
A C O M P U T A T I O N A L F R A M E W O R K F O R L E X I C A L D E S C R I P T I O N

Graeme D. Ritchie

Department of Artificial][ntelligence
University of Edinburgh

80 South Bridge
Edinburgh EH1 1HN

Stephen G. Pulman

Computer Laboratory
University of Cambridge

Corn Exchange Stree t
Cambridge CB2 3 Q G

Alan W. Black

Department of Artificial Intelligence
University of Edinburgh

80 South Bridge
Edinburgh EH1 1HN

Graham J. Russell

Computer Laboratory
University of Cambridge

Corn Exchange Street
Cambridge CB2 3 Q G

To achieve generality, natural language parsers require dictionaries which handle lexical information in
a linguistically motivated but computationally viable manner. Various rule formalisms are presented
which process orthographic effects, word structure, and lexicai redundancy in a manner which allows
the statement of linguistic generalisations with a clear computational interpretation. A compact
description of a medium-sized subset of the English lexicon can be stated using these formalisms. The
proposed mechanisms have been implemented and tested, but require to be refined further if they are
to be regarded as an interesting linguistic theory.

1. METHODOLOGY

As can be judged from the review in Ingria(1986), there
are a wide variety of techniques and sub-systems used
for handling lexical information within natural language
processing systems. In many systems, particularly ex-
perimental ones, the lexicon module is fairly small and
rudimentary, as the vocabulary is limited and the re-
search is not primarily concerned with lexical issues.
On the other hand, theoretical linguists have often
discussed regularities that occur within the lexicon,

primarily in the areas of morphology (word structure)
and lexical redundancy (generalisations across lexical
entries). We have designed a related set of rule-formal-
isms and structures which embody a linguistically-
motivated theory of lexical structure, and have imple-
mented these techniques in software which can serve as
a general lexical module within a natural language
parsing system. This is of theoretical interest as it
presents a computer- tested set of mechanisms which
fulfil, in an integrated way, some of the roles that

Copyright 1987 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/87/030290-307503.00

290 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexicai Description

linguists have posited for morphological and lexical
rules. From a practical point of view, it defines a
software module which is largely rule-driven and so can
be tailored to different vocabularies, and perhaps even
to various languages. Although it has been designed
with syntactic parsing as the main intended application,
most of the linguistic mechanisms and descriptions are
independent of their use within a parser.

It is important to bear in mind the distinction be-
tween a linguistic mechanism and a linguistic descrip-
tion which uses that mechanism. We have developed
not only a related set of formalisms, all with a clear
computational interpretation, we have devised a de-
scription of a large subset of English morpho-syntactic
phenomena using these formalisms. Although the ade-
quacy of the mechanism and of the description are
mutually interdependent, it is important to maintain this
distinction when appraising the work reported here,
particularly when considering its possible extension to
other vocabulary or other languages. Another important
issue when considering a computationally feasible sys-
tem is the question of how to interpret a rule-notation
procedurally. Linguistic formalisms tend to be dis-
cussed as declarative statements of regularities within
the language, and it is not always clear what is the
appropriate interpretation when the rules have to be
used for processing data. For example, the Feature
Co-occurrence Restrictions of Gazdar et al. (1985) define
arbitrary logical constraints to which feature-sets (cat-
egories) must conform. A computational implementa-
tion has (at least) two ways in which these statements
could be interpreted - - as recipes for filling in extra
features, or as filters for rejecting ill-formed categories
(cf. Stanley(1967)). It is not at once apparent whether a
linguist writing FCR statements would accept both of
these as equally "natural" interpretations. Whatever
algorithmic interpretation is chosen for a rule notation,
it should be compu/ationally tractable and fairly obvi-
ous to the reader. This has led us, particularly in the
area of lexical redundancy rules, to opt for notations
which have a very obvious and explicitly defined pro-
cedural interpretation.

A further methodological question which arises when
giving a computational interpretation to declarative
statements of lexical regularities is whether a rule
notation is best regarded as a notational device which
allows the linguist to write more succinct entries, but
which is not used directly in the computation of the
association between a character string and a lexical
entry. In terms of the implementation, this is the
question of whether a rule-system is an aid to the entry
of data by the linguist (and can be used for some form of
pre-processing) or is a mechanism which is used in a
more general or efficient look-up procedure.

In designing linguistic rule-formalisms, there is tradi-
tionally a trade-off between the power of the mechanism
and the substance of the linguistic claims or theories
embodied in the notation. We have generally opted for

fairly powerful techniques, in the interests of achieving
generality and flexibility, for two reasons. Firstly, we
were not sure initially what facilities would be needed
for an adequate description of lexical phenomena in
English, and so had to allow scope for experimentation.
It would be possible, in the light of regularities within
our description, to devise a more restricted set of rule
formalisms if this was desired. Secondly, we wished to
design and implement a set of tools which could be used
by computational linguists of a variety of theoretical
persuasions and with varying needs, and hence we felt
it would be too restrictive to tailor the rule systems to
the minimum that our description of English demanded.

We shall start by giving an informal description of the
overall system, then we shall outline some of the rule
systems in more detail, and finally our description of
English word-structure will be summarised.

2. OVERVIEW

The system can be thought of as a lexicon and various
sets of rules. The lexicon contains entries for separate
morphemes, each entry containing four fields - - a
citation form (which is a canonical spelling for the
morpheme), a phonological form, a syntactic category
(an unordered set of features as in current unification-
style grammars such as Gazdar et a1.(1985), Kay(1985)),
and a semantic structure, about which we shall say
nothing here. (In the implementation, a fifth field is
included for miscellaneous purposes, but it has no
linguistic significance. However, all examples shown in
this paper are taken from our implemented description
and hence will contain this fifth field, with a value of
NIL).

There are two classes of rules. Lexical rules (of which
there are three types) express relationships between
entries, or between fields within entries, and have a
procedural interpretation which maps a set of basic
entries into a possibly larger set of entries with more
specified categories. Morphological rules (of which there
are two types) express relationships between characters
and morphemes within a word, and have a procedural
interpretation which allows a string of characters to be
decomposed into a structural analysis of a word. There
is also a very simple mechanism for defining default
values for syntactic features, which does not properly
fall into either of these classes of rules.
The lexical rules are of the following types:

Completion Rules. These state implications between
parts of lexical entries - - typically, that the presence
of certain syntactic feature-values (or combinations
of them) makes the presence of other particular
values obligatory. Their procedural interpretation is
that the predicted information should be added to the
entries which match the antecedent of the implica-
tion.

Multiplication Rules. These state implications concern-
ing the existence of lexical entries. Their procedural

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 291

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

interpretation is to construct new lexical entries that
are predictable in form from existing ones.

Consistency Checks . These state implications between
combinations of information within entries (again,
typically syntactic features). Their procedural inter-
pretation is to reject any lexical entries which are
internally inconsistent.

Notice that generalisations which might, in a wholly
declarative framework, be stated using a single type of
rule (e.g. the Feature Co-occurrence Restrictions of
Gazdar et al.(1985)) are here dealt with by two separate
rule-types, differing in their procedural interpretation. It
was found to be convenient for practical use to make the
distinction between asking the system to force entries to
have a particular form by adding information and stip-
ulating that erroneously specified entries be rejected
(however, see also the discussion on Lexical Rules in
Section 8 below).
The morphological rules are of two sorts:

Spelling Rules. These state relationships between sur-
face forms of words (i.e. ordinary orthography in-
cluding inflections) and lexical forms (i.e. canonical
forms in lexical entries, typically with stems and
affixes stored separately). The rules are based on the
formalism in Koskenniemi(1985), which is in turn a
high-level notation related to Koskenniemi(1983a,b).
Their procedural interpretation is that they can be
used to segment character strings into individual
morphemes, taking account of orthographic effects
which may occur at morpheme boundaries (or else-
where).

Word G r a m m a r Rules. These rules describe the possi-
ble internal structures of words, using a feature-
grammar notation like that of Gazdar et a1.(1985),
with certain feature-passing conventions to supple-
ment the use of variables and unification. They have
the obvious procedural interpretation, in that a fairly
conventional context-free parser can use these rules
to analyse a sequence of morphemes into a structural
tree.

The remaining notational device is the Feature Default
definition, which allows the statement of a single default
value for a feature. That is, these are not as sophisti-
cated as the Feature Specification Defaults of Gazdar et
a1.(1985), since they do not allow logical combinations
of features and values (but see further comments in the
section about Lexical Rules in Section 8 below).

