
C A T E G O R Y S T R U C T U R E S

G e r a l d G a z d a r

Cognitive Studies Programme, University of Sussex, Brighton BN1 9QN, U.K.

Geof f r ey K. P u l l u m

Cowell College, University of California, Santa Cruz, Santa Cruz, California 95064, USA

R o b e r t C a r p e n t e r , E w a n Kle in

Centre for Cognitive Science, University of Edinburgh, Edinburgh EH8 9LW, U.K.

T h o m a s E. H u k a r i

Department of Linguistics, University of Victoria, Victoria, B.C., Canada V8W 2Y2

R o b e r t D. Lev ine

Department of Linguistics, University of British Columbia, Vancouver, B.C., Canada V6T lW5

This paper outlines a simple and general notion of syntactic category on a metatheoretical level,
independent of the notations and substantive claims of any particular grammatical framework. We
define a class of formal objects called "category structures" where each such object provides a
constructive definition for a space of syntactic categories. A unification operation and subsumption and
identity relations are defined for arbitrary syntactic categories. In addition, a formal language for the
statement of constraints on categories is provided. By combining a category structure with a set of
constraints, we show that one can define the category systems of several well-known grammatical
frameworks: phrase structure grammar, tagmemics, augmented phrase structure grammar, relational
grammar, transformational grammar, generalized phrase structure grammar, systemic grammar,
categorial grammar, and indexed grammar. The problem of checking a category for conformity to
constraints is shown to be solvable in linear time. This work provides in effect a unitary class of data
structures for the representation of syntactic categories in a range of diverse grammatical frameworks.
Using such data structures should make it possible for various pseudo-issues in natural language
processing research to be avoided. We conclude by examining the questions posed by set-valued features
and sharing of values between distinct feature specifications, both of which fall outside the scope of the
formal system developed in this paper.

The notion syntactic category is a central one in most
grammatical frameworks. As Karttunen and Zwicky
(1985) observe, traditional "parsing" as taught for lan-
guages like Latin involved little more than supplying a
detailed description of the grammatical category of each
word in the sentence to be parsed. Phrase structure
grammars are entirely concerned with assigning termi-
nal strings to categories and determining dominance and
precedence between constituents on the basis of their
categories. In a classical transformational grammar

(TG), the objects transformations manipulate are pri-
marily strings of syntactic categories (and, to a lesser
extent, of terminal symbols). This is just as true of
recent TG work.

Although the use of syntactic categories is not a
logical prerequisite of generative grammar (see Levy
and Joshi (1978)), no linguistic approach known to us
dispenses with them altogether. In view of this, it is
perhaps surprising that linguists have not attempted to
explicate the concept "syntactic category" in any gen-

Copyright 1988 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/88/010001-19503.00

Computational Linguistics, Volume 14, Number I, Winter 1988 1

Gerald Gazdar et al. Category Structures

eral way, i.e., independently of particular systems of
notation and the associated substantive assumptions
about grammar.

In this paper we offer an explicit metatheoretical
framework in which a notion of "syntactic category"
receives a precise definition. The framework is intended
to facilitate analysis and comparison of the underlying
concepts of different theories, freed from the notational
and sociological baggage that sometimes encumbers the
original presentations in the literature. Viewed from the
standpoint of implementation, it can be regarded as
providing a unitary data structure for categories that can
be used in the implementation of a number of superfi-
cially different grammatical frameworks.

We begin by defining in section 1 a space of catego-
ries broad enough to encompass the objects employed
as syntactic categories in a range of diverse types of
generative grammar. Then, in section 2, we present the
syntax and semantics for L c, a formal language for
defining constraints on categories. In the succeeding
section we provide illustrative definitions of the gram-
matical categories used in a number of frameworks. We
cover simple phrase structure grammar in section 3.1;
tagmemics in section 3.2; Harman's (1963) augmented
phrase structure grammar in section 3.3; relational
grammar and arc pair grammar in section 3.4; X syntax,
TG, and the government-binding (GB) framework in
section 3.5; generalized phrase structure grammar
(GPSG) in section 3.6; systemic grammar in section 3.7;
categorial grammar in section 3.8; and Aho's (1968)
indexed grammar in section 3.9. We then go on to
consider some relevant computational complexity mat-
ters (section 4). Finally, we discuss two issues that do
not arise in any of these approaches, and which fall
outside the scope of the simple theory that we present,
namely the use of sets as values of features (section 5)
and values shared between distinct feature specifica-
tions (section 6). These issues are important in the
context of the category systems employed in functional
unification grammar (FUG), lexical functional grammar
(LFG), and the PATR II grammar formalism.

Our goal in this paper is not an empirical one, but
rather one which is analogous to that of Montague's
"Universal Grammar" (1970) (see Halvorsen and La-
dusaw (1977) for a useful introduction) which attempts
to give a general definition of the notion "possible
language" in terms applicable to, but not limited to, the
study of human languages. We have the much more
modest goal of characterizing one rather simple and
general notion of "possible syntactic category", and of
exploring the range of linguistic approaches that it will
generalize to, its formal properties, and its limitations.
As will become evident below, our exercise is comple-
mentary in certain respects to that of Pereira and
Shieber (1984) and Shieber (1987) and to recent work of
Rounds and his associates on the development of a logic
for the description of the notions of syntactic category
that are embodied in functional unification grammar and

PATR II (see Kasper and Rounds (1986), Moshier and
Rounds (1987), Rounds and Kasper (1986)).

We do not concern ourselves with the appearance or
representational details of a given theory of categories
(or any of the other aspects of the linguistic framework
in question, e.g., its rule system), but only with its
underlying semantics--the issue of what set-theoretic
(or other nonlinguistic) objects provide categories with
their interpretation. We are content with being able to
exhibit an isomorphism between one of the theories of
categories permitted by our framework and the concrete
example we are considering; we need not demonstrate
identity. Hence we have deliberately refrained from
specifying a formal language for representing categories
and features. To the extent that we need to produce
exemplificatory features or categories for inspection,
we may use the conventional notation of the approach
in question, or the ordinary notations of set theory, or
an informal labeled graph notation introduced below,
but we do not offer a representational formalism for
categories that has a significance of its own.

In the framework we provide, it is possible to define
the category systems of a wide variety of apparently
very different approaches to natural language syntax
simply by defining two primitive typing functions, and
by varying the constraints stated on the categories that
they induce. The exercise of expressing the content of
various specific linguistic approaches in such terms
immediately calls attention to certain interesting formal
issues. For example, we reconstruct below the notion of
a list-valued (or stack-valued) feature in terms of cate-
gory-valued features, which automatically allows oper-
ations defined on categories such as unification to apply
to lists without special redefinition.

An interesting fact that emerges from the view taken
here is that on the matter of syntactic categories, there
is somewhat more commonality among the diverse
approaches currently being pursued than there appears
to be when those approaches are viewed in the formal-
isms used by their practitioners. The various syntactic
frameworks that we examine below can be seen to share
a great deal of their underlying substantive claims about
the information content of the category label of a
constituent. Our explication of these underlying com-
monalities may make somewhat easier the task of the
computational linguist attempting to implement a sys-
tem on the basis of some grammatical framework, or
attempting to decide which approach to implement in
the first place.

In order to prepare for some of the definitions that
follow, we will briefly and informally sketch some of
our assumptions about features and categories and the
terminology we shall use for talking about them. A
category is a set of feature specifieations meeting certain
conditions to be defined below. A feature specification
is an attribute-value pair (f, v) where the at tr ibutef(the
feature) is atomic (i.e., given by some finite list, and
regarded as unanalyzable) and the value v is either

2 Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et al. Category Structures

atomic or complex. Here we shall assume just one type
of complex value, namely a category (but see below in
section 5).

An example of an atom-valued feature specification
would be (SINGULAR,+) (which many grammarians
would write as [+SINGULAR]); intuitively, it might mark
singular number (though, of course, the interpretation it
actually has depends on the role it plays in the gram-
mar). An example of a complex feature specification,
with a category as the value, would be (AGREEMENT,
{(SINGULAR, +), (GENDER, FEM), (PERSON, 3)}); intuitively, it
might be used to convey that the value of the AGREEMENT
feature is a category representing the combination of
singular number, feminine gender, and third person. In
the following sections, we will always use SMALL CAPI-
TALS for feature names, and we will generally replace
" - " and " + " , which are standard usage in the linguis-
tic literature for the atomic values of a binary feature,
by 0 and 1 respectively.

As we have said, a category is a set of feature
specifications meeting certain conditions. We will now
specify these. We do not require that every feature
name be represented in each category, but we do
require that each occurrence of a feature be paired with
exactly one value in any set of specifications; thus
{(SINGULAR,+>, (SINGULAR,-->} could not be a category.
Hence a category can be modeled as a partial function
C:F--> V, where F is a set of features and V is the set of
values. An equivalent alternative would be to treat
categories as total functions into a range that includes
an element ± that can stand as the value where the
corresponding partial functions would fail to assign a
value. Note that we use the term 'range' here, and
subsequently, to refer to a set that includes all the
values that a partial function or family of partial func-
tions might take given appropriate domain elements,
rather than just the set of values that it does take when
we fix a particular domain for a function.

It may be helpful to think of a category as having the
structure of an unordered tree, and we will introduce a
type of diagram below which exhibits this structure
overtly. Often, however , the idea of categories as
partial functions will be crucial, so it should be kept in
mind throughout.

Since the set V of values may include categories, the
definition of the entire set of categories has to be given
recursively. Moreover , it has to allow for the possibility
that not all values are compatible with all features.
Thus, for example, in a given feature system, (GENDER,
0) and (PERSON, plural) might be coherent objects but
mnemonically perverse, whereas in another feature
system, they might simply be ill-formed. We shall show
how these issues can be resolved in the coming sec-
tions. We will not, however, give a constructive defini-
tion of the set of categories for each grammatical
f ramework we consider. Instead, given our comparative
and metatheoretical goals, it turns out to be more

convenient to define a category system as a pair (~, C>
where ~ is a category structure, which defines a set of
potential categories (see section 8), and C is a set of
constraints expressed in L c, a language for which the
category structure defines the models (see section 9).
The actual categories in the system are then to be
construed as that subset of the potential categories
defined in ~, each member of which satisfies every
constraint listed in C.

1 DEFINING CATEGORY STRUCTURES

In this section we define the notion of a category
structure, which is basically a choice of primitives: a list
of features, and a range of possible values for each.
Here and throughout the paper we will frequently use
" 2 " to denote the set {0, l} (the context will make it
clear when " 2 " represents an integer and when it
represents a set). We will write A B for the set of total
functions from B into A , A (m for the set of partial
functions from B into A, @(A) for the power set of A,IAI
for the cardinality of A, and Aft) for the domain of a
(partial) function f (i f f is a partial function than A(f) is
the set of items to which f assigns a value).

A category structure E is a quadruple (F, A, r, p)
where F is a finite set of features, A is a finite set of
atoms, r is a function in 2 F, and p is a function from
{flW.D = 0} into ~(A). The function r partitions F into
two sets: the set of type 0 features F ° = {fir(f) = 0}, and
the set of type 1 features F l = {fir(f) = 1}. We will write
r as r 0 when F = F °. Type 0 features take atomic values
and type 1 features take categories as values. The
function p assigns a range of atomic values to each
feature of type 0.

