
AN INTERPRETATION OF NEGATION

IN FEATURE STRUCTURE DESCRIPTIONS

Anuj Dawar

Department of Computer
and Information Science

University of Pennsylvania
Philadelphia, PA 19104

K. Vijay-Shanker

Department of Computer
and Information Science
University of Delaware

Newark, DE 19716

Feature structures are informational elements that have been used in several linguistic theories and in
computational systems for natural language processing. A logical calculus has been developed and used as a
description language for feature structures. In the present work, a framework in three-valued logic is
suggested for defining the semantics of a feature structure description language, allowing for a more
complete set of logical operators. In particular, an interpretation of the negation and implication operators is
examined within this framework. We extend this approach to interpret descriptions that involve existence (or
nonexistence) of values for attributes. A definition of augmented feature structures is proposed, and one
particular interpretation of the description language with a negation operator is described. A sound and
complete proof system is presented for the logic thus obtained and its computational aspects studied.

1 INTRODUCTION

A number of linguistic theories and computational ap-
proaches to parsing natural language have employed the
notion of associating informational elements, consisting of
features and their values, with phrases. Such elements,
called feature structures, have been used in linguistic
theories, such as Generalized Phrase Structure Grammar
(GPSG; Gadzar et al. 1985) and Lexical Functional Gram-
mar (Kaplan and Bresnan 1983), and in computational
formalisms, such as Functional Unification Grammar (Kay
1979) and PATR-II (Shieber 1984).

Rounds and Kasper introduced a logical formalism to
describe feature structures with disjunctive specification
(Kasper 1987; Kasper and Rounds 1986; Rounds and
Kasper 1986). The language is a form of modal proposi-
tional logic. To define the semantics of this language,
feature structures are formally defined as acyclic finite
automata. The detailed definition is given in Section 2. A
fundamental property of the semantics is that it is mono-
tonic in the sense that the set of automata satisfying a given
formula is upward-closed under the operation of subsump-
tion. This is important, because we consider a formula to be

only a partial description of a feature structure. This
property is precisely formulated in Section 2.

Several researchers have expressed a need for extending
this logic to include the operators of negation and implica-
tion. These two are related in that, in most logical systems,
it is possible to use one to define the other (in the presence
of a disjunction operator). In this paper, we shall concen-
trate on the problem of extending the logic to include
negation, while also showing that it yields a satisfactory
interpretation of implication.

Karttunen (1984), for instance, provides examples of
feature structures in which a negation operator might be
useful. For instance, the most natural way to represent the
number and person attributes of a verb such as sleep would
be to say that it is not third person singular, rather than
expressing it as a disjunction of the other possibilities. We
express this agreement constraint by the following formula:

agreement : -1 (person : th i rd A number : s ingular) (1)

Pereira (1987) provides the following example formula
that expresses the semantic constraint that the subject and
object of a clause cannot be coreferential unless the object
is a reflexive pronoun:

Computational Linguistics Volume 16, Number 1, March 1990 11

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

obj : type : reflexive k / - 7 (subj : ref ~ obj : ref) (2)

This constraint can, in fact, be represented just as natural ly
as the following implication:

(subj : ref ~ obj : ref) ~ obj : type : ref lexive (3)

Simi lar ly, the feature co-occurrence constraints in GPSG
(Gadzar et el. 1985) include implications of the form
3 l ~ q~ (where q~ is some description). Whi le a formula of
the form 3 l is not part of the Rounds-Kasper logic, we
intend it here as asserting the existence of a feature l in a
structure. This would normally be expressed in the Rounds-
Kasper formalism by the formula I:NIL. As we see later,
formulae of the kind we have in this example, i.e. in which
an existential appears negated, require special treatment
and will motivate an extension to the feature structure
formalism.

Various interpretations have been suggested that define
a semantics for these operators (see Section 3), but none
has gained universal acceptance. Pereira (1987) set forth
certain properties that any such interpretation should sat-
isfy. We suggested that three-valued logic provides us with
a framework appropriate for defining the semantics of a
feature description logic (which we will call FDL) that
includes a negation operator (Dawar and Vijay-Shanker
1989). We also showed that the three-valued framework
(based on Kleene's three-valued logic; Kleene 1952) is
powerful enough to express most of the existing definitions
of negation and implication. It is therefore possible to
compare these different approaches. We also presented one
particular three-valued interpretation for FDL, motivated
by the approach to negation given by Karttunen (1984),
that meets the conditions stated by Pereira.

In the present work, we give an exposition of these
results, and we also examine another three-valued interpre-
tation for FDL, obtained by using a modified notion of the
feature structures that serve as models. This new interpre-
tation, while preserving the desirable properties of the
previous one, also provides a satisfactory semantics for the
problematic case, mentioned above, of formulae with a
negated existential.

In Section 2 we present an exposition of the Rounds-
Kasper logic. In Section 3 we examine some existing ap-
proaches to defining the semantics of negation, and we also
present the framework of three-valued logic within which
we define our own interpretation. In Section 4 we exhibit
the modified notion of feature structures as models for
FDL, and we give the semantics of FDL in terms of these
modified feature structures. Finally, in Section 5, we present
a proof system for the language and esta61ish some compu-
tational results.

2 ROUNDS-KASPER LOGIC

In this section, we take a look at the calculus developed by
Rounds and Kasper to describe feature structures. The
symbols in the language are taken from two primitive
domains:

1. Atoms (A), and
2. Labels (L).

The set of well-formed formulae (W), is given by:

N I l
TOP
a where a ~ A
l:q~ w h e r e l ~ L a n d ~ W
~b/\ ~k where ~b, ~b ~ W
q5 V ~b where 4~, ~b ~ W
Pl '= P2 wherepl, P2 ~ L*

To define the semantics of this language, feature struc-
tures are defined as acyclic finite automata. These are
formally defined as follows:

Delinit ion 1. A n acye l ie finite automat ion is a 7-tuple
A = (Q ,~ ,F ,&qo , F,?O, where:

1. Q is a nonempty finite set (of states),
2. z is a countable set (the alphabet),
3. F is a countable set (the output alphabet),
4. 6 : Q x ~ ---, Q is a finite partial function (the

transition function),
5. qo ~ Q (the initial state),
6. F C Q (the set of final states),
7. X : F --~ r is a total function (the output function), 1
8. the directed graph (Q, E) is acyclic, where pEq iff

for some l ~ ~, 6(p, l) = q,
9. for every q G Q, there exists a directed path from q0

to q in (Q, E) , and
10. for every q C F, 6(q, l) is not defined for any 1.

