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An efficient algorithm is described for parsing a dialect of generalized phrase structure grammar 
(GPSG). A practical parsing system, based on the algorithm, is presented. The dialect of GPSG which 
the parsing system accepts is smaller, but considerably "purer" (closer to the original definition of 
GPSG) and mathematically "cleaner" than that which is accepted by other practical parsing systems. 
In particular, the parsing system correctly implements feature co-occurrence restrictions, subject only 
to the restriction that the FCR set can be expressed in clausal form as a set of Horn clauses. 

1 INTRODUCTION 

The generalized phrase structure grammar (GPSG) 
(Gazdar et al. 1985) is one of the most recent, and 
currently one of the most popular, formalisms used by 
linguists to describe the syntax of natural (human) 
languages. A GPSG is basically a context-free grammar 
(CFG), whose non-terminals are complex symbols 
called categories. A category is a set of features. The 
CFG is augmented by: 

• a set of conventions or constraints that govern the 
automatic "propagation" of features between catego- 
ries on different nodes of the parse tree; and 

• a set of propositions (Boolean formulas whose literals 
denote the presence of a feature in a category) that are 
required to hold for the category on each node of the 
parse tree. These propositions are known as feature 
co-occurrence restrictions (FCRs). 

A GPSG also contains feature specification defaults 
(FSDs). An FSD behaves like an FCR in all respects 
save one: if an FSD, when taken in conjunction with the 
set of FCRs, cannot by the addition of features be made 
to hold on a category c on a given node, the FSD is 
simply ignored. Although this sounds straightforward, 
the precise effect of FSDs is most unclear. The original 
definition attempts to explain the effect of FSDs mainly 
by giving examples, although there are a few mathemat- 
ical definitions that, however, appear to confuse the 
definition rather than to clarify it. A clear, formal 
definition of the effect of FSDs is urgently required. 

Because the present definition is so obscure, it was 
reluctantly decided to exclude FSDs from consideration 
in this paper. 

Because a GPSG is so closely related to a CFG, it 
was thought that the well-known efficient parsing tech- 
niques for CFGs could be applied, with modifications, 
to GPSGs, and that GPSGs would therefore be compu- 
tationally tractable. Recently, however, Ristad (1985) 
has shown that this is not the case, and that the 
unrestricted GPSG parsing problem is NP-complete (on 
the total problem size, viz. grammar plus input sen- 
tence). Even before Ristad's result was known, workers 
in this field had found the practical problems caused by 
the interaction of FCRs, FSDs, and the propagation 
conventions difficult to surmount. Briscoe's comments 
(1986) are typical: "Finally, the concept of privileged 
feature, its interaction with feature specification de- 
faults and the bi-directionality of the head feature 
convention are all so complex that it is debatable how 
much use they would be in a practical system (even if 
we did manage to implement them)" (p. 1); "The 
interaction of feature co-occurrence restrictions, fea- 
ture specification defaults and feature propagation 
proved very hard to implement/understand" (p. 2). 

This paper does not address the issues of ID/LP 
parsing and metarules. Barton (1985) has shown that the 
ID/LP parsing problem is NP-complete (on the total 
problem size). He argued that a previous result of 
Shieber (1983), which purported to give a G 2 parsing 
method for ID/LP grammars, was incorrect. Barton 
claimed that Shieber's algorithm is exponential in the 
worst case. Barton's result alone might be considered a 
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strong hint that ID/LP parsing is inappropriate, both as 
a practical computer-based parsing method and as a 
possible model for the way in whic]h people parse 
sentences. It is of course probable that, for many 
grammars, a sufficiently efficient implementation of 
ID/LP could be obtained, either by means of a pre- 
processor or by using Shieber's algorithm, but this has 
not been attempted in the present implementation. The 
omission of ID/LP does not appear seriously to limit the 
usefulness of the parsing system, at least when applied 
to grammars of English. 

The question of metarules deserves a less cursory 
discussion. It is known (Gazdar et al. ~985:65-67) that 
the addition of metarules to a GPSG does not alter the 
CF properties of the grammar. The finite closure rule, 
which (stated informally) prohibits a metarule from 
reprocessing its own output, implies that the addition of 
a single metarule to a GPSG can generate only a finite 
number of phrase structure (PS) rules for each PS rule in 
the grammar. However, it is easy to write a metarule 
that will match every PS rule in the grammar and 
generate, say, two output rules. A second metarule can 
then be written which does the same. It is clear, 
therefore, that in the worst case the size of the induced 
set of PS rules grows exponentially with the number of 
metarules. For reasons put forward by Thompson 
(1982), most, if not all, GPSG parsing systems handle 
metarules by employing a precompilation phase to 
generate the induced set of PS rules. If this method is 
employed, the parsing time will, in the worst case, grow 
exponentially with the number of metarules. In prac- 
tice, however, exponential behaviour can safely be 
presumed to be rare, since a typical metarule "triggers" 
on only a small number of rules and generates only a 
small number of rules. Preliminary investigations with a 
"real"  grammar of English suggest that the precompi- 
lation phase generates an output grammar (containing 
only PS rules) that is about twice as big as the input 
grammar (which contains metarules and PS rules). 

The metarules of GPSG are related to the hyperrules 
of a van Wijngaarden grammar (VWG) (van Wijngaar- 
den et al. 1976), as has often been observed (see, e.g., 
Gazdar et al. 1985:65). There exist various direct meth- 
ods of parsing VWGs, which do not rely on the prior 
expansion of hyperrules to generate a (usually large) set 
of PS rules. Wegner's method (1980) and Fisher's 
method (1985) are, unfortunately, exponential in the 
worst case; however, the exponential behaviour of both 
algorithms stems from the fact that the finite closure 
property of GPSGs does not apply to VWGs, and the set 
of induced PS rules might be infinite. It is possible that 
these algorithms could be modified to handle the very 
restricted metarules of GPSG in polynomial time. 