In addition to the above rule mechanisms, the imple-
mented version contains various other notational con-
veniences to support the definitions of rules or to reduce
the work that the lexicon-writer must carry out. These
include the ability to define aliases for clusters of
syntactic features, and to define names for feature-
classes.

As observed above, the need to use the lexicon
within a natural language parsing system demands that

there be a clearly defined computational process under-
lying the definitions of the rule-types. This also applies
to the', integrated functioning of the various mechanisms.
The operation of the dictionary system can be viewed as
having two stages - - compilation and use. The former
phase is a pre-processing in which lexical entries sup-
plied in a linguistically appropriate form are manipu-
lated by the lexical rules to produce a modified lexical
entry set, containing additional (predictable) informa-
tion, and possibly more entries. Of course, if the linguist
has chosen to state no lexical rules whatsoever, this
process is fairly simple and the set of entries is unaltered
(in the implementation, the compilation process also
inserts the entries in a tree-like index (cf. Thorne,
Bratley and Dewar(1968)), and hence even without
lexical rules there is a need for compilation so that
subsequent access works correctly). The phase of dic-
tionary use is essentially the process of looking up
arbitrary character strings in the compiled dictionary,
with the morphological rules being used to produce a list
of all possible analyses of the string into words. Feature
Defaults are inserted at appropriate junctures during the
look-up phase.

3. SPELLING RULES

These rules (called "morphographemic rules") are con-
cerned with undoing spelling or phonological changes to
recover the form of a word which corresponds to some
morpheme entry in the lexicon. For example, moved
can be viewed as move+ed, but with the deletion of the
extra e; provability can be viewed as prove+able+ity,
with adjustments occurring at both the internal bound-
ary points.

The formalism used within this system is based on
the work of Koskenniemi (1983a, 1983b, Karttunen
1983). In earlier versions of this formalism, the linguist
had to specify the spelling rules in a low-level notation
similar to that for finite state automata, but Kosken-
niemi (1985) outlined a more perspicuous high level
notation, and we have adopted a variant of that, with a
compilation technique inspired by the work of
Bear(1986).

The first point to understand about the rule formalism
is that the rules describe relationships between the
surface form, that is the actual word as it appears in a
sentence, and the lexicai form, as it appears in the
citation forms of the lexical entries. For example,
moved is the surface form while move and +ed are the
lexical forms. What is required is a rule that allows the
deletion of an e from the lexical form. Note that the rule
should refer to the context where the e can be deleted
and not just allow arbitrary deletions of es in the lexical
form as then the surface form reed would match red in
the lexicon u

The format for the Spelling Rules includes initial
declarations and definitions of the associated entities
(character sets, etc.) needed to support the actual
rule-definitions, as follows. The surface alphabet is the

292 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexicai Description

set of acceptable symbols in a string being looked up,
the lexieal alphabet is the set of acceptable symbols
within citation forms in lexical entries, and named
subsets of these alphabets can be declared.

The spelling rules are specified as a pair (lexical
symbol : surface symbol), and the context in which that
pair is acceptable. A lexical symbol can be one of three
types: a lexical character f rom the declared lexical
alphabet; a lexical set, declared over a range of lexical
characters; or the symbol 0 (zero) which represents the
null symbol. Similarly there are three possibilities for
the surface symbol.

Before a more detailed description of the formalism
is given a simple example may help to explain the
notation. The following example describes the phenom-
enon of adding an e when pluralising some nouns (also
making some verbs into their third person singular
form), e.g boys as boy+s while boxes as box+s. This
phenomena is known as " epen thes i s " :
Epenthesis

+ :e < = > { < { s : s c : c } h : h > s : s x : x z : z } - - - s : s

The left and right contexts are basically regular expres-
sions, with angle brackets indicating sequences of
items, curly braces indicating disjunctive choices, and
ordinary parentheses enclosing optional items. This rule
assumes that the morpheme +s (see below for com-
ments on the + character) is in the lexicon and repre-
sents the plural morpheme. (Let us exclude for the time
being its use as the third person singular morpheme) .
Roughly speaking, the epenthesis rule states that e can
be added at a morpheme boundary when and only when
the boundary has sh, ch, s, x, or z or on the left side and
s on the right. The " - - - " can be thought of as marking
the position of the symbol pair + :e.

Within our formalism there are no built-in conven-
tions concerning morpheme boundaries. However , it is
often necessary to state a rule which stipulates the
presence of a morpheme boundary in the context. One
way to do this is to add a marker (some special
character) to the lexical form of the morphemes in-
volved. Rules would then be able to refer indirectly to
morpheme boundaries by means of this special charac-
ter in the context s tatement. This means we have
morphemes of the lexical form +ed, move, +ing,
+ation, etc.

Another example in our English description is the
"E-de le t ion" rule:

E-Deletion:

e:0 < = > =:C2 --- < +:0 V : = >
or < C : C V : V > --- < + : 0 e : e >
or {g:g c:c} --- < +:0 {e:e i:i}>
or 1:0--- +:0
or c:c --- < +:0 a:0 t:t b:b >

where V, C and C2 represent particular subsets of the
alphabets , and the = sign matches any symbol (roughly

speaking). Although alternatives can be specified within
a left or right context using the disjunctive construct , we
also need the ability to allow alternatives for full con-
texts. I f separate rules were given for each alternative
left and right context there would be the undesirable
effect of each one blocking the other, since rules are
treated as conjoined; that is, all rules must match for a
sequence of symbol pairs to be acceptable . Hence , to
achieve a disjunctive choice for contexts there is the
" o r " connect ive as used in "E -de l e t i on" above. (This
is not fully general as a rule pair can only have one
opera tor type). Each context in the above rule is for
particular cases: the first allows words like moved as
move+ed; the second allows argued as argue+ed; the
third allows encouraging as encourage+ing but also
copes with courageous as courage+ous; the fourth
context deals with e-deletion in words like readability as
read+able+ity; and the last context allows e-deletion in
reduction as reduce+ation.

The three possible rule opera tors are: < - - , - - > or
< = > , which represent forms of implication, in the
following manner.

Context Restriction:

a:b - - > LC --- RC

This means the lexical charac ter a can match the
surface character b only when it is in the context of
LC and RC, and hence a:b cannot appear in any
other context.

Surface Coercion:

a:b < - - LC --- RC

This means that in the context LC and RC a lexical a
can only be matched with a surface b and nothing
else; for example a:c is disallowed in this context .

Combined Rule:

a:b < - - > LC --- RC

This is equivalent to the combinat ion of the context
restriction and surface coercion rules. It means a
matches b only in the context LC and RC, and a:b is
the only pair possible in that context .

An addition to the formalism, which is formally not
needed, is the introduction of a " w h e r e " clause. This
saves the user writing separate rules for similar phe-
nomena. A good example can be seen in the rule for
consonant doubling (gemination):

Gemination:

+ : X < = > < C : C V:V = : X > --- V:V
where X in { b d f g 1 m n p r s t }

The rule is effectively duplicated with the variable X
bound to each member of the set in turn. I f a " w h e r e "
clause were not used and X declared as a set ranging
over { b d f g 1 m n p r s t }, the value found for X in the
rule pair + :X would not necessary be the same value for

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 293

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

X in the left context. There would be no point in giving
sets this interpretation as we do not want the V:V in the
left context necessarily to be the same V:V in the right.

The interpretation of pairs containing sets depends
on the notion of feasible pairs. A pair consisting of a
lexical symbol and a surface symbol is a feasible pair if
either it is a concrete pair (see below) or consists of two
identical symbols from the intersection of the lexical
and surface alphabets. Concrete pairs are those pairs
appearing in the rules (assuming any " w h e r e " clauses
are expanded into explicit enumeration) which are made
up of characters in the alphabets or null symbol only
(i.e. containing no sets). Pairs containing sets, such as
V:V where the lexical set V is { a e i o u y } and the
surface set V is { a e i o u y } are interpreted as all
feasible pairs that match. If y:i is a feasible pair then it
will match V:V. Rules will typically be written only for
pairs a:b where a and b are different characters. It is
built into the formalism that unless otherwise restricted,
all feasible pairs are accepted in any context.

In addition to the definition above for feasible pairs
there is the facility to declare explicitly that certain pairs
are feasible. This may be useful where some pair in a
rule contains a set and the user wishes it to stand for
some concrete pair that does not actually exist in any of
the currently specified rules. For example the pair + : =
may be used, where = can be thought of as a set
containing the whole surface alphabet. The user may
intend this pair to stand for, among others, +:/ , al-
though + :l does not actually appear in any of the rules.
In this case, + :l should be declared as a default pair.

