
A FORMAL MODEL FOR CONTEXT-FREE LANGUAGES

AUGMENTED WITH REDUPLICATION

Walter J. Savitch

Department of Computer Science and Engineering
University of California, San Diego

La Jol la , CA 92093

A model is presented to characterize the class of languages obtained by adding reduplication to
context-free languages. The model is a pushdown automaton augmented with the ability to check
reduplication by using the stack in a new way. The class of languages generated is shown to lie strictly
between the context-free languages and the indexed languages. The model appears capable of
accommodating the sort of reduplications that have been observed to occur in natural languages, but it
excludes many of the unnatural constructions that other formal models have permitted.

1 INTRODUCTION

Context-free grammars are a recurrent theme in many,
perhaps most, models of natural language syntax. It is
close to impossible to find a textbook or journal that
deals with natural language syntax but that does not
include parse trees someplace in its pages. The models
used typically augment the context-free grammar with
some additional computational power so that the class
of languages described is invariably larger, and often
much larger, than the class of context-free languages.
Despite the tendency to use more powerful models,
examples of natural language constructions that require
more than a context-free grammar for weak generative
adequacy are rare. (See Pullum and Gazdar 1982, and
Gazdar and Pullum 1985, for surveys of how rare
inherently noncontext-free constructions appear to be.)
Moreover , most of the examples of inherently noncon-
text-free constructions in natural languages depend on a
single phenomenon, namely the reduplication, or ap-
proximate reduplication, of some string. Reduplication
is provably beyond the reach of context-free grammars.
The goal of this paper is to present a model that can
accommodate these reduplication constructions with a
minimal extension to the context-free grammar model.

Reduplication in its cleanest, and most sterile, form
is represented by the formal language { w w I w ~ E*},
where E is some finite alphabet. It is well known that
this language is provably not context-free. Yet there are
numerous constructs in natural language that mimic this

formal language. Indeed, most of the known, convinc-
ing arguments that some natural language cannot (or
almost cannot) be weakly generated by a context-free
grammar depend on a reduplication similar to the one
exhibited by this formal language. Examples include the
r e s p e c t i v e l y construct in English (Bar-Hillel and Shamir
1964), noun-stem reduplication and incorporation in
Mohawk (Postal 1964), noun reduplication in Bambara
(Culy 1985), cross-serial dependency of verbs and ob-
jects :in certain subordinate clause constructions in
Dutch (Huybregts 1976; Bresnan et al. 1982) and in
Swiss-German (Shieber 1985), and various reduplica-
tion constructs in English, including the X or no X

construction as in: "reduplicat ion or no reduplication, I
want a parse t r ee" (Manaster-Ramer 1983, 1986). The
model presented here can generate languages with any
of these constructions and can do so in a natural way.
To have some concrete examples at hand, we will
review a representative sample of these constructions.

The easiest example to describe is the noun redupli-
cation found in Bambara. As described by Culy (1985),
it is an example of the simplest sort of reduplication in
which a string literally occurs twice. F rom the noun w
Bambara can form w - o - w with the meaning "wha teve r
w." It is also possible to combine nouns productively in
other ways to obtain new, longer nouns. Using these
longer nouns in the w - o - w construction produces redu-
plicated strings of arbitrary length.

The r e s p e c t i v e l y construction in English is one of the
oldest well-known examples of reduplication (Bar-Hillel

Copyright 1989 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613 X/89/010250-261 $ 03.00

250 ComputationaH Linguistics, Volume 15, Number 4, December 1989

Walter J. Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

and Shamir 1964). It provides an example of reduplica-
tion other than exact identity. A sample sentence is:

John, Sally, Mary, and Frank are a
widower, widow, widow, and widower, respectively.

In these cases, it has been argued that the names must
agree with "widow" or "widower" in gender, and
hence the string from {widow, widower}* must be an
approximate reduplication of the string of names. If one
accepts the data, then this is an example of reduplica-
tion using a notion of equivalence other than exact
identity. In this case the equivalence would be that the
second string is a homomorphic image of the first one.
However, one must reject the data in this case. One can
convincingly argue that the names need not agree with
the corresponding occurrence of "widow" or "widow-
er ," because gender is not syntactic in this case. It may
be false, but it is not ungrammatical to say "John is a
widow." (Perhaps it is not even false, since no syntactic
rule prevents parents from naming a daughter "John.")
However, such dependency is at least potentially pos-
sible in some language with truly syntactic gender
markings. Kac et al. (1987) discuss a version of this
construction using subject-verb number agreement that
yields a convincing argument that English is not a
context-free language.

One of the least controversial arguments claiming to
prove that a particular natural language cannot be
weakly generated by a context-free grammar is Shie-
ber's (1985) argument about Swiss-German. In this
case, the reduplication occurs in certain subordinate
clauses such as the following:

... mer em Hans es huus h/ilfed aastriiche

... we Hans-DAT the house-ACC helped paint
'we helped Hans paint the house.'

where to obtain a complete sentence, the above should
be preceded by some string such as "Jan s/iit das" ('Jan
says that'). In this case, a list of nouns precedes a list of
an equal number of verbs and each noun in the list
serves as the object of the corresponding verb. The
cross-serial dependency that pushes the language be-
yond the reach of a context-free grammar is an agree-
ment rule that says that each verb arbitrarily demands
either accusative ordative case for its object. Thus if we
substitute "de Hans" (Hans-ACC) for "em Hans"
(Hans-DAT) or "em huus" (the house-DAT) for "es
huus" (the house-ACC), then the above is ungrammat-
ical because "h/ilfed" demands that its object be in the
dative case and "aastri iche" requires the accusative
case. Since the lists of nouns and verbs may be of
unbounded length, this means that Swiss-German con-
tains substrings of the forms

N 1 N2"'Nn VI V2... Vn
where n may be arbitrarily large and where each noun
N i is in either the dative or accusative case depending
on an arbitrary requirement of the verb V i.

Bresnan et al. (1982) describe a similar construction
in Dutch in which the strong agreement rule is not
present and so the language (at least this aspect of it)

can be weakly generated by a context-free grammar,
even though it cannot be strongly generated by a
context-free grammar. The context-free grammar to
generate the strings would pair nouns and verbs in a
mirror image manner, thereby ensuring that there are
equal numbers of each. Since Dutch does not have the
strong agreement rule that Swiss-German does, this
always produces a grammatical clause, even though the
pairing of nouns and verbs is contrary to intuition.
However, in cases such as this, it would be desirable to
have a model that recognizes reduplication as redupli-
cation rather than one that must resort to some sort of
trick to generate weakly the reduplicated strings in a
highly unnatural manner. This is true even if one is
seeking only weak generative capacity because, as the
Dutch/Swiss-German pair indicates, if a minor and
plausible addition to a construct in one natural language
would make it demonstrably noncontext-free, then we
can suspect that some other language may exhibit this
or a similar inherently noncontext-free property, even
when considered purely as a string set.

Some of these arguments are widely accepted. Oth-
ers are often disputed. We will not pass judgment here
except to note that, whether or not the details of the
data are sharp enough to support a rigorous proof of
noncontext-freeness, it is nonetheless clearly true that,
in all these cases, something like reduplication is occur-
ring. A model that could economically capture these
constructions as well as any reasonable variant on these
examples would go a long way toward the goal of
precisely describing the class of string sets that corre-
spond to actual and potential human languages.