We can define a partial ordering of information on
acyclic finite automata. This partial ordering is given b y
the subsumption relation, defined as follows:

Definit ion 2. Given two acyclic finite automata, A =

(QA, ~"A, I'A, 6A, qOA, FA, ~kA) and B = (Qs, ~,s, rs, 6s, qos,
Fs,),s), we say that A subsumes B (A E B) iff there is a
homomorphism from A to B, i.e. there is a mapping h :
QA ~ Qn such that:

1. h(6A(q, l) = tro(h(q), l),
2. tB(h(q)) = 1 A (q) for all q E FA, and

3. h(qoA) = qoB

Unification, which is the primary information-combining
operation on feature structures, can now be simply defined
as the operation of finding a least upper-bound (if any
upper-bound exists) under the above ordering. 2

We can now give the semantics of a formula over the set
of labels L and the set of atoms A. The domain over which
this is done is the set of acyclic finite automata A ----- Q, L,
A, 6, q0, F, X). The satisfies relation (~) is defined as
follows:

Definit ion 3. An acyclic finite automation A = (Q, L, A,
6, q0, F, X) satisfies (~) a formula in the following cases:

12 Cnmputational Linguistics Volume 16, Number 1, March 1990

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

A ~ NIL always
A ~ TOP never
A ~ a i f f Q = F = { q o } a n d ~ (q o) = a
A ~ l:4) iff A / l ~ 4)
A ~ 4) / ~ p i f f A ~ 4) a n d A ~
A ~ 4) V ~b iffA ~ 4)orA ~ ~p
A ~ PI ~- P2 iff(i(q0, Pl) = 5(qo, P2)

In the above, 6 is extended in the standard way to members
of Z*, i.e. (5(q, E) = q and 5(q, wl) = ~(6(q, w),l) and A/I is
the automaton obtained from A by making (5(q 0, l) the
initial state and eliminating all unreachable states.

A fundamental property of the semantics given above is
that the set o f automata satisfying a given formula is
upward-closed under the operation of subsumption. The
property is stated in the following theorem (Rounds and
Kasper 1986):

Theorem 1. A E_ B if and only if for every formula, 4), if
A ~ 4) t h e n B ~ 4).

Rounds and Kasper also showed that the satisfiability
problem for their logic is NP-complete.

3 PREVIOUS APPROACHES TO NEGATION

In this section we examine the problem of adding a nega-
tion operator to the language described in the previous
section. We do this by presenting various approaches to
defining the semantics of the extended language. We look
at these approaches in terms of both their linguistic appro-
priateness and their computational properties. We will also
show that the framework of three-valued logic that we
present can be used as a basis for comparison of the
different approaches.

3.1 CLASSICAL NEGATION

By classical negation, we mean an interpretation in which
an automaton A satisfies a formula --7 4) if and only if it does
not satisfy 4). Johnson (1987) defined an Attribute Value
Logic (AVL), similar to the Rounds-Kasper Logic, that
included a classical form of negation. Smolka (1988) pre-
sented a classical semantics for negation in a Rounds-
Kasper-like framework. While such approaches are appro-
priate under one view of feature structures, they are not
satisfactory from the viewpoint of feature structures seen
as partial descriptions. This is because the crucial property
of monotonicity is lost, as can be seen from the following
example:

Example 1.
A = [person:second]

[p e r s o n : s e c o n d]

B = [number : singularJ
4) = -q(person : second/~ number : singular)

As can easily be seen, by the classical semantics, A ~ 4)
and A E B, but B ~ 4).

Kasper (1988a) discusses an interpretation of negation
and implication in an implementation of Functional Unifi-
cation Grammar that is extended to include conditionals.
Kasper's semantics is classical, but his unification proce-
dure uses notions similar to those of three-valued logic. 3
Kasper also localized the effects of negation by disallowing
path expressions within the scope of a negation. This
restriction may not be linguistically warranted as can be
seen from Pereira's formula example in Section 1.

3.2 INTUITIONISTIC LOGIC

Moshier and Rounds (1987) described an extension of the
Rounds-Kasper logic, including an implication operator
and hence, by extension, negation. The semantics is based
on intuitionistic techniques. The notion of satisfying is
replaced by one of forcing. Given a set of automata K, a
formula 4), and A such that A ~ K, A forces in K ~4) (A F K
---~) if and only if for all B E K such that A E_ B, B does not
force 4) in K. Thus, to show that a formula, 4), is satisfiable,
we have to find a set K and an automaton A such that A
forces in K 4).

Moshier and Rounds also gave a complete proof system
for their logic, and showed that the satisfiability problem,
while decidable, was PSPACE-complete, thus making it
even more intractable than the original Rounds-Kasper
logic. Furthermore, Langholm (1989) has shown that not
all formulae in the Moshier-Rounds logic can have heredi-
tarily finite sets of minimal models. These computational
problems, along with questions about the linguistic appro-
priateness of its semantics, render the linguistic value of the
intuitionistic approach questionable.

3.3 THREE-VALUED LOGIC

Here we take a look at how three-valued logic can be used
to define the semantics of FDL. We also take a look at one
particular interpretation of FDL that uses the automata of
Section 2 as models. This interpretation is essentially the
same one we presented earlier (Dawar and Vijay-Shanker
1989). This is an interpretation of negation that is intu-
itively appealing, formally simple, and computationally rto
harder than the original Rounds-Kasper logic. The pri-
mary intention here (as in our earlier paper) is, however, to
explore the use of three-valued logic in defining the seman-
tics of FDL with negation. To this end, we will examine
other interpretations also within the three-valued frame-
work. Then, in the next section, we motivate a modified
notion of automata models and redefine our interpretation
with respect to it.

3.3.1 THE THREE-VALUED FRAMEWORK

With each formula we associate the set (Tset) of automata
that satisfy the formula, a set (Fset) of automata that
contradict it, and a set (Uset) of automata that neither
satisfy nor contradict it. 4 The Uset contains all automata
that are not in either of the other two sets. Different
interpretations of negation are obtained by varying defini-
tions of what constitutes "contradiction." The reason for

Computational Linguistics Volume 16, Number 1, March 1990 113

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

having some au tomata that neither satisfy nor contradict a
formula is as follows: an automaton is to be viewed as a
partial information structure. Given a description (for-
mula), 4~, a feature structure A may not carry enough
information to suggest that it satisfies or falsifies 4~. How-
ever, it may be possible to extend A to either satisfy or
falsify ~b. For example, we will place [person : third] in the
Uset of ~b = (number : s i n g u l a r / k person : third). Of
course, this feature structure can be extended to falsify or
satisfy 4~ as in:

and

pnumber : singular]

erson : third J

number : plural]

erson : third J

We will define the Tset and the Fset so that they are
upward-closed with respect to subsumption for all formu-
lae. Thus, we avoid the problem of nonmonotonicity associ-
ated with the classical interpretation of negation. In our
logic, negation is defined so that an automaton A satisfies
- -~ if and only if it contradicts q~.