The set of categories K is recursively defined in
terms of (F, A, r, p), in a way very similar to that used
in Pollard (1984, p. 299ff), though Pollard's assumptions
differ on some important details. A relatively informal
presentation will suffice here. We will refer to the set of
partial functions from F ° into A that are consistent with
p as the type 0 categories. We first define the set of pure
type 0 categories of ~ as those containing only type 0
feature specifications. Then we build up K via a series
of approximations we will refer to as levels, finally
taking the infinite union of all the levels to obtain K
itself:

(1) a. O is a category at level 0
b. If a is a type 0 category and fl is a category

containing only type 1 features whose values are
categories at level n, then a U fl is a category at
level n + 1.

c. K is the set of all categories at all levels n -> 0.

Given the way K is built up, the induction step in (Ib)
being restricted to union of finite partial functions, it
should be clear that K is a recursive set.

We can define certain relations and operations on the
space K of possible categories. Thus, we can give a

Computational Linguistics, Volume 14, Number I, Winter 1988

Gerald Gazdar et aL Category Structures

constructive definition for unification (symbolized U) as
a binary operation on categories.

(2) Definition: unification
(i) if (f, v) E a but/300 is undefined, then (f, v)

E aU/3 ;
(ii) if (f, v) E/3 but a(f) is undefined, then (f, v)

E ~U/3 ;
(iii) i f (f, v;) e a and (f, b) e /3 and ~-(]) = 1, then

i f vi U b is undefined, a U/3 is also undefined,
else (f, v i U vj) @ a U/3;

(iv) if (f, vi) E a and (f, 5) E /3 and T(j') = 0, then
if vi = vj, (f , vi) E /3 U/3, else a U/3 is
undefined.

(v) nothing else is in a U/3.

We can then use unification to define the subsumes
relation between categories (where 'subsumes' means
'is more general/underspecified than' , or 'is extended
by'). We symbolize 'subsumes' with 'E_', and define it as
follows.

(3) Definition: subsumption
o~ subsumes/3 (a E_/3) if and only if/3 = a U/3.

Thus a subsumes/3 if and only if/3 is the unification
of a and/3. When a subsumes/3 then we may refer to/3
as an e x t e n s i o n of a. I f a U/3 is undefined, then/3 = a
U/3 fails, and a does not subsume/3. From this it follows
that, if a and/3 are categories, then a = /3 if and only if
a E_/3 and/3 E_ a. The following theorem is provable by
induction on category levels.

(4) Theorem:
a subsumes/3 if and only if
(i) Vf E (A(a) fq F °) [a(f) = /3(f)] and
(ii) Vf E (A(a) tq F 1) [a(f) F"/3(f)].

2 THE CONSTRAINT LANGUAGE L c

We now provide an interpreted formal language, L C, for
expressing specific constraints on categories. Con-
straints are statements that can be true or false of a
category. By requiring satisfaction of the constraint, a
constraint can be used to delimit a subspace within the
set K induced by a given category structure E, to serve
as the grammatical categories for a particular type of
grammar.

It should be noted that our goals in formulating L c
are slightly different from those of Rounds and his
associates: L c is a language for formulating constraints
on well-formed categories, not a language whose ex-
pressions are intended for use in place of categories. To
put it rather crudely, our language is for category
definition whereas Rounds' is (in part) for category
manipulation. However, the languages look rather sim-
ilar syntactically, and where they overlap, the seman-
tics is essentially the same.

We define two types of constraint: basic and complex.
If f is an element of F, and a is an element of A, then

there are just two distinct types of well-formed basic
constraint:

(5) a. f
b. 32a (where ~-(f) = 0)

Informally, (5a) constrains a category to contain some
specification for the feature f ; thus, the constraint
"BAR" says that every syntactic category satisfying it
has as one of its elements a pair (BAR, n). This does not
entail that every value of every category-valued feature
contained in the category must contain BAR; a basic
constraint applies to the " top level" of the tree-like
structure of a category. Likewise, (5b) says of a cate-
gory satisfying it that it has as one of its elements the
pair (f, a). Note that the only thing a basic constraint
can require of a type 0 feature beyond saying that it
must be present (defined) is that it have a particular
atomic value, and that a basic constraint cannot require
anything of a type 1 feature at all beyond demanding its
presence.

Turning to complex constraints, we now continue the
list (5), giving the syntax for each type of complex
constraint together with an informal indication of its
semantics. Assume t h a t f i s an element of F 1, and 05 and

are themselves well-formed basic or complex con-
straints, and that we are considering the interpretation
of the constraints with respect to some fixed category
structure Y and some category a.

(5) c. 32 05 ' f is defined in a and its value satisfies 05'
d. -7 05 ' a does not satisfy 05'
e. 05 V ~O ' a satisfies either 05 or ~O'
f. 05 A @ ' a satisfies both 05 and ~0'
g. 05 --> ~0 'either a does not satisfy 05 or a does

satisfy ~0'
h. 05 ~ ~0 ' a satisfies either both or neither of 05 and

i. D05 ' a satisfies 05, and all values of type 1
features in a satisfy 1~05'

j. © 05 'either a satisfies 05 or some value of a type
1 feature in a satisfies O 05'

Constraints of the forms (5a) through (5h) are fairly
straightforward, but constraints like those shown in (5i)
and (5j) need a little more discussion. They introduce
modality into our language. Their purpose is to allow for
recursive constraints to be imposed on successively
embedded layers of category values. As indicated, a
category a satisfies r-]05 provided that, firstly, a satisfies
05 and secondly, whenever a assigns a category/3 to a
type 1 feature f , /3 satisfies D05. This may appear to
introduce a circularity, but it does not: categories are
finite, and within any category there will be a level so
deeply embedded in the tree structure that there are no
more category values within it; at that point [~05 is true
if 05 is, thus ending the recursion.

Our choice of notation in (5i) is quite deliberate: in
effect, constraints of the form (50 express universal
quantification over embedded accessible' categories in

4 Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et al. Category Structures

the way that the familiar necessity operator [] of modal
logic enforces universal quantification over accessible
worlds in the standard semantics. The possibility oper-
ator in (5j) is, as usual, the dual of the necessity
operator: O 4, says of a category a satisfying it that
either a satisfies tO, or there exists a category-value/3
assigned to a type 1 f e a t u r e f b y a such that/3 satisfies

<>tO.
As a simple example of the sort of work a complex

constraint in Lc might do in a grammatical theory,
consider the constraint that is known as the "Case
fi l ter" in recent TG (see Chomsky 1980, p. 25). Stated
informally as "*N, where N has no Case" , the con-
straint appears to require every occurrence of the
feature complex characterizing the category N, i.e.,
every occurrence of [+N, - V] , to co-occur with a
feature called " C a s e " . The constraint can be stated in
Lc as (6).

(6) [](((N: I) A (v: 0)) ~ CASE)

Here and from now on, we use parentheses in the
obvious way wherever it is necessary prevent ambiguity
in the statement of constraints.

The account of L c given thus far will suffice for a
reading of this paper, but those readers who would like
to see the semantics given more formally may turn to
the appendix.

To recapitulate, a theory of categories ® in our sense
is a pair (E, C), where I£ is a category structure and C is
a set of sentences of L o The set of categories deter-
mined by ® is the maximal subset Kc of K determined
by E such that each member of K c satisfies every
member of C.

3 ILLUSTRATIVE APPLICATIONS

We will now illustrate the application of the apparatus
developed thus far by reconstructing the category sys-
tems used in a number of well-known grammatical
frameworks that linguists have developed, most of them
frameworks that have been used in natural language
processing systems at one time or another.

3.1 SIMPLE PHRASE STRUCTURE GRAMMAR

The case of simple phrase structure grammar is trivial,
but will serve as an introduction to the form of later
sections, and as a straightforward example of the use of
a type 0 feature.

The set of categories used in a simple phrase struc-
ture grammar is just some finite set of atomic categories
{al a,}, for example, {S, NP, VP, Det, N, V}. So
we fix values for F, A, z, and p as in (7):

(7) a. F = {LABEL}

b. A = {a 1 a,}
c. ~'o
d. p = {<LABEL, A)}

Thus, for example, we might have A = {S, NP, VP, Det,
N, V}, and thus have /~LABEL) as the same set. In

addition, we need the following constraint, to make sure
that every category does indeed have a specification for
the solitary type 0 feature LABEL, i.e., to exclude the
empty set from counting as a category:

(8) LABEL

Obviously, we can now show that the category inven-
tory for any simple phrase structure grammar is repre-
sentable. We let 0 be the bijection defined by 0(a/) =
{(LABEL, ai)}, and the result is immediate. Thus there is a
bijection from the set of simple phrase structure gram-
mar categories to the categories admitted by the cate-
gory structure (7) under the constraint (8). As is evident,
the set of categories induced is finite, and of cardinality
n = IAI.

3.2 TAGMEMICS

It may be that there are more published syntactic
analyses of languages in the f ramework of tagmemics
than in any other theoretical f ramework ever devel-
oped. Since the early 1960s, those who have followed
the work of Kenneth Pike, including a very large
number of field linguists working for the Summer Insti-
tute of Linguistics, have produced analyses of hundreds
of languages, mostly non-Indo-European. Moreover ,
Postal (1964, p. 33) remarks that " these languages are,
for the most part, exotic enough so that the tagmemic
descriptions of them may very well be the only ones
done . "

Tagmemics describes syntactic structure in terms of
TAGMEMES, which are notated in the form A:b, where A is
said to represent a SLOT and b a FILLER. For example,
Elson and Pickett (1962) represent (part of) the structure
of English prepositional phrases and intransitive clauses
with tagmemic formulm (i.e., rules) similar to the fol-
lowing (we simplify very slightly):

(9) a. L r a P h r - - +R:prep + A : m N c
b. mNc -- +Lim:ar --M:aj +H :n c
c. iCl = +S :mNc +iP:v 3

The informal explication of these is: (9a) one type of
location relater-axis phrase consists of an obligatory
relater slot filled by a preposition followed by an
obligatory axis slot filled by a modified count noun
phrase; (9b) one type of modified count noun phrase
consists of an obligatory limiter slot filled by an article
followed by an optional modifier slot filled by an
adjective followed by an obligatory head slot filled by a
count noun; (9c) one type of intransitive clause consists
of an obligatory subject slot filled by a modified com-
mon noun phrase followed by an obligatory intransitive
predicate slot filled by a verb of class 3. Thus the left
hand side of a formula (before the equality sign) consists
of an atomic label, and the right hand side is a string of
tagmemes, which are ordered triples (a, b, c) where a is
an indication of optional (-+) or obligatory (+) status, b
is a slot or function name, and c is a filler or category
label.

Computational Linguistics, Volume 14, Number 1, Winter 1988 5

Gerald Gazdar et al. Category Structures

One way of representing tagmemes in our terms is to
employ a type 0 feature bearing the slot name, taking as
value an atomic label identifying the filler. Thus we set
up correspondences like the following:

(10) a. R:prep {(R, prep)}
b. A:mNc {(A, mNc)}
c. Lim:ar {(him, ar)}
d. M:aj {(M, aj)}
e. H:nc {(H, nc)}
f. S:mNc {(s, mNc)}
g. P:v 3 {(P, v3)}

Left hand sides of formulae can be seen as implicit
schematizations over slot names. For example, (9b)
says that for any slot name o-, a constituent labelled {(o-,
mNc)} may have the immediate constituent analysis
seen on the right hand side of the equation.

A category structure representing a set of categories
including all those seen in the above illustrative exam-
ples is given in (11).