Besides the omission of FSDs, ID/LP, and 
metarules, there is one other respect in which the type 
of grammar under consideration differs from GPSG as 
originally described. For formal purposes, the original 
set of feature-propagation conventions seemed rather 

baroque and unduly specialised. It was felt that it would 
be preferable to substitute for the "head feature con- 
vention", the "foot feature principle" and the "control 
agreement principle" of the original definition a more 
general mechanism. Consequently, we assume through- 
out most of this paper that features may be specified 
simply as "percolating" (from a node to its mother) or 
"trickling" (from a node to its daughter). The propaga- 
tion convention (percolating or trickling or neither or 
both) can be specified individually for each feature. It is 
stressed that this simplification is introduced in order to 
simplify the description of the formalism and of the 
algorithm. In section 4, the restrictions are relaxed, and 
it is shown how conventions that are closely related to 
the HFC, FFP, and CAP of "standard" GPSG (or 
GPSG 85, as it is known) can be accommodated. 

Having removed from consideration ID/LP parsing, 
metarules, and FSDs, and having simplified (tempo- 
rarily) the feature propagation conventions, we are left 
with a much smaller and more manageable formalism. 
The main thesis of this paper is that, given these 
restrictions, the simple requirement that the FCRs be 
expressible as a set of Horn clauses is sufficient to 
ensure parsability in time order pg2G2n 3, where p is a 
measure of the degree of ambiguity of the grammar, K is 
the size of the alphabet of features, G is a measure of the 
size of the grammar, and n is the length of the sentence. 
The exact meanings ofp and G are made formal later. It 
should be pointed out (lest false hopes be raised) that p 
is not iLn general independent of n, and for some gram- 
mars p is in fact a worse-than-polynomial function of n, 
making the algorithm worse-than-polynomial on n in the 
worst case. In practice, however, the algorithm can be 
implemented quite efficiently in such a way that p - n 
for many linguistically plausible grammars. 
Previous implementations. There have been several pre- 
vious attempts to parse GPSGs. Several workers have 
made wholesale changes to the definition of GPSG in 
order to make the formalism easier to parse. The dialect 
that the present algorithm accepts is considered to be 
"purer"  and nearer to the original than that accepted by 
most other algorithms. A brief summary of GPSG 
implementations is given by Gazdar (1983). The "of- 
ficial" definition of GPSG has changed since the list was 
published, and some of the implementations listed are 
no longer available. A more recent implementation is 
that of Harrison and Maxwell (1986). 

2 DEVINITIONS 

Preliminary definitions. The following definitions, of 
standard terms of formal language theory, are given in, 
for example, Salomaa (1973). 

An alphabet is a finite non-empty set. The elements 
of an alphabet are called letters. A word over an 
alphabet V is a finite string consisting of zero or more 
letters of V, whereby the same letter may occur 
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several times. The set of  all words over  an alphabet V 
is denoted by W(V). For  any V, W(V) is infinite. 
We denote by H(S) the powerset of  S, which is the set 

of  all subsets of  a set S. 
Definitions. A generalised phrase structure grammar 
(GPSG) is an ordered 7-tuple G = (VF, VT, Xo, R, F, Fe, 
Fr), where: 

VF is a finite set of features; 
V T is a finite set of  terminals, VF N VT~ = ~); 
Xo is the starting category, a finite subset of  VF; 
R is the set of  rules, a finite set of  ordered pairs P 

Q, such that P is a subset of  V F (i.e. P ~ H(VF)), 
and Q is a word over  the alphabet V = II(V F) U 
VT; 

F is the FCR set, a function from II(VF) to {true, 
false}; 

F e is the set of  percolating features, a subset of  VF'~ 
and 

Far is the set of  trickling features, a subset of  V e. 
For  P,  Q ~ W(V), we say that P derives Q, written 

P f f  Q, iff 3 an integer n and a , /3  ~ W(V), P ' ,  Q'i 
(i = 1 . . . . .  n), P", Q"i (i = 1 . . . . .  n) E V such 
that the following all hold: 

1. a P ' / 3  = P a n d  a Q '  I Q'2 • • • Q'n/3 = Q 
2. P"--> Q"l Q"2 • • • Q"n E R 
3. [Extension:] 

(i) P " C  P '  
(ii) if Q'i ~ vr: Q"i = Q'i (i = I, 2 . . . . .  n) 

i f Q ' i C H ( V F ) :  Q"i C Q'i (i = 1,2 . . . . .  n) 
4. [FCR constraints:] 

F(P') 
5. [Propagation Constraints:] 

(i) Q'i ~ VT v (Q'i ('1 Fe) C_ P' (i = 1, 2 . . . . .  n) 
(ii) Q'~ E VT v (P' fq FT) C_ Q'i (i = 1, 2 . . . . .  n). 
We denote by i f *  the reflexive and transitive closure 

of  ~ . 
The language generated by G, written L(G), is 

defined by 

L(G) = {P I P ~ W(Vr), X o =>* P}. 

End of definitions. 
Informally, the definitions of  GPSG, ~ ,  ~ *  and 

L(G) are the standard definitions of  a context-free 
grammar, modified by defining the non-terminal of  the 
standard CFG definition as a set of  features. Further- 
more, the standard definition of  ~ has been extended to 
take into account  feature matching by the free addition 
of  features to categories specified in rules (extension), 
the FCR constraints,  and the propagation constraints. 
The original definition of  GPSGs postulated a set of  
FCRs whose conjunction is required to hold; this con- 
junction has been collapsed into a single Boolean func- 
tion F in our definition. F is required to hold on each 
non-terminal node of  the parse tree by virtue of  condi- 
tion 4 above.  (It is unnecessary to specify that F(Q'i) 
must hold; this is implied by the use of  the reflexive and 
transitive closure of  ~ in the definition of  L(G).) 

Finally, condition 5(i) requires that, if P '  is the mother  
of a non-terminal node Q'i (considering P '  and Q'i as 
nodes in a parse tree), then for each feature f w h i c h  has 
been defined as percolating from daughter to mother  
(i.e. is a member of Fe), if f is present on the daughter 
node, then it must be present also on the mother.  
Condition 5(ii) is the corresponding statement for trick- 
ling features. 