Formally, the semantics is defined by a partial interpre-
tation function, I. I f W F F is the set of well-formed formu-
lae of FDL, and A the set of acyclic finite au tomata , 5 the
interpretation I is a partial function:

I : W F F x A ~{True , False}
I(4~, A) is True iff A satisfied ~b. It is False if A contra-

dicts ~b 6 and is undefined otherwise. Thus, the following
hold:

Tset(~) = {AIt(~, A) -- True} and

Fset(ck) = {AIt(~, A) = False}

3.3.2 A THREE-VALUED INTERPRETATION

We now look at one such interpretation function that uses
the strong Kleene truth definition for conjunction and
disjunction.

Definition 4. The partial interpretation function I is
defined as follows:

1. I (N IL , A) = True for all A;
2. I (TOP, A) = False for all A;
3. I(a, A) = True

i f A is atomic and ~'(q0) = a
I(a, A) = False

if A is a tomic and X(qo) = b
for some b, b #: a (see Note 2.)

l (a, A) is undefined otherwise;
4. I (l : ~p, A) = I(dp, A l l) i f A l l is defined.

(see Note 3.)
I (l : ep, A) is undefined otherwise;

5. I(dp I A qb2, A) = True
if I(q~ I, A) = True and I(qb 2, A) = True

I(~b t A q~2, A) = False
if I(~b l, A) = False or I(~b2, A) = False

l(~b I A 4~2, A) is undefined otherwise;
6. /(~b I V ~b2, A) = True

if I(~b x, A) = True orI(ep 2, A) = True
/(~1 V ~2' A) = False

if I(~bl, A) = False and I(~b2, A) = False
/(q~l V ~b2, A) is undefined otherwise;

7. I(--CA A) = T r u e i f I(ep, A) = False
I(--@, A) = False ifI(~b, A) = True
I (- ~ , A) is undefined otherwise;

8. I (p I ~- p2, A) = True
if 6(%, Pl) and 6(qo, P2) are defined
and 6(%, Pl) = 6(%, P2)

I(Pl ~ P2, ,4) = False
if A l p I and A l p 2 are both defined
and are not unifiable

I(Pl ~ P2, A) is undefined otherwise (see Note 4.).

where,

q~, 4h, ~2 E W F F
A = < Q , L , A , 6, qo, F , X > C A
a , b @ A
l ~ L

.Pl, P2 ~ L*

NOTES

1. We have not included an implication operator in the
formal language, since we find that defining implication
in terms of negation and disjunction (i.e. 4~ =~ ~k----
--~ v if) yields a semantics for implication that corre-
sponds exactly to our intuitive understanding of implica-
tion.

2. As one would expect, an atomic formula is satisfied by
the corresponding atomic feature structure. On the
other hand, only atomic feature structures are defined as
contradicting an atomic formula. An interpretation of
negation that defines a complex feature structure as
contradiciting a (and hence satisfying ---a) is also possi-
ble. Our definition was motivated by the linguistic inten-
tion of the negation operator as given by Kar t tunen
(1984), where, for instance, we require that an automa-
ton satisfying the formula case : --ndative have an atomic
value for the case feature. However, we now feel that
this problem would best be dealt with in a multi-sorted
logic and hence, in the interpretation we present in the
next section, we have adopted the other alternative
mentioned here.

3. In definition 4 above, we state that: I(1 : ep, A) = I(¢b, A~
l) i f A / l is defined. When A / l is defined, I(~, A / l) may
still be True, False, or undefined. In any of these cases,
I (1: cp, A) = l(dp, A l l) . 7 I (l : dp, A) is not defined i f A / l
is not defined (as illustrated by the example given earlier
where ~b ---- (person : third A number : singular). Not
only is this condition required to preserve upward clo-
sure, it is also linguistically motivated.

14 Computational Linguistics Volume 16, Number 1, March 1990

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

In the next section, we will make the distinction in
feature structures between not being defined versus
cannot be defined. In this section, we will say that
I (l : 4~, A) is not defined if A is not defined for l and
I (l : 4~, A) = false if A cannot be defined for I.

4. We have chosen to state that the set of automata that
are incompatible with the formula Pl ~- P2 is not the set
of automata for which 6(q0, P0 and 6(q0, P2) are defined
and ~(qo, Pl) :~ 6(q0, P2), since such an automaton could
subsume one in which 6(q0, Pl) = 6(qo, P2). Thus, we
would lose the property of upward closure under sub-
sumption. However, an automaton, A, in which/~(qo, Pl)
and 6(qo, P2) are defined, and A l P l is not unifiable 8 with
A l p 2 cannot subsume one in which tS(qo, Pl) = 6(q0, P2).

The monotonicity property for the above interpretation
can be stated as follows:

Theorem 2. Tset(qb) is upward-closed under the subsump-
tion relation for all formulae ~b.

Proof. The proof is by induction on the structure of 4~ and
can be found in Dawar 1988.[7

We now take a look at some examples mentioned earlier
and see how they are interpreted in the logic just defined.
The first example expressed the agreement attribute of the
verb sleep by the following formula:

a g r e e m e n t : 7 (p e r s o n : t h i r d / k number : s ingular) (4)

This formula is satisfied by any structure that has an
agreement feature which, in turn, either has a person
feature with a value other than third, or a number feature
with a value other than singular. Thus, for instance, the
first two structures satisfy the given formula, whereas the
third structure is undefined with respect to the formula.

cat : N P : second]]
agreement : [person

[agreement [person: third]]
: [number : plural J]

cat : N P]

agreement : [person : third]

On the other hand, for a structure to contradict formula
(4), it must have an agreement feature defined for both
person and number with values third and singular respec-
tively.