(II) a. F = {R,A,LIM,M,H,S,P}
b . A = { L r a P h r , p r e p , m N c , a r , a j , n c , v l , v 2 , v 3 }

c . "r 0

d. p = {(R,{prep}),(A,{mNc}),(LIM,{ar}),(m,{aj}),(H,
{nc}),(s,{mNc}),(p,{Vl,V2,V3})}

This artificially tiny fragment does not show much of
the structure that would be revealed in a larger frag-
ment, with more word classes and phrases types, but it
will suffice to show how we could set up a category
structure that provided isomorphic correspondents to
the categories employed in a tagmemic description.
Moreover, there is an unclarity about whether there is
more to a tagmemic formula than has been illustrated
here; as discussed by Postal (1964), there are some
remarks about the treatment of agreement in Elson and
Pickett (1962) that imply either finite schematization or
additional representational devices of an unclarified
sort. We will not explore this topic here.

Postal (1964) is probably right in saying that tagme-
mics appears to be only notationally distinct from
context-free phrase structure grammar. Longacre (1965)
claims that "[b]y bringing together function and set in
the tagmeme" tagmemics ensures that "function is at
once kept in focus and made amenable to formal anal-
ysis." Under our reconstruction, "functions" like
"subject" or"modif ier" are "made amenable to formal
analysis" simply by incorporating them into the feature
structure of categories, making it clear that little was at
stake in the debate between Postal and Longacre over
the content of tagmemics. It is clear that the number of
categories defined by a category structure for tagme-
mics will be bounded from above by IFI • IAI, and thus
finite. The question of whether tagmemics reduces to
context-free grammar therefore turns on whether tag-
memic formulae can in all cases be reduced to context-
free rules. This seems likely, but such issues are not the
focus of our attention in this paper.

3.3 H A R M A N ' S A U G M E N T E D P H R A S E S T R U C T U R E
G R A M M A R

Harman (1963) presents a proposal that involves aug-
menting the ordinary category inventory (S, NP, VP,
etc.) of simple phrase structure grammar by attaching
"an unordered sequence of zero or more (up to N for
some finite N) subscripts" to a category. Abbreviatory
conventions are then used to manage large sets of rules
over the resultant vocabulary. Note that the indices
stand for the members of a set rather than a sequence,
and that there is only a finite number of them.

To formalize Harman's proposal in the present
framework, we again use LABEL as the feature that
identifies major syntactic categories in the traditional
sense, and we set up a finite number of type 0 features
~'1 ~', to correspond to the presence (value 1) or
absence (value 0) of each of the n different subscripts.
The set of feature specifications for these features
reconstructs the characteristic function of the set of
indices. The category structure is as follows:

(12) a. F = {LABEL, F 1 Fn}

b. A = {al a,,} tA 2
c. "r 0
d. p = {(LABEL, {a 1 am}), (FI, 2) (Fn, 2)}

We now have to guarantee that every category has a
value for LABEL and a value for each •,. in F. We
therefore impose the following constraint:

(13) LABEL / ~ F I / ~ . . . / ~ F n

The resultant specification induces a finite set of cate-
gories, of cardinality m • 2 n.

Harman's system is more than just a historical curi-
osity. More recent works are found that use almost
exactly the same sort of syntactic categories. For ex-
ample, the use made of syntactic features in one influ-
ential variety of augmented phrase structure grammar,
the Prolog-based definite clause grammar (DCG) for-
malism of Pereira and Warren (1980) closely resembles
that of Harman. However, it is clear that the full power
of the DCG formalism can, in principle, be used to
exploit features with structured values and value-
sharing (see section 6 on the latter).

3.4 R E L A T I O N A L AND A R C P A I R G R A M M A R

Relational grammar (RG) Perlmutter and Postal (1977)
and arc pair grammar (APG) Johnson and Postal (1980),
(henceforth J & P) appear to make relatively little use of
grammatical category information, expressing most
grammatical rules as conditions on arcs representing
grammatical relations between nodes (in RG) or as
conditions on relations between such arcs (in APG)
rather than on the labeling of nodes. Nonetheless, J&P
make clear that nodes are assigned grammatical cate-
gory labels in APG, and since APG is essentially a
formalized elaboration of RG ideas, we will assume that
much the same is true in RG, though the RG literature
so far has not made such aspects of the approach

6 Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et ai. Category Structures

explicit. Syntactic category labels are not entirely with-
out utility in RG and APG, since, for example, agree-
ment rules crucially make reference to categorial prop-
erties like number, gender, and person, and the proper
formulation of agreement rules has been a topic of some
interest in RG and APG research.

As defined in J&P, an arc is an ordered pair (R((a,
b)), c I . . . CA) where R((a, b)) indicates that b (the
second or head node) bears the grammatical relation
named by the "relational sign" R to a (the first or tail
node), and cl through ck are the representational strata
Ladusaw (1985) at which this holds. In APG, categories
are assigned to nodes by means of arcs in which the
relational sign is L; such arcs are referred to as L arcs.
The head of an L arc is simply an atomic label from a set
of "grammatical category nodes" (called GNo by J&P)
that is given by listing.

Two types of grammatical category are recognized in
APG: Major categories such as CI (clause), Nom (nom-
inal), and V (verb), and minor categories such as
Feminine, Singular, Third-Person, etc. A general con-
straint (Pair Network Law 31, the Major Category
Exclusiveness Law) prevents a node from being the tail
of two distinct arcs with heads in the set Major (J&P,
202), i.e., the set of grammatical category nodes that
represent major categories. We can obtain the effect of
this law simply by assuming a type 0 feature LABEL
which takes values in the set of Major categories.

In the case of minor categories, APG permits multi-
ple atomic elements from GNo to be attached by L arcs
to a single tail node (J&P). Thus a node might be the tail
of L arcs whose head nodes are the atoms Nom,
Feminine, Singular, and Third-Person, representing a
third person singular feminine noun or noun phrase. It is
easy to represent such sets of labels attached to a single
node using type 0 features. We can represent the set of
elements of GNo assigned to a given tail node by
including a category corresponding to the characteristic
function of that set, as with the indices in Harman's
system. So we fix values for F, A, T, and p as shown in
(14):

(14) a. F = {LABEL, F I Fn}

b. A = {al am} U 2
c. ~'o
d. p = {(LABEL, {a I am}), (F1, 2) (Fn, 2)}

Here Major = {?l ?n}, and GNo = {? 1 ~,} U
{a I am}. The constraint needed is the following:

(15) ~ ' I A . . . A F .

This has the effect of requiring every category to
include the characteristic function of a set (of minor
categories, in the APG sense). However, we do not
need to guarantee that every category has a specifica-
tion for LABEL, as J&P specifically leaves it open
whether there are nonterminal nodes with no associated
grammatical categories; the absence of any grammatical
category node will be reconstructed in our terms as that

function ~" that is undefined for LABEL and which assigns
0 to each ~'i E F.

It can be shown that the category system just defined
adequately represents category labelling in APG, in the
sense that there exists a bijection 0 between (a) nonter-
minal nodes together with their grammatical category L
arcs in an admissible APG syntactic representation and
(b) admissible categories induced by the category struc-
ture in (14) and the constraint in (15).

From an arbitrary well-formed APG pair network we
can extract the set X of arcs it contains (J&P), and the
set N of nodes associated with X. Since we are not
concerned with coordinates, we can discard the coordi-
nate sequences and consider just the incomplete arcs to
which the arcs in X correspond. By Theorem I (J&P),
all and only the terminal nodes in N are heads of L arcs.
Extracting just the arcs with terminal nodes as heads
gives us the set of L arcs from X; and discarding those
with heads not in GNo gives us just the L arcs with
grammatical category labels as their heads. The mem-
bers of this set can be partitioned into equivalence
classes having the same tail node (since by definition no
arc has more than one tail). For convenience of refer-
ence we can call these equivalence classes category-
labelled nodes.

Theorem. There is a bijection from APG category-
labelled nodes to categories admitted by (14) and (15).

Proof. Consider an arbitrary category-labelled node K
with tail n. By PN Law 31, the Major Category Exclu-
siveness Law, exactly one arc in K has a head which is
in Major. Let 01 be the bijection established by 01(L(n,
a)) = t~, and let 02 be the bijection established by 0(a) =
(LABEL, O~) iff a E Major and (a, 1) otherwise. The
category corresponding to K will be the smallest set that
contains 0102(A) for all arcs A in K and contains (Fi, 0) for
all vi in F that are not in the range of 01. Since 01 and 02
are bijections, their product 0102 is a bijection. The
correspondence in the opposite direction is obvious. A
node that is the tail of no L arcs will be mapped by 0102
to ~, and other nodes will be mapped onto categories in
which the values of the features record the details of the
category-labelling L arcs in r together with (redun-
dantly) information about which one is the major cate-
gory, the mapping yielding a unique result in each
case . l l

The set of APG (and, we assume, RG) categories
induced is finite, and ceteris paribus is of cardinality
m • 2"; it will be much smaller once further conditions
on coocurrence of minor categories are imposed (Mas-
culine and Feminine presumably cannot both be
mapped to 1 in a category, for example). It is of interest
that despite the utterly different grammatical formalism
and theoretical background associated with it, the APG
notion of syntactic category can be seen to be almost
identical to that of Harman 's augmented phrase struc-

Computational Linguistics, Volume 14, Number I, Winter 1988 7

Gerald Gazdar et al. Category Structures

ture grammar, nodes without LABEL values contributing
the only relevant difference.

3.5 X SYNTAX, TRANSFORMATIONAL GRAMMAR,
GOVERNMENT-BINDING

In the great majority of contemporary works in trans-
formational grammar (TG), including those representing
what is known as "government-binding" (GB)
Chomsky (1981), the conception of grammatical catego-
ries follows what is called "the X-bar convention"
Jackendoff (1974) Hornstein (1977) or "X-bar syntax".
"X-bar" is often notated X or X', or as X 1, X 2, etc., the
superscript numeral denoting the number of bars or bar
level.) The central idea of X-bar syntax is that phrasal
categories are "projected" from lexical categories.
Given a lexical category X, the related phrasal nodes
are assumed to be X(= X' = X1), X(= X" = X2) , and so
on.

Representing phrasal categories as founded on lexi-
cal categories in this way amounts to treating categories
as non-atomic, the distinction between lexical catego-
ries and the various levels of phrasal category being
tantamount to a feature specification distinction. Bar
level is not treated in terms of features in most works
using X-bar notation, probably because of the tradition
in TG (and related work in segmental phonology) re-
stricting features to the values {- , +}. Thus Bresnan
(1975) treats categories as ordered pairs (i, M) where i is
a natural number representing the bar level and M is a
matrix of feature specifications, and the same formal-
ization is used by Lasnik and Kupin (1977). Here we
simply integrate bar level information with the rest of
the feature system.

Although the origins of the X-bar proposal (Harris
1951) do not take such a feature analysis of categories
any further, but treat lexical categories as atomic, it is
always assumed in current instantiations of X-bar syn-
tax that lexical categories themselves have a feature
analysis. In much TG, it is presupposed that the lexical
categories N, A, V, and P are to be analyzed in terms of
two binary features N and v. 1 Lasnik and Kupin (1977) is
a fairly explicit formulation of this type of category
system. They assume a maximum bar level of three. To
characterize their system of categories, we fix our
values for F, A, ~-, and p as in (16), and impose the
constraint in (17).

(16) a. F = {N, V, BAR}
b. a = {0, 1 ,2 ,3}
C. ~o
d. p = {iN, 2), (V, 2>, (BAR, a)}

(17) N/% v/% BAR

This yields a system of 16 categories, four at each bar
level.