Our definition is given in terms of features that can be 
either present or absent from a category,  whereas in the 
original definition a feature has a value. This distinction 
is merely a mathematical device to simplify the defini- 
tion and the discussion of  the algorithm which will 
follow. Our definition can be related to the original 
definition by reading " f ea tu r e "  as "feature-value pair" .  
For  example,  a " r e a l "  GPSG might contain a feature 
PAST which can take a value which is either + or - .  
We interpret that as two separate features,  say PAST+ 
and P A S T - .  The standard definition would require that 
a category may not contain both P A S T+  and P A S T - .  
This can be expressed by conjoining the FCR -q(PAST+ 
/~ P A S T - )  to the FCR set. Such an FCR is called a 
group FCR. 

3 A PARSING ALGORITHM FOR GPSGs  

The algorithm belongs to the class of  algorithms that 
obtain a grammar G' ,  variously called a skeleton gram- 
mar or an underlying grammar, from a given grammar G 
and then parse according to G'.  In these algorithms the 
skeleton grammar G' is chosen such that L(G) C_ L(G') ,  
so, if the parse according to G'  fails, the sentence can be 
rejected immediately. If  the parse succeeds, it is neces- 
sary to check some additional constraints, typically by 
examining the parse tree, to ensure that the sentence is 
indeed acceptable to the more restrictive, given, gram- 
mar G. The extra checking process typically annotates 
the parse tree with extra information but does not 
change its shape. At the end of  the checking process,  
either the sentence is rejected as not conforming to G, 
or the sentence is accepted,  in which case the annotated 
parse tree is the parse tree of  the sentence according to 
G. Wegner 's  (1980) algorithm for VWGs belongs to this 
class. 

In the present algorithm, the skeleton grammar G'  is 
a GPSG that is obtained from a given GPSG G by 
neglecting some of the FCRs and the percolating feature 
propagation constraints. The skeleton grammar can be 
parsed by a simple modification of  Ear ley 's  (1970) 
algorithm. The algorithm comprises a precompilation 
phase, in which the skeleton grammar G' is obtained 
from the given grammar G, followed by three parse-time 
phases that are executed one after the other.  
Precompilation. Given a GPSG 

G = (V F, V r, X o, R, F,  F e, Far), 

first define the side-effect-free FCR set F' algorithmi- 
cally in the following manner. 
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1. Convert  F to clausal form,  in other words a 
conjunction of  disjunctions of  terms, each of  
which is either an unnegated literal feature or a 
negated literal feature. (This can be done 
uniquely, apart from questions of  ordering of 
terms; see, e.g., Loveland (1978:32ff).) 

2. Remove from the clause set all clauses (i.e., 
disjunctions) that contain one or more unnegated 
literals, leaving behind only those clauses that 
contain only negated literals. 

The resulting set of  clauses represents the side-effect- 
free FCR set F ' .  Since F '  was obtained from F by 
removing clauses, the resulting function F '  cannot be 
more restrictive than F; in other  words, F ~ F ' .  

The reason for removing clauses that contain unne- 
gated literals is that the evaluation of  FCRs can, in 
general, cause the instantiation of  new features on a 
node. This can be viewed as a "s ide ef fec t"  of the 
evaluation, whose primary function is to filter out 
inadmissible parses. Side effects are difficult to handle, 
because they interact with each other and with other  
aspects of  the grammar,  in particular with the propaga- 
tion constraints.  For  example,  a new feature added as a 
result of  a "non-s ide-effect - f ree"  FCR clause might 
cause some other  clause, which was satisfied before the 
new feature was added, to become false. This is not 
possible, however ,  if no clause contains an unnegated 
literal: each clause can be satisfied only by the absence 
of  one or more stated features,  and if the required 
features are not absent,  the clause yields false m there 
is no mechanism in GPSG for removing features from a 
category. 

Now define the skeleton grammar G' of  G by 

G' = (Vp, VT., Xo, R ,  F' ,  O, FT). 

Clearly L(G) C_ L(G') ,  since whenever  conditions 4 and 
5 of  section 2 hold for a derivation according to G, they 
will also hold for a corresponding derivation according 
to G'.  (Remember  that F D F'.)  Informally, G'  is more 
permissive than G. For  the same reason, each parse 
according to G has a corresponding parse according to 
G',  differing only in the distribution of  features among 
categories on nodes. In other  words,  each parse tree 
according to G is the same " s h a p e "  as some parse tree 
(of the same sentence) according to G'.  
Phase 1. We now parse G' by applying a modified form 
of  Ear ley 's  algorithm (Earley 1970; see also Pulman 
1985, Ritchie and Thompson  1984). (The reader  is 
assumed to be familiar with Earley 's  algorithm, in 
particular with the r61e played by the predictor in adding 
new states to a state set.) The algorithm is extended so 
that it creates a parse tree as the parse progresses. A 
method for doing this is described briefly by Earley 
(1970) and in more detail by Earley (1968). 

There  is no need to handle the percolating feature 
propagation constraint  at this stage, because in G' Fe  is 
empty.  There  is no need to consider what happens when 
the evaluation of  an FCR causes a new feature to be 

added to a category, since the FCR set F '  is side-effect- 
free. 'iCe can therefore treat G' as a CFG whose 
non-terminals are categories, provided that we allow for 
extension (condition 3 of  section 2) and the trickling 
feature; constraint (condition 5(ii)). This is done in the 
followi~ng way. 

A category appears on a node by virtue of  the 
appearance of a category cs on the right-hand side of  a 
rule R 1 and tlae appearance of  a "match ing"  category c 2 
on the.' left-lhand side of a rule R 2. The extension 
condition permits the free addition of  features to Cl and 
to c 2 to generate the category c which appears on the 
node. By the extension condition, c~ C_ c and c 2 C_ c, 
which implies that c _~ (c~ U Cz). Now let us neglect for 
the moment  the trickling feature constraint.  Since we 
are ignoring the non-side-effect-free FCRs and the prop- 
agation constraints, any superset of  c I L I  c 2 which 
satisfies F'(c) will suffice; consequently,  we take the 
smallest superset, namely c~ U c2, which is the least 
upper bound of c~ and c2 under the ordering relation of  
extension (see Gazdar  et al. 1985:39). 