Any number of spelling rules can be specified (our
English description has 15 - - see appendix 2 for an
annotated list). These rules are applied in parallel to the
matching of the surface form and the lexical forms. For
a match to succeed, all rules must find it acceptable. All
members of the set of feasible pairs not on the left-hand
side of some rule (i.e. a:a, b:b, c:c, etc.) are accepted in
any context .

There are some problems with this form of rule.
When a rule pair a:b from some rule A with the operator
< = > or = > also appears within a context of some
other rule B, the user must take care to ensure that the
context where a:b appears within rule B is catered for in
rule A. An example will help to illustrate this point.
Consider the following two rules:

E-Deletion:
e:0 < = > = : C 2 --- < + : 0 V : = >

or <C:C V:V> --- < + : 0 e : e>
or { g:g c:c }--- < +:0 { e:e i:i} >
or h0- - - +:0

A-deletion:
a:0 < = > < c:c e:0 +:0 > --- t:t

The e:O in the left context of the "A-de le t ion" rule is in
a context that is not catered for within the "E-De le t ion"
rule. This means that "A-de le t ion" will always fail.
What is required is the addition of another context to

the "E-De le t ion" rule:

or c::c --- < +:0 a:0 t:t > ;; A-deletion

This rule-clashing is a significant factor that must be
taken into consideration when specifying spelling rules
(see Black ell a1.(1987) for further discussion). We have
not yet investigated formal criteria for detecting clashes
within a rule-set, and it may in principle be undecidable
(or at least highly intractable)

Another decision the linguist has to make is when to
treat a given alternation as morphographemic, and when
to treat it by writing distinct morpheme entries. For
example, it seems ridiculous to go as far as writing the
following rule:

o:e < = > g:w --- < + : 0 e:n d : t>

which will match went to go+ed. This rule is in fact
insufficient as it introduces the pairs w:g, e:n and d:t
into the feasible pairs set and thus allows wear to match
gear etc. If this rule were to be included then three more
would be needed to cope with these three extra pairs.
But rules that match surface forms to such different
lexical forms are not recommended. It seems wise to
have went as a morpheme entry with the necessary past
tense marking. Went is a clear example but some others
are not so clear. Should written match wri te+en? The
question of when a change is to be taken as a different
morpheme or just as a spelling change is a question of
the overall adequacy and elegance of the description
there are no firm guidelines.

4. WORD GRAMMAR

The morphological rules concerned with word-structure
can be viewed as a " W o r d G r a m m a r " , characterising
derivationai and inflectional morphology in abstraction
from the details of the actual character strings involved.
These rules describe what consti tutes an allowable
sequence of morphemes, stating which concatenat ions
are valid, and the syntactic class of the overall word
formed by several morphemes. For example,
happy+ness is a valid noun, but arrive+ness is not a
valid word.

The word grammar is based on the concept of fea-
tures and values. Any consti tuent (morpheme, word,
word-part, etc.) can be represented by a set of features
and values, called a category. Our model of English
morphology is based heavily on the GPSG model of
syntactic features (cf. Gazdar et al. (1985), chap. 2)
(although it could be used simply as a very general
feature-grammar by anyone who did not wish to adopt
the more esoteric aspects of GPSG theory). For exam-
ple the category of a plural noun can be represented as:

((N +) (V -) (PLU +) (BAR 0))

All features used in the word grammar (and lexical
entries) must be declared to the analyser system. There
are two types of features, atomic-valued and category-
valued. Atomic-valued features must be declared with

294 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

an enumerated set of atomic values. Category-valued
features can take any valid category as their value.
These are declared using the keyword category, e.g.

Feature N {+,-}
Feature BAR {-1,0,1,2}
Feature AGR category

Although our sample English description uses particular
feature names, there is no need for the linguist to copy
such conventions. There is only one restriction on the
features declared. If a feature of the name STEM is
declared, it must be a category-valued feature. This
feature is used by the WSister Convention (see below)
and should not be used in any other way.

The word grammar is a feature unification grammar
with rules of the form:

mother-> daughterl, daughter2 daughterN

where mother, daughterl, daughter2, etc. are catego-
ries made up of features. Rules may have one or more
daughters. In addition to simple categories the grammar
may also contain variables and aliases (see below).

Aliases are a short-hand for writing categories (and
parts of categories). They allow an atomic name to be
associated with a category, and hence then be used to
represent that category in a rule. For example the
aliases Noun and Verb might be declared as:

Alias Noun = ((BAR 0) (N +) (V -))
Alias Verb = ((BAR 0) (N -) (V +))

There are two types of variables allowed within the
categories in the grammar; "rule-category variables"
and "feature value variables". Rule-category variables
range over specific categories, and are a short-hand for
writing similar grammar rules. They are declared with a
range of possible values that must be stated as a list of
aliases. Rule-category variables can be used to capture
generalisations in rules. For example, in French both
nouns and adjectives can take a plural morpheme s
(which can be represented by the category ((PLU +))).
This phenomenon could be described using the follow-
ing alias statements and rules:

Alias Adj = ((BAR 0) (N +) (V +))
Alias Noun = ((BAR 0) (N +) (V -))

(AdjPlural
(Adj (PLU +)) -> (Adj (PLU -)), ((PLU 4)))

(NounPlural
(Noun (PLU 4)) -> (Noun (PLU -)), ((PLU 4)))

Alternatively, the two rules can be written as one by
declaring a category variable:

Alias Adj = ((BAR 0) (N +) (V +))
Alias Noun = ((BAR 0) (N 4) (V -))

Variable C = (Adj,Noun}

(Plural
(C (P L U ÷)) - > (C (P L U -)) , ((P L U +)))

Rule-category variables are "compiled out" during
grammar compilation, and are thus actually used to
collapse a number of rules.

Feature value variables, on the other hand, can best
be thought of as "holes" that are filled in during parsing
(although theoretically they have equivalent semantics
to rule-category variables, if we overlook the distinction
between abbreviations for finite sets and for infinite
sets). There are two types of feature value variables b
atomic-valued and category-valued (category-valued var-
iables are not the same as rule-category variables). The
distinction is analogous to that between the atomic-
valued features and category-valued features described
above. Atomic-valued variables are declared with an
enumerated set of values, while category-valued varia-
bles are declared with the keyword category:

Variable ALPHA = {+,-}
Variable ?AGR = category

Feature value variables are not compiled out at gram-
mar compile time but are instantiated during parsing.
The ranges of feature value variables can be used to
restrict the scope of rules. They can also be used to
"copy" values of features up (and down) the parse tree.
For example, a compound noun can be said to inherit its
plural feature marking from the rightmost daughter.
Using feature value variables we can write a rule that
ensures that the compound noun will have the same
PLU marking as its rightmost daughter:

Variable ?X = {+,-}
Alias N = ((BAR0)(N +) (V-))

(NounCompound
(N (PLU ?X)) ->
(N (PLU -)), ;; ensure basic noun
(N (PLU ?X))
)

Note that although atomic-valued variables can be
thought of as a short-hand for a number of rules, one for
each value in the range of the variable, category-valued
variables cannot. This is because there is potentially an
infinite number of categories that could be the value of
a category-valued feature.

There are no typographical conventions built-in for
specifying variables; the rule-writer, however, may
wish to adopt some convention such as starting all
variables with underscore or question mark. This does
make rules easier to read but is in no way mandatory.

In addition to the use of variables for "passing"
features around during parsing there are some built-in
feature-passing conventions (see below for more
details).

Before a description of what constitutes a valid
analysis can be given two definitions are required.

Extension

(a) A feature-value (either atomic or a category) is an
extension of any variable of an appropriate type.

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 295

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

(b) An atomic feature-value is an extension of itself.
(c) Category A is an extension of category B iff for any

feature f in category B , there is a value of f in A
which is an extension of the value of f in category
B .

Unification

The unification of two categories is the smallest
category that is an extension of both of them if such
category exists. It is possible that no such category
exists, and in that case unification is undefined.

Intuitively, extension and unification can be though of
as the set relation superset and the set operation union,
respectively, with the extra refinement of allowing at
most one entry for each feature within a category. The
creation of the unification of two (or more) categories is
referred to as "unifying" the categories.