We do not contend that the model to be presented
here will weakly describe all natural languages without
even the smallest exception. Any such claim for any
model, short of ridiculously powerful models, is
doomed to failure. Human beings taken in their entirety
are general-purpose computers capable of performing
any task that a Turing machine or other general-purpose
computer model can perform, and so humans can
potentially recognize any language describable by any
algorithmic process whatsoever (although sometimes
too slowly to be of any practical concern). The human
language facility appears to be restricted to a much less
powerful computational mechanism. However, since
the additional power is there for purposes other than
language processing, some of this power inevitably will
find its way into language processing in some small
measure. Indeed, we discuss one Dutch construction
that our model cannot handle. We claim that our model
captures most of the known constructions that make
natural language provably not context-free as string
sets, and that it does so with a small addition to the
context-free grammar model. No more grandiose claims
are made.

It is easy to add power to a model, and there are
numerous models that can weakly generate languages
representing all of these noncontext-free constructions.

Computational Linguistics, Volume 15, Number 4, December 1989 251

Walter J. Savitch A Formal Modeli for Context-Free Languages Augmented with Reduplication

However, they all appear to be much too powerful for
the simple problems that extend natural language be-
yond the capacity of context-free grammar. One of the
less powerful of the well-known models is indexed
grammar, as introduced by Aho (1968) and more re-
cently summarized in the context of natural language by
Gazdar (1985). However, even the indexed languages
appear to be much more powerful than is needed for
natural language syntax. We present a model that is
weaker than the indexed grammar model, simpler than
the indexed grammar model, and yet capable of han-
dling all context-free constructs plus reduplication.

A number of other models extend the context-free
grammar model in a limited way. Four models that are
known to be weakly equivalent and to be strictly weaker
than indexed grammars are: the Tree Adjoining Gram-
mars (TAGs) of Joshi (1985, 1987), the Head Grammars
of Pollard (1984), the Linear Indexed Grammars of
Gazdar (1985), and the Combinatory Categorial Gram-
mars of Steedman (1987, 1988). For a discussion of this
equivalence see Joshi et al. (1989). The oldest of these
four models is the TAG grammar of Joshi, and we shall
refer to the class of languages generated by any of these
equivalent grammar formalisms as TAG languages.
However, the reader should keep in mind that this class
of languages could be represented by any of the four
equivalent grammar formalisms. As we will see later in
this paper, there are TAG languages that cannot be
weakly generated by our model. Our model seems to
exclude more unnatural strings sets than these models
do. Of course, our model may also miss some natural
string sets that are TAG languages. Recent work of
Joshi (1989) appears to support our conjecture that the
class of language described by our model is a subset,
and hence a strict subset, of the TAG languages.
However, all the details of the proof have not yet been
worked out, and so any more detailed comparisons to
TAG languages will be left for another paper.

This paper assumes some familarity with the notation
and results of formal language theory. Any reader who
has worked with context-free grammars, who knows
what a pushdown automaton (PDA) is, and who knows
what it means to say that PDAs accept exactly the
context-free languages should have sufficient back-
ground to read this paper. Any needed background can
be found in almost any text on formal language theory,
such as Harrison (1978) or Hopcroft and Ullman (1979).

2 THE R P D A MODEL

The model we propose here is an automata-based model
similar to the pushdown automaton that characterizes
the context-free languages. A formal definition will
follow shortly, but the informal description given now
should be understandable to anybody who has worked
in this area. The model is called a Reduplication PDA, or
more simply an RPDA. It consists of an ordinary PDA
augmented with a special stack symbol, which is de-

noted ~, and a special type of instruction to check for
reduplication. The symbol $ is inserted in the stack just
like any other stack symbol, and the stack grows above
this symbol just as in an ordinary PDA. To check for an
occurrence of a simple reduplication w w , the RPDA
pushe,; $ onto the stack and then pushes the first w onto
the stack symbol by symbol. At that point the stack
contains + with w on top of it, but while the stack
symbols are ordered so that it would be easy to compare
the w in the stack with w n (i.e., w reversed), they are in
the wrong order to compare them with w. To overcome
this; problem an RPDA is allowed, in one step, to
corapare the entire string above the $ to an initial
segment of the remaining input and to do so in the order
starting at the special symbol ~ rather than at the top of
the stack. (The comparison consumes both the stack
contents above the marker ~ and the input with which it
is compared.) One way to view this is to say that the
RPDA can decide to treat the stack above the symbol

like a queue, but once it decides to do so, all that it
can do is empty the queue. The RPDA cannot add to the
queue once it starts to empty it. If the RPDA decides to
check x y to see if x = y, and x does not in fact equal y
(or any initial segment of y), then the computation
block,;. While placing symbols on top of the symbol $,
the stack may grow or shrink just like the stack on an
ordinary PDA. The model allows more than one marker
$ to be placed in the stack, and hence, it can check for

redup!lications nested within reduplications.
Because an RPDA is free to push something on the

stack other than w when processing some input w x , the
model can check not only whether w = x, but also can
check the more general question of whether some
specific finite-state transduction maps w onto x. A
finJite-state transduction is any relation that can be
computed using only a finite-state machine. The finite-
state transductions include all of the simple word-to-
word equivalences used in known reduplication
constructions. For example, for the Swiss-German sub-
ordinate clauses described by Shieber, w is a string of
nouns, marked for either dative or accusative case, and
x is a string of verbs that each select one and only one
of the: cases for their corresponding, cross-serially lo-
cated object noun. The finite-state transduction would
map each noun in the accusative case onto a verb
nondeterministically chosen from the finite set of verbs
that take the accusative case, and would do a similar
thing with nouns in the dative case and their corre-
sponding class of verbs. Without this, or some similar
generality, the only reduplication allowed would be
exact symbols by symbol identity.

The formal details of the definitions are now routine,
but to avoid any misunderstanding, we present them in
some detail.

1. A Reduplication PDA (abbreviated RPDA) consists
of the following items:

(i) A finite set of states S, an element qo in S to serve

252 Computational Linguistics, Volume 15, Number 4, December 1989

Walter J. Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

as the start state, and a finite subset F of S to serve as
the accepting states;

(ii) A finite input alphabet E;
(iii) A finite pushdown store alphabet Fsuch that E C

F, a distinguished symbol Z o in F to serve as the start
pushdown symbol, and a distinguished stack marker ~,
which is an element of F - E ;

(iv) A transition function 8 that maps triples (q, a, Z)
consisting of a state q, an input symbol a, and a
pushdown store symbol Z, onto a finite set of instruc-
tions, where each instruction is in one of the following
two forms:

(1) An ordinary PDA move: (p, p u s h a, A), where p is a
state, a is a string of pushdown symbols, and A is
one of the two instructions + 1 and 0 standing for
"advance the input head" and " d o not advance the
input head , " respectively. (The word " p u s h "
serves no function in the mathematics, but it does
help make the notation more readable.)

(2) A check-copy move: These instructions consist only
of a state p. (As explained in the next two defini-
tions, this is the state of the finite control after a
successful move. A successful move matches that
portion of the stack contents between the highest
marker $ and the top of the stack against an initial
segment of the remaining input and does so in the
right order for checking reduplication.)