Jackendoff (1977) proposes a version of X-bar syntax
in which lexical categories are distinguished from one
another by means of the features [-----SUBJ], [--0BJ],
[-----C0MP], and [--+DET] rather than by I-----N] and [-+v]. He
does not provide an explicit definition of his full set of
categories, but he gives enough detail for it to be
deducible. To define Jackendoff's system of categories,
we fix our values for F, A, ~', and p in the manner shown
below:

(18) a. F = {SUBJ, C0MP, DET, 0BJ, BAR}
b. a = {0, 1 ,2 ,3}
C. 7 0
d. p = {(SUBJ, 2), (C0MP, 2), (DET, 2), (0BJ, 2),

<BAR, A)}

To get the exact set of permissible categories, we need
to make sure that SUBJ, 0BJ, COMP, and BAR are defined in
all categories, and that DET is only specified in [-C0MP],
[-0BJ] categories. The following set of L c constraints
will achieve this.

(19) a. SUBJ A OSJ A COMP /%, BAR
b. DET --) ((COMP:0) /~ (0BJ:0))

We can now obtain a bijection between Jackendoff's
X-bar categories and the admissible categories induced
by F, A, and the constraints listed in (19). We define a
mapping 0 between the Jackendoff's own category
abbreviations and the admissible categories with re-
spect to (19a) and (19b), as follows (we schematize by
writing X with n bars as X n, 0 <-- n <- 3):

(20) a. 0(V") = {(SUBJ, 1), (0BJ, 1>, (C0MP, 1), (BAR, n)}
b. 0(M") = (SUBJ, 1), (0BO, I), (C0MP, 0>, (bar, n)}
c. 0(P") = {(SUBJ, 0), (0BJ, I), (C0MP, 1), (BAR, n)}
d. 0(Prt n) = {(SUBJ, 0), (OBJ, 1), <C0MP, 0), (BAR, n)}
e. 0(N n) = {(SUBJ, 1), (0BJ, 0>, (C0MP, 1), (BAR, n)}
f. 0(Art") = {(SUBJ, 1), (0BJ, 0>, <C0MP, 0), (DET, 1),

(BAR, n)}
g. 0(Q") = {(SUBJ, 1), (0BJ, 0), (COMe, 0), (DET, 0>,

(BAR, n)}
h. 0(A n) = {(SUBJ, 0), (OBJ, 0), (C0MP, 1), (BAR, n)}
i. 0(Deg") = {(SUBJ, 0), (0BJ, 0), (COMP, 0), (DET, 1),

(BAR, n>}
j. O(Adv") = {(SUBJ, 0), <OBJ, 0), (COMP, 0), (DET,

0), (BAR, ~}

An example of a category admitted in Jackendoff's
system would be {(BAR, 3), (SUBJ, 1), (0BJ, 0), (C0MP, 1)},
which can be more perspicuously presented in the
graphic form given in (21).

BAR 3

SUBJ 1

OBJ 0

COMP 1

As is evident, the set of categories induced by Jacken-
doffs system has a cardinality of 40, ten at each bar
level.

8 Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et al. Category Structures

Sets of categories as small as this are clearly insuffi-
cient for the description of natural languages. All trans-
formational grammarians seem to agree that references
to distinctions of tense, mood, voice, person, number,
gender, case, pronominality, definiteness, wh-ness, and
many other morphological and syntactic distinctions are
in fact needed in a grammar. As pointed out by PuUum
(1985), some statements in the TG literature suggest that
further features are provided for the expression of such
distinctions but are restricted to lexical (<BAR, 0)) cate-
gories. However, it is easy to find examples in the
literature of additional features like definiteness, case,
wh-ness, and many others, being assigned to phrasal
nodes as well. In marked contrast to a work such as
Stockwell, Schachter and Partee (1973), recent TG has
not been explicit about such matters. Allowing for
twenty binary morphosyntactic features (a modest esti-
mate if any serious effort at coverage is to be made) and
allowing them only on lexical categories would increase
the cardinality of the set of categories to about 4 • 106 in
the case of Lasnik and Kupin's system and to over 107
in the case of Jackendoff's.

In one respect, what we have said so far may not
adequately capture the conception of categories found
in recent TG and GB works. These works generally
make considerable and crucial use of co-indexing of
nodes, using indices taken from an infinite set such as
the integers. If the index on a node is taken to be part of
the structure of the category labelling that node
Chomsky (1970), which is not the only view one could
take, then the number of distinct categories becomes
infinite. This does not mean it becomes difficult to
represent. Indexing of this sort can be represented
directly in the present framework without adding an
infinite set of additional atoms such as the natural
numbers. We add a type 0 feature 0e (with p(0e) = {0})
and a type 1 feature SUCCESSOR to the feature system and
use this to build the set of indices. Thus the index "3"
would be represented as shown in (22), where category-
valued feature specifications are shown with pointers to
categories in their value positions.

In some recent TG, more than one indexing system is
employed. Thus Rouveret and Vergnaud (1980, p. 160)
"postulate that each verbal complex in a structure is
identified by some integer p and each [-N] element in the
verbal complex p bears the superscript p . " This super-
scripting system is distinct from the subscripting system
maintained to indicate anaphoric linkage or binding, and
neither places an upper bound on the number of indices.
Hence it would not be sufficient to have a single type 1
feature. Two further type 1 features SUBSCRIPT and
SUPERSCRIPT could be used, each taking category values
representing indices with SUCCESSOR and OF.

It may seem implausible to suppose that anyone
would choose in practice to handle indexing via a
feature system such as that just suggested• Nonetheless,
it would clearly be possible, which shows that one can
incorporate integer indices into the structure of catego-
ries in terms of a finite number of features and a finite
number of atoms, which might not initially have been
evident•

3.6 GENERALIZED PHRASE STRUCTURE GRAMMAR

The generalized phrase structure grammar framework
(GPSG), as set out in Gazdar, Klein, Pullum, and Sag
(1985), (henceforth GKPS), differs from the examples
considered so far in that it makes extensive use of
features that are permitted to have categories as their
values. 2

For concreteness, we suggest how the set of catego-
ries for the GKPS version of GPSG would be recon-
structed in the framework presented here (see GKPS
pp. 245-6, for the complete lists where we abbreviate
with " . . . ") .

(24) a. F = {SUBJ, N, C0MP, BAR AGR, SLASH}

b. A = {0, 1, 2, for, that }
C. ~" = {(SUBJ, 0), <N, 0), <V, 0), <COMP, 0), (BAR, 0),

. . . <AGR, 1), <SLASH, 1)}
d. p = {(SUBJ, 2), <N, 2), <V, 2), <C0MP, {for, that,

• . . }) , . . . , <BAR, {0, 1, 2})}

We add to this, for each feature f E F ~, the following

(22)

Constraints are necessary to ensure that the value of
SUCCESSOR does not contain anything but SUCCESS0ROr 0e
specifications. To this end, we constrain each feature f
E F ° (except 0e) as shown in (23a), and in addition we
impose (23b) and (23c):

(23) a. [] --1 (SUCCESSOR: 39
b. [] --1 (SUCCESSOR A OF)
C. [] --1 (SUCCESSOR: --1 OF --I SUCCESSOR)

constraint:

(25) [] -~ (f: o f)

This prevents a category-valued feature f from being
specified anywhere within the value of an occurrence of
f. An example of a moderately complex category with
more than one category-valued feature that nonetheless
obeys (25) is shown in (26).

Computational Linguistics, Volume 14, Number 1, Winter 1988 9

Gerald Gazdar et al. Category Structures

(,,t~

The constraint (25) restricts us to exactly the set of legal
GKPS categories. 3 The total GKPS category set is
finite, but naturally, it is extremely large (Ristad (1986)
calculates that it is in excess of 10774). I t is clear that the
set of GKPS categories is vastly too large to be precom-
piled and stored-and indeed, no implementation that we
know of has attempted this.

3.7 SYSTEMIC GRAMMAR

Systemic grammar, originally known as "scale and
category" grammar, has its origins in the work of
Halliday (1961) and is widely known among computa-
tional linguists through Winograd (1972) and other
works, and it has recently received rigorous formaliza-
tion in the hands of Patten and Ritchie (1987). Tree
structures in systemic grammar tend to be fiat, more
structural information being expressed through catego-
ries than in most other approaches Hudson (1971).
Categories in systemic grammar are simply bundles of
feature specifications: there is "nothing in systemic
theory corresponding to the distinction between "fea-
tures"--such as [+past] - -and "categories"--such as
NP and S---in TG theory" Hudson (1971, p. 48). A set
of well-formed categories in a systemic grammar is
defined by a system network, which "is in effect a body
of rules, in symbolic form, which specify precisely how
features can combine with each other: in other words,
which features can appear together in the paradigmatic
description of a single item, and which cannot" Hudson
(1971).

We will not discuss rules for forming systemic net-
works (and hence categories) here, but will instead refer
the reader to the presentation in Winograd (1983),
where a system network expressing category informa-
tion for the English pronominal form is provided as an
example of the notational techniques used in systemic
grammar for specifying a set of categories. We repro-
duce this in Figure 1.

The content of Figure 1 can be reconstructed
straightforwardly as a category structure subject to a set
of L c constraints (for a closely related analysis of this

10

{~ Animate

Quest ion _ _ -- Subjective

Case Objective
Reflex ve
Possessive
Possessive-Determ ner

_ I First

Personal ~ _ . P _ _ ~ Second _ _ I Femin ine

I n g u l a r - - J Neuter

f [| Plural
Demonstrative - - l ~ Near

/ Far

Figure 1: Systemic Network for English Pronouns

example, developed independently, see Mellish (1986).
The following is the category structure that we need:

(27) a. F = {PRONOUN, CASE, PERSON, GENDER, NUMBER,
ANIMACY, PROXIMITY}

b. A = {question, personal, demonstrative, subjec-
tive, objective, reflexive, possessive, posses-
sive-determiner, first, second, third, feminine
masculine, neuter, singular, plural}

C. T O

d. p = {<PRONOUN, {question, personal,
demonstrative}),
<CASE, {subjective, objective, reflexive, posses-
sive, possessive-determiner}),
<PERSON, {first, second third}),
<GENDER, {feminine, masculine, neuter}),
<NUMBER, {singular, plural}),
<ANIMACY, 2>,
<PROXIMITY, 2>}

The constraints that must be imposed are the following:

(28) a. PRONOUN
b. (PRONOUN:question) ~ (CASE /~ -'-I PERSON /'k ---I

NUMBER /~ ANIMACY /~ 7 PROXIMITY)
C. (PRONOUN:personaD <--> (CASE /~ PERSON /~ NUMBER

/k -q ANIMACY /~ "7 PROXIMITY)
d. (PRONOUN:demonstrative) <--) (7 CASE /~ 7 PERSON

/~ NUMBER /~ -3 ANIMACY /~ PROXIMITY)
e. GENDER ~ (PRONOUN A (PERSON:thirD A (NUMBER:

singular))

Note that this description of the pronominal system of
English is artificially complicated by its isolation from
the rest of the grammar. If it were embedded in the
context of a definition of a wider class of categories (for
example, the English noun class network given by
Winograd (1983), it would be modified by the elimina-
tion of (28a) and the relaxation of (28b-d) to simple
conditionals.

Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et al. Category Structures

The structure seen in this example employs only type
0 features. For example, the category it defines for a
pronoun like h e r s e l f would be (29).

(29) PRONOUN

CASE

PERSON

NUMBER

GENDER

personal

reflexive

third

singular

feminine

Interestingly, however, systemic grammar as formal-
ized by Hudson (1971), at least is not limited to type 0
features. Hudson explicitly permits recursive growth of
feature structures in order to count constituents (see pp.
60-62). This could be reconstructed here by using a type
1 feature in roughly the manner we employed SUCCES-
SOR, above. Such a use of type 1 features immediately
makes the size of the category set infinite.