Now we consider the trickling feature constraint.  
The effect of  this constraint is to instantiate extra 
features on certain categories: those features that be- 
long to a mother  category and which are also members 
of F~- must be instantiated on each daughter category. 
The category that is instantiated on the node of  the 
parse tree is the smallest superset of  c~ U c2 which 
contains all of  its mother ' s  trickling features,  which is cn 
U c z tA (c o fq Fr), where c o is the category of  the mother  
node. 

To determine the category to place on a node of  the 
parse tree, therefore,  the algorithm needs to know: 

• the a priori category c~ on the right-hand side of  a 
rule; 

• the a priori category c 2 on the left-hand side of  the 
rule which " m a t c h e s "  c~; 

• the fully-evaluated a posteriori category on the 
mother  of  the node to which a category is currently 
being assigned. 

All of  this information is available to the predictor  in 
Earley 's  algorithm. This follows from the fact that 
Earley 's  algorithm is " top  d o w n " ,  which means that the 
full category on a node is known before any of  that 
node 's  daughters are considered. 

We now consider how Ear ley 's  algorithm can be 
modified to parse the skeleton grammar in the manner  
outlined above. A state in Ear ley 's  standard algorithm 
can be written as X --~ a . / 3 ,  which signifies that the 
algoritZhm is considering the rule X --> a/3, and has 
successfully matched the a with some portion of  the 
sentence being parsed. The predictor is applied to states 
X ---> o, • Y/3, which have a non-terminal to the right of  
the dot:. The predictor  adds new states Y --> • 7 for each 
rule Y ~ 3' with matching non-terminal Y. 

In the new algorithm, a state is written (Co) c --~ a •/3. 
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As in the standard algorithm, this signifies that the 
algorithm is considering the rule c --~ t~fl, and has 
successfully matched the ~. The extra category c o 
contains the features that are passed from mother  to 
daughter and which will ultimately appear on a node of  
the parse tree. 

The predictor  in the new algorithm is applied to 
states (Co) c --~ t~ • Clfl with a non-terminal category to 
the right of  the dot. The predictor adds new states 

(C 1 U C2 U (C O O F r )  ) C 2 ~ • ')/ 

for each rule c 2 -~ 3' such that F'(c~ U c2 U (Co A FT)) 
holds• (At first sight it appears that this entails a search 
through all of  the rules of  the grammar, but a means of 
avoiding a full search is presented in section 4.) 

The r61es of  the scanner and of  the completer  in 
Ear ley 's  standard algorithm are unchanged in the new 
algorithm• The initial state that is entered to start the 
parse is (~) ~ --~ • X 0. The associated " d u m m y "  rule 
-~ Xo is not considered part of  the grammar, and is 
exempt  from being matched by the predictor. 

It would be quite possible to use a "bo t tom u p "  
algorithm in place of  Ear ley 's  algorithm, in which the 
r61es of  trickling and percolating features would be 
reversed. It is not possible to handle both percolating 
and  trickling features in phase 1, since a provisional 
decision at some point deep down in the parse tree to 
instantiate a feature on a certain category would in 
general cause changes to the membership of categories 
in remote parts of  the tree. 
Phase 2. The "parse  t r ee"  that is generated by Earley 's  
algorithm is in general not a tree at all; it is a directed 
graph• Besides non-terminal nodes and terminal nodes, 
the graph will in general contain branching nodes that 
point to alternative daughters of  a non-terminal node. It 
is by this means that multiple parses, arising from an 
ambiguous sentence, are represented• If  the degree of 
ambiguity of  the sentence with respect to the skeleton 
grammar is infinite, the finite graph must represent 
infinitely many distinct parse trees; in this case the 
graph is cyclic. We assume that the degree of  ambiguity 
is finite, in which case the graph is a directed acyclic 
graph (DAG). A DAG differs from a tree in that whereas 
each node in a tree (except  the root) has precisely one 
parent,  a node in a DAG may have more than one 
parent• In other words,  a DAG represents common 
sub-trees only once; a single sub-tree may be descended 
from several parents. DAGs are often used in the 
construction of  compilers for computer  programming 
languages. 

Le t  p be the degree of  ambiguity of  the skeleton 
grammar, i.e., the number  of  distinct parse trees repre- 
sented by the DAG. We expand the DAG, generating p 
distinct parse trees• This can easily be done by means of 
conventional  tree processing techniques, provided that 
p is finite, in other  words if the graph is acyclic. 
Phase 3. Each distinct parse tree is examined in turn. 
For  each tree,  sufficient features are added to the 

categories on each node of the tree to cause the tree to 
reflect a parse according to the original GPSG G. This 
entails the evaluation of  F and of  the propagation 
constraints on each category,  and the construction of  a 
category on each node which satisfies all of  the con- 
straints. Once again, the smallest possible category is 
constructed.  That is, if a category c satisfies all of  the 
constraints, and so does a larger category c U c',  we 
choose c. It is debatable whether  this is the correct  
behaviour; some might argue that separate parse trees 
ought to be constructed in which all possible legal 
extensions are shown. However ,  the resulting set of  
parse trees would then in general be very large, and it is 
difficult to believe that this behaviour  is desirable. Our 
smallest category is similar to the most general unifier of  
a set of expressions in mathematical logic; as in logic, 
particular, less general instances can be derived from 
the most general case, but it is the most general (least 
fully specified) case that is of most interest. 

We assume that the FCR set F is expressed in clausal 
form and that each clause (i.e., each disjunction) is a 
Horn clause (a clause with either zero or one unnegated 
literal; see, e.g., Loveland (1978:99)). Number  the 
clauses F l . . . . .  F M. 