2. An instantaneous description (ID) of an RPDA M is a
triple (q, w, 3"), where q is a state, w is the portion of
input left to be processed, and 3' is the string of symbols
on the pushdown store. (The top symbol is at the left
end of 3", which is the same convention as that normally
used for ordinary PDA's.)
3. The next ID relation F is defined as follows:

(t7, aw, Z a) F (q, w, floO, provided (q, p u s h / 3 , + l)
?:ffp, a, Z) ;

(p, aw , Z a) F (q, aw , /3a), provided (q, p u s h / 3 , O)
8(p, a, Z) ;

(p, a x w , Z3" ~ a) F (q, w , a) , provided q E 8 (p, a, Z)
and a x = (Z3,) R, where (Z3') R denotes Z3" written
backwards (so the a matches the symbol just above
the stack marker $. Note that Z3' cannot contain the
symbol $, because $ is not in the input alphabet).

As usual, F* denotes the reflexive-transitive closure of
F. Notice that the relation F is not a function. A given ID
may have more than one next ID, and so these machines
are nondeterministic.

4. An RPDA is said to be deterministic provided that
(p, a, Z) contains at most one element for each triple

(p, a, Z).
5. The language accepted by the RPDA M by final

state is defined and denoted as follows: L(M) = { w I (qo,
w, Z) F* (/9, A, 3") for some p E F, 3" E F*}, where q0 is
the start state and F is the set of accepting states. (A is
used to denote the empty string.) I f a language is
accepted by some RPDA by final state it is called an
RPDA language. If a language is accepted by some

deterministic RPDA by final state, then it is called a
deterministic RPDA language.

6. The language accepted by the RPDA M by empty
store is defined and denoted as follows: N(M) = { w I (qo,
w, Z) F* (p, A, A) for some p ~ S}.

As in the case of ordinary PDAs, it turns out that for
RPDAs acceptance by empty store is equivalent to
acceptance by final state. The proof is essentially the
same as it is for PDAs and so we will not repeat it here.
The formal statement of the result is our first theorem.

Theorem 1. A language L is accepted by some RPDA
by final state if and only if it is accepted by some
(typically different) RPDA by empty store.

As with ordinary PDAs, and for the same reasons,
Theorem 1 does not hold for deterministic RPDAs.

3 EXAMPLES AND COMPARISON TO OTHER CLASSES

We next explain how RPDAs can be constructed to
accept each of the following sample languages.

Examples of RPDA languages.
L o = { w w l w E { a , b } * }
L 1 = { w c w l w E {a, b} *}
L 2 = {wh(w) l w E {a, b} *}
where h is the homomorphism h(a) = c and h(b) =
dde .

L 3 = { w x w I w ~ {a, b} * and x E {c, d} *}

L4 = {al Wl Wl a2 w2 w2""an w n w n a n a n an_ I .-.a I I a l e
{a, b}, w i g {c, d} *}
L5 = {XlCX2 c . . .cx n ca n a , _ j ...a I I a i ~ {a, b} , x i E {a,
b}*, x i is of the form w w if and only if ai = b}

L 6 = {x! c x 2 c . . .cx n ca I a 2 ...an I ai ~ {a, b}, x i E {a,
b}*, xi is of the form w w if and only if a i = b}

L 0 is the simplest possible reduplication language. To
accept this language, all that an RPDA need do is to
insert the marker $ into the stack, copy symbols into
the stack, guess when it has reached the midpoint, and
then perform a check-copy move. If the center of the
string is marked with a punctuation symbol, then the
RPDA can be deterministic, so L~ is a deterministic
RPDA language.

The language L2 illustrates the fact that reduplication
need not be symbol-by-symbol identity. The RPDA to
accept L 2 is similar to the one .that accepts Lo, except
that on reading an a it pushes a c into the stack instead
of an a, and on reading a b it pushes e d d on the stack
instead of b.

L 3 illustrates the fact that reduplication may be
checked despite the intervention of an arbitrarily long
string. The construction of the RPDA is easy.

The language L 4 illustrates the facts that reduplica-
tion can be checked any number of times and that these
checks may be embedded in a context free-like con-
struction. To accept L 4 an RPDA would push a~ and
then $ onto the stack and proceed to check for a
reduplication w~ w~ as described for L o. If such a w~ w~
is found, that will leave just a~ on the stack. The RPDA
next pushes $ a 2 on the stack (the $ is on top of the a2)

Computational Linguistics, Volume 15, Number 4, December 1989 253

Walter J. Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

and checks for w 2 w 2. After processing an initial input
string of the form

a 1 w t w I a2 w2 w2 ""an Wn Wn

the stack will contain a~ an_ I ...at with a,, on top of the
stack. It can then easily che~k for the occurrence of a
matching ending a~ an_ l ...al. (It is also easy to check
for an ending in the reduplicating order al a2 ""an using
the techniques discussed below for L6.)

L 5 and L 6 illustrate the fact that reduplication can be
used as a distinguishable feature to carry some syntactic
or semantic information. For example, the reduplicated
strings might be nouns and the reduplication might be
used to indicate a plural. The string of ais might be
agreeing adjectives or verbs or whatever. L 5 using the
mirror image construction is not meant to be typical of
natural language but merely to illustrate that the redu-
plication might be embedded in some sort of phrase
structure. L 6 shows that the RPDA model can obtain the
same language with cross-serial dependency instead of
mirror imaging.

To accept L 6 the RPDA needs to have two marker
symbols $ in the stack at one time. To accept L 6 a n

RPDA would push the marker ~ on the stack. This first
marker will eventually produce the stack contents

(1) a~ a n - i ""al ~ (the top is on the left)
which it then compares to the ending string a~ a 2 ...a~.
To construct this string in the stack, it guesses the a~
and uses a second marker to check its guesses. For
example, if the RPDA guesses that a~ = b then it pushes
a~ = b onto the stack and proceeds to check that Xl is a
reduplication string. To do this it pushes another marker

onto the stack and checks x I in the way described for
L o and other languages. If x~ does not check out, then
the computat ion aborts. If x t does check out, the stack
contains a 1 ~, (the top is on the left) and the RPDA then
guesses a 2. Say it guesses that a 2 ----- a and hence must
check that a 2 is no t of the form w w . The RPDA then
pushes a 2 onto the stack and performs the check. One
straightforward way to perform the check is to push a
marker ~ on the stack and then read the first half of x2
guessing at where it differs from the second half. The
RPDA pushes its guess of the second half on the stack.
If the RPDA correct ly guesses the second half and if it
ensures that it guesses at least one difference from the
first half, then x2 checks out. If x2 checks out, then the
stack will contain a 2 a l $ after all this. Proceeding in
this way, the RPDA obtains the stack contents shown in
(1) and then performs a final check-copy move to see if
it matches the rest of the input string.

By examining these examples it is easy to see how an
RPDA could deal with the reduplication constructions
from natural language that were mentioned in the intro-
duction. For example, in the Swiss-German subordinate
clause construction, an RPDA would first push the
stack marker ~ onto the stack, then it would read the
list of nouns, then for each noun it would nondetermin-
istically choose a verb that requires the case of that
noun. It would then push the chosen verb onto the

stack, and when it reaches the list of verbs it would
perform a check-copy move. Hence RPDAs seem ca-
pable of weakly generating languages that exhibit the
properties that keep many natural languages from being
context-free. As the next result indicates, their power is
strictly between the context-free grammars and the
indexed grammars. Most of the theorem is easy to
prove, given known results. However , a proof that
there is an indexed language that is not an RPDA
language will have to wait until later in this paper when
we will prove that the indexed language {anbnc n I n >- 0 }
is not an RPDA language.