The morphological analyser uses the rules in the
Word Grammar to find all possible structures for a given
word. Each structure is a tree in which each node is
EITHER:

the keyword ENTRY and a lexical entry

OR: a local tree of the form N -> c l c 2 . . . c n , where
N is a category and c i is a constituent. This tree must
match the following constraints

a. there must be a rule in the word grammar of the
form A -> d l d 2 . . . d n , where category N is
an extension of A and c i is an extension o f d i for
each i from 1 to n .

b. the local tree must be valid with respect to the
feature-passing conventions.

The analyser returns all constituents that span the given
string and have a category that is an extension of the
category which the linguist has defined to be the distin-
guished category. That is, in the same way that a
traditional context-free grammar has a single distin-
guished symbol which is used to define complete deri-
vations, our morphological model has a distinguished
c a t e g o r y .

5. FEATURE-PASSING CONVENTIONS

Feature-passing conventions can be thought of as a
way of extracting various patterns which occur in the
word-grammar rules and stating them separately. The
effect of this is to diminish the amount of explicit
information that needs to be stated in the word-grammar
rules, reducing both the size of the word-grammar (the
number of rules) and the complexity of the individual
rules. These regularities can be expressed as feature-
passing conventions which can be thought of as rules for
passing information UP the analysis tree (from terminal
morphemes to the final word), or for passing informa-
tion DOWN the analysis tree (from word to constituent
morphemes). The way of stating these conventions is
based on the mechanisms employed by Generalised
Phrase Structure Grammar at the level of the sentence

(Gazdar et all. (1985)), but the morphological generali-
sations embodied in them are essentially those of
Selkirk(1982).

There are three conventions built into the system at
present. Notice that the definitions of the feature-
passing conventions themselves are not under the con-
trol of the lexicon-writer, although the features that are
affected by the conventions may be modified. The
conventions act on certain specific features or feature-,
classes, so the linguist can make use of these conven-
tions by defining certain features to lie within these
named classes. The system will then automatically
apply the conventions to these features.

All three feature conventions act on what is called
within GPSG terminology a "local t ree" - - a set of one
mother node and its immediate daughters. The conven-
tions were originally designed for binary branching rules
(introducing exactly two daughters), but they apply to
all rules. They are written in terms of "mother" , "left
daughter" (i.e the leftmost daughter in a local tree) and
"right daughter" (the rightmost daughter). In unary
rules, those with just one category on the right-hand
side, the left and right daughters are the same category.

THE WORD-HEAD CONVENTION

The WHead feature-values in the mother should be
the same as the WHead feature-values of the right
daughter.

In the word parser, this is achieved, roughly speaking,
by unifying the WHead features of the right daughter
and those of the mother when the daughter is attached.

From a linguistic point of view, the WHead features
are typically those that will be relevant to sentence-level
syntax, and hence those that will be of particular use to
a sentence-parser which uses the dictionary. This con-
vention is a straightforward analogue of the simplest
case of the Head Feature Convention in (Gazdar et al.
(1985)). Its effect is to enforce identity of the relevant
feature values between mother and the head daughter.
Note that in the current system there is no formal
definition of "head" to which the lexicon-writer has
access (despite the name given to this convention),
since the right daughter always acts in this head-like
fashion within our treatment of English morphology.
Other analyses may deviate from this pattern, of course;
different views of "head" may be implemented using
variables and unification.

Assuming the set of WHead features includes N, V,
PLU, and VFORM, the Word-Head Convention would
allow the following trees:

((N +) (V -) (PLU +))

0
((BAR -I) (N +) (V -) (PLU +))

and

((N -) (V +) (VFORM ING))
((N -) (V +))
((BAR -1) (N -) (V +) (VFORM ING))

296 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

but not (after all unification has occurred) trees of the
form:

((N +) (V +) (PLU +))
0
((BAR -1) (N +) (V -) (PLU +))

and

((N -) (V +))
0
((BAR -1) (N -) (V +) (VFORM EN))

since one of the trees has a clash in the V value for
mother and right daughter, and the other lacks a
VFORM marking on the mother to match that on the
right daughter.

THE WORD-DAUGHTER CONVENTION

(a) If any WDaughter features exist on the right daugh-
ter then the WDaughter features on the mother
should be the same as the WDaughter features on
the right daughter.

(b) If no WDaughter features exist on the right daughter
then the WDaughter features on the mother should
be the same as the WDaughter features on the left
daughter.

Again, this is ensured by carrying out unification of the
appropriate feature markings during parsing. This con-
vention is designed to capture the fact that the subca-
tegorization class of a word (in English) is not affected
by inflectional affixation, although it may be affected by
derivation.

Assuming the feature SUBCAT to be the only
WDaughter feature, this convention allows trees such
as :

((SUBCAT NP))
((V +) (N -))
((SUBCAT NP))

((SUBCAT NP))
((SUBCAT NP))
((VFORM ING))

but not

((SUBCAT NP))
((V +) (N -))
((SUBCAT VP))

((SUBCAT NP))
((SUBCAT VP))
((VFORM ING))

In the first example the right daughter is specified for a
SUBCAT value, and the mother has the same specifi-
cation; in the second example, the right daughter has no
specification for SUBCAT and so the second clause of
the WDaughter convention applies. The third example
is illegal because the values of SUBCAT on the right
daughter and mother differ, and the fourth is illegal

because, under clause (b) of the convention, the left
daughter and mother WDaughter features must be iden-
tical when there are no WDaughter features in the right
daughter.

THE WORD-SISTER CONVENTION

When one daughter (either left or right) has the
feature STEM, the category of the other daughter
must be an extension (superset) of the category value
of STEM.

This third convention enables affixes to be subcatego-
rized for the type of stem to which they attach. Notice
that this convention is not defined in terms of any
feature-classes, but is defined using just one "built-in"
feature (STEM). Hence, the way that the lexicon-writer
makes use of this convention is not by declaring the
extent of feature-classes (as for the other two conven-
tions), but by adding STEM specifications to the fea-
tures in morphemes in the lexicon, thereby indicating
the combination possibilities for each affix. The follow-
ing examples follow the convention

0
((N -) (V +))
((STEM ((N -) (V +))))

0
((V +) (N -) (INFL +))
((STEM ((N -) (V +) (INFL +))))

6. FEATURE DEFAULTS

Feature Defaults are similar in concept to the Feature
Specification Defaults of Gazdar et al. (1985). They are
statements which define values for particular features in
circumstances where no value has been entered by
other mechanisms (i.e. the original morpheme entries,
the action of the lexical rules, or the feature-passing
conventions). That is, they state what the value of a
feature should be if there is no information to indicate
any other value for it. The defaults are applied to all new
constituents (words or parts of words) built during
morphological analysis. (In terms of the active chart
implementation of the parsing mechanism, the default
checking is done whenever a complete (inactive) edge is
entered into the chart).

At present, only very simple defaults are available,
compared to the various kinds of defaults proposed (for
sentence-level grammar) by Gazdar et al. (1985). All the
linguist can do is define the default value for a given
feature (either a category-valued feature or an atomic-
valued one). For example, the statement

Defaults BAR 0, AGR Inf

declares default values for two features (BAR and
AGR), where "Inf" could be an alias for some category.
However, Completion Rules have arbitrary descriptive
power, and can be used to achieve complex insertion of

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 297

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexicai Description

default feature values, providing that the default-inser-
tion can be performed adequately on individual mor-
phemes (not categories formed by combining mor-
phemes), since Completion Rules have their effect prior
to morphological analysis. (See discussion in Section 8
below)

7. LEXICAL RULES

All three types of rule (Completion Rules, Multiplica-
tion Rules, and Consistency Checks) have the same
basic form:

< pre-condition > < operator > < action >

Although the < operator > and < action > are different
in each type of rule, the syntax of the < pre-condition >
is the same. Pre-conditions are specified as conjunctions
of (possibly negated) patterns, describing lexical en-
tries. Variables are denoted by atoms starting with an
underscore e.g. fred, fix etc. and are bound during
matching so that t--hey ca--ffbe used later in a match or in
a rule action. There is a special variable consisting of
only an underscore (. . . .), which never gets bound but
can be used to match--anything (cf. Prolog). All other
variables have a consistent interpretation throughout a
rule. Matching is done from left to right (which is
significant in the matching of syntactic fields). The entry
being matched does not have to have the features in the
same order as the pattern.