We denote by M(N) the mother  of  the node N, if it 
exists (i.e. unless N is the root of  its tree). We denote by 
C(N) the category on the node N. 

Let  the distinct parse trees produced by phase 2 be 
T I . . . . .  Tp. The algorithm unify, defined below, is 
applied to each T i in turn, for i = 1 . . . . .  p. 

unify (T): Let  the non-terminal nodes in T be NI, 
• . ., N N. 

1. 
2. 
2.1. 

2.1.1. 
2.1.2. 
2.2. 

2.2.1. 
2.2.2. 
3. 
3.1. 
3.1.1. 

3.1.2. 
3.1.3. 
3.1.3.1. 
3.1.3.2. 
3.1.3.2.1. 
3.1.3.2.2. 
4. 
5. 

set again := false; 
f o r j  = 1 . . . . .  N d o  

i f  Nj is not  the root of T a n d  
( C ( M ( ~ ) )  n FT) ~ C ( ~ ) t l ,  e n  

c ( ~ )  := c ( ~ )  u ( C ( M ( ~ ) )  n F~); 
set  again := true; 

i f  Nj is not  the root of T a n d  
( C ( ~ )  n Fp) ~ C ( ~ ( ~ ) )  t h e n  

C(M(~) )  := C(M(~) )  U ( C ( ~ )  n Fp); 
set again := true; 

forj = 1 .... , Ndo 

f o r  k = 1 ..... /M r do 
let f+ be the set of unnegated literals in 

let f_ be the set of negated literals in Fk; 
f_ ~ C(N 9 t h e n  

i f  f+ = 0 then fail; 
i f  f+ ~ C(Nj) t h e n  

c ( ~ )  := c ( ~ )  u f÷; 
set again := true; 

t~ again  t h e n  go  t o  step 1; 
output T. 

Proof  of  the algorithm. First notice that the flag again is 
set (in steps 2.1.2, 2.2.2, and 3.1.3.2.2) whenever  a 
feature is added to a category that is not already in that 
category, and at no other  time. Since there are only 
finitely many features,  steps 1 to 4 are repeated only 
finitely many times, so the procedure  terminates. 
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Next observe that on successful termination, again is 
false, so steps 2.1 and 2.2 must have been obeyed for 
each node with the conditions in 2.1 and 2.2 false each 
time. Consequently, on successful termination, the 
propagation constraints h01d for each node. 

Finally, on successful termination, the FCR set F 
also holds for each node, for the following reasons. Step 
3.1.3 checks the negated literals in the clause F k against 
the category C(Nj.). If the condition in 3.1.3 is false, 
there is at least one negated literal in F k which is indeed 
absent from C(Nj), so the clause F k is satisfied. If, on 
the other hand, the condition in 3.1.3 is true, none of the 
negated literals can possibly be satisfied, since features 
may not be removed from a category, only added. Since 
Fk is a Horn clause, there is at most one unnegated 
literal in F k, so f÷ is either empty or has one member. If 
f÷ is empty, the clause can not be satisfied, so the 
algorithm fails. If f÷ is not empty, the feature is added to 
the category if it is not already there, and the clause is 
thereby satisfied. The addition of the new feature might 
invalidate previously satisfied clauses or propagation 
constraints, so the flag again is set which causes the 
propagation constraints and FCR clauses to be checked 
afresh. As noted, the process will eventually terminate 
with all propagation constraints and all FCR clauses 
satisfied, or else the algorithm will fail, in which case 
the sentence does not belong to the language generated 
by the original grammar G. 
End of proof. 

Now consider what would happen if one of the 
clauses were not a Horn clause. The algorithm would 
not know which of the several features from f÷ to add in 
step 3.1.3.2.1 in order to satisfy the clause. The only 
solution would seem to be to generate copies of the 
parse tree, and to follow through each choice of feature 
from f÷ on a different copy of the parse tree, finally 
presenting the user of the parsing system with all of the 
parse trees. This would cause a combinatorial explo- 
sion, since the splitting and copying would have to be 
done at each level of the parse tree at which the 
particular feature in question is instantiated. 

The linguistic consequences of the Horn clause re- 
striction are not clear, but experience with the parsing 
system suggests that they are not severe. The Horn 
clause restriction prohibits the grammar writer from 
writing FCRs such as 

[PRD +] A [VFORM] D [VFORM PAS] v [VFORM PRP] 

(Gazdar et al. 1985:111), in which a disjunction of 
non-negated literals appears on the right of D . It is in 
such FCRs that the Horn clause restriction appears in 
its true colours, as a mechanism for curbing a combina- 
torial explosion or, to put it another way, a mechanism 
for prohibiting a source of non-determinism. If the 
consequences of forbidding such FCRs later appear too 
severe, the possibility will be investigated of moving the 
non-determinism from the FCRs into the rules of the 

grammar, by replacing an FCR like the one above by a 
new FCR 

[PRI) +~ A [VFORM] D [F] 

where F is a new feature, and adding appropriate rules 
to the grammar. The details of this have yet to be 
worked out; it is presented as a possible solution to a 
problem that has not yet arisen. 
Time and space bounds. The following parameters are 
relevant to a consideration of time and space bounds for 
the algorithm: 

• p, the degree of ambiguity of the skeleton grammar; 
• K, the cardinality of Vr; 
• G, the number of rules in the grammar; 
• n, the length of the sentence being parsed. 

Earley's algorithm, as is well known, operates in 
time order G2n 3. Earley's proof of the time complexity 
of his algorithm (Earley 1970) is in no way affected by 
the elaboration of the predictor to handle feature match- 
ing. In particular, the number of states in a state set 
does not increase with K. Although K features may in 
principle be combined to construct 2 K different catego- 
ries, the algorithm generates new categories by exten- 
sion only when they are required. In fact, if a new 
feature specification is added to a rule that is previously 
unspecified for that feature, the state sets will either 
remain the same size or become smaller, since adding a 
feature restricts the range of rules that the rule in 
question will "match" .  Speaking informally, it is under- 
specified rules that cause the problems; the more fully 
specified are the rules, the closer is the GPSG to a CFG, 
and the fewer are the states that are needed. 