Turning to another example mentioned earlier, the for-
mula:

ob j : t ype : re f lex ive V --l(sub j : r e f ~. ob j : re f) (5)

is satisfied by the first two of the following structures, but is
contradicted by the third (here co-index boxes are used to

indicate co-reference of path-equivalence).

lob j : [type : reflexive]]

[ref: []
obj : l

[type : reflexive

subj : [ref : ['iq]

[ref:lq3 11
°"-,: b,,,e :,,on,-e.x,vd /
subj : [ref : []] J

3.3.3 OTHER THREE-VALUED INTERPRETATIONS
OF NEGATION

We briefly examine here how the three-valued framework
may be used to provide interpretations other than the one
presented above.

The classical interpretation of negation can, of course, be
expressed by making I a total function such that wherever
I(qL A) was previously undefined, it is now defined to be
False.

Moshier and Rounds consider a version in which forcing
is always done with respect to the set of all automata, i.e.
K*. This means that the set of feature structures that
satisfy --~ is the largest upward-closed set of feature struc-
tures that do not satisfy ~b (i.e. the set of feature structures
incompatible with q~). We can capture this in the three-
valued framework described above by modifying the defini-
tion of I in the following cases:

• I(a, A) = True
if A is atomic and X(q0) ---- a

I(a, A) = False otherwise

• I(1 : 4~, A) = True
if A / l is defined and I(~b, A / l) = True

I (l : 4~, A) = False
if A / I is defined and
V B (A / I E_ B =~ I(cb, B) = False)

I(1 : qb, A) is undefined otherwise.

• I(¢1 A ¢2, A) = True
ifI(q~l, A) = True andI(qb 2, A) = True

1(¢ 1 A 02, A) = False
if
VB(A E_ B ~ I(c~1, B) ~ True or l(~b2, B) ~ True)

I ($1/k 4~2, A) is defined otherwise;

• I (¢ l W ¢2, A) = True
ifI(4h, A) = Trueor I($2, A) = True

I(4a I V ¢b2, A) = False
if
VB(A E B =~ I(c~ l, B) ~ TrueandI(4~2, B) ~ True)

I(~b I /k 4~2, A) is undefined otherwise;

• I (p I ~-p2, A) = True
if 6(qo, Pl) and b(qo, P2) are defined
and 6(q o, Pl) = 5(qo, P2)

Computational Linguistics Volume 16, Number 1, March 1990 15

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

I(pl "~ P2, A) = False
if A l p 1 and AlP 2 are both defined
and are not unifiable or if A is atomic

l (Pi ~" Pc, A) is undefined otherwise.

As mentioned earlier, our approach was motivated by
Kart tunen's implementation as described in Kart tunen
1984. In the unification algorithm given, negative con-
straints are attached to feature structures or automata
(which themselves do not have any negative values). When
the feature structure is extended to have enough informa-
tion to determine whether it satisfies or falsifies the for-
mula, then the constraints may be dropped. We feel that
our definition of the Uset captures the notion of associating
constraints with automata that do not have sufficient infor-
mation to determine whether they satisfy or contradict a
given formula.

As discussed in Section 3.1, Kasper (1988a) used the
operations of negation and implication in extending Func-
tional Unification Grammar . Though the semantics defined
for these operators is a classical one, for the purposes of the
algorithm Kasper identified three classes of automata asso-
ciated with any formula: those that satisfy it, those that are
incompatible with it, and those that are merely compatible
with it. We can observe that these are closely related to our
Tset, Fset, and Uset respectively. For instance, Kasper
states that an automaton A satisfies a formula f : v if it is
defined f o r f w i t h value v; it is incompatible with f : v if it is
defined f o r f w i t h value x(x ~ v) and it is merely compati-
ble with f : v if it is not defined forf . In three-valued logic,
we incorporate these notions into the formal semantics,
thus providing a formal basis for the unification procedure
given by Kasper. Our logic also gives a more uniform
treatment to the negation operator, since we have removed
the restriction that disallowed path equivalences in the
scope of a negation.

4 INTERPRETING F D L WITH AUGMENTED
FEATURE STRUCTURES

We have seen examples (Section 1) of formulae that assert
the existence of certain features. While 31 is not a formula
in the Rounds-Kasper syntax, we can regard it as syntactic
sugar for the formula I:NIL, which is indeed satisfied
exactly by those automata that have a feature l.

However, the formula - d : N I L is not satisfiable in the
logic we have defined. This is because any automaton that
does not have a feature labeled l subsumes one that does.
We have, however, seen examples of formulae where 3 l
occurs in the scope of a negation (for instance, Kasper
[1988b] uses the formula 3Mood-type-- , Rank : Clause).
We certainly intend that such formulae be satisfiable.

Since feature structures are partial information struc-
tures, if they are not defined for an attribute l, it could be
due to lack of information about the value for the attribute
l. On the other hand, here we wish to capture the fact that if
a feature structure A satisfies the description --73 l, then not

only is A not defined for l, but it is also the case that it
cannot be defined for l. That is, it is erroneous to extend A
to state a value for the attribute I.

The problem stems from the fact that in the formula
-7--1l, we are trying to capture the information that a
feature structure not only does not have a value for the
feature l, but cannot be extended to have a value for l; i.e.
we have the information that, in the current context, the
information structure that we are building is not going to
acquire a value for the feature l at any future time. This
kind of "negative" information is not expressible in auto-
mata models as we have defined them. As they stand, they
can only capture "positive" information. To include the
negative information we need, we will define an augmented
notion of feature structures and redefine our interpretation
function accordingly.

To use the analogy with finite state automata, note that
in a deterministic fsa we often consider states that do not
have outgoing arcs defined on certain labels as having those
arcs leading to an "error" state. Since we view fsas as
complete structures, this distinction between arcs that are
not defined and those that cannot be defined is unimpor-
tant. However, when we view our automata models as
partial information structures, we must distinguish be-
tween the case in which a feature is simply not defined
(leaving open the possibility that it may be defined in some
extension) and the case in which we know that a certain
feature cannot be defined.

In what follows, we capture the information of certain
labels leading to "error" states without explicitly defining
such states, but by attaching to each state in the structure a
finite set of labels. This set contains those labels that cannot
be defined from that state. We already have an elementary
form of this notion in our restriction on final states, when
we specify that they cannot have any outgoing arcs. We are
effectively saying that no label can be defined from these
states. We formalize all these notions below.