The following examples of syntactic category match-
ing illustrate some of the above points:

((FIX f i x) " (B A R) r e s t)

with tilde indicating negation, matches

((FIX SUF) (N +) (V -))

with __fix bound to SUF and r e s t bound to ((N +)
(V -))

((FIX f i x) "(BAR __) r e s t)

does not match

((FIX SUF) (BAR -1) (N +) (V -))

since "(BAR _) fails to match any feature value for
BAR

((N -) (V +) rarest)

matches

((V +) (PLU -) (N -) (INFL +))

with r e s t bound to ((PLU -) (INFL +))

((N +) (V-) r e s t)

matches

((V -) (N +))

with r e s t bound to an empty list of features. The
pattern ((N +) junk (V -)) does not match any syntac-

tic category because the variable junk will match all
remaining features in the category being checked.

When negation is used no bindings that are made
within a negative pattern are passed on through the
match (agalin cf. Prolog), although bindings can be
passed into negations.

The above examples concern only the syntactic field,
but pre-conditions match against entire entries. For
example:

-(be) and

(((N-) (V +) r e s t))

would match all entries that do not have the citation
form be and are marked with the features (N -) and
(V +), and

(((N +) (V -) -(PLU)))

would match any entry with the features (N +) and
(V -) but not the feature PLU (with any value).

COMPLETION RULES

Completion Rules are designed to be used to add
values to tile entries that are specified by the linguist,
and are applied in order to the entries (after aliases have
been expanded). Accordingly, the order of the Comple-
tion Rules is significant. A Completion Rule is of the
form

< pre-condition > = > < entry skeleton >

I fa pre-condition matches an entry the entry is replaced
with the newly constructed one described by the entry
skeleton. A entry skeleton is of the same general form
as a lexical entry, but various parts of it may contain the
ampersand symbol (&), to mean "the same as in the
original entry", or variables which have appeared in the
pre-condition (and hence would have been bound in the

matching process).
For example the rules:

(((FIX f i x) "(BAR) r e s t)) = >

(& & ((FIX fix) (BAR -I) r e s t) & &)

(('(BAR) r e s t)) = >

(& & ((B A R 0) r e s t) & &)

(((STEM ('(INFL) s t e m) r e s t)) = >

(& & ((STEM ((INFL +) s t e m)) r e s t) & &)

have the action of adding (BAR -1) to entries containing
the feature FIX, adding (BAR 0) to all entries that do
not have a BAR marking and lastly adding (INFL +) to
all values of STEM that do not already have a marking
for INFL. Note that the ordering of the first two rules is
significant. If the first two rules were in the reverse
order, the FIX rule would not apply to any entries, as all
entries would by that time have had (BAR 0) added.

MULTIPLICATION RULES

Multiplication Rules construct additional entries (as
opposed to the replacement of entries performed by

298 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

Completion Rules). These are typically used to generate
similar entries with slightly varying feature markings;
for example, in English these rules can be used to
generate the first person, second person and plural of
verbs from the base form (as an alternative to designing
the morphological rules to handle the verb paradigm).
The syntax of these rules is very similar to that of the
completion rules:

< pre-condition > = > > (< list of entry skeletons >)

The syntax of the entry skeletons is exactly the same as
above. The ordering of the rules is not significant as
newly created entries are not re-tested against the
Multiplication Rules. This is to avoid possible infinite
application of rules.

A Multiplication Rule to generate the first and second
person singular and plural of a base verb could be:

tion of a category that contains a V marking but no N
marking, but the linguist may wish to specify that such
a category is invalid. Consistency Checks are state-
ments of the form:

< pre-condition > demands < post-condition >

The <post-condition> has the same syntax as the
pre-conditions. The interpretation is:

If an entry_matches the pre-condition it must also
match the post-condition.

For instance, if ali entries that are marked for V must
also be marked for N and vice versa then this condition
can be written as the following two Consistency
Checks:
(((V))) d e m a n d s (((N)))

(((N)))demands(((V)))

(((V +) (N -) (BAR 0) (VFORM BSE) (INFL +) res t)

) =>>
(

(& & ((V +) (N -) (BAR 0) (PN PER1) (INFL -) res t) & &)
(& & ((V +) (N -) (BAR 0) (PN PER2) (INFL -) res t) & &)
(& & ((V +) (N -) (BAR 0) (PN PLUR) (INFL -) res t) & &)
)

The rules are applied in the following order: Multiplica-
tion Rules (order is not significant), Completion Rules
(in order of specification), and finally the Consistency
Checks are applied to each entry created by the previ-
ous rule applications.

8. DESCRIPTION OF ENGLISH

Note that the entry being tested is not replaced but
remains in the lexicon (assuming the Consistency
Checks are passed - - see below). So, given the entry

(like IAIk ((BAR 0) (V +) (VFORM BSE) (N -)
(INFL +) (SUBCAT VP2a)) LIKE NIL)

four entries would exist after the application of the
Multiplication Rule, having the form:

(like IAIk ((BAR 0) (V +) (VFORM BSE)
(N -) (INFL +) (SUBCAT VP2a)) LIKE NIL)

(like IAIk ((V +) (N -) (PN PER1)
(BAR 0) (INFL -) (SUBCAT VP2a)) LIKE NIL)

(like IAIk ((V +) (N -) (PN PER2)
(BAR 0) (INFL -) (SUBCAT VP2a)) LIKE NIL)

(like IAIk ((V +) (N -) (PN PLUR)
(BAR 0) (INFL -) (SUBCAT VP2a)) LIKE NIL)

CONSISTENCY CHECKS

Consistency Checks are applied to every entry (in-
cluding newly created ones) after the above two sets of
rules have applied. Any entry that does not pass these
tests is not included in the lexicon. The only formal
requirement on lexical entries is that entries are quin-
tuples and that the syntactic field is a set of feature pairs
with values as declared. These Consistency Checks
allow the linguist to check linguistic dependencies
within entries; for example, there is no built-in prohibi-

The mechanisms outlined in the preceding sections
could be used to construct almost any description of
English lexical facts. Here we sketch one such descrip-
tion, which we have developed using the mechanisms
described here. It is worth observing in passing that the
features used in the description can be broadly grouped
into the following (overlapping) classes:

Purely sentential. These features are included as part of
the grammatical description of sentence structure,
and do not have any particular import within mor-
phological rules. For example, the feature SUBCAT
is used to indicate the subcategorisation of verbs,
etc. but does not affect spelling or word-structure.
Features which do not affect morphology may still be
manipulated by the morphological rules, since the
feature-passing conventions will cause various fea-
tures to be passed from morphemes to words. Thus
whole words will inherit features from their compo-
nent morphemes, without the rules mentioning the
features explicitly.

Sentential with morphological effects. The features V
and N (for classifying nouns, verbs, adjectives and
prepositions, in the GPSG style), although obviously
motivated by the syntactic form of sentences, also
affect various affixing processes.

Purely morphological. Certain features have been pos-
tulated in our description solely to distinguish classes
of morpheme that have different behaviour morpho-
logically. For example, the feature FIX (with possi-
ble values PRE and SUF) indicates an affix, and the

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 299

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexicai Description

feature I N F L (possible values + and -) indicates
whether a word or morpheme is capable of further
inflection.

Notice that this is not a formal distinction, and does not
correspond to any sub-divisions in our mechanisms i it
is merely an observation about our description of En-
glish that certain features are not motivated by morpho-
logical considerations. In a sense, they could still be
said to "a f fec t " the morphological processing, since if a
feature is mentioned in the STEM value of a morpheme,
it will restrict possible morpheme combinations. The
sentential features (i.e. the first two classes above) have
been devised in collaboration with the writers of a
medium-sized grammar of English (Briscoe et al. 1986),
but we shall not discuss here the justifications for the
decisions regarding sentential grammar. Appendix I
outlines the usage of the more morphologically or
lexically significant features.

The Word Grammar describing inflectional and der-
ivational morphology is not large; the complete set is
given below. Each rule is preceded by a mnemonic
name, and VAL is a variable ranging o v e r + and - .
Since the feature-marking (BAR 0) indicates a item
which constitutes a whole word, the PREFIXING rule
can be summarised as " A n y word can be made up of a
prefix followed by another valid word" . (Properties of
the prefix and stem determine the full features of the
word by the Feature-Passing Conventions - - see
below).