The factor K does, however, enter into the time 
bound for phase 1 in the following manner. Although the 
number of "primitive steps" (Earley's terminology) 
that are executed by the modified algorithm is indepen- 
dent of K, the time taken to complete certain primitive 
steps, in particularly the addition of a state to a state set 
and the feature matching operation in the predictor, is 
proportional to K. The overall time bound is therefore 
KG2n 3,, 

The expansion of the DAG to yield p distinct parse 
trees can be done by conventional tree processing 
techniques in time proportional to p, the number of 
nodes in each tree, and the size of a node (which affects 
the time taken to copy a node). This gives a bound of 
order pKGn 2 for phase 2. 

The algorithm unify contains three nested loops 
(steps 3 and 3.1, and the again loop). An upper bound 
on the number of nodes is a constant times Gn 2, and an 
upper bound on the number of times round the again 
loop i,; the number of features, K. To simplify the 
analysis, we take M - G. (Formally, we define G to be 
the sum of the number of rules in the grammar and the 
number of clauses in the FCR set.) Moreover, the set 
operaffon C in step 3.1.3 can realistically be expected to 
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take time proportional to K, although the operations 
involving f+ can be done in constant time, since f+ has 
either zero or one member. A time bound for unify is 
therefore g2G2n 2. Finally, unify is obeyed p times, 
which gives a time bound for phase 3 of order pK2G2n 2. 

It is unfortunate that, as noted earlier, p is not in 
general independent of n. To see why this is so, con- 
sider the following grammar. 

Non-terminal alphabet: {S} 
Terminal alphabet: {a} 
Rules: S---> S S 

S ----> a 
It has been shown (Church and Patil 1982) that the 
number of distinct trees generated, for a sentence of 
length n, grows factorially with n. This means that the 
algorithm as a whole will take factorial time to parse a 
sentence of length n according to this grammar. This is 
a matter of concern, because constructions similar to 
this example are commonly used to handle coordina- 
tion. It is even possible in principle for p to be infinite, 
in which case the algorithm will not terminate (although 
the advertised time bound ofpK2G2n 3 will still hold!). In 
practice, however, no grammar has been encountered 
which unavoidably has infinite p. (Self-referential rules 
of the form X ----> X have occasionally appeared, but 
these were always traced to an error in the grammar.) 

Considerable effort has been expended in an attempt 
to improve the theoretical worst-case performance of 
the algorithm when p is a finite valued but rapidly 
increasing function of n. It might be possible to combine 
phases 2 and 3, employing "lazy evaluation" (a tech- 
nique often used in functional programming) to expand 
the DAG only when necessary. If this were done, much 
of the DAG might remain unexpanded, with consequent 
savings in time and space. The problem with this 
approach is that some features are required to percolate 
right to the root of their tree, and a given branching 
point might have different (and incompatible) features 
percolating to it from each of its alternative descen- 
dants. It turns out to be often necessary to expand the 
DAG all the way back to the root, in which case little is 
saved by using lazy evaluation. It is worth pointing out 
that, in cases (such as the example) in which the 
algorithm is least efficient, the output is often very 
large, consisting of many parse trees. In many (but not 
all) of these cases, the time taken is asymptotically 
linear in the length of the output, i.e. the number of 
nodes in the set of parse trees displayed. Surely, no 
algorithm can ever behave sublinearly on the length of 
its output. Furthermore, as discussed later, in cases in 
which this problem does not arise, the execution time is 
dominated by phase 1. We therefore have an algorithm 
that: 

• behaves as well as one of the best general CF parsing 
algorithms, for all unambiguous grammars and for 
many ambiguous grammars; 

• takes time that is linear in the length of the output for 
some "problem" grammars; and 

• takes a very long time in a small number of really 
awkward cases. 

The time bounds for the three phases are KG2n 3, 
pKGn 2, and pK2G2n 2. This gives an overall worst-case 
time bound of order pK2G2n 3. 

The space bound is of order pKGn 3 in the worst case, 
for the following reasons. Earley's algorithm requires 
space proportional to KGn 2 to hold the states, n for the 
state sets (that is, the list-processing overhead), and 
KGn 3 for the DAG. The grammar itself requires space 
proportional to KG. The p distinct parse trees require 
space proportional to KGn 2 each. Phase 3 does not 
require any working storage. The worst-case space 
bound is therefore of order pKGn 3. 

4 IMPLEMENTATION 

A practical GPSG parsing system has been constructed, 
based on the algorithm just described. The system 
comprises a table generator and a parser. The system 
was originally written in the programming language 
BCPL, and ran on a VAX 780 computer under the Unix 
operating system. The system has recently been re- 
implemented in C to run on a Sun 3/50 workstation. The 
Sun version generally runs several times faster than the 
VAX version. The parse times given below relate to the 
slower VAX implementation. 

The table generator performs the precompilation 
phase of the algorithm. It generates a tabular represen- 
tation of the skeleton grammar, which the parser can 
interpret more efficiently than it could the " raw"  rules, 
and it converts the FCR set into clausal form. The table 
generator also performs various checks to ensure, as far 
as possible, that the grammar is well formed. Besides 
the obvious syntactic checks (to detect such errors as a 
comma in the wrong place), the table generator checks 
that the FCR set is not identically false, that there are no 
obvious blind alleys or non-reachable categories (this is 
not checked rigorously), and that various other subtle 
"well-formedness" conditions are satisfied. This error 
checking has proved very useful in practice, since 
GPSGs are notoriously difficult to debug. 