Theorem 2. Context-Free Languages C RPDA Lan-
guages C Indexed Languages (and the inclusions are
proper)

Partial proof. The first inclusion follows from the
definitions. To see that the inclusion is proper recall that
{ ww I w E {a, b} *}, which is well known to not be
context-free, is an RPDA language. The second inclu-
sion follows from the fact that an RPDA can be simu-
lated by a one-way stack automaton, and all languages
accepted by one-way stack automata are indexed lan-
guages, as shown in Aho (1969). The proof that there is
an indexed language that is not an RPDA language will
be proven in a later section of this paper.V1

4 VARIATIONS ON THE R P D A MODEL

There are a number of variations on the RPDA model
that one might try. One tempting variant is to replace
the check-copy move with a stack-flipping move. This
variant would allow the entire stack contents above the
marker ~ to be flipped so that, in one move, the
pushdown-store contents a ~ T would change to c~ $ T.
(The " t o p " is always the left end.) This would allow the
machine to check for reduplication. However , it also
allows the machine to check for everything else. This
flipping stack variant is equivalent to a Turing machine
because it can simulate a Turing machine tape by
continuaUy flipping the stack and using its finite control
to " r o t a t e " to any desired stack position. For example,
af'~ ~, 'y can be transformed into f la $ T by moving one
symbol at a time from the top of the stack to just above
the n~tarker $. The top symbol is moved by remember-
ing the symbol in the finite-control, flipping the stack,
placing the remembered symbol on the stack, and
flipping again.

One way to avoid the "Tur ing tar pi t" in this flipping
stack variant would be to deprive the machine of its
stack marker $ after a flip. This would appear to limit
the number of flips and so prevent the Turing machine
simulation outlined. However , a nondeterministic ma-
chine; could simply place a large supply of markers in
the stack so that when one was taken away another
would be at hand. To foil this trick, one might limit that
machine to one stack marker, but this would restrict the
machine so that it cannot naturally handle reduplica-
tions nested inside of reduplications. In Section 8,

254 Computational Linguistics, Volume 15, Number 4, December 1989

Walter J. Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

RPDAs with only a single marker (and possessing one
other restriction at the same time) are studied. That
section concludes with a discussion of why some natu-
ral language constructs appear to require multiple mark-
ers.

When using a copy-check move, an RPDA can read
an arbitrarily long piece of input in one move. This
definition was made for mathematical convenience. A
realistic model would have to read input one symbol per
unit time. However, the formal model does not seri-
ously misrepresent realistic run times. If the model were
changed to read the input one symbols at a time while
emptying the stack contents above the marker, then the
run time would at most double.

5 CLOSURE PROPERTIES

The next two theorems illustrate the fact that RPDA
languages behave very much like context-free lan-
guages. The proofs are straightforward generalizations
of well-known proofs of the same results for context-
free languages. Using the PDA characterization of con-
text-free languages and the proofs in that framework,
one need do little more than replace the term "PDA" by
"RPDA" to obtain the corresponding results for RPDA
languages.

Theorem 3. The class of RPDA languages is closed
under the following operations: intersection with a
finite-state language, union, star closer, and finite-state
transduction (including the special cases of homomor-
phism and inverse homomorphism).

Theorem 4. The class of deterministic RPDA lan-
guages is closed under the operations of intersection
with a finite-state language and complement.

One detail of the proof of Theorem 3 does merit some
mention. It may not, at first glance, seem obvious that
the class of RPDA languages is closed under intersec-
tion with a regular set, since the proof that is usually
used for ordinary PDAs does not carry over without
change. In the ordinary PDA case, all that is needed is
to have a finite-state machine compute in parallel with
the PDA. In the case of an RPDA this is a bit more
complicated, since the RPDA does not read its input
symbol by symbol. In a check-copy move, an RPDA
can read an arbitrarily long string in one move. How-
ever, the finite-state control can easily keep a table
showing the state transitions produced by the entire
string above the marker $. When a second ~ is inserted
into the stack, the old transition table is stored on the
stack and a new transition table is started. The other
details of the proof are standard.

Theorem 3 implies that the class of RPDA languages
is a full AFL (Abstract Family of Languages), which in
some circles invests the class with a certain respectabil-
ity. This is because such closure properties determine
much of the character of well-known language classes,
such as context-free languages and finite-state lan-

guages. (A Full AFL is any class of languages that
contains at least one nonempty language and that is
closed under union, A-free concatenation of two lan-
guages, homomorphism, inverse homomorphism, and
intersection with any finite-state language. See Salomaa
1973, for more details.)

The notion of a finite-state transduction is important
when analyzing pushdown machines. If a finite-state
control reads a string of input while pushing some string
onto the stack (without any popping), then the string in
the stack is a finite-state transduction of the input string.
Unfortunately, the concept of a finite-state transduction
is fading out of the popular textbooks. We will therefore
give a brief informal definition of the concept.

Definition. A finite-state transducer is a nondetermin-
istic finite-state machine with output. That is, it is a
finite-state machine that reads its input in a single
left-to-right pass. In one move it does all of the follow-
ing: either read a symbol or move without consuming
any input (called moving on the empty input) and then,
on the basis of this symbol or the empty input, as well
as the state of the finite-state machine, it changes state
and outputs a string of symbols. (If, on first reading, you
ignore moving on the empty string, the definition is very
easy to understand. Moving on the empty string simply
allows the transducer to produce output without reading
any input.) There is a designated start state and a set of
designated accepting states.

In a computation of a finite-state transducer there is
an output string consisting of the concatenation of the
individual strings output, but not all output strings are
considered valid. The computation begins in the start
state and is considered valid if and only if the compu-
tation ends in one of a designated set of accepting
states. A string y is said to be a finite-state transduction
of the string x via the finite-state transducer T provided
that there is a valid computation of T with input x and
output y.

To motivate the following definition, consider chang-
ing a language so that plurals are marked by reduplica-
tion. For example, in English "papers" would change
to "paperpaper." A sentence such as "Writers need
pens to survive" would change to "Writerwriter need
penpen to survive." This change of English can be
obtained by first replacing all plural nouns with a special
symbol (a in the definition) and then performing a
reduplication substitution as described in the definition.
If the change were other than an exact copy, it would
still satisfy the definition provided that a finite-state
machine could compute the approximate copy. This
operation allows us to take a language and introduce
reduplication in place of any suitably easily recognized
class of words and so obtain a language that uses
reduplication to mark that class. The following theorem
says that RPDA languages are closed under these sorts
of operations.

Definition. Let L be a language, a a symbol, and T a
finite-state transduction. Define the language L' to

Computational Linguistics, Volume 15, Number 4, December 1989 255

Walter J. Savitch A Formal ldodd for Context-Free Languages Augmented with Reduplication

consist of all strings w that can be written in the form
Xo Yo xl Yl ""Xn -1 Yn - I Xn where

(i) each xi contains no a, s
(ii) Xo ax l a ""Xn - I a x , E L , and
(iii) each Yi is of the form vv ' where v' is a finite-state
transduction of v via T.