(PREFIXING
((BAR 0)) ->

((FIX PRE)), ((BAR 0)))

(SUFFIXING
((BAR 0) (N +)) ->

((BAR 0)), ((N +) (FIX SUF)))

(V-SUFFIXING
((N -) (V +) (AUX VAL) (BAR 0)) ->

((AUX VAL) (BAR 0)), ((FIX SUF) (N -) (V +)))

(NON-V-SUFFIXING
((N -) (V +) (AUX VAL) (BAR 0)) ->

((N +) (BAR 0)), ((N -) (V +) (FIX SUF) (AUX VAL))
)

The S U F F I X I N G rule can be phrased "Any noun or
adjective can be made up of a noun or adjective stem
followed by a suffix". Notice that this rule does not
stipulate that the stem must be of the same major
category (noun or adjective) as the overall word, and
hence it covers derivational morphology (where the
category is altered by affixation) as well as noun inflec-
tions. The restriction to nouns or adjectives (i.e. entities
marked as (N +)) is necessary as verbs require the
slightly more detailed rules V-SUFFIXING and NON-
V-SUFFIXING (and prepositions - - ((N -) (V -)) - - do
not take affixes at all).

The V-SUFFIXING rule states " tha t a verb can be
made up of a verbal stem of the same auxiliary marking
followed by a verbal suffix". This is to cover general
verb inflection, for both auxiliaries (AUX +) and main
verbs (AUX -).

The NON-V-SUFFIXING rule is to cover those
cases of derivational morphology where a noun or
adjective (N +) stem becomes a verb through suffix-
ation - - " an y noun or adjective which forms a whole
word can form a whole word verb by the addition of a
verbal suffix".

In all these cases, the rules may seem to be rather
sketchy and lacking in feature specifications. For exam-
ple, the PREFIXING rule does not stipulate much
about the relationship between stem and composite
word, and therefore seems to omit the generalisation
that prefixation does not alter the grammatical features
of the word (in particular, the major category is the
same). However , these highly economical grammar
rules are made possible by the assumption that the
various feature-passing conventions (and feature de-
faults) will ensure that features are correct . Hence it is
crucial that the word grammar be assessed in conjunc-
tion with the feature-passing conventions defined in
Section 5 above, and the following definitions of feature
classes:

WHead Features:

N V I N F L PAST AFORM VFORM BARE-ADJ
ADV AGR PLU POSS FIN

WDaughter Features:

SUBCAT

The features in the WHead list will be forced to have the
same values on the right-daughter and the mother;
hence these feature-values when specified on a suffix
will percolate on to the main word, and will also remain
on the main word when a prefix is added. Similarly, the
WDaughter feature will be inherited from the appropri-
ate part of the word.
There are also two feature-defaults:

BAR 0
LAT +

These ensure that any morpheme, word, or part of a
word which does not have a value for BAR will be
marked as a potential whole word, and that any item not
marked for being " L a t i n a t e " will be assumed to be so.

There are two main types of lexical rules I Comple-
tion Rules and Multiplication Rules. The third type
(Consistency Checks) are desirable for disciplined lex-
icon-writing, but they do not insert any features or
entries, and will not be discussed here.

Although it is not obvious from the outline of the
formalism given here, Completion Rules can be used in
several ways to control the content of lexical entries.

300 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

This is not to say that the notation has several interpre-
tations, but rather that the lexicon writer can choose to
employ the facilities of these rules in different styles, in
much the same way that a programmer can use a
programming language in different manners. We will
term the three main usages overwriting, obligatory
insertion, and optional defaulting. The overwriting use
is fairly straightforward - - in this, a rule is used to alter
the values of one or more specified features. For
example, a rule like the following would change all
adjectives to nouns:

(((V +) (N +) r e s t)) = >

(& & ((V -) (N +) r e s t) & &)
This is achieved by mentioning the relevant features
explicitly in the pre-condition (pattern), and supplying a
new form (right-hand side) which has an explicitly
stated revised form of them; all other features are
carried over unchanged by the variable rest. Leaving
aside the rather absurd content of the ~-ove example,
we have made no use of this effect in our description of
English, as there seemed no point in putting in entries
which were to be systematically altered by rule (notice
that this is different from having the entries filtered out
by some rule such as a Consistency Check).

The notion of obligatory insertion is more subtle.
This involves writing rules which will insert a feature
value if it is not there already, but will result in the
lexical entry being discarded if that feature is already
specified in it. For example, consider a rule which adds
(INFL -) to all entries marked with an AFORM value:

(((AFORM _af) _rest)) = >

(& & ((INFL -) (AFORM _af) _rest) & &)

The Completion Rule mechanism is not defined to check
for the presence of features it is attempting to add, so
this rule will attempt to add (INFL -) even if the entry
already has a value for INFL (whether + or -). If there
is no previous marking for INFL, this insertion will be
successful, and the rule will have effectively added a
default marking. If there is some previous marking, the
insertion will fail, since the mechanism is not defined to
overwrite entries, and the lexical entry will be dis-
carded.

Optional defaulting is a slightly more circumspect
way of inserting default values. Consider the following
rule, which also inserts (INFL -) as a default marking on
entries specified for AFORM.

(((AFORM _af) "(INFL) _rest)) = > >

(& & ((INFL-) (AFORM a f) r e s t) & &)

In this version, the pre-condition has an explicit check
for the absence of an INFL marking (since the tilde sign
indicates negation of the immediately following condi-
tion). This rule will apply only to entries which are
unspecified for INFL, and will have no effect (i.e. leave

in the lexicon unaltered) entries for which this pre-
condition is not true.

All the Completion Rules in our description of En-
glish are written to act in a "default" manner; in fact, to
use the terminology introduced immediately above,
they are written in the "optional default" style, in that
each rule checks for the absence of a feature-value
before inserting the value. The full set of Completion
Rules is given in Appendix 3.

There are two Multiplication Rules. The first is to
account for the fact that any noun or adjective which is
subcategorised for a complement (e.g. critic takes a
prepositional phrase with 039 can also occur with no
complement:

(((N +) (SUBCAT) r e s t)) and

-(((SUBCAT NULL)))

(& & ((N +) (SUBCAT NULL) r e s t) & &))

The second clause of the pre-condition is necessary
simply because the pattern-matching mechanism does
not permit the use of negated feature values (e.g.
(SUBCAT "NULL)) within a pattern. The second Mul-
tiplication Rule expands the present tense verb para-
digm for all verbs apart from be , by adding three further
lexical entries per verb:

"(be) and

((-(VFORM) "(FIN) -(AGR

(V +) (N-) (INFL +) r e s t)

(

)

)

(& & ((V +) (N -) (FIN +) (INFL -) (PAST -)
(AGR PLUR) r e s t) & &)

(& & ((V +) (N -) (FIN +) (INFL -) (PAST -)
(AGR PER1) r e s t) & &)

(& & ((V +) (N -) (FIN +) (INFL -) (PAST -)
(AGR PER2) r e s t) & &)

It might seem that this regularity would be more natu-
rally handled in the morphological analyser, rather than
as lexical redundancy. However, that would necessitate
the introduction of a morpheme whose entire surface
form was null (with suitable syntactic features). The
complications this would introduce into the morphogra-
phemic segmentation and word-grammar parsing are

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 301

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexicai Description

regarding as wholly unacceptable computationally, and
so the Multiplication Rules have been used to capture
this generalisation. (This is a very obvious example of
the methodological issue mentioned in our opening
section, concerning the need for a viable procedural
interpretation of the whole set of mechanisms).

There are 15 spelling rules in our description. Appen-
dix 2 contains an annotated list of them. In addition to
the actual rules the spelling rule mechanism requires the
definition of the lexical and surface alphabets. The
Surface Alphabet contains all normal alphabetic letters,
space, hyphen and apostrophe (for simplicity, we shall
ignore the issue of upper and lower case here). The
Lexical Alphabet contains exactly the same symbols
together with the plus sign (+) which we use to mark
morpheme boundaries. The null symbol (0) is a part of
the formalism, and hence is not regarded as part of
either alphabet (but may occur in rules anywhere that a
normal alphabet symbol might occur). In addition to
standard identity pairs made from the intersection of the
lexical and surface alphabets, three default pairs are
declared, so that these pairs are valid in any context
during matching.

+:0 a morpheme boundary symbol may be deleted on
the surface.

-:0 hyphens in a citation form (e.g. data-base) may be
absent from the surface string (e.g. database).

. . . . :- where a lexical form has a space (e.g. data base),
the surface strings may optionally contain a hyphen
instead (data-base).