3.8 CATEGORIAL GRAMMAR
Categorial grammar originates with work by Lesniewski
and Adjukiewicz in the 1940s (see van Benthem, Busz-
kowski and Marciszewski (1986), Haddock, Klein and
Morrill (1987) and Oehrle, Bach and Wheeler (1987) for
recent work and references to the earlier literature). The
set of categories used is infinite. It is often defined as
the smallest set containing some set of basic categories
{al a , } , and closed under the operation of forming
from two categories a and/3 a new category al/3.

To reconstruct the category system for categorial
grammar, we define E as shown in (30).

(30) a. F = {LABEL, DOMAIN, RANGE}
b. A = {a, a . }
C. "/" = {<LABEL, 0), <DOMAIN, I), <RANGE, 1>}
d. p = {<LABEL, A>}

We then add the following:

(31) a. [-](DOMAIN <--> --l LABEL)
b. [-](DOMAIN <--> RANGE)

We can now represent any category allowed in the
simple form of categorial grammar considered so far.
For example, the category (StNP)I(SINP) can be repre-
sented as shown graphically in (32).

(32)

DOMAIN

DOMAIN

RANGE

DOMAIN

RANGE

Computational Linguistics, Volume 14, Number 1, Winter 1988

To show formally that we have captured the content
of the category system of categorial grammar, we can
exhibit a bijection between the categorial grammar
categories and the admissible categories induced by F,
A, and the constraints defined above. We define a
mapping 0 between the categorial grammar categories
and the admissible categories with respect to (31a) and
(31b), as follows:

(33) a. O(a i) = <LABEL, ai) where a i e A
b. 0(al/3) = {<DOMAIN, 0(/3)), <RANGE, 0(o0> } where a

and/3 are categories.

A simple structural induction argument suffices to show
that 0 is indeed bijective. The smallest category will be
of the type ai, and corresponds to {<LABEL, ai) }. The next
step up yields a category of the form ailaj, which
corresponds to:

(34) {<DOMAIN, {<LABEL, aj)}), <RANGE, {<LABEL, ai)}>}.

Each further step replaces a i or aj by a non-basic
category and will clearly yield a unique result. It can be
seen immediately that the mapping 0 has an inverse.

The categories defined thus far are non-directional,
in the sense that a complex category can combine with
an argument either to its left or its right. However, most
definitions assume directional categories Bach (1984).
This further specification can be easily incorporated by
introducing a new feature name DIRECTION which takes
values in 2. We then add a constraint that categories
taking values for DOMAIN also take a value for DIRECTION,
thus determining the directionality of the category.

(35) [-](DOMAIN ~ DIRECTION)

The translation function is then:

(36) a. O(a i) = {<LABEL, ai)}
b. 0(og/3) = {<DOMAIN, 0(/3)>, <RANGE, 0(a)>,

<DIRECTION, I)}
C. 0(a//3) = {<DOMAIN, 0(/3)>, <RANGE, 0(iX)),

<DIRECTION, 0)}

This translation function is again a bijection, for the
same reasons as before. Clearly we could employ an
analogous move to subsume the od/3 vs. od//3 category
distinction employed in Montague (1973).

In some recent work on categorial grammar, it makes
sense to think of expressions being assigned to infinite
sets of categories rather than to a single category, but
we will not pursue the implications of such a move here
(see van Benthem (1986c) for relevant discussion).

3.9 INDEXED GRAMMAR

Indexed grammars are a generalization of phrase struc-
ture grammars due originally to Aho (1968). Like cate-
gorial grammar and some of the other frameworks
previously mentioned, it uses an infinite category set. In
the formulation presented in Gazdar (1985), an indexed
grammar category consists of an atomic label and a

11

Gerald Gazdar et al. Category Structures

possibly empty list (or stack) of atomic indices drawn
from a finite set.

There is a familiar technique for encoding lists or
stacks in a notation which relies on the fact that lists can
be decomposed into an initial element and the residual
list (see, for example, Shieber (1984)). Thus, we add
new elements INDEX and LIST to the set F:

(37) a. F = {LABEL, INDEX, LIST}
b. A = {a 1 am} tO {0, i, i,}
C. 7" = {(LABEL, 0>, (INDEX, 0>, (LIST, I>}
d. p -- {(LABEL, {a I am}), (INDEX, {0, i I

i,}>}

A list of indices of the form (38a) is represented as (38b).

(38) a. [J0, Jl J J
b. {(LIST, {<INDEX,jo> , (LIST, {<INDEX,jl) , (LIST

{(INDEX, Jk), (LIST, {(INDEX, 0>})} . . .>}

In addition, we need the following constraints:

(39) a. LABEL /% LIST
b. [] --1 (LABEL /~ INDEX)
C. [] --I (LIST: --I INDEX)
d. [] --I (LIST /~ INDEX:0)

The first requires that at the top level, an indexed
category has a label and a list of indices. The second
disallows INDEX from co-occurring with LABEL, enforcing
the constraint recursively downward. The third requires
that if LIST is defined anywhere, then INDEX is defined in
its value. And the last, also enforced recursively down-
ward, requires that if INDEX has the value 0, LIST is not
defined (so the end of the list of indices is unambig-
uously flagged by INDEX having the value 0). A category
bearing an " e m p t y " list of indices is thus one whose
value for LIST is {(INDEX, 0)}. An example of a category
allowed by these constraints is shown in (40).

defined, since the distinction between atomic indices
and indices taken from a finite set of categories has no
language-theoretic implications.

Given the representability of list-valued features as
category-valued features in the present framework, the
definitions of subsumption and unification automati-
cally apply to lists without the need for any redefinition.
If the empty category is used as the end marker for lists
then two lists of different lengths will unify if one is a
prefix of the other. Depending upon the linguistic inter-
pretation of lists, this may or may not be what one
wants. In our illustration, we use an atomic end marker
that will block prefix unification.

4 COMPUTATIONAL COMPLEXITY OF CATEGORY

CHECKING 4

The checking problem for categories is the problem of
determining whether a category is legal given a fixed set
of constraints, or more precisely, of determining for an
arbitrary category oz and a fixed formula 4' of L c
whether o~ satisfies 4'. It is a special case of the problem
of determining whether some arbitrary model satisfies
some fixed formula of a logic.

Theorem. The checking problem for categories is solv-
able in linear time.
Proof . Assuming a category structure E = <F, A, ~-, p),
we represent a category in K as a partially labelled,
unordered tree with all nodes except the root labelled
from F tO A, all nodes labelled from A being terminals.
The category • corresponds to a single unlabelled node;
</, a) for f E F ° and a E A corresponds to a node
l abe l l edfwi th daughter labelled a; and ([, {~q o-k}>
for f E F ~ and n - 0 corresponds to a node labelled f
with the first elements of oq through o- k as its daugh-

(40) I LAB £ I D I
I LIS I __li xlal

LIST ~" I li rs:Xl:!
LIST l 0 I

Indexed grammar as originally formalized by Aho
uses lists of atomic indices as part of the composition of
categories. It is also possible in the framework we have
defined to allow features to have lists of categories as
their values. This is in fact proposed in the literature by
Shieber (1984) and Pollard (1985). To extend an indexed
grammar to permit G K P S - s t y l e categories in place of
atomic indices, one can simply make INDEX a type 1
feature, add the G K P S category structure and con-
straints to the indexed grammar category structure and
constraints, and then exempt LIST (but, crucially, not
INDEX) from being subject to the constraint schema in
(25). The resultant type of grammar, assuming that the
limitations on rules in indexed grammars are main-
tained, is equivalent to indexed grammar as originally

LeT(s). Let T be such a tree, and let 4' be a fixed formula
of L c. We check T for satisfaction of 4' by annotating
each node of T with the complete list of all subexpres-
sions of 4', and working from the frontier to the root
recording at each node which subexpressions are satis-
fied by the subtree rooted there. At each point the
checking is local: only the current node and its daugh-
ters (if any) need be examined. Even for a subformula
like [-q¢, all that must be verified at a node q as we work
up the tree is that q, is satisfied at q and 7q¢ is recorded
as satisfied at each daughter node. The conclusion of
the procedure will be to determine whether or not 4'
itself is true at the root of T, and thus whether T is
well-formed. If 4' has s subformul~e and T has n nodes,
the time taken is bounded by sn (the number of steps

12 Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et al. Category Structures

required if every subformula is evaluated at every
node), and thus linear in n, the size of the input. •

Of somewhat less interest than the checking problem
is the universal checking problem, that of determining
for an arbitrary input pair (tk, a), ~b a formula and a a
category, whether a satisfies 4). The difference is that
here ~b is not held constant; the task is analogous not to
checking the legality of a category within a selected
grammatical framework, but rather to a kind of frame-
work-design oversight role, switching frameworks with
every input and evaluating the given category relative to
the proffered constraint. We note, however, that the
universal checking problem only calls for, at worst,
quadratic time. To see this, simply note that we can use
the algorithm sketched above, and take account of s as
well as n as part of the size of the input. The worst case
is where s and n contribute about equally to the size of
the product sn, i.e., where s -~ n. Then sn -~ ((s + n)/2) 2
= (s + n)2/4, which varies with the square of the input
size s + n.

For some special cases, both the checking problem
and the universal checking problem are of course much
easier. For example, if only type 0 features are permit-
ted, checking is decidable in real time by a simple
inspection of the finite number of (f, a) pairs, regardless
of whether ~b is part of the input or not.

Note that the much harder satisfiability problem, that
of determining for an arbitrary formula ~b whether there
exists a category a that satisfies it, is of even less
interest in the present context. When a grammatical
framework intended for practical use is devised, the
constraints on its category system are formulated to
delimit a particular set of categories already well under-
stood and exemplified. There is no practical interest in
questions about arbitrary formulae of L c for which no
one has ever considered what a satisfying category
would be like.

We would expect the satisfiability problem for Lc to
be PSPACE-complete, like the satisfiability problem for
most modal logics. Ristad (1986, p. 33-4) proves a
PSPACE-hardness result for what he calls "GPSG
Category-Membership", specifically with respect to the
GKPS framework, and this can immediately be seen to
be extendable to the satisfiability result for L c (as
mentioned in footnote 3, L c is in effect a language for
the statement of feature cooccurrence restrictions, and
can be used in the same way that Ristad uses the GKPS
FCR formalism). The problem he considers, despite the
misleading name he gives it, is the analog of satisfiabil-
ity, not of checking; it asks whether there exists an
extension of a given category that satisfies a given set of
FCRs, and since the given category might be O, this is
equivalent to satisfiability. Satisfiability is NP-complete
even for simple propositional logic, so as soon as it is
appreciated that a language for stating constraints on
categories is in effect a logic with categories as its
models, the complexity of satisfiability for category

constraints comes as no surprise. Checking of GKPS
categories, on the other hand, which Ristad does not
consider, can be done very fast, as a corollary of the
theorem above.

5 SETS AS VALUES

All the syntactic approaches that we have considered so
far distinguish syntactic categories from structural de-
scription of expressions in a fairly transparent fashion.
In FUG Kay (1979, 1985), LFG Kaplan and Bresnan
(1982), and work by Shieber and others on PATR II
Shieber (1984), this traditional distinction disappears
almost entirely. Thus, in LFG, syntactic categories and
the structural descriptions known as f-structures are
exactly the same kind of object. In FUG, not only is
there no formal distinction between categories and
structural descriptions, but even the distinction be-
tween structural descriptions and grammars disappears.
At first sight, LFG f-structures seem likely to be the
trivial case of a set of categories observing no con-
straints on admissibility at all. We simply take F to be
the LFG set of f-structure attribute names, and A to be
the LFG set of atomic f-structure values (the "simple
symbols" and "semantic forms"). So, following this
reasoning, the set of LFG f-structures would be just K,
modulo the appropriate typing. However, this is not the
case, for reasons that will emerge below.