4.1 AUGMENTED FEATURE STRUCTURES

In this section, we give definitions relating to our aug-
mented notion of f-structures. As we stated above, the
augmentation consists of attaching to each nonfinal node in
the f-structure graph a finite set of labels. These labels are
exactly those for which we know that no outgoing arcs can
be defined from that node. The set is finite since we require
that our information structure at any point be finite. We
formally define our extended notion of f-structure as
follows: 9

Definit ion 5. An acyclic finite automaton is an 8-tuple
,4 == (Q,~ ,F , 6, qo, F , X , S) , where:

1. Q is a nonempty finite set (of states),
2. 2; is a countable set (the alphabet),
3. F is a countable set (the output alphabet),
4. 6 :Q x Z ~ Q is a finite partial function (the

transition function),
5. qo E Q (the initial state),

16 Computational Linguistics Volume 16, Number 1, March 1990

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

6. F C Q (the set of final states),
7. X : F ~ r is a total function (the output function),
8. S : Q \ F - - * P'~"~Y~) is a function from the nonfinal

states to finite subsets of Z,
9. the directed graph (Q, E) is acyclic, where pEq iff

for some I ~ Z, 6(p, l) = q,
10. for every q ~ Q, there exists a directed path from q0

t o q i n (Q , E) ,
11. for every q ~ F, 6(q, l) is not defined for any l, and
12. whenever I ~ S(q) , 6(q, l) is not defined.

We can now define the subsumption ordering on these
structures as follows:

Definition 6. Given two f-structures, A = (Q.1, ~.1, rA, 61 ,
q0.1, FA, ~.1, S.1) and B = (Qn, ~n, F~, 6n, qon, Fn, ~n, Sn) ,
we say tha t A subsumes B (A ~ B) iff there is
a homomorphism from A to B, i.e. there is a mapping
h: Q.1 --* Qs such that:

1. h(qo.1) = qon,
2. h(6A(q, l)) = 6 n(h(q), 1),
3. Xn(h(q)) = ~ (q) for all q ~ F~, and
4. SA(q) C Ss (h (q)) for all q ~ Q.1\F.1.

This definition of subsumption ensures that, for any
automaton A, if I ~ S.1(6(q o, p)) then, for any automaton
subsumed by A, the p a t h p is defined, but the path p l cannot
be defined.

4.2 THE LANGUAGE

We now give the interpretation of FDL in terms of f-
structure models as we have just defined them. The syntax
of the language is the same as before.

We first give the following auxiliary definitions:

Definition 7. An f-structure A = (Q, 2;, I ' , 6, qo, F, ~, S)
is:

• atomic if and only if Q = F = {q0 },
• null if and only if Q = {q0} and F = ~ and
• complex otherwise.

We can now define the revised semantics:

Definition 8. The (revised) partial interpretation function
I is defined as follows:

1. I (NIL , A) = True for all A;
2. I(TOP, A) = False for all A;
3. I(a, A) = True i fA is atomic and k(q0) = a

I(a, A) = False if A is atomic with k (q0) :~ a or if A
is complex
l(a, A) is undefined otherwise;

4. I(l:dp, A) = I(4~, A / l) if A / l is defined.
I(l: 4~, A) = False if l C S(qo) or if A is atomic
I(l : 4~, A) is undefined otherwise;

5. l(ckl /~ 42, A) = True
if 1(q~1, A) = True and l(q~2, A) = True

I(4~ A (a2, A) = False
if l(4h, A) = False or I(4~2, A) = False

I(~b I /~ ~b2, A) is undefined otherwise;
6. I(q~l V q~2, A) = True

if I(~bl, A) = True or I(q~2, A) = True
I(q~l V 4~2, A) = False

if I(4h, A) = False and I(q~2, A) = False
I(~b~ V 4~2, A) is undefined otherwise;

7. I(--~, A) = True if I(4,, A) = False
I(-74~, A) = False if I(q~, A) = True
I(---~, A) is undefined otherwise;

8. I (p I ~ P2, A) = True
if 6(qo, Px) and ~(q0, P2) are defined
and 6(q o, Pl) = 6(qo, P2)

I(Pl ~" P2, A) = False
if A l p x and A / p 2 are both defined and are not
unifiable or
Pl = wlx and 1 ~ S(6(q o, w)) , or
P2 = wlx and I ~ S(6(q o, w))

I(p~ ~- P2, A) is undefined otherwise (see Note 4).

where,

~b, q~l, ~2 ~ WFF
A = (Q , L , A , 6, qo, F,X) ~ A
a, b E A
I ~ L
Pl, P2, w, x E L*

We are now in a position to prove the following monoto-
nicity property for our logic. We express it in terms of the
knowledge (or information) ordering --<k on the truth values
{_1_, True, False } defined by _1_ <k True, _1_ k False, True ~t k
False and False ~t k True. In the following, I(~b, A) = _t_ is
used for I(4>, A) undefined.

Theorem 3.1 A E B if and only if for every formula, q~,
I(q~, A) -<k I(~b, B).

Proof. ~ Suppose for every formula, 4~, I(q~, A) --<k
I(~b, B). Every p a t h p defined in A must also be defined in
B, since I (p :NIL, A) = True and hence I (p :NIL, B) =
True. Since for every state qi in A, there is a path pf such
that qi = 6A(qOA, Pi) we can define a map h such that
h(qi) = 6B(qon, Pi). To see that this map is indeed
functional, note that, if there is a q E QA such that q =
6A(q0A, Pl) = 6A(q0.1, P2) for distinct Pl and P2, then
I(Pl ~" P2, A) = True. Thus l (p 1 ~ P2, B) = True and
6B(qos, Pl) and 6n(qo s, P2) do indeed describe the same
state.
One can immediately see that this map satisfies proper-
ties 1 and 2 of being a homomorphism given above in the
definition of subsumption. To verify the other two condi-
tions, note that if hA(qi) = a for some qi E A, then,
I(pt:a, A) = True. Hence I(pi:a , B) = True and
XB(6n(q0n, Pi)) = a. Thus condition 3 is satisfied. The
argument for condition 4 is similar. We have, therefore,
established that h is a homomorphism and hence that A
v-- B. =~ The consequent is trivially true with I(4~, A) =
1, so we will only consider the case when it is either True

Computational Linguistics Volume 16, Number 1, March 1990 17

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

or False. The proof is by induction on the structure of the
formula.

Basis:

N I L
Trivial, since I (NIL , A) = True, for all A.
TOP
Trivial, since I(TOP, A) = False, for all A.
a

Note that i fA is atomic and A C B, then A = B. 1°
Thus, if I(a, A) = True, then A = B and we are done.
If I(a, A) = False, either A is atomic and the argument
is the same as before, or A is complex. But then, since
A E B, B is also complex and I(a, B) = False.