A language L ' , obtained in this way, is called a redupli-
cation substitution of the language L via T by substituting
reduplication strings for a. More simply, L ' is called a
reduplication substitution of L provided there is some
symbol a and some such finite-state transduction T such
that L ' can be obtained from L in this way.

Theorem 5. I f L ' is a reduplication substitution of a
context-free language, then L ' is an RPDA language.

Among other things, Theorem 5 says that if you add
reduplication to a context-free language in a very simple
way, then you always obtain an RPDA language. In
Section 8, we will prove a result that is stronger than
Theorem 5 and so we will not present a proof here.

6 NoNRPDA LANGUAGES

To prove that certain languages cannot be accepted by
any RPDA, we will need a technical lemma. Despite the
messy notation, it is very intuitive and fairly straight-
forward to prove. It says that if the stack marker ~ is
used to check arbitrarily long reduplications, then these
reduplications can be pumped up (and down). For
example, suppose an RPDA accepts a string of the form
u s s t and does so by pushing $, then s onto the stack,
and then matching the second s by a check-copy move.
It must then be true that, if s is long enough, then s can
be written in the form s I s 2 s 3 and for all i > 0, the RPDA
can do a similar pushing and checking of sls2gs3 to
accept U S I S 2 i S 3 S 1 S2 i s3t.

Pumping Lemma 1. For every RPDA M, there is a
constant k such that the following holds. If l ength(s) >

k and
(Pl, rst , ~ [3) F* (P2, st , s n $ fl) F (P3, t, ~),

where the indicated string $/3 is never disturbed, then
r and s may be decomposed into r = r~ rE r3 and s =
s~ s2 s3, such that s2 is nonempty and for all i - O, (pl,
r I rE i r 3 s I Sz i S 3 t, $ /3) F* (P2, S1 Sz i S3 t, (S I $2 i S3) R ~¢ /3)
I- (P3, t, /3).

Proof. Without loss of generality, we will assume that
M pushes at most one symbol onto the stack during
each move. Let k be the product of the number of states
in M and the number of stack symbols of M. Consider
the subcomputat ion

(191, rs t , $/3) F* (P2, st , s R ~ /3)
Let s = a~a 2 ... a m where the a i are single symbols and
m > k. Let q~, q2 qm be the state of M after it places
this occurrence of ai onto the stack so that, after this
point, ag is never removed from the stack until after this
subcomputation. Since m > k, there must be i < j such
that a i = aj and qg = qj . Set

$2 : a i + 1 a i + 2 . . . a j

and then define s 1 and s 3 by the equation s = sl s,2 s3.
Define r z to be the portion of input consumed while
pushing s2 onto the stack, and then define r~ and r 3 by
the equation r = r 1 r z r 3. It is then straightforward to
show that the conclusion of the lemma holds.[]

Our second pumping lemma for RPDAs draws the
same conclusion as a weak form of the pumping lemma
for context-free languages. Since the pumping lemma
for context-free languages will be used in the proof of
the second pumping lemma for RPDAs, we reproduce
the context-free version for reference.

Weak Pumping Lemma for CFLs. If L is a context-
free language, then there is a constant k, depending on
L, :such that the following holds: If z E L and l eng th (z)

> k, then z can be written in the form z = u v w x y where
either v or x is nonempty and uv g w x i y E L for all i -> 0.

The following version of the pumping lemma for
RPDAs makes the i den t i ca l conclusion as the above
pumping lemma for context-free languages.

]Pumping Lemma 2. If L is an RPDA language, then
there is a constant k, depending on L, such that the
following holds: If z E L and l eng th (z) > k, then z can
be written in the form z = u v w x y , where either v or x is
nonempty and lgV i W X i y E L for all i -> 0.

Proof. Let M be an RPDA accepting L and let k be as
in the Pumping Lemma 1. We decompose L into two
languages so that L = L 1 U L 2. Define L 1 to be the set
of all strings z in L such that the Pumping L emma 1
applies to at least one accepting computat ion on z. In
other words, z is in LI if and only if there is a
computation of M of the form

(qo', Z, Zo) F* (Pl, rst , $ fl) F* (P2, s t , s n $ [3) F

(P3., t, /3) F* (pf, A, T)
where qo is the start state, pf is an accepting state, and
l ength(s) > k. By Pumping Lem m a 1, it follows that the
conclusion of Pumping Lemma 2 applies to all strings in
L 1. (In this case we can even conclude that x-is always
nonempty. However , we will not be able to make such
a conclusion for strings in L2.)

L 2 is defined as the set of all strings accepted by a
particular ordinary PDA M 2 that simulates many of the
computations of the RPDA M. Define M2 to mimic the
computation of M but to buffer the top k + 1 symbols of
the stack in its finite-state control, and make the follow-
ing modifications to ensure that it is an ordinary PDA: if
M2 has to mimic a check-copy move that matches k or
fewer symbols above the marker $, it does so using the
stack buffer in its finite-state control. If M2 ever needs
to mimic a check-copy move that matches more than k
stack symbols above the $, it aborts the computat ion in
a nonaccepting state. M 2 can tell if it needs to abort a
computation by checking the finite stack buffer in its
finite-state control. If the buffer contains k + 1 symbols
but no marker $, and if M would do a check-copy
move, then ME aborts its computation.

By definition, L = L~ U L 2 . (The sets L~ and L 2 need

256 Computational Linguistics, Volume 15, Number 4, December 1989

Waiter J. Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

not be disjoint, since M may be nondeterministic, and
hence, a given string may have two different accepting
computations. However, this does not affect the argu-
ment.) Because it is accepted by an ordinary PDA, L 2 is
a context-free language, and the Pumping Lemma for
context-free languages holds for it and some different k.
Hence, by redefining k to be the maximum of the ks for
LI and L2, we can conclude that the Pumping Lemma 2
holds for L = L~ U L2 and this redefined k.[~

The next theorem and its proof using the pumping
lemma illustrates the fact that RPDAs, like context-free
grammars, can, in some sense, check only "two things
at a time."

Theorem 6. L = {a nb n c n l n _ > 0 } i s n o t a n R P D A
language.

Proof. Suppose L is an RPDA language. We will
derive a contradiction. By Pumping Lemma 2, there is a
value of n and strings u, v, w, x, and y such that a n b n c n
= u v w x y with either v or x nonempty and such that uv i

w x i y E L for all i > 0. A straightforward analysis of the
possible cases leads to the conclusion that uv 2 w x 2 y is
not in L, which is the desired contradiction.if]

Since it is known that the language L in Theorem 6 is
a TAG language, and since the TAG languages are
included in the indexed languages, we obtain the follow-
ing corollaries. The second corollary is the promised
completion of the proof of Theorem 2.

Corollary. There is a TAG language that is not an
RPDA language.

Corollary. There is an indexed language that is not an
RPDA language.