The first problem we consider is that at least two of
the frameworks just mentioned permit sets as feature
values. In one sense we already permit sets as values
since type 1 features have categories as their values,
and categories are sets. Categories are a rather special
kind of set, however, namely partial function from
features to values. Suppose we merely wanted to have
a model for a set of atoms. Then, as we saw in our
discussion of APG, we can model such a set by con-
structing the set's characteristic function. But modelling
a set that way, whilst perfectly adequate for APG
categories, has a consequence that may not always be
acceptable: two sets on the same domain will unify just
in case they are exactly the same set. Given certain
quite natural interpretations of a feature system making
use of sets, this may not be what we want.

An alternative strategy then, and one which is also
consistent with our framework, is to model sets as
partial functions into a single value range (as opposed to
total functions into a two value range). For example, the
subset of the authors of this paper with British ad-
dresses could be represented as a partial function on the
domain {Gazdar, Pullum, Carpenter, Klein, Hukari,
Levine}, namely the function {(Carpenter, 1), (Gazdar,
1), (Klein, 1),} instead of the following total (character-
istic) function on the same domain: {(Carpenter, 1),
(Gazdar, 1), (Hukari, 0), (Klein, 1), (Levine, 0),
(Pullum, 0)}. Then unification of the partial functions
amounts to union of the corresponding sets.

This is fine if our intended interpretation of the set is

Computational Linguistics, Volume 14, Number 1, Winter 1988 13

f

Gerald Gazdar et al. Category Structures

conjunctive, i.e., if {a, b, c} means that a holds and b
holds and c holds (Carpenter has a British address and
Klein has a British address and Gazdar has a British
address). But if our intended interpretation is disjunc-
tive, then we want the unification operation to give us
intersection, not union. FUG actually uses set-valued
attributes with a disjunctive interpretation Kay (1979).
And, in a discussion of possible enhancements to the
PATR II formalism, Karttunen (1984) provides a num-
ber of very relevant examples that illustrate the issues
that arise when a unification-based formalism is aug-
mented in order to encompass disjunction.

As Chris Barker has pointed out to us, a perverse
variant of the approach to conjunctively interpreted sets
outlined above serves to handle the disjunctive inter-
pretation of sets of atoms. We map the set {Accusative,
Dative} into the partial function {(NOMINATIVE, 0>,
(ABLATIVE, 0}, (GENITIVE, 0)} on the domain {ACCUSATIVE,
DATIVE, NOMINATIVE, ABLATIVE, GENITIVE}. NOW unifica-
tion (and hence union) of such complement-specifying
partial functions gives us an operation equivalent to
intersection applied to the original sets. Thus the unifi-
cation of {(NOMINATIVE, 0), (ABLATIVE, 0), (GENITIVE, 0>}
(standing for {Accusative, Dative}) with {(NOMINATIVE,
0), (ACCUSATIVE, 0), (GENITIVE, 0)} (standing for
{Ablative, Dative}) gives us {(NOMINATIVE, 0>, (ABLATIVE,
0), (GENITIVE, 0), (ACCUSATIVE, 0>} which stands for
{Dative}.

Clearly, the present approach could be generalized to
directly allow a type of feature that would take sets of
atoms as values. The price to be paid for this, in a
metatheoretical exercise such as the one we are engaged
in, would be that the definition of unification becomes
dependent on the intended interpretation of such fea-
tures: the relevant clause needs to use union if the
interpretation is conjunction, and intersection if the
interpretation is disjunction.

An altogether more serious issue arises when we
consider the possibility of attributes taking sets of
categories as values. We could represent such sets in a
manner analogous to the treatment of lists, but with a
special marking (given in terms of special attribute-
value pairs) indicating that the list representation in
question is to be interpreted as a set. The trouble with
this is that the identity conditions for the resulting
objects are no longer transparent. Two structurally
distinct lists may or may not count as identical, depend-
ing on whether or not they are both representing sets,
and that in turn will depend on whether particular
attributes appear in certain relevant structural posi-
tions. Likewise, our existing definitions of unification
and subsumption would simply fail to provide one with
intuitively reasonable results, and its seems unlikely
that they could be made to do so without further formal
contortions. This whole strategy seems contrived and
inelegant.

The alternative is, again, to introduce a new type of
feature, one taking sets of categories as its values, and

some recent works have done just this. Sabimana (1986)
proposes a feature ARG which takes a set of categories as
its value. The feature appears on elements that corre-
spond semantically to predicates, and its value is the set
containing the categories that correspond semantically
to the arguments of that predicate. The Japanese Phrase
Structure Grammar (JPSG) of Gunji (in press) goes
further in that it restricts itself entirely to such features
(together with atom-valued features, of course) and
does not employ simple category-valued features at all.

Both FUG and LFG also permit category-set values,
in effect, though the interpretation they assign to the
resulting objects is, once again, different. FUG's inter-
pretation is, as with atom sets, disjunctive. On this
interpretation, unification of two sets of categories can
be defined as the set of categories each of whose
members is the unification of a pair in their Cartesian
product (again, see Karttunen (1984) for relevant dis-
cussion of this kind of approach). In LFG, sets of
categories acting as values for single attributes are used
in the analysis of adjuncts (and possibly coordination)
and the interpretation is intendedly conjunctive Kaplan
and Bresnan (1982). Under this interpretation, there is,
in general, no unique unification to be had, although one
can define an operation to provide one with a set of
possible unifications. In Gunji (in press), where a con-
junctive interpretation is assigned to category-set val-
ues, the non-uniqueness problem is sidestepped by
defining unify as a predicate of category pairs, rather
than as an operation.

In view of all these considerations, we have opted for
simplicity over generality and simply excluded set val-
ued features from our purview.

6 SHARED VALUES

One property that FUG and PATR II have in common,
which sets them apart from the simpler grammar type
discussed earlier in this paper, is the option of letting
two or more distinct features share the same value.
Thus, FUG functional descriptions allow one instance
of a value to simultaneously be the value of more than
one (instance of an) attribute. Consequently, the im-
plicit hierarchy, represented graphically, does not re-
spect the single-mother requirement that is built deep
into our definitions. Of course, two category-valued
features within a category may contingently have iden-
tical values, but this is not the same as sharing the same
value (except in common parlance, perhaps). Kasper
and Rounds (1986) refer to the distinction as one of type
identity versus token identity. If we take a category,
containing two contingently identical category-values,
and unify it with a second category, then the contingent
identity may not be preserved in the result. Consider,
for example, the result of unifying these two categories:

14 Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et al. Category Structures

where the values of F and H are identical in the first but
not in the second. The result is:

d e

and here the values of ~" and H are no longer identical. If
the original common value had been genuinely shared,
then no unification would have been possible (see also
Shieber (1985) where the term "reentrancy" is used in
this connection).

There is an alternative way of thinking about the
problem of shared values, and that is to reconstruct it in
terms of indexing: every value carries an index, and two
structurally identical values are the very same thing if
and only if they bear the same index. An integer
indexing of this sort can be represented in the present
framework as we have already see in section 4.5 above.
However, a coindexing reconstruction would not be a
sensible way of thinking about shared values in the
present context since such a use of indices makes
nonsense of structurally defined unification, subsump-
tion, and so on. For two intuitively identical structures
to unify, it would not be sufficient for them to exhibit
the same internal patterns of coindexed values. Rather,
they would need in addition to manifest the very same
choice of indices. Clearly, this is not what one wants, as
choice of index is completely arbitrary, and structures
differing only in identity of the integers selected as
indices should be regarded as equivalent.

To achieve a semantics for shared-value category
formalisms, it is necessary to move beyond the partial
function-based category structures that provide the
basis for our semantics, and thus depart from the
particular category constraint logic that it induces. Like
set values, shared values are simply beyond the scope
of the rather parsimonious theory of categories devel-
oped here. 5 The reader interested in pursuing richer
approaches should consult Pereira and Shieber (1984)
for a domain-theoretic account of the semantics of
categories in LFG, PATR II, and GPSG; Ait-Kaci and
Nasr (1986), who capture shared values with a corefer-
ence relation on the nodes of the tree; Kasper and
Rounds (1986), Moshier and Rounds (1987), and Rounds
and Kasper (1986) for a finite state automaton-based
logic and semantics for categories in FUG and PATR II;
and van Benthem (1986a, b) for an interesting founda-
tional discussion and application of such an automaton-
based semantics.

7 CONCLUSION

We have developed and applied a general framework for
defining syntactic categories, including categories in
which features can have categories as their value, which
latter possibility turns out to subsume the possibility of
a feature taking as its value a list of indices or catego-
ries, drawn from either a finite or an infinite set. The
unitary way in which we have characterized these
diverse systems is intended to assist in the exploration
and comparison of grammatical formalisms. Questions
concerning whether particular rule types and operations
on categories that are familiar from one approach to
grammar can be carried over unproblematically to an-
other approach, and questions concerning the imple-
mentation difficulties that arise when a given formalism
is adopted, can in many cases be settled in a straight-
forward and familiar way, namely by reducing them to
previously encountered types of question.

The grammatical frameworks we have considered as
examples fall into a five-class typology which we can
now explicate. The first class contains the frameworks
that use only atom-valued features (simple phrase struc-
ture grammar, Harman's augmented phrase structure
grammar; RG and APG); the second contains the spe-
cial case of G K P S , which uses category-valued features
but imposes a constraint which prevents them from
having effects on expressive power that could not
ultimately by simulated by atom-valued features; the
third contains the frameworks that use just a single
category-valued feature (our key example being indexed
grammar); the fourth contains frameworks making use
of more than one category-valued feature (an example
being categorial grammar); and the fifth includes those
frameworks that fall outside the scheme we have devel-
oped in that their categories are not representable as
finite partial functions constrained by statements in L c

(LFG, FUG, PATR II, etc.).
It is not at all clear which of these five classes of

approaches will prove the most suitable for implement-
ing natural language processing systems in the long
term. In this paper, we hope to have made somewhat
clearer the nature of the issues at stake. We hope also to
have done something more: for the first four classes, we
have provided what is in effect a unitary type of data
structure for the representation of their syntactic cate-
gories. Thinking in terms of such data structures should
make it possible for pseudo-issues in natural language
processing research to be avoided in a large class of
circumstances, to the point that even a decision in
mid-project to change the grammatical framework from
one linguistic approach to another need not entail any
fundamental redesign of what are in most frameworks
the basic objects of syntactic representation.

APPENDIX

In this appendix we restate the semantic rules for L c

more precisely. All well-formed expressions of L c have

Computational Linguistics, Volume 14, Number 1, Winter 1988 15

Gerald Gazdar et aL Category Structures

the same kind of deno t a t i on~ they denote truth values
(i.e., members of 2) relative to the category structure
and a category a determined by E. If 05 is a well-formed
expression of L o then we use f105flx,~ to stand for the
denotation of 05 with respect to the category structure
and category a. I f 005(]z~,, ~ = 1 then we shall say that t~
SATISFIES 05. The formal statement of our semantic rules
is the following, where a, f, 05, and q~ are as above.