Pl ~-P2
If I (p I ~ P2, h) = True then there is a q E QA such
that q = 6 A (qoa, Pl) = 6a(qoA, P2)" Let h be a homo-
morphism witnessing A E_ B. Then, by the definition of a
homomorphism, h(q) = 6n(qon, Pl) = 6B(qon, P2) and
therefore, I (p I ~- P2, B) = True.
In the case in which l (p I ~ P2 , A) = False, we have
two possibilities. Either A l p I and A l p 2 are both defined
and not unifiable, in which case, clearly by the definition
of subsumption, the same will be true of B, or pl = wlx
(choosing Px without loss of generality), for some label l
and some paths (possibly empty) w and x such that I E
Sa(6a(qo A, w)) . But then, as we pointed out earlier, this
would mean that the path wl and hence the path Pl can-
not be defined in B either. Thus, in either case, l (p l ~-
P2, B) = False.

Induction Step:

1:4,
Since A r"- B, if A l l is defined, so is B / I and A l l E B/1 .
But then, by induction hypothesis, I(ep, A l l) <-k I [(4~,
B / l) and therefore I(1 : c~, A) <-k I] (l:q~, B).
I f A l l is not defined and I(l:¢k, A) = False, one of two
possible cases applies: either A is atomic, in which case
A = B or l E Sa(qoA), in which case I E Sn(qo B) by
the definition of subsumption, and we are done.

If I(4~/~ ~b, A) = True, then I(4~, A) = True and
I(~b, A) = True. But then, by induction hypothesis,
I(4~, B) = True and I(~b, B) = True. Thus
I(~b /~ ~k, B) = True.
Similarly, if I(4~ A ~b, A) = False, I(cb, A) = False or
I(~b, A) = False. Hence, by induction hypothesis,
I(~, B) = False or I(ff, A) = False, and therefore
I(q~ /~ ¢z, B) = False.

The argument is similar to the one in the previous case.
--q,

Since I(--~, A) = True if and only if I(cb, A) = False
and vice versa, clearly I(--~, A) __<k I(--~, B), since
I(~b, A) _<k I(4~, B) . ~

The following simple corollary corresponds to the mono-

tonicity result we established for our original three-valued
semantics.

Corollary. For all 4~, Tset(4~) is an upward-closed set.

As we mentioned earlier in this section, Langholm (1989)
describes negatively extended fea ture structures in a fash-
ion very similar to what is described above. The interpreta-
tion he chooses for the description language is, however,
intuRionistic in character. We believe that the modifica-
tions that we suggested to our interpretation (in Section
3.3.3) to capture the special case of intuitionistic logic in
which forcing is always done with respect to K*, when
applied to our new interpretation yield exactly the interpre-
tation described by Langholm.

5 PROOF SYSTEM

In this section, we give a proof system for the logic de-
scribed above that is essentially an adaptation of the tab-
leau proof system described by Moshier and Rounds (1987)
for their intuitionistic interpretation of the feature logic.

The proof system works, not with individual formulae,
but with sets of labeled signed formulae. The Moshier-
Rounds tableau proof method worked with sets of sets of
labeled signed formulae. However, this extra level of com-
plexity !is not needed here.

We first introduce the notion of a labeled signed formula:

Definition 9. A labeled signed formula is a triplet
(w,X, q~), where w ~ L *, X ~ {True, False} and q~
WFF. (w, True, dp) will be written as wT4~, and
(w, False, 4a) as wF4~.

We can now define the notion of an f-structure satisfy-
ing a labeled signed formulae:

Definition 10. An f-structure, A, satisfies a labeled signed
formula ~ (written A ~ ~) in the following cases:

A t = wTep if and only i f A / w is defined and I(4~,A/w) =
True

A t = wFcb if and only i f A / w is defined and I(4~,A/w) =
False

Definition 11. A set c of labeled signed formulae is closed
if and only if at least one of the following holds:

• wT4~, wF4~ ~ c,
• wTa, wTb C c,
• wTa, wxTc~ ~ e,
• wTa, w T I : N I L ~ c,
• w T (p ~ p x) ~ c,
• w F N I L ~ c, or
• w T T O P ~ c
f o r s o m e / ~ L , w , p ~ L * , x ~ L ÷ , a , b E A and~b
WFF.

Lemma 1. Any closed set of labeled signed formulae is
unsatisfiable.

Proof. Immediate from the definition of a closed set. []

Definition 12. A set of labeled signed formulae, c, is
downward-saturated if and only if c is not closed, and

18 Computational Linguistics Volume 16, Number 1, March 1990

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

wT-'adp ~ c
wF~(~ ~ c
wT(l:4~) ~ c

wF(l:dp) ~ c
wlT(p~ ~ P2) ~ c
wlF(p~ ~ P2) ~ c
wT(px ~- P2) ~ c

w T (p I ~. p2) ~ c
wT(p~ ~. P2),

wT(P2 ~ P3) ~ c

=~wFq~ ~ c
=wT4~ ~ c
=~wlT4a ~ c and

wTI:NIL ~ c
=~wlF~ ~ corwFl :NIL ~ c
~wT(lpx ~ lp2) ~ c
~wF(lp~ ~- lp2) ~ c
~wTp~ :NIL ~ c and

wTp2:NIL ~ c
=~wT(p2 ~" Pl) ~ c

=wT(p~ ~'P3) ~ c
wT(pl ~ P2), wpl Tdp ~ c~wp2Td p ~ c
wT(pl ~" P2), wp1F~ E c ~ w p 2 F (b ~ C
wF(pl ~ P2), wPl Ta E c=>wp2Fa ~ c
wT(4~ /~ ~b) ~ c =>wTdp C c and wT~b E c
wF(ep /~ ~) ~ c ~wFdp ~ c or wF~b ~ c
wT(~ W ~k) ~ c =~wT(~ ~ c or wT~k ~ c
wF(c~ V ~b) ~ c =~wF~ ~ c and wF~k ~ c

Lemlna 2. I f a finite set of labeled formulae, c, is down-
ward-saturated, it is satisfiable.

Proof. Consider the automaton, A ---- (Q, L, A,/~, q0, F,
~, S), constructed from c as follows:

1. For every path w for which there is a formula ~b such
that wT4~ ~ c or wF4~ ~ c, include a state qw in Q,
with/~ defining a path from qo to qw labeled w.