9. AN EXAMPLE

The above word grammar, and various other parts of
the rules and definitions, can be illustrated with a simple
example u the analysis of the word applications. The
Spelling Rule interpreter will segment this (using the
C-Insertion rule, and the Default Pair definition that
pairs morpheme boundaries with null) into three mor-
phemes ---apply, +ation, and +s. In the original lexical
entries, these morphemes are listed thus, with +s
having two entries:

(apply apply ((V +) (N -) (SUBCAT NP PPTO))
APPLY NIL)

(+ation +ation
((FIX SUF) (V -) (N +) (INFL +)

(STEM ((V +) (INFL +) (N -))))
ATION
NIL)

(+s +s
((FIX SUF) (V +) (N -) (FIN +) (PAST -)

(AGR SING3) (STEM ((V +) (N -) (INFL +))))
S

NIL)

(+s +s
((FIX SUF) (V -) (N +) (PLU +) (STEM ((N +) (V -) (INFL

+))))
S
NIL)

However, various Completion Rules will have acted
upon these basic entries at the pre-compilation stage of
the lexicon, resulting in the following more detailed
entries for the three morphemes we are interested in
here (ignoring the other entry for +s):

(apply apply ((INFL +) (V +) (N -) (BAR 0) (AT +) (LAT +)
(SUBCAT NP PPTO) (AUX -)) APPLY NIL)

(+ation +ation
((FIX SUF) (V -) (N +) (BAR -1) (INFL +)

(PLU -) (AT +) (LAT +)
(STEM ((V +) (1NFL +) (N -))))
ATION
NIL)

(+s +s
((FIX SUF) (V -) (N +) (BAR -!) (PLU +)

(INFL -) (AT +) (LAT +)
(STEM ((N +) (V -) (INFL +))))
S

NIL)

Seven rules achieve this - - one adds the marking (BAR
-1) to entries marked as affixes (i.e. specified for FIX),
another adds (BAR 0) to all entries which are specified
for V and N but lack a BAR value, the third adds (INFL
-) to all morphemes marked with (PLU +), the fourth
adds (INFL +) to all (BAR 0) entries which lack an
INFL value, the fifth adds (AUX -) to all verbs (but not
verbal affixes), the sixth adds (LAT +) to any entry with
a V marking, and the seventh adds (AT +) to all entries
with a (LAT +) marking. Notice that the ordering of the
Completion Rules in the description is crucial, for
example the third of these rules affects the fourth.

The SUFFIXING rule in the Word Grammar com-
bines the first two morphemes into a subtree with the
lexical entries for apply and +ation as daughter nodes.
The left-hand side of this rule assigns the following
syntactic category to the mother node:

((BAR 0) (N +))

Further feature markings are then computed, using the
Feature Defaults and the Feature-Passing Conventions,
giving

((BAR 0) (N +) (V -) (INFL +) (PLU-)
(LAT +) (SUBCAT NP-PPTO))

The markings (V -) and (INFL +) result from the
WHead Convention, since they must be equal to the

302 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

markings on the right daughter (+ation). The marking
(LAT +) follows directly from the Feature Default,
since these are added to all constituents found by the
word-parser, not just to individual morphemes. The
(SUBCAT NP__PPTO) is a result of the WDaughter
Convention, because there is no SUBCAT feature on
the right daughter it must be the same as that on the left.
The SUFFIXING rule operates again, to combine this
word (application) with the plural morpheme +s , to
form a tree whose daughter categories are:

Left: ((BAR 0) (N +) (V -)
(INFL +) (LAT +) (PLU +) (SUBCAT
NP-PPTO))

Right: ((FIX SUF) (V -) (N +) (BAR -1) (PLU +)
(INFL -) (AT +) (LAT +) (STEM ((N +) (V -)
(INFL +)))

Notice that this combination will accord with the
WSister convention, since the category of the left-
daughter is an extension of the value of STEM on the
right-daughter--((N +) (V -) (INFL +)). The category
of the mother node includes, from the SUFFIXING
rule, the following markings:

((BAR 0) (N +))

Again, further feature markings are then computed,
giving:

((BAR 0) (N +) (V -) (INFL -)
(LAT +) (PLU +) (SUBCAT) np__.PPTO))

The markings (V -), (PLU +) and (INFL -) result from
the WHead Convention, since V, PLU and INFL are
WHead features and so must have the same values as on
the right daughter (+s). The marking (LAT +) follows
directly from the Feature Default and the SUBCAT
feature is a result of the WDaughter Convention. The
overall structure for the word can then be viewed as a
tree in which each node is annotated with either a
syntactic category and a rule-name or the keyword

ENTRY and a morphemic lexical entry, as shown
below.

10. CONCLUSIONS

We have presented an integrated set of formalisms for
describing various aspects of the lexicon in a computa-
tionally tractable manner, which have been used to
create a non-trivial description of English lexical phe-
nomena. All these facilities have been implemented (in
Franz Lisp on a Sun 2/120) and are being used as part of
collaboration between Edinburgh, Cambridge and Lan-
caster universities to develop a set of software tools for
natural language processing, under the Alvey Pro-
gramme. It should be borne in mind that all the rule-
formalisms are highly experimental, and if they are to
form a useful linguistic theory (as opposed a practical
software package) a great deal of refinement is required.
Not only are some of them perhaps too powerful (e.g.
Completion Rules have arbitrary computational power),
some of them may be too weak descriptively (e.g. it is
not clear if the morphological mechanisms are adequate
for all languages). The description is also still under
development; the rules given here reflect the state of the
system in summer 1986.

APPENDIX 1--LEXICALLY SIGNIFICANT SYNTACTIC
FEATURES

The following are brief explanations of the features
which are involved in the Completion Rules in Appen-
dix 3, the Word Grammar in Section 8, or which are
particularly pertinent to the Feature Passing Conven-
tions. Each feature name is followed by a list of its
allowable values.

AT(- +)
Stems to which the suffixes +ation and +ative may
attach are marked as (AT +), while those taking the
corresponding forms +ion and +ive are (AT -). This
specification is referred to in the STEM feature of the
suffixes in question, resulting in action and presenta-
tion, but not e.g. presention.

LAT (- +)

((SUBCAT NP PPTO) (V -) (LAT +) (PLU +) (INFL -) (N +) (BAR 0))
SUFFIXING

((SUBCAT NP PPTO) (LAT +) (PLU -) (V -) (INFL +) (N +) (BAR 0))
SUFFIXING

(ENTRY (apply apply ((AUX -) (BAR 0) (V +) (N -) (INFL +) (AT +)
(LAT +) (SUBCAT NP.PPTO)) APPLY NIL))

(ENTRY (+ation +ation ((INFL +) (BAR -1) (N +) (V -) (PLU -)
(AT +) (LAT +) (FIX SUF) (STEM ((LAT +) (INFL +)
(N -) (V +) (BAR 0)))) ATION NIL))

(ENTRY (+s +s ((INFL -) (PLU +) (AT +) (LAT +) (V -) (FIX SUF)
(BAR -1) (STEM ((INFL +) (N +) (V -))) (N +)) S NIL))

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 303

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

The feature LAT distinguishes those stems tradition-
ally analysed as latinate from others. Certain affixes
may only attach to latinate stems; +an is one such,
giving magician, but not artan.

BARE-ADJ (- +)
This is a feature allowing us to refer to two disjoint
category sets. Certain suffixes (e.g. +ly) may attach
either to the base form of regular, inflectable, adjec-
tives (as in easily), or to non-inflectable adjectives (as
in dangerously). They may not, however, attach to
inflected forms (easiestly); BARE-ADJ distinguishes
e.g. easy and dangerous ((BARE-ADJ +)) from
easiest, whereas INFL (see below) does not.

FIX (PRE SUF)
All affixes bear a specification for FIX; prefixes have
the value PRE, and suffixes have the value SUF. The
rules of the word grammar refer to the specifications,
so that prefixes always precede their stems and
suffixes always follow.

AGR (SING3 SING IT PER1 PLUR PER2 DEF SINGI
N1SING N1PLUR THAT S)

The feature AGR is responsible for enforcing the
necessary correspondence between categories in
sentence structure. This is most common in the case
of subject and verb; is is specified as (AGR SING3),
and am as (AGR SING1).

POSS (+ -)
Distinguishes possessive items from others. His,
whose, and the possessive's are specified as (POSS
+).

INFL (- +)
INFL distinguishes those stems which may bear an
additional suffix (e.g. walk) from those which cannot
(e.g. walking).

STEM category
The STEM feature controls the attachment of affixes
to stems. The value of STEM in an affix category
must (by the WSister feature passing convention) be
included in the category of any stem that affix at-
taches to. In this way, +ing, for example, can be
restricted to the base form of verbs.