(AI) a. 0fl~.~ = 1 iff s0') is defined.
b. Of:aD~,,~ = 1 iff a(J) = a .
c. Uf:05fl~.~ = 1 iff 0050~.,~0~ = I.
d. D~050~.~ = 1 iff 0050~.~ = 0.
e. 005 V q~.~ = 1 iff D05D~,~ = 1 or 0q~:,,~ = 1.
f. 005 A ~ , , ~ = 1 iff 005~,,~ = 1 and 0q~,,~ = 1.
g. 005 ---* q~,,~ = 1 iff 005~,,~ = 0 or 0q~x,,~ = 1.
h. 105 <-> ~1:~,~ = 1 iff 1050:~,~ = lqA~,~.
i. 1[]051~,~ = 1 iff 1051:~,~ = 1 and for all f i n F ~ n

~(a),lD051:,,,~00 = 1.
j. I 0 051:, ~ = 1 iff 1051:, ~ = 1 or for some f i n F ~ n

~(a), l ~ 4>0:~,=00 = 1.

Note that if a ~_ fl and a satisfies 05, it does ~0T follow
in L c that 3 satisfies 05 (compare Rounds and Kasper
(1986), Theorem 6). For example, we have ~ ~_ {(F, a)}
and ~ satisfies --1 F, but {(F, a)} does not. Likewise, the
fact that both a and/3 satisfy some constraint 05 does not
entail that a U/3 will satisfy 05, even if a IA/3 is defined.
The desire to incorporate negation whilst maintaining an
upward closure property lead Moshier and Rounds
(1987) to set aside a classical semantics for their feature
description language and postulate an intuitionistic se
mantics that, in effect, quantifies over possible exten-
sions.

We will write ~ 05 to mean that for every category
structure]i and category a in 11, a satisfies 05. Given
this, we can list some valid formula: and valid formula
schemata of the logic of category constraints.

(A2) a. ~ a) --> f (for all a E p(]), f E F °)

This simply says that if a feature has an atomic value,
then it has a value. We also have all the valid formula:
of the standard propositional calculus, which we will
not list here. Fur thermore , we have the following famil-
iar valid modal formula:.

(A2) b. ~1-]05 ~ - - 1 0 7 05
c. ~ (0 5 - - - , 05)
d. ~ 0 5 ~ 05
e. ~ 0 5 ~ <)05
f. PD(05 A q,) ~ (•05 A []q,)
g. t=~(05V ~b),~-~(O05V O~b)
h. ~D05 ~ •DO5

Here, (A2h) shows us that our logic at least contains $4
(we follow the nomenclature of Hughes and Cresswell
(1968) throughout). But we do not have ~ <> 05--~ [] 0 05,
and so our logic does not contain $5. To see this,
consider the following category, assuming F is a cate-

gory-valued feature: {(F, O)}. This category satisfies 0 F
but not [] O F.

The category {(F, {(G, a)}), (H, {(G, b)})} (graphically
represented in (50), below) provides us with an analo-
gous falsifying instance for ~ O 1-105 ~ [] O 05 when we
set 05 = (~:a).

This shows that our logic does not contain $4.2. Inter-
estingly, the converse of this constraint zs valid, hence:

(A2) i. ~F-1005---~ OD05

This is easy to demonstrate: if o~ satisfies [] O 05 then 0 05
must hold in all the categories that terminate a, and if
O 05 holds in those categories, then 4, and I-]05 hold in
them as well. So r-]05 holds in at least one category in o~,
and thus a must satisfy O D05. This shows that our logic
at least contains K1 and, as a consequence, is not
contained by SS.

However , our logic cannot contain K2, since the
latter contains S4.2. Nor does it contain K1.2 since the
latter 's characteristic axiom, namely ~ 05 ~ 1-1(O 05 ~ 05)
is shown to be invalid by the category {(G, a), (F, {(G, b),
(F, {(G, a)})})} (shown in (51), below) when set set 05 = (c:
a).

I

In fact, our logic does not merely contain K1, it also
contains KI.1, whose characteristic axiom is:

(A2) j. ~Fq(D(05 --> D05) ---> 05) -o 05)

Hughes and Cresswell note that KI.1 'is character ized
by the class of all finite partial orderings, i.e., finite
frames in which R [the accessibility relation] is reflex-
ive, transitive, and antisymmetrical ' Hughes and Cress-
well ((1984), p. 162). So it should be no surprise, given
the basis for our semantics, that our logic turns out to
include KI.1. This logic, also known as S4Grz (after
Grzegorczyk (1967)), 'is decidable, for every nontheo-
rem of S4Grz is invalid in some finite weak partial
ordering' (Boolos (1979, p. 167).

Two further valid formula schemata of Lc have some
interest, before we conclude the list of valid formula: in
(A2):

(A2) k. ~ 0 -Tf (for a l l f E F I)
1. ~(f.'05)--> 005 (f o r a l l f E F 1)

The first of these follows from the fact that categories
are finite in size and thus ultimately grounded in cate-
gories that contain no category-valued features: f must
be false of these terminating embedded categories, and
hence O --1 f must be true of the category as a whole.

16 Computational Linguistics, Volume 14, Number 1, Winter 1988

Gerald Gazdar et al. Category Structures

The second states that if a category is defined for a
category-valued feature whose value satisfies 4,, then
the category as a whole satisfies O 4'.

(A2) m. ~(f:th) ---~f (for a l l f E F I)
n. ~ ((f : 4 ,) A (f : ~)) ~ t f . ' 4 , A 0) (f o r a l l f E F ~)
o. P((i2~b)V~q0)~--~(f:thVq0 (f o r a l l f E F l)

It is worth considering the valid formulae one would
get in certain restricted classes of category structures.
Suppose we consider category structures which contain
only atom-valued features (i.e., F = F°). In this case, as
one would expect , the modal logic collapses into the
propositional calculus and the relevant notion of valid-
ity (call it Po) gives us the following:

(A5) moth ,o ruth

The converse case, where we only permit category-
valued features (i.e. F = F1), is uninteresting, since it is
not distinct from the general case. We can always
encode atom-valued features as (sets of) category-
valued features and subject the latter to appropriate
constraints, as follows. For every feature specification
(f, a) such t h a t f E F ° and a E p(f), we introduce a new
type 1 feature f a and use the presence of 0Ca, 0) to
encode the presence of (f, a) and likewise absence to
encode absence. Then, for each pair of atoms a and b in
p(f), we require the new features to satisfy [] -7 (fa A
fb). And to constrain each new feature f a to have the
empty set as its value, we stipulate [] -7 (fa:g) for every
feature g.

However , consider validity in category structures
containing at most one category-valued feature (call this
kind of validity ~ 1)- With this restriction, the $4.2 axiom
considered earlier becomes valid:

(A6) ~10[N~b--~ []O4 ,

In addition, we get (A7).

(A7) ~ ~[]([]t h ~ [-]~) V [-l(f--]q~--~ [~th)

This means that this restricted logic at least contains
K3, but it cannot contain K4, since ~ 1 ~) ~ (0[~(~ "-->
D~b) is falsified by the category {(G, a), (~" {(G, b), (~', {(G,
a)})})} when we set ~b = (G: a).

In fact it must also contain K3.1, in view of the validity
of (A2j) above, and this logic, also known as S4.3Grz, is
characterized by finite linear orderings Hughes and
Cresswell (1984). This is the characterization we would
expect given the character of the ~1 restriction on the
form of permissible categories, since with only one
category-valued feature, there is at most one path
through the structure of a category and so the partial
order becomes a linear order. These observations con-
cerning the logic induced by category structures where

IFll = 1 are of some potential relevance to the study of
indexed grammars whose categories can be- construed
as being restricted in just this way (see section 4.9,
above).

ACKNOWLEDGMENTS

Chris Barker has contributed substantively to the re-
search reported here, and we offer him our gratitude.
We are also grateful to Edward Briscoe, Jeremy Carroll,
Roger Evans, Joseph Halpern, David J. Israel, Ronald
M. Kaplan, William Keller, James Kilbury, William A.
Ladusaw, Christopher Mellish, Richard E. Otte, Fer-
nando Pereira, P. Stanley Peters, Carl J. Pollard, Ste-
phen Pulman, William Rounds, Stuart M. Shieber,
Henry Thompson and Manfred Warmuth for their gen-
erous assistance during the research reported in this
paper. Though in some respects they have contributed
substantially, they should not be associated with any
errors that the paper may contain. In addition, we thank
Calvin J. Pullum, who is responsible for the diagrams,
and we acknowledge partial research support from the
following sources: the UCSC Syntax Research Center
(Gazdar, Hukari, Levine, Pullum); grants from the
(U.K.) SERC and ESRC (Gazdar); N S F Graduate Fel-
lowship RCD-8651747 (Carpenter); NSF grants BNS-85
11687 and BNS-85 19708 (Pullum).

REFERENCES

Aho, Alfred V. 1968 Indexed Grammars. Journal of the Association
for Computing Machinery 15: 647-671.

Ait-Kaci, Hassan; and Nasr, Roger. 1986 Proceedings of the 13th
Annual ACM Conference on Principles of Programming Lan-
guages: 219-228. Association for Computing Machinery.

Bach, Emmon. 1984 Some Generalizations of Categoilal Grammar. In
Landman, Fred; and Veltman, Frank, Eds., Varieties of Formal
Semantics: Proceedings of the 4th Amsterdam Colloquium, Sep-
tember 1982, Foils, Dordrecht, Holland: 1-23.

van Benthem, Johan. 1986a Semantic Automata. In Groenendijk,
Joroen; de Jongh, Dick; and Stokhof, Martin, Eds., Information,
Interpretation and Inference. Foils, Dordrecht, Holland. Re-
printed in van Benthem, Johan. 1986 Essays in Logical Semantics.
D. Reidel, Dordrecht, Holland: 151-176. [Also published as CSLI
Report 85-27, Center for the Study of Language and Information,
Stanford, 1985]

van Benthem, Johan. 1986b Towards a Computational Semantics: In
Cooper, Robin; Engdahl, Elisabet; and Gardenfors, P., Eds.,
Proceedings of a Workshop on Generalized Quantifiers, Lund
1985. D. Reidel, Dordrecht, Holland.

van Benthem, Johan. 1986c Categoilal Grammar. In Johan van
Benthem. 1986 Essays in Logical Semantics. D. Reidel, Dor-
drecht, Holland: 123-150.

van Benthem, Johan; Buszkowski, W.; and Marciszewski, W., Eds.,
Categorial Grammar. John Benjamin, Amsterdam, Holland.

Boolos, George. 1979 The Unprovability of Consistency. Cambridge
University Press, Cambridge, England.

Bresnan, Joan W. 1975 Transformations and Categories in Syntax. In
Butts, Ronald; and Hintikka, Jaakko, Eds., Basic Problems in
Methodology and Linguistics. D. Reidel, Dordrecht, Holland:
283-304.

Chomsky, Noam. 1970 Remarks on Nominalization. In Jacobs, R.;
and Rosenbaum, P., Eds., Readings in English Transformational
Grammar. Ginn, Waltham, Massachusetts: 11-61.

Computational Linguistics, Volume 14, Number I, Winter 1988 17

Gerald Gazdar et al. Category Structures

Chomsky, Noam. 1980 On Binding. Linguistic Inquiry 11: 1--46.
Chomsky, Noam. 1981 Lectures on Government and Binding. Dor-

drecht: Foris.
Elson, Benjamin; and Pickett, Velma. 1962 An Introduction to Mor-

phology and Syntax. Summer Institute of Linguistics, Santa Ana,
California.