2. For every pair of paths p~ = wx~ and PE ---- wx2 such
that wT(x~ ~- x2) ~ c, let q,~ and q,2 be the same
state.

3. For every formula wTa ~ c, include q~ in F and let

h(qw) = a.
4. For every formula wFa ~ c, if there is no label I such

that there is a state q~t ~ Q, then include qw in F and
let h(q~) ---- b for any atomic value b such that b does
not occur in any formula in c. ~1

5. For every formula wFl: NIL ~ c, include l in S(qw)
6. For every formula wF(p~ ~- P2) ~ c, if states q~p, and

qwp~ are defined and neither of them is in F, then add
new states q~ and q2 to Q and F, and for some label
1 that does not occur in any formula of c, define
~(qwp,, 1) = q~ and ~ (q~ , 1) = q~ with h(q~) = a and
~,(q2) = b where a and b are distinct atomic values. If
exactly one of the two states (say, q~p,) is not in F,
add just one new state q to Q and let 6(q~,, 1) = q for
a label I that does not occur in c.
If, however, one of the paths (say, p~) does not have
the associated state (qwp,) defined, let p be the longest
prefix ofp~ such that qw~ does exist, and let p~ = plx.
Include I in S(q~).

Claim 1 :
The above construction of an automaton is well de-

fined.
We need to verify that the above definition yields an

automaton that meets our definition of an acyclic finite
automaton without any conflicts. The possible conflicts
that could arise would be that: X does not define a

function; the graph of the automaton had a cycle; for
some q ~ F and some label 1, 6(q, 1) is defined; or, for
some state q and some label l, 1 ~ S(q) and ~(q, 1) is
defined. However, in each of these cases, it is easy to see
that were it to arise in the construction given above, the
original set c would in fact be closed, contradicting the
hypothesis that it is downward-saturated.
Claim 2:
The automaton so constructed satisfies all the labeled
signed formulae in c.

We establish this claim by induction over the structure
of the formulae in c. For the base cases (namely labeled
signed formulae of the forms: wXa, wXNIL, wFI:NIL,
and wX(p~ ~ P2)) it follows immediately from the con-
struction that they are satisfied by A. For the other cases
(wX(q~ V ~b), wX(4J A ~b), and w X ~ ~b), their sub-
formulae are also in c since it is downward-saturated.
But by the induction hypothesis, these sub-formulae are
satisfied by A. That completes the result.[]

The entailment relation (k) on sets of labeled signed
formulae is defined as follows:

Definition 13. Let c and d be two sets of labeled signed
formulae. Then c I- d if and only if c 4= d and one of the
following holds:

1. wT~4~ E c a n d d = c U {wFdp)
2. wE-14~ ~ c and d ---- c U {wT~b}
3. wTl:dp E c a n d d ---- c U {wlTdp, wTI:NIL}
4. wFl:c~ E c a n d d = c U {wlFdp}
5. wFl:cb E c a n d d = c U {wFI:NIL}
6. wlT(pl ~" P2) E c a n d d = c U {wT(lpl ~ lp2)}
7. wlF(p I = P2) E c a n d d = c U {wF(lpl ~- lp2)}
8. wT(pl ~-P2) E c and d = cU{wTpl:NIL, wTp2:

NIL}
9. wT(p 1 ~" Pz) ~ c a n d d ----- c U {wT(p2 ~'Pl)}

10. wT(p I ~-P2), wT(p2~'P3) E c and d = c U
{wr(p~ ~ p3)}

11. wT(pl ~-p2),wplTdp E c a n d d = c U {wp2Tdp}
12. wT(p I ~P2) , wplF4~ ~ c a n d d ---- c U {wp2F~b}
13. wF(p I ~. p2), wplTa E c a n d d ---- c U {wp2Fa}
14. wT(cb A ~b) ~ c a n d d = c U {wTep, wT~b}
15. wF(4~ A ~b) E c and d -- c U {wF~}
16. wF(~ A 4,) E c a n d d = c U {wF~b}
17. wT(ep V ~b) E c a n d d = c U {wT4~}
18. wT(dp V ~b) ~ c a n d d = c U {wT~b}
19. wE(oh V ~b) E c and d = c U {wF¢, wF~b}

We denote by k* the reflexive and transitive closure of this
entailment relation.

Theorem 4. (Soundness) I f c t-* d for sets of labeled
signed formulae c and d, and d is downward-saturated,
then c is satisfiable.

Proof. This follows immediately from Lemma 2 and the
fact that c I-* d implies c C d . []

Lemma 3. For any set of labeled signed formulae c, there
are only finitely many sets of labeled signed formulae d
such that c I-* d.

Computational Linguistics Volume 16, Number 1, March 1990 19

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

Proof. To prove this, we inductively define the notion of
length of a formula, as follows:
In(a) = l n (N I L) = I n (T O P) = 1

ln(pl "~ P2) = leng th(p l) + length(p2)
l n (- ~) = ln((a) + 1
ln(¢ W ¢) = ln (¢ /~ ¢) = ln(ck) + ln(~) + 1
where length denotes string length.

Also, define the length of a labeled signed formula
w X ¢ as ln(¢) + l ength(w) . Let ~ be any labeled signed
formula such that 4> ~ c but 4, C d for some d such that
c I-* d. Observe that the length of • is bounded by the
length of the longest formula in c and that • does not
contain any symbols that do not occur in c. The result
follows.E]

Lemma 4. For any set of labeled signed formulae c, if
there is no set of labeled signed formulae d such that c I-
d, then c is either closed or downward-saturated.

Proof. Clearly, if c is closed under all the entailment
rules listed above, then it satisfies all the implications
listed in the definition of downward saturation. Hence, if
it is not downward-saturated, it must be closed.E]

Lemma 5. For any satisfiable set of labeled signed formu-
lae c that is not downward-saturated, there is a satisfi-
able set of labeled signed formulae d such that c l- d.

Proof. Since c is satisfiable, it is not closed. Since it is not
downward-saturated, by hypothesis, there must be a d
such that c I- d. However, it is clear from the definition of
entailment that if all such d are unsatisfiable, then so is
c.I--]

Theorem 5. (Completeness) For any satisfiable set of
labeled signed formulae, c, there is a downward-satu-
rated set of labeled signed formulae d such that c F-* d.

Proof. By Lemma 3, there must be a d such that c I-* d
and for no d ' d i- d' . All such d are either closed or
downward-saturated by Lemma 4. However, not all of
them can be closed since then by Lemma 5, c would be
unsatisfiable. Hence, at least one of them is downward-
saturated. E]

Theorem 6. (NP-Completeness) The satisfiability prob-
lem for the logic we have defined is NP-Complete .