There are many versions of the pumping lemma for
context-free languages. (See Ogden 1968; Harrison
1978; Hopcroft and Ullman 1979.) Most versions make
the additional conclusion that l e n g t h (v w x) <- k. Often
one can prove that a language is not context-free
without using this additional conclusion about the
length of vwx . In other words, we can often prove that
a language is not context-free by using only the weak
form of the pumping lemma given above. One such
language is the one given in Theorem 6. If you review
the proof of Theorem 6, then you will see that all we
needed was the Pumping Lemma 2. Moreover, that
pumping lemma has the identical conclusion as that of
the Weak Pumping Lemma for context-free languages.
This leads us to the following informal metatheorem:

Metatheorem. If L can be proven to not be context-
free via the Weak Pumping Lemma for CFLs, then L is
not an RPDA language.

This is not an official theorem since the phrase "via
the Weak Pumping Lemma" is not mathematically
precise. However, the metatheorem is quite clear and
quite clearly valid in an informal sense. It can be made
precise, but that excursion into formal logic is beyond
the scope of this paper.

To see the limits of this metatheorem, note that the
language { w w I w ~ {a, b} *} is an RPDA language, and
so to prove that it is not a context-free language, we
should need more than the Weak Pumping Lemma.
Indeed, one cannot get a contradiction by assuming
only that the Weak Pumping Lemma applies to this
language. A proof that this language is not context-free
must use some additional fact about context-free lan-
guages, such as the fact that we can assume that
l eng th (vw x) <_ k, where v w x is as described in the
pumping lemma.

The metatheorem is another indication that the
RPDA languages are only a small extension of the
context-free languages. If it is easy to prove that a
language is not context-free (i.e., if the language is
"very noncontext-free"), then the language is not an
RPDA language either.

7 A CONSTRUCTION MISSED BY THE MODEL

As we have already noted, both Dutch and Swiss-
German contain constructions consisting of a string of
nouns followed by an equal (or approximately equal)
number of verbs. Hence these languages contain sub-
strings of the form

N l N 2 . . .N n V , V 2 ...V,,
In the case of Swiss-German, additional agreement
rules suffice to show that these constructions are be-
yond the reach of context-free grammar, although not
beyond the reach of RPDAs. (See the discussion of
Shieber 1985 earlier in this paper.) Because Dutch lacks
the strong agreement rule present in Swiss German, the
same proof does not apply to Dutch. Manaster-Ramer
(1987) describes an extension of this construction within
Dutch and argues that this extension takes Dutch be-
yond the weak generative capacity of context-free
grammar. Although we are admittedly oversimplifying
the data, the heart of his formal argument is that two
such strings of verbs may be conjoined. Hence, Dutch
contains substrings that approximate the form

N l N2 ...Nn VI V2 ...Vn en (' and ') V i V2 ""Vo
The Dutch data support only the slightly weaker claim
that the number of nouns is less than or equal to the
number of verbs. Hence, Manaster-Ramer's argument
is, in essence, that Dutch contains a construction simi-
lar to the following formal language:

g = { a i l ~ c J l i ~ j }

He uses this observation to argue, via the Pumping
Lemma for Context-Free Languages, that Dutch is not
a context-free language. A careful reading of his argu-
ment reveals that, with minor alterations, the argument
can be made to work using only the Weak Pumping
Lemma. Hence by the metatheorem presented here (or
a careful review of his proof), it follows that his argu-
ment generalizes to show that the language L is not an
RPDA language. Hence, if one accepts his data, the
same argument shows that Dutch is not an RPDA
language.

Computational Linguistics, Volume 15, Number 4, December 1989 257

Walter J. Savitch A Formal Mode~ for Context-Free Languages Augmented with Reduplication

The RPDA model could be extended to take account
of this and similar natural language constructions
missed by the model. One possibility is simply to allow
the RPDA to check an arbitrary number of input strings
to see if they are finite-state transductions of the string
above the marker $. There are a number of ways to do
this. However, it seems preferable to keep the model
clean until we have a clearer idea of what constructions,
other than reduplication, place natural language beyond
the reach of context-free grammar. The RPDA model,
as it stands, captures the notion of context-free gram-
mar plus reduplication, and that constitutes one good
approximation to natural language string sets.

8 REDUPLICATION GRAMMARS

Although we do not have a grammar characterization of
RPDA languages, we do have a grammar class that is an
extension of context-free grammar and that is adequate
for a large subclass of the RPDA languages. The model
consists of a context-free grammar, with the addition
that the right-hand side of rewrite rules may contain a
location for an unboundedly long reduplication string of
terminal symbols (as well as the usual terminal and
nonterminal symbols).

Definition. A reduplication context-free grammar
(RCFG) is a grammar consisting of terminal, nontermi-
nal, and start symbols as in an ordinary context-free
grammar, but instead of a finite set of productions, it
has a finite set of rule schemata of the following form:
(A --~ ct, T) where A is a nonterminal symbol, a is a
string of terminal and/or nonterminal symbols, and
where T is a finite-state transducer. (Thus, A ~ a is an
ordinary context-free rule, but it will be interpreted
differently than normal.)

The production set associated with the schema (A --~
a, T) is the set of all context-free rules of the form: A --*
ww'ct, where w is a string of terminal symbols, and w' is
obtained from w by applying the finite-state transduc-
tion T to the string w.

The next step relation f f for derivations is defined as
follows:

a ~ /3 if there is some context-free rule in some
production set of some rule schema of the grammar
such that a ~ /3 via this rule in the usual manner for
context-free rewrite rules. As usual, ~ is the reflexive-
transitive closure of ~ .

The language generated by an RCFG, G, is defined
and denoted in the usual way: L(G) = { w L w a string of
terminal symbols and S ~ w}, where S is the start
symbol.

Notice that an RCFG is a special form of infinite
context-free grammar. It consists of a context-free
grammar with a possibly infinite set of rewrite rules,
namely the union of the finitely many production sets
associated with the schemata. However, there are very
severe restrictions on which infinite sets of productions
are allowed. Also notice that RCFGs generalize con-

text-free grammars. If we take T to be the transduction
that accepts only the empty string as input and output,
then the set of productions associated with the schema
(A -~ ct, I) consists of the single context-free production
A -~ a. In particular, every context-free grammar is
(except for notational detail) an RCFG.

Recall that a context-free grammar in Greibach Nor-
mal Form is one in which each production is of the form

A --~ act
where a is a terminal symbol and ct is a string consisting
entirely of nonterminals. It is well known that every
context-free language can be (weakly) generated by a
context-free grammar in Greibach Normal Form. The
schemata described in the definition of RCFGs have
some similarity to context-free rules in Greibach Nor-
mal Form, except that they start with a reduplication
string, rather than a single terminal symbol, and the
remaining string may contain terminal symbols. Also
the leading reduplication string may turn out to be the
empty string. Thus, these are very far from being in
Greibach Normal Form. Yet, as the proof of the next
result shows, the analogy to Greibach Normal Form can
sometimes be productive.

Theorem 7. If L is a reduplication substitution of a
context-free language, then there is an RCFG G such
that L = L(G).

Proof. Let G' be a context-free grammar, T a finite-
state transduction and a a symbol such that L is
obtained from L(G') via T by substituting reduplication
strings for a. Without loss of generality, we can assume
that G' is in Greibach Normal Form. The RCFG G
promised in the theorem will be obtained by modifying
G'. To obtain G from G' we replace each G' rule of the
form

A --~ aA 1 A 2 ...A n,
where a is the symbol used for the reduplication substi-
tution, by the schema

(A --~ Al A2 ""An, T)
The remaining rules of G' are left unchanged except for
the technicality of adding a finite-state transduction that
accepts only the empty string as input and output, and
so leaves the rule unchanged for purposes of generation.
A routine induction then shows that the resulting RCFG
G is such that L(G) = L.[3

Parsing with an RCFG does not require the full
power of an RPDA, but only requires the restricted type
of R]PDA that is described next.