Gazdar, Gerald. 1985 Applicability of Indexed Grammars to Natural
Languages. Center for the Study of Language and Information,
Stanford, California: Report No. CSLI-85-34.

Gazdar, Gerald; Klein, Ewan; Pullum, Geoffrey K.; and Sag, Ivan A.
1985 Generalized Phrase Structure Grammar. Harvard University
Press, Cambridge, Massachusetts.

Grzegorczyk, Andrzej. 1967 Some Relational Systems and the Asso-
ciated Topological Spaces. Fundamentae Mathematicae 60: 223-
231.

Haddock, Nicholas; Klein, Ewan; and Morrill, Glyn, Eds., 1987
Categorial Grammar, Unification Grammar and Parsing. Edin-
burgh Working Papers in Cognitive Science 1, Edinburgh, Scot-
land.

Halliday, Michael A. K. 1961 Categories of the Theory of Grammar.
Word 17:241-292.

Halvorsen, Per-Kristian; and Ladusaw, William A. 1979 Montague's
'Universal Grammar': an Introduction for the Linguist. Linguis-
tics and Philosophy 3: 185-223.

Harman, Gilbert H. 1963 Generative Grammars without Transforma-
tion Rules: a Defense of Phrase Structure. Language 39: 597-616.

Harris, Zellig S. 1951 Methods in Structural Linguistics. University of
Chicago Press, Chicago, Illinois.

Hendriks, Herman. 1986 Foundations of GPSG Syntax. Doctoraal-
scriptie Wijsbegeerte, University of Amsterdam, Amsterdam,
Holland.

Hornstein, Norbert. 1977 S and X' Convention. Linguistic Analysis 3:
137-176.

Hudson, Richard A. 1971 English Complex Sentences. North Hol-
land, Amsterdam, Holland.

Hughes, G. E.; and Cresswell, Max J. 1968 An Introduction to Modal
Logic. Methuen, London, England.

Hughes, G. E.; and Cresswell, Max J. 1984 A Companion to Modal
Logic. Methuen, London, England.

Jackendoff, Ray. 1974 Introduction to the X Convention. Indiana
University Linguistics Club, Bloomington, Indiana.

Jackendoff, Ray. 1977 X Syntax: A Study of Phrase Structure. MIT
Press, Cambridge, Massachusetts.

Johnson, David E.; and Postal, Paul M. 1980 Arc Pair Grammar.
Princeton University Press, Princeton, New Jersey.

Kaplan, Ronald; and Bresnan, Joan. 1982 Lexical-Functional Gram-
mar: a Formal System for Grammatical Representation. In J. W.
Bresnan, Ed., The Mental Representation of Grammatical Rela-
tions. MIT Press, Cambridge, Massachusetts: 173-281.

Karttunen, Lauri. 1984 Features and Values. Proceedings of the lOth
International Conference on Computational Linguistics and the
22nd Annual Meeting of the Association for Computational Lin-
guistics. Stanford University, California: 28-33.

Karttunen, Lauri; and Zwicky, Arnold M. 1985 Introduction to
Dowty, D.R.; Karttunen, L.; and Zwicky, A.M., Eds., Natural
Language Parsing. Cambridge University Press, Cambridge, En-
gland: 1-25.

Kasper, Robert T.; and Rounds, William C. 1986 A Logical Semantics
for Feature Structures. In Proceedings of the 24th Annual Meeting
of the Association for Computational Linguistics: 257-266.

Kay, Martin. 1979 Functional Grammar. In Chiarrello, Christine et
al., Eds., Proceedings of the 5th Annual Meeting of the Berkeley
Linguistics Society: 142-158.

Kay, Martin. 1985 Parsing in Functional Unification Grammar. In
Dowty, D.R.; Karttunen, L.; and Zwicky, A.M., Eds., Natural
Language Parsing. Cambridge University Press, Cambridge, En-
gland: 251-278.

Ladusaw, William A. 1985 A Proposed Distinction Between Levels
and Strata. Presented to the Annual Meeting of the Linguistic
Society of America, Seattle, Washington. Memo no. SRC-85-04,
Syntax Research Center, University of California, Santa Cruz,
California.

Lasnik, Howard; and Kupin, Joseph J. 1977 A Restrictive Theory of
Transformational Grammar. Theoretical Linguistics 4: 173-196.

Levy, Leon S.; and Joshi, Aravind, K. 1978 Skeletal Structural
Descriptions. Information and Control 39:192-211.

Longacre, Robert E. 1965 Some Fundamental Insights of Tagmemics.
Language 41:65-76.

Mellish, Christopher. 1986 Implementing Systemic Classification by
Unification. Manuscript, University of Sussex.

Montague, Richard. 1970 Universal Grammar. In Thomason, Rich-
mond H., Ed., Formal Philosophy. Yale University Press, New
Haven, Connecticut: 222-246.

Montague, Richard. 1973 The Proper Treatment of Quantification in
Ordinary English. In Thomason, Richmond H., Ed., Formal
Philosophy. Yale University Press, New Haven, Connecticut:
247-270.

Moshier, M. D., and Rounds, William C. 1987 A Logic for Partially
Specified Data Structures. Proceedings of the ACM Conference
on Principles of Programming Languages, Munich.

Oehrle, Richard T.; Bach, Emmon; and Wheeler, Deirdre W., Eds.,
1987 Categorial Grammars and Natural Language Structures, D.
Reidel, Dordrecht, Holland.

Patten, Terry; and Ritchie, Graeme. 1987 A Formal Model of Sys-
temic Grammar. In Kempen, Gerard, Ed., Natural Language
Generation: Recent Advances in AI, Psychology and Linguistics.
Kluwer, Amsterdam, Holland.

Pereira, Fernando C. N.; and Shieber, Stuart M. 1984 The Semantics
of Grammar Formalisms Seen as Computer Languages. In Pro-
ceedings of the lOth International Conference on Computational
Linguistics and the 22nd Annual Meeting of the Association for
Computational Linguistics: 123-129.

Pereira, Fernando C. N.; and Warren, David H. D. 1980 Definite
Clause Grammars for Language Analysis--a Survey of the For-
malism and a Comparison with Augmented Transition Networks.
Artificial Intelligence 13: 231-278.

Perlmutter, David M.; and Postal, Paul M. 1977 Toward a Universal
Characterization of Passivization. In Whistler, Kenneth et al.,
Eds., Proceedings of the 3rd Annual Meeting of the Berkeley
Linguistics Society 394--417. Reprinted in: Perlmutter, David M.,
Ed., Studies in Relational Grammar 1. University of Chicago
Press, Chicago, Illinois.

Pollard, Carl J. 1984 Generalized Phrase Structure Grammars, Head
Grammars, and Natural Languages. Ph.D. dissertation, Stanford
University.

Pollard, Carl. 1985 Phrase Structure Grammar Without Metarules.
Goldberg, Jeffrey; MacKaye, Susannah; and Wescoat, Michael,
Eds., Proceedings of the West Coast Conference on Formal
Linguistics, Volume Four. Stanford Linguistics Association, Stan-
ford, California: 246-261.

Postal, Paul M. 1964 Constituent Structure: A Study of Contemporary
Models of Syntactic Description. Publication 30 of the Indiana
University Research Center in Anthropology, Folklore, and Lin-
guistics, Bloomington, Indiana.

Pullum, Geoffrey K. 1985 Assuming Some Version of X-Bar Theory.
In Eilfort, William D.; Kroeber, Paul D.; Peterson, Karen L.,
Eds., CLS 21, Part 1: Papers from the General Session at the
Twenty-First Regional Meeting. Chicago Linguistic Society, Chi-
cago, Illinois: 323-353.

Ristad, Eric Sven. 1986 Computational Complexity of Current GPSG
Theory. Proceedings of the 24th Annual Meeting of the Associa-
tion for Computational Linguistics: 30-39.

Rounds, William C.; and Kasper, Robert T. 1986 A Complete Logical
Calculus for Record Structures Representing Linguistic Informa-

18 Computational Linguistics, Volume 14, Number I, Winter 1988

Gerald Gazdar et al . Category Structures

tion. Proceedings of the 15th Annual Symposium on Logic in
Computer Science. Cambridge, Massachusetts.

Rouveret, Alain; and Vergnaud, Jean-Roger. 1980 Specifying Refer-
ence to the Subject: French Causatives and Conditions on Repre-
sentations. Linguistic Inquiry 11: 97-202.

Sabimana, Firmard. 1986 The Relational Structure of the Kirundi
Verb. D.Phil. dissertation, Indiana University, Bloomington, In-
diana.

Shieber, Stuart. 1984 The Design of a Computer Language for
Linguistic Information. In Proceedings of the lOth International
Conference on Computational Linguistics and the 22nd Annual
Meeting of the Association for Computational Linguistics: 362-
366.

Shieber, Stuart. 1985 Criteria for Designing Computer Facilities for
Linguistic Analysis. Linguistics 23:189-211.

Shieber, Stuart. 1987 Separating Linguistic Analyses from Linguistic
Theories. In Whitelock, Peter J. et ai., Eds., Linguistic Theory and
Computer Applications. Academic Press, London.

Stockwell, Robert P.; Schacter, Paul; Partee, Barbara H. 1973 The
Major Syntactic Structures of English. Holt, Rinehart and Win-
ston, New York, New York.

Winograd, Terry. 1972 Understanding Natural Language. Academic
Press, New York, New York.

Winograd, Terry. 1983 Language as a Cognitive Process: Volume 1
Syntax. Addison-Wesley, Reading, Massachusetts.

NOTES

1. Bresnan (1975) correctly attributes the [-+N, -+V] feature system to
lectures delivered by Chomsky at the 1974 Linguistic Institute in
Amherst, Massachusetts. In some works, e.g., Jackendoff (1977)
and Gazdar, Klein, Pullum, and Sag (1985), Chomsky (1970) is

wrongly given as the source. The latter work does, however,
contain the following relevant comment: "we might just as well
eliminate the distinction of feature and category, and regard all
symbols of the grammar as sets of features" (p. 208).

2. As Hendriks (1986) has noted, the definition of categories given in
GKPS "is a bit of a mess from a formal point of view" (1986, p.
19). Definition 1 reads as follows: ,,po is a function from F to
POW(A) such that for a l l f ~ (F-Atom), p°00 = {{}}" (GKPS, p.
36). But {{}} is not in the power set of A; "POW(A)" should be
replaced by "POW(A) O {{{}}}". Parts of the text and examples
following Definition l assume correctly that it ends ,,pO(f) = {{}},,,
but other parts assume incorrectly that it ends ,,po(f) = {},,. If the
latter version were adopted, Definition 4 would fail to add
category-valued feature specifications in the desired way (since
the condition " 3 C ' E ff'-~(t)[C' C_ C]" would never be satisfied
wheren = 1.)

3 The "feature cooccurrence restrictions" (FCRs) of GKPS form
part of the definition of admissible tree rather than being part of the
definition of categories. However, every GKPS FCR can be
expressed in L c, and the translation is trivial.

4. We are indebted to Joseph Haipern for his help with the material
in this section.

5. One of our referees has suggested that our semantics can be made
to handle sharing by introducing an equality predicate into L c,
marking shared value situations with special nonce features, and
then using conditional constraints triggered by these features to
impose identical values on the relevant features. But we have
been unable to get any scheme of this kind to work in the general
case. There appears to be no upper bound to the number of nonce
features that may be required, and moreover, unification ceases
to behave in an intuitively reasonable manner.

Computational Linguistics, Volume 14, Number 1, Winter 1988 19