Proof. It follows from the proof of Lemma 3 that the
length of any derivation c I-* d is bounded by n 2, where n
is the sum of the lengths of the formulae in c. Since this
bound is polynomial, the problem is in NP. It is NP-ha rd
because the satisfiability problem for the Rounds -
Kasper logic, which is a special case, is NP-hard. E]

6. CONCLUSIONS

A logical formalism with a complete set of logical operators
has come to be accepted as a means of describing feature
structures. While the intended semantics of most of these
operators is well understood, the negation and implication

operators have raised some problems, leading to a variety of
approaches in their interpretation.

In Dawar and Vijay-Shanker 1989 and the present work,
we introduced the framework of three-valued logic as a
means of defining the semantics of a feature structure
description language with negation. This framework per-
mits us to say that a formula such as ~1:4~ does not have a
truth value defined in a feature structure that does not have
a feature l. This enables us to define an interpretation that,
unlike the classical approach to negation, is monotonic, as a
log][c describing partial structures should be.

We presented one particular interpretation of FDL within
this three-valued framework and compared it with other
apl:,roaches to defining the semantics of negation. We
showed that several different such approaches could be cast
in the three-valued framework. In particular, we showed
that the special case of the Moshier-Rounds intuitionistic
approach, in which forcing is always considered with re-
spect to K* could be captured in our framework.

One motivation cited by Moshier and Rounds for consid-
ering forcing sets other than K* was so that formulae of the
form -~ I :NIL could be considered satisfiable. The same
reason led us to examine an augmented notion of feature
structure models for FDL that yields an interpretation that
is conceptually simple, motivated by the preservation of
monotonicity, and is computationally no harder than the
original Rounds-Kasper logic. We also showed that our
interpretation meets the conditions set out by Pereira (1987)
for a satisfactory interpretation of negation.

REFERENCES

Dawar, A. 1988 The Semantics of Negation in Feature Structure Descrip-
tions. Master's Thesis, University of Delaware, Newark, DE.

Dawar, A. and Vijay-Shanker, K. 1989 "A Three-Valued Interpretation
of Negation in Feature Structure Descriptions." In Proceedings of the
27th Annual Meeting of the Association for Computational Linguistics:
18-24.

Gazdar, G.; Klein, E.; PuUum, G.; and Sag, I. 1985 Generalised Phrase
Structure Grammar. Harvard University Press, Cambridge, MA.

Johnson, M. 1987 Attribute Value Logic and the Theory of Grammar.
Ph.D. Thesis, Stanford University, Stanford, CA.

Karttunen, L. 1984 "Features and Values." In Proceedings of the Tenth
International Conference on Computational Linguistics. 28-33.

Kasper, R. T. 1987 Feature Structures: A Logical Theory with Applica-
tion to Language Analysis. Ph.D. Thesis, University of Michigan, Ann
Arbor, MI.

Kasper, R. T. 1988a "Conditional Descriptions in Functional Unification
Grammar." In Proceedings of the 26th Annual Meeting of the Associa-
tion figr Computational Linguistics: 233-240.

Kasper, R. T. 1988b "An Experimental Parser for Systemic Grammars."
In Proceedings of the Twelfth International Conference on Computa-
tional' Linguistics: 309-312.

Kay, M. 1979 "Functional Grammar." In Proceedings of the Fifth
Annual Meeting of the Berkeley Linguistics Society: 142-158.

Kaplan, R. and Bresnan, J. 1983 "Lexical Functional Grammar: a Formal
System for Grammatical Representation." In J. Bresnan (ed.), The
Mental Representation of Grammatical Relations. MIT Press, Cam-
bridge, MA.

Kleene, S. C. 1952 Introduction to Metamathematics. Van Nostrand,
New 'York, NY.

20 Computational Linguistics Volume 16, Number 1, March 1990

Anuj Dawar and K. Vijay-Shanker An Interpretation of Negation in Feature Structure Descriptions

Kasper, R. T. and Rounds, W. C. 1986 "A Logical Semantics for Feature
Structures." In Proceedings of the 24th Annual Meeting of the Associ-
ation for Computational Linguistics: 257-266.

Langholm, T. 1989. How to Say No with Feature Structures. Personal
communication.

Moshier, M. D. and Rounds, W. C. 1987 "'A Logic for Partially Specified
Data Structures." In ACM Symposium on the Principles of Program-
ming Languages: 156-167.

Pereira, F. C. N. 1987. "Grammars and Logics of Partial Information."
In J. L. Lassez (ed.), Proceedings of the 4th International Conference
on Logic Programming. 989-1013.

Rounds, W. C. and Kasper, R. T. 1986 "A Complete Logical Calculus for
Record Structures Representing Linguistic Information." In IEEE
Symposium on Logic in Computer Science: 34--43

Shieber, S. M. 1984 "The Design of a Computer Language for Linguistic
Information." In Proceedings of the Tenth International Conference on
Computational Linguistics: 362-366.

Smolka, G. 1988 A Feature Logic with Subsorts. LILOG report 33, IBM
Deutschland, Stuttgart, F. R. G.

N O T E S

In the original Rounds-Kasper formulation, the output function is not
required to be total. This is because every terminal node in the

transition graph is considered to be a final state. However, since the
notion of finality of a state is not crucial to the formalism, we have
chosen this equivalent alternative for presentation.

2. Strictly speaking, we should be taking the least upper bound in the
ordering on equivalence classes of automata under isomorphism.

3. See Section 3.3.3.

4. A similar notion was used by Kasper (1988a), who introduces the
notion of compatibility. We shall compare this approach with ours in
greater detail in Section 3.3.3.

5. In this paper we will not consider cyclic feature structures.
6. And therefore it satisfies the formula ---~.

7. Equality here is strong equality (i.e. if I(~, (Aft) is undefined then so
is I(l :~, A)) .

8. Two automata are not unifiable if and only if they do not have a least
upper bound.

9. Langholm (1989) has defined a similar notion of negatively extended
feature structures. We will take up a comparison of his approach with
ours later in this section.

10. Up to isomorphism.

11. We are implicitly assuming that the sets of atoms and labels are both
infinite. If this is not the case, the definition of closure of a set of
labeled signed formulae and this construction can be suitably modi-
fied.

Computational Linguistics Volume 16, Number 1, March 1990 21