The input grammar is written in the notation of 
Gazdar et al. (1985), with a few concessions to the 
limitations of the typical computer input device. In 
particular, features have values, and what we have 
referred to as a feature is, in the notation accepted by 
the table generator, a feature-value pair, written If v]. 
Each distinct feature value pair is associated by the 
table generator with a particular bit in a computer word. 
A category is represented by a set of bits, i.e., by a word 
with several bits set, one for each feature-value pair in 
the set. Category valued features correspond to trees, 
and a distinct bit is allocated to each terminal node of 
the tree. For example, the feature PAST, with two 
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values + and - ,  would have two bits allocated to it, and 
for a category valued feature SLASH, the values [N +, 
V - ]  and [ N - ,  V +] would be allocated four bits. Note 
that, in any given grammar, the depth of the tree 
induced by a category valued feature is finite; further- 
more, the range of possible values of a category valued 
feature is known at table generation time, so it is known 
at this stage how many bits to allocate to the feature. 
The representation of feature-value pairs by bit posi- 
tions in a computer word allows the very efficient 
logical instructions of the computer (N,  t.J, -7 ), which 
operate on a whole word of bits at a time, to be used. 

As explained earlier, a feature in GPSG 85 may take 
at most one value at a time, since a GPSG 85 feature is 
in fact a function. This restriction is expressed by 
conjoining an FCR, known as a group FCR, to the FCR 
set. For example, if the grammar contains the two- 
valued feature PAST referred to above, the FCR 

-a([PAST + ] / k  [PAST -])  

would be conjoined to the FCR set. In general, the 
presence of an n-valued feature f ,  with values v I . . . . .  
vn, entails the addition of the FCRs 

""l([f Vii /~ If Vj']) for each i, j = 1 . . . . .  n, i < j. 

When converted to clausal form these FCRs become the 
n(n-  1)/2 clauses 

~[f vi] ~/"7[]" vj] for each i, j = 1 . . . . .  n, i < j 

whose inclusion in the set of clauses presented to the 
parser would make the table very large. Consequently, 
these group clauses are abbreviated. For each n-valued 
feature f with n - 2, a group mask is included in the 
parser table which has one bit set for each feature-value 
pair whose conjunction is to be prohibited. The parser 
checks these group masks whenever it consults the FCR 
clause set. If g is a group mask and c is a mask 
representing a category, the parser has only to check 
that (g N c) has not more than one bit set. 

It has been observed that, in practice, it is likely that 
the explicit FCR set supplied by the grammar writer will 
contain mostly non-side-effect-free clauses. However, 
the (notional) group FCRs are, by definition, side- 
effect-free. Because of this, the algorithm is modified 
for implementation in the following way. The FCR set 
F '  which is used in the definition of the skeleton 
grammar is taken to be just the set of notional group 
FCRs; any "genuine" FCRs, be they side-effect-free or 
not, are excluded from F' .  Furthermore, the table 
generator ensures that the full FCR set F is satisfiedon 
each node at table generation time. For example, if the 
grammar contains the FCR 

[NOM] 3 [NFORM NORM], 

then a category [NOM +] occurring in a phrase struc- 
ture rule would be rewritten by the table generator as 
[NOM +~, NFORM NORM]. These modifications in- 

crease the efficiency of the implementation, and enable 
certain errors to be detected at table generation time. 

In practice, most GPSGs closely resemble traditional 
CFGs, with most categories fully specified for the 
"major" features N, V, and perhaps BAR. Conse- 
quently, the group FCR constraints ensure that the 
skeleton grammar also resembles a traditional CFG, and 
is certainly not, in practice, massively ambiguous. In- 
deed, the table generator insists that categories in rules 
are written as X[Y], where X is a name (a traditional 
non-terminal), and Y is a category. The non-terminal X 
is defined (by the grammar writer) to stand for some set 
of major features. This convention is perhaps contro- 
versial, but Gazdar et al. (1985) is full of such rules, and 
the linguists who use the parsing system have not 
grumbled yet. The convention does allow the table 
generator to check the grammar more stringently than 
would otherwise be the case, and it enables the parser to 
be made considerably more efficient, by dividing the set 
of all categories (which must be searched by the predic- 
tor) into disjoint subsets. The convention has no theo- 
retical significance; the program would work without it. 
The head feature convention. The grammar writer is able 
to denote certain non-terminals on the right-hand side of 
a rule as head non-terminals, which correspond to the 
head symbols of traditional X-bar syntax. This is done 
by prefixing the name of the non-terminal in the rule by 
a star. The percolation and trickling of features can be 
restricted to occur only between a mother and a head 
daughter. There are thus nine possible propagation 
behaviours for any feature: 

one of 
not trickling 
trickling, but only to head daughters 
trickling to all daughters 

together with one of 
not percolating 
percolating, but only from head daughters 
percolating from any daughter 

The head feature convention is simulated by defining 
head fi~atures to trickle, but only to heads. This is 
adequate in most situations, but it falls short of the 
behaviour postulated by Gazdar et al. (1985:94ff). In 
particular, the notion of free feature specification sets is 
not accommodated. This causes problems in, for exam- 
ple, the treatment of conjunctions, in which the con- 
joined constituents are conventionally all heads. GPSG 
85 allows a rule that in our notation would be written 

NP: *NP [CONJ and], *NP [CONJ NIL]. 

In the present implementation, any PER feature (for 
example) which happens to be present on the mother 
would trickle to both head daughters, thereby forcing 
agreement between the daughters. Our solution has 
been to make the daughters non-heads, which is unat- 
tractive;, but which has been made to work. 
The foot feature principle. The foot feature principle is 
more of a problem than the head feature convention. It 
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is clear that foot features ought to percolate, but the 
situation is more complicated than this. In a rule such as 

S: NP, S [SLASH NP] 

the SLASH feature (which is a foot feature) must be 
prevented from percolating from the node that is gen- 
erated by extension from the right-hand-side S. This is 
achieved by forbidding any feature that has been de- 
clared to be a foot feature (e.g., SLASH and WH) to 
percolate from a node on which the feature appears by 
virtue of its appearance on the right-hand side of a 
phrase structure rule. This is easy to implement. 

