothes is and found that w h e n the dict ionary was included in the
sof tcopy test-database analysis (above), the error rate was reduced f rom 12% to 7%.
Other tests also indicated that the use of a dict ionary cuts the error rate approx imate ly
in half.

Due to the fact that m a n y applicat ions wri t ten a round this software will require the
accurate pronuncia t ions of first name and street name as well as last name, we decided
to examine the accuracy for each of these categories as well. The anticipat ion was that
the accuracy rate for first names (using a dictionary) wou ld be slightly higher than that
of last names and that the accuracy rate for street names wou ld be slightly lower. This is
because of the higher f requency of occurrence of first names (above) as well as the fact
that the pronuncia t ion of street names tends to be ext remely variable and, like place
names, has been observed to va ry be tween local and non-local popula t ion groups.
Table 5 indicates the error rates of the first n a m e and street n a m e tests compa red wi th
the last name tests ment ioned above, run over the test da tabase wi th and wi thout a
dictionary.

19 Telephone listings typically contain a variety of information including, inter alia, the telephone number
and street number, demarcation of upper case (e.g., MC*ADOO) special symbols for unlisted numbers
and so on.

274

Vitale Algorithm for High Accuracy Name Pronunciation

Note that both street names and first names have much lower accuracy than last
names wi thout the use of a dictionary. First names, like functors and irregular verb
forms, exhibit unusual behavior in terms of the canonical segmental phonology of the
language, e.g., THOMAS, where the first segment is / t / rather than / (9 / , MICHAEL,
where orthographic CH, is / k / and not /~ / , and so on. In the case of street names,
m any are the same as place names (OTTAWA BLVD), first names (JOYCE ST.), or last
names (EISENHOWER AVE). In any event, note that the use of the dict ionary with these
name fields is crucial to the success of the algorithm, much more so than in the
case of surnames. In fact, the non-Anglo-Saxon surnames (LUELLA, LEONARDO, etc.)
are handled quite adequately wi thout use of a dict ionary lookup. In the case of first
names, the error rate is extremely low since the vast majority of these would be found
in the dictionary.

Naturally, the final and most crucial test of accuracy is the overall intelligibility of
the name, that is, whether an individual on the receiving end of a te lephone line (with
its reduced bandwidth) can hear, repeat, and correctly transcribe (in normal orthogra-
phy) a person's name and address. These tests and others remain for future research.
We set out s imply to a t tempt to improve pronunciat ion accuracy of proper names by
creating a more intelligent front-end processor and a more complex letter-to-sound rule
set that would take into account the variability of the text to be processed. Tests indicate
that an algorithm can be successfully implemented to significantly increase accuracy
of name pronunciation. This helps make possible applications in which proper names
are ou tput intelligibly using a speech synthesizer, as well as text-processing functions
such as the construction of a name dictionary for automatic speech recognition. The
algorithm has, in fact, been implemented for speech synthesis and is current ly being
used in a commercially available product within the telecommunications industry.

Acknowledgments
I would like to thank Patrick Gili, Dave
Conroy, Bob Curtis, and Tom Levergood of
Digital Equipment Corporation for their
many ideas and their programming
expertise, which allowed for the
development of tools that helped determine
the initial feasibility of the algorithm and
later helped improve accuracy of the
identification pass; and Murray Spiegel of
Bell Communications Research for
numerous discussions and a profitable
exchange of ideas. I also thank Janine Haley
of CONTEL and Bob Weide of Carnegie
Mellon University who shared databases
which allowed me to test and refine the
identification portion of the algorithm.

References
Church, K. W. (1986). "Stress assignment in

letter to sound rules for speech
synthesis." In Proceedings, IEEE
International Conference on Acoustics Speech
and Signal Processing 4, pp. 2423-2426.

Cole, R. A.; Inouye, J. W. T,; Muthasamy,
Y. K.; and Gopalakrishnan, M. (1989).
"Language identification with neural
networks: A feasibility study." In

Proceedings, IEEE Pacific Rim Conference on
Communications, Computers and Signal
Processing.

Daly, N. A. (1987). Recognition of Words from
Their Spellings: Integration of Multiple
Knowledge Sources. M.Sc. Thesis,
Massachusetts Institute of Technology.

Divay, Michel (1990). "A written text
processing expert system for text to
phoneme conversion." In Proceedings,
International Conference on Spoken Language
Processing (ICSLP). Kobe, Japan.
pp. 853-856.

Divay, Michel (1984). "De l'6crit vers l'oral
ou contribution a l'6tude des traiternents
des textes 6crits en vue de leur
prononciation sur synth6tiseur de parole."
Thbse d'Etat, Universit6 de Rennes.

Golding, A. R.; and Rosenbloom, P. S.
(1991). "A comparison of anapron with
seven other name pronunciation
systems." Knowledge Systems Laboratory
Report No. KSL 91-26. Stanford
University.

Golding, A. R.; and Rosenbloom, E S.
(1989). "Combining analytical and
similarity-based CBR." In Proceedings, 2nd
Case-Based Reasoning Workshop. Pensacola,
FL.

275

Computational Linguistics Volume 17, Number 3

Hochberg, J.; Mniszewski, S. M.; Calleja, %;
and Papcun, G. J. (1990). "What's in a
Name?: Last Names as a Computational
Problem." Unpublished paper, Los
Alamos National Laboratory, Los Alamos,
NM.

Hunnicutt, S. (1976). "Phonological rules for
a text-to-speech system." American Journal
of Computational Linguistics Microfiche 57.

Karhan, C.; Hardzinski, M.; Holinka, V.; and
Viets, M. (1986). "Text-to-speech synthesis
for pronouncing names and addresses in
a telecommunications service: designing
the user interface." In Proceedings, Voice
I/0 Systems Applications Conference "85.
pp. 51-57.

Klatt, D. H. (1987). "Review of
text-to-speech conversion for English."
Journal of the Acoustical Society of America
82/3. pp. 737-793.

Liu, F. C.; and Haas, L. J. (1988). "Synthetic
speech technology for enhancement of
voice-store-and-forward systems." In
Proceedings, American Voice Input/Output
Society.

Macchi, M.; and Spiegel, M. (1990). "Using
a demisyllable inventory to synthesize
names." In Proceedings, Speech Tech '90.
pp. 208-212.

Smith, E. C. (1969). American Surnames.
Rednor, PA: Chilton.

Spiegel, M. (1990). "Speech synthesis for
network applications." In Proceedings,
Speech Tech '90. pp. 347-355.

Spiegel, M. (1985). "Pronouncing surnames
automatically." In Proceedings, American
Voice Input~Output Society. pp. 109-132.

Spiegel, M.; and Macchi, M. (1990).
"Synthesis of names by a
demisyllable-based speech synthesizer."
Journal of the American Voice Input/Output
Society 7, pp. 1-10.

Venezky, R. L. (1970). The Structure of
English Orthography. The Hague: Mouton.

Vitale, A. J. (1989a). "Application-driven
technology: automated customer name
and address." In Proceedings, American
Voice Input/Output Society. Newport
Beach, CA.

Vitale, A. J. (1989b). "The automation of
name and address output as a utility for
the telecommunications industry." In
Proceedings, National Communications
Forum 43(2), pp. 1109-1113.

Vitale, A. J. (1987). "Engineering speech
systems to meet market needs." In
Proceedings, Speech Tech '87. pp. 149-151.

276