Definition. A simple RPDA is an RPDA such that, in
any computation:

(i) there is at most one occurrence of the marker $ in
the stack at any one time, and

(ii) as long as the marker symbol $ is in the stack, the
RPDA never removes a symbol from the stack.

More formally, an RPDA M is a simple R P D A
provided that the following condition holds: if the
instruction (p, push a, A) E 8(q, a, Z) can ever be used

258 Computational Linguistics, Volume 15, Number 4, December 1989

Walter J . Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

when $ is in the stack, then a = /3 Z for some/3 and
does not occur in a.
Like Theorem 1, the following equivalence for simple

RPDAs is trivial to prove by adapting the proof of the
same result for ordinary PDAs.

Theorem 8. A language L is accepted by some simple
RPDA by final state if and only if it is accepted by some
(typically different) simple RPDA by empty store.

The next theorem says that RCFGs are equivalent to
simple RPDAs.

Theorem 9. For any language L, L is generated by
some RCFG if and only if L is accepted by some simple
RPDA.

Proof. Suppose that G is an RCFG such that L =
L(G). We can construct a simple RPDA that accepts
L(G). All we need do is adapt the standard nondeter-
ministic top-down algorithm for accepting a context-
free language by empty store on an ordinary PDA. We
then obtain a simple RPDA that accepts L(G) by empty
store. The details follow.

The RPDA starts with the start nonterminal in the
stack and proceeds to construct a leftmost derivation in
the stack. If a nonterminal A is on the top of the stack,
then it nondeterministically chooses a schema (A ---> a,
T) and does all of the following:

1. Pops A and pushes a. (As usual, the symbols of a go
in so the leftmost one is on the top of the stack.)

2. Pushes the marker symbol $ onto the stack.
3. Nondeterministically advances the input head past

some string w while simultaneously computing a
string w' such that w' is a finite-state transduction of
w via T. The string w' is pushed onto the stack as it
is produced.

4. Executes a check-copy move to verify that w' is an
initial segment of the remaining input, thereby also
using up the input w'.

If the top symbol is a terminal and there is no ~ in the
stack, then it simply matches the stack symbol to the
input symbol, consuming both the stack symbol and the
input symbol.

A routine induction shows that the RPDA accepts
exactly the language L = L(G).

Conversely, suppose that M is a simple RPDA such
that L(M) = L. Without loss of generality, we will
assume that M always pushes at least one symbol on the
stack after pushing the marker symbols $, that every
marker symbol $ on the stack is eventually used in a
copy-check move, and that the marker symbol ~ is not
left in the stack at the end of any accepting computa-
tion. We reprogram M to obtain an ordinary PDA M'
that accepts a different but related language L' . M ' is
defined as follows: M' has all the input symbols of M
plus one new symbol, denoted <q, p > , for each pair of
M states (q, p). Intuitively, a new symbol <q, p > is
used to stand in for a reduplication string that M would
process starting in state q and ending up in state p after

a successful check-copy move. M' mimics M step by
step as long as M would not have the marker $ in the
stack and as long as the input is not one of the new
symbols <q, p > . I f M ' reads a new symbol <q, p > , and
M' is simulating M in the state q, then M' guesses an
input symbol a of M and simulates M on input a. If M
would consume the input symbol a without pushing the
marker ~ on the stack, then M' aborts its computation.
If M would eventually push the marker $ on the stack
while scanning (and possibly consuming) a, then M'
continues to simulate M, guessing additional input sym-
bols for M until it needs to simulate M performing a
check-copy move. At this point it assumes that the
check-copy move succeeds. If that simulated check-
copy move leaves the simulated M in the simulated state
p, then M' consumes <q, p > and continues the simu-
lation of M. If any of these conditions are not met, then
M' simply aborts its computation.

Remember that, intuitively, a new symbol <q, p > is
used to stand in for a reduplication string that M would
process starting in state q and ending up in state p after
a successful check-copy move. For any state q in which
M would push ~ on the stack, M will go on to push a
finite-state transduction of the input onto the stack until
it wants to execute a check-copy move. Let T(q, p) be
that finite-state transducer with start state q and the
single accepting state p such that T simulates M starting
in state q and pushing symbols on the stack and such
that M accepts if and only if it ends the simulation in a
state that allows a check-copy move that will leave M in
state p. (Aside from start and accepting state, all the
T(q, p) are essentially the same transducer.) Now, M'
accepts some context-free language L ' with the follow-
ing property:

(A) Suppose x o < ql, Pl > Xl < q2, P2 > X2 "'"
< q., q. > X. is such that each x; contains no new
symbols and suppose that the strings u i and
v; (i <-- n) are such that each vi is a finite-state
transduction of ui by T (qi, Pi). Under these as-
sumptions, x 0 < q~, p~ > x~ < q2, P2 > X2""< q,,, qn
> x. E L' = L (M') if and only i f x 0 ul vl xl u2 v2
• ..u, v, x~ E L(M)

Finally let G' be a context-free grammar in Greibach
Normal Form for the context-free language L ' . Con-
struct an RCFG, G, as follows:

(i) For each rule of G' of the form A ~ < q, p > A l
A 2 ... A n add the following schema to G:

(A ~ A l A 2 ... An, T(q, p))
(ii) For all other rules of G' simply add the rule to G

unchanged (except for cosmetic changes in notation to
make them look like schemata).

By (A) and a routine induction it follows that L(G) =
L(M).O

Theorem 9 makes simple RPDAs sound better be-
haved than regular RPDAs and if there were no evi-
dence to the contrary, the weaker model would be
preferred. However , the fact that natural languages can

Computational Linguistics, Volume 15, Number 4, December 1989 259

Walter J. Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

have complicated phrase structures embedded within a
reduplication construction indicates that simple RPDAs
may not be adequate for natural language syntax. If one
assumes a language like English but with syntactic
gender, strong agreement rules, and a well-behaved use
of respectively, then one can easily see why one might
want more power than that provided by a simple RPDA.
An example of a kind of sentence that seems beyond the
reach of simple RPDAs is the following:

Tom, who has had three wives, Sally, who has had
seven husbands, Mary, who lost John, Hank, and
Sammy to cancer, heart disease, and stroke, respec-
tively, and Frank, who had only one wife and lost her
last January, are a widower, widow, widow, and
widower, respectively.

The natural way to handle these sorts of sentences with
an RPDA is to have two markers + in the stack at once,
and we conjecture that a single marker will not suffice.

English does not have the syntactic gender and
strong agreement rules that would allow us to prove, via
this construction, that English is not context-free. We
merely put it forth as an example of a potential natural
language situation.