This is only a partial solution to the problem, how- 
ever. The rule given above correctly generates 

the telephone Carol tested. 
It is not possible, however, by this mechanism to 
prevent 

* the telephone Carol tested the telephone, 
in which "Carol tested the telephone" is correctly 
parsed as an S, but in which a SLASH NP specification 
is "gratuitously" instantiated in order to satisfy the 
extension conditions imposed by the rule given above. 
To solve this and other problems, a tree is now defined 
to be admissible only if each non-terminal node of the 
tree satisfies the foot condition, which is related to the 
original FFP of GPSG 85. The foot condition is defined 
as follows. 

Define a lexical node of a parse tree as a node that 
immediately dominates a terminal node. (A gap, which 
is explicitly denoted in the grammar by the word GAP, 
is a terminal node.) Define an interior node as a node 
that is neither terminal nor lexical. An interior node is 
said to meet the foot  condition (FC) iffeach foot feature 
that it contains appears also on at least one daughter 
f rom which it can legally percolate. A lexical node is 
said to meet the FC iff each foot feature that it contains 
appears also on the left-hand side of the lexical rule that 
gave rise to the lexical node. 

This definition implies that the FC cannot cause the 
instantiation of any features. In this respect, the FC 
differs from the propagation conventions, which add the 
necessary features to make the conditions hold. The FC 
mechanism operates on the tree as it is after FCRs and 
propagation conditions have been enforced. It does not 
alter the tree; it merely checks that the foot condition is 
true on each node. Note that all of this follows from the 
definition. It is not necessary to put forward a proce- 
dural definition of the FC, which would fit ill with the 
non-procedural definition of GPSG. In contrast to the 
GPSG 85 FFP, the FC readily permits a straightfor- 
ward, efficient, and deterministic implementation. 
The control agreement principle. A mechanism has been 
provided for specifying horizontal propagation of fea- 
tures in a way similar to that implied by the control 
agreement principle of Gazdar et al. (1985). Sister 
categories in a rule may be designated control sisters (by 
prefixing the name of the non-terminal by a dollar). A 
set of control features is defined by the grammar writer, 

analogous to the sets of trickling and percolating fea- 
tures. Each non-terminal node N has associated with it 
an extra node N'.  If a node No has daughters NI . . . . .  
N n, then N o' is called the stepmother of each N l . . . . .  
Nn. If N i is a control sister, then any control features in 
C(N;) are required to percolate to the stepmother, and 
any features on the stepmother are required to trickle to 
each stepdaughter that is a control sister. The effect is 
that control features present on a control sister are 
forced to appear on each other control sister (which has 
the same mother). 

One consequence of this modified CAP is that agree- 
ment is mutual, or bidirectional, whereas in the CAP of 
GPSG 85 it is unidirectional. Another consequence is 
that, in the present implementation, it is impossible by 
these means to express agreement between (for exam- 
ple) the daughter NP and the NP "under the slash" in 

S: NP, S [SLASH NP]. 

This has not yet proved to be a problem; such agree- 
ment can easily be accommodated by defining appro- 
priate propagation constraints for those features (such 
as PER, PLU and NFORM) that must agree. 
Metarules. Despite the misgivings expressed earlier 
concerning the possible exponential growth in grammar 
size, a form of metarule mechanism has been incorpo- 
rated. Metarules are implemented by precompilation by 
the table generator. In fact, there is a separate metarule 
preprocessing program, called metagee, which runs as a 
Unix filter, passing the expanded set of rules to the table 
generator proper. It would be possible to process sep- 
arated ID/LP rules by means of a similar preprocessor. 
This has not been done. 
Form of the parser table. The output from the table 
generator, the table which is interpreted by the parser, 
comprises: 

• an encoded list of rules, with a pointer from each 
occurrence of a non-terminal on the right-hand side of 
a rule to a list of rules with matching left-hand side 
non-terminals; 

• an encoded lexicon; 
• a list of non-terminal names, feature names and 

feature value names; 
• a set of group masks; 
• a set of FCR clauses, each comprising two bit masks. 

One mask (word of bits) represents the category f÷ 
and the other represents the category f_. 

Performance. The parsing system has been tested with a 
grammar for a subset of English. The grammar contains 
512 rules after metarule expansion, comprising 228 
non-lexical rules and 284 lexical rules. There are 107 
feature value pairs. There are 18 FCRs, which, when 
converted to clausal form, yield only 39 clauses. The 
size of the parser table is about 63,000 bytes, about 93% 
of which is occupied by the encoded rules. The remain- 
ing 7% (4,500 bytes) comprises the tables of bit masks 
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that represent the FCRs and the propagation masks, a 
table of non-terminal names, and the lexicon. The table 
generator takes about two minutes to compile the 
grammar. 

Typical parse times are given in figure 1. As the table 

Length of 
sentence Parse time (seconds) 
(words) Phase 1 Phase 2+3 Total 

3 0.8 0.6 1.4 
6 2.3 1.1 3.4 
9 3.9 2.3 6.2 
12 3.6 2.9 6.5 
15 4.9 7.9t 12.8 
t 4.2s excluding the time taken to format and print the trees 

Figure 1. 

shows, for simple short sentences (unambiguous sen- 
tences of fewer than 15 words), phase 1 consistently 
takes more time than phases 2 and 3 together. For 
sentences of moderate ambiguity, the times for phase 1 
and phase 2+3 are comparable. The 15-word sentence 
for which a time is given in the table is 

which number ought Carol to have dialed on the 
telephone the happy engineer was testing? 

which,  the pa rse r  cor rec t ly  repor ts ,  is amb iguous  (it has 

two parses) .  Phase  1 yields a D A G  that  r epresen t s  four  

parses .  Phase  2 e x p a n d s  this into four  d is t inc t  t rees ,  two 

of  which  are then  ru led  ou t  by  phase  3. The  f igures for 

phase  2+3  inc lude  the t ime t aken  to format  and  pr int  the 

t rees ,  which  for the longer  s en t ences  is not  ins ignif icant ,  

a m o u n t i n g  to a lmos t  hal f  o f  the p rocess ing  t ime for the 

15-word  sen tence .  
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