9 SUMMARY

We have seen that the RPDA model is very similar to
the PDA characterization of context-free languages.
Thus from an automata theoretic point of view, RPDA
languages are very much like context-free languages.
We have seen that both classes have similar closure
properties, and so they are similar from an algebraic
point of view as well. Moreover, the context-free lan-
guages and the RPDA languages have similar pumping
lemmas that exclude many of the same unnatural lan-
guage sets and even exclude them for the same reasons.
Hence, the class of RPDAs are only mildly stronger
than context-free grammars. However, the model is
sufficiently strong to handle the many reduplication
constructions that are found in natural language and that
seem to place natural language outside of the class of
context-free languages. The RPDA languages do not, as
yet, have a grammar characterization similar to that of
context-free grammar, but the RCFG grammars are
context-free like grammars that do capture at least a
large subclass of the RPDA languages.

ACKNOWLEDGMENTS

This research was supported in part by NSF grant DCR-8604031. Bill
Chen and Alexis Manaster-Ramer provided a number of useful
discussions on this material. A preliminary version of this work was
presented at the Workshop on Mathematical Theories of Language,
LSA Summer Institute, Stanford University, Summer 1987. Com-
ments of the workshop participants, particularly those of Aravind
Joshi, K. Vijay-Shanker, and David Weir, helped shape the current
version of this work. A number of remarks by two anonymous
referees also help in the preparation of the final draft of this paper. I
express my thanks to all these individuals for their help in this work.

REFERENCES

Aho, Alfred V. 1968 Indexed Grammars--an Extension to Context
Free Grammars. Journal of the Association for Computing Ma-
chinery 15: 647-671.

Aho, Alfred V. 1969 Nested-Stack Automata. Journal of the Associ-
ation for Computing Machinery 16: 383-406.

Bar-HiUel, Y. and Shamir, E. 1964 Finite State Languages: Formal
Representations and Adequacy Problems. In: Bar-Hillel, Y. (ed.),
Language and Information. Addison-Wesley, Reading, MA: 87-98.

Bre, snan, J.; Kaplan, R. M.; Peters, S. and Zaenen, A. 1982 Cross-
Serial Dependencies in Dutch. Linguistic Inquiry 13: 613-635.

Culy, Christopher 1985 The Complexity of the Vocabulary of Bam-
bara. Linguistics and Philosophy 8: 345-351.

Gazdar, Gerald 1985 Applicability of Indexed Grammars to Natural
Languages, Report No. CSLI-85-34. Center for the Study of
Language and Information. Palo Alto, CA.

Gazdar, Gerald and Pullum, Geoffrey K. 1985 Computationally Rel-
evant Properties of Natural Languages and their Grammars. New
Generation Computing 3: 273-306.

Harrison, Michael A. 1978 Introduction to Formal Language Theory.
Addison-Wesley, Reading, MA.

Hopcroft, John E. and Ullman, Jeffrey D. 1979 Introduction to
Automata Theory, Languages, and Computation. Addison-Wes-
ley. Reading, MA.

Huybregts, M. A. C. 1976 Overlapping Dependencies in Dutch.
Utrecht Working Papers in Linguistics l: 24-65.

Joshi, Aravind K. 1985 Tree Adjoining Grammars: How Much
Context-Sensitivity is Required to Provide Reasonable Structural
Descriptions? In: Dowty, D. R.; Karttunen, L. and Zwicky, A. M.
(eds.), Natural Language Processing: Psycholinguistic, Compu-
tational, and Theoretic Perspectives. Cambridge University Press,
New York, NY.

Joshi, Aravind K. 1987 An Introduction to Tree Adjoining Grammars.
In: Manaster-Ramer, A. (ed.), Mathematics of Language. John
Benjamins, Philadelphia, PA: 87.

Joshi, Aravind K. 1989 Processing Crossed and Nested Dependen-
cies: An Automaton Perspective on the Psycholinguistic Results.
Preprint, Department of Computer and Information Sciences,
University of Pennsylvania, Philadelphia, PA.

Joshi, Aravind K.; Vijay-Shanker, K. and Weir, D. J. 1989 The
Convergence of Mildly Context-Sensitive Grammar Formalisms.
Report MS-CIS-89-14, LINC LAB 144. Department of Computer
anci Information Science, University of Pennsylvania, Philadel-
phia, PA.

Kac, lvl. B., Manaster-Ramer, A. and Rounds, W. C. 1987 Simulta-
neous-Distributed Coordination and Context-Freeness. Computa-
tional Linguistics 13: 25-30.

Manaster-Ramer, Alexis 1983 The Soft Formal Underbelly of Theo-
retical Syntax. Papers from the Nineteenth Regional Meeting.
Chicago Linguistic Society 254-262.

Manaster-Ramer, Alexis 1986 Copying in Natural Languages, Con-
text-Freeness, and Queue Grammars. Proceedings of the 24th
Annual Meeting of the Association for Computational Linguistics
85-89.

Manaster-Ramer, Alexis 1987 Dutch as a Formal Language. Linguis-
tics and Philosophy 10: 221-246.

Ogden, W. F. 1968 A Helpful Result for Proving Inherent Ambiguity.
Mathematical Systems Theory 2: 191-194.

Pollard, Carl J. 1984 Generalized Phrase Structure Grammars, Head
Grammars, and Natural Languages. Ph.D. thesis, Stanford Uni-
versity, Stanford, CA.

Postail, Paul 1964 Limitations of Phrase Structure Grammars. In:
Fodor, J.A.; and Katz, J.J. (eds.), The Structure of Language:
Readings in the Philosophy of Language. Prentice-Hall, Engle-
wood Cliffs, N.J.: 137-151.

Pullum, Geoffrey K. and Gazdar, G. 1982 Natural Languages and
Context Free Languages. Linguistics and Philosophy 4: 471-504.

260 Computational Linguistics, Volume 15, Number 4, December 1989

Walter J. Savitch A Formal Model for Context-Free Languages Augmented with Reduplication

Roach, Kelly 1987 Formal Properties of Head Grammars. In: Man-
asteroRamer, A. (ed.), Mathematics of Language. John Ben-
jamins, Philadelphia, PA : 293-347.

Rounds, William C.; Manaster-Ramer, A.; and Friedman, J. 1987
Finding Natural Language a Home in Formal Language Theory.
In: Manaster-Ramer, A. (ed.), Mathematics of Language. John
Benjamins, Philadelphia, PA : 87-114.

Salomaa, A. 1973 Formal Languages. Academic Press, New York,
NY.

Shieber, Stuart M. 1985 Evidence Against the Context-Freeness of
Natural Language. Linguistics and Philosophy 8: 333-343.

Steedman, M. J. 1987 Combinatory Grammars and Parasitic Gaps.
Natural Language and Linguistic Theotw 5: 403-439.

Steedman, M. J. 1988 Combinators and Grammars. In: Oehrle, R.;
B. ach, E.; and Wheeler, D. (eds.), Categorial Grammars and
Natural Language Structures. Reidel, Dordrecht, The Nether-
lands : 417--442.

Vijay-Shanker, K.; Weir, D. J.; and Joshi, A. K. 1987 On the
Progression from Context-Free to Tree Adjoining Languages. In:
Manaster-Ramer, A. (ed.), Mathematics of Language, John Ben-
jamins, Philadelphia, PA : 389-401.

Weir, D.J.; Vijay-Shanker, K.; and Joshi,A. K. 1986 The Relationship
of Tree Adjoining Grammars and Head Grammars. Proceedings of
the 24th Annual Meeting of the Association for Computational
Linguistics, New York, NY : 67-74.

Computational Linguistics, Volume 15, Number 4, December 1989 261