BAR(-10 1 2)
The sentence grammar employs a three-level system
of categories, various phrases being specified as
(BAR 1) or (BAR 2), and preterminals as (BAR 0). In
our analysis of word-structure, we extend this con-
cept below the level of the complete word; stems are
specified as (BAR 0), and affixes as (BAR -1).

v (- +)
N (- +)

The major categories (nouns, verbs, adjectives, and
prepositions) are classified by means of the features
V and N. Verbs and adjectives, and their phrasal
counterparts, are specified as (V +), while nouns and
prepositions are specified as (V -). Nouns and adjec-

tives, and their phrasal counterparts, are specified as
(N +); verbs and prepositions are (N -).

QUA (- +)
Determiners (articles like the, a and adjectives like
all, three) are specified as (QUA +). Other adjectives
are (QUA -).

ADV (- +)
Adverbs derived from adjectives (quickly, easily) are
analysed as adjectives bearing the specification
(ADV +).

AUX (- +)
Verbs are specified as (AUX +) if they are auxiliary
verbs, and as (AUX -) otherwise.

FIN (- +)
Verbs are specified as (FIN +) if they are finite
(tensed), and as (FIN -) otherwise.

PAST (- +)
Finite verbs are specified as (PAST +) if they are in
the past tense, and as (PAST -) otherwise.

NEG (- +)
NEG distinguishes negative words from others;
aren't etc. are specified as (NEG +).

PLU (- +)
PLU distinguishes plural nouns from others; men and
cats both bear the specification (PLU +), and man
and cat (PLU -).

DEF (- +)
Determiners are specified for DEF; the is (DEF +)
and a is (DEF -).

AFORM (ER EST NONE)
AFORM encodes information concerning adjective
morphology. Comparatives and superlatives are
specified as (AFORM ER) and (AFORM EST) re-
spectively, and non-inflectable adjectives are
(AFORM NONE).

NFORM (IT THERE NORM)
NFORM encodes the type of a noun phrase. The
"dummy subjects" it and there are specified as
(NFORM IT) and (NFORM THERE) respectively,
while other NPs are (NFORM NORM). Certain
verbs can then be associated with one type of NP by
means of their AGR feature.

VFORM (BSE EN ING TO)
VFORM encodes verb morphology. "Bare infini-
tives" are (VFORM BSE), passives and past partici-
ples are (VFORM EN), gerunds and present partici-
ples are (VFORM ING), and the infinitive to is
(VFORM TO).

SUBCAT (NP N 1 AP INF PRED PP PPFROM
PPOF PPAT PPWITH PPTO PPON PPIN
NP PPOF NP PPTO NP INF ING THAT S
FOR SBARE S BASE S FIN S
BASE VP IT PPTO THAT S NP Q
NP LOC NP PPFOR PPABOUT NP PPFOR
NP PPFROM NP PPWITH

304 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Puiman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

P P O F P P W I T H OBJ G A P N P P P I N
A 1 P P F O R N P N P N P T H A T S
L O C N P B A S E VP N P P P B Y
P P A G A I N S T P P B Y N P I N G Q S
N P AS P R E D P P T O T H A T S
N P P P I N T O D E F N P I N N P Q S
N 1 P L U R S N P O F PLU--R N P T O N 1 S I N G
N P P P F R O M P P O V E R S I N G 3
N P P R E D N P O F F N P O N
N P U P A N Y OBJ S U B J - - - N U L L)

S U B C A T encodes the subca tegor iza t ion class o f a
word. Elapse, like o ther pure ly intransi t ive verbs is
(S U B C A T N U L L) , and devour, like o ther transi-
tives, is (S U B C A T NP). M a n y minor ca tegory items
are their own subca tegory ; and has the specification
(S U B C A T A N D) , etc.

APPENDIX 2-----SPELLING RULES

The first five rules are based on those descr ibed in
Kar t tunen and Wi t tenburg (1983). There are 15 rules in
total:

Epenthes i s

+ : e < = > { < { s:s h :h > S:S y:i }--- s:s

This al lows the insert ion o f an e at a m o r p h e m e
bounda ry , before an s and p receded by ei ther sh, ch,
one of s, x or z, or a y/i pair as in fly~flies.

Gemina t ion

+ : X < = > < C:C V: V = : X --- V : V

where X in { b d f g 1 m n p r s t }

This deals with doubl ing o f consonan t s in words like
bigger, travelling, etc.

Y-to-I

y:i < = > { C :C c: t } --- < + : = N A : N A >

or = : < + : c a :a { t : t 1:1 b :b } >

This rule deals with changing a lexical y to an i as in
applies (Note that this requires bo th this rule and the
Epenthes is rule above as there is an e insert ion too).
The c:t change is to cope with words like democratic
(from democracy+ic). The second clause o f the Y-to-I
rule deals with words like application.

E-Dele t ion

e:0 < = > = : C 2 --- < + : 0 V : = >
or < C :C V: V --- < + : 0 e :e >
or { g:g c :c } --- < + : 0 { e:e i:i } >
or 1:0--- + : 0
or c :c --- < + : 0 a:0 t: t > ;; A-dele t ion

This deals with e-delet ion in words like moved
(move+ed). The second clause deals with words ending

in two vowels like agreed. The third c lause deals with
hard and soft g ' s and c ' s so that an e mus t be dele ted in
faced but not in advantageous (if it were the g would
b e c o m e hard).

I - to-Y
i:y < = > = : < e : 0 + : 0 i:i >

This handles words like dying and lying.

C-insert ion

+ : c < = > y:i - - - < a :a { t: t 1:1 b :b } >

This is required for application. N o t e that this rule
requires a clause in the Y- to- I rule so that the the y:i in
this left con tex t is a l lowed by the Y- to- I rule.

K-inser t ion

+:k < = > < V:V c:c > --- { < i:i n :n > e :e y:y }

This caters for words ending in c that keep a hard c
when a suffix is added e.g. panicky and picnicking while
it does not require k inser t ion for words like criticise.

A-delet ion

a:0 < = > < c :c e:0 + : 0 > --- t : t

A-dele t ion deals with examples like reduction
(reduce + ation).

E-to- I

e:i < = > c: < + : 0 { a :a o :o } N B : N B >

This covers words like pronounciation, gracious,
spacious etc. (The N B (" n o t b ") set is to s top the able
suffix f rom being affected.

I- insert ion

+ :i < = > < C:C Vp:Vp N L R : N L R > --- < a : a { n :n 1:1 } >

Examples o f this are baronial, academician, civilian,
dictatorial (This could be ex tended to cope with adver-
bial, etc).

C-to-T

c: t < = > n:n --- < = : i + : 0 a :a N B : N B >

This should cope with evidential, influential.

Y-delet ion

y:0 < = > g:g --- < + : 0 i:i = : N G >

Examples are allergic (from allergy+ic).

L-dele t ion

1:0 < = > b:b --- < e:0 + : 0 1:1 >

This rule deals with match ing bly to ble+ly as in
probably.

L- to- I

l:i < = > b:b --- e:l

E- to -L

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 305

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

e:l < = > l:i --- < + : 0 i:i { t:t z:z s:s } >

These above two rules deal with matching ability to
able+ity as in probability, and similarly abilize to
able+ize as in stabilize. These rules are an interesting
example of how to deal with a change that happens over
several characters. They deal With matching bilO to
ble + where the il matches le.

APPENDIX 3---COMPLETION RULES

Each rule is preceded by a brief comment outlining its
effect.

Add (BAR -1) as default to all entries with FIX
specifications.

(((FIX fix)"(BAR) rest)) = >
(& & ((FIX fix) (BAR -1) rest) & &)

Add (LAT +) as default to all entries with V
specifications.

(((V v)"(LAT) rest)) = >
(& & ((V v) (L A T +) r e s t) & &)

Add (AT +) as default to all entries with (LAT +)
specifications.

(((L A T +) ' (A T) rest)) = >
(& & ((AT +) (LAT +) r e s t) & &)

Add (INFL -) as default to all-entries with AFORM
specifications.

(((AFORM af) ' (INFL) rest)) = >
(& & ((INFL -) (AFORM af) rest) & &)

Add (INFL -) as default to all entries with VFORM
specifications.

(((VFORM vf)"(INFL) rest)) = >
(& & ((INFL -) (VFORM vf) rest) & &)

Add (INFL -) as default to all entries with FIN
specifications.

(((FIN f in) ' (INFL) rest)) = >
(& & ((INFL -) (FIN fin) rest) & &)

Add (INFL -) as default to all entries with (PLU +)
specifications.

(((PLU +) - (I N F L) rest)) = >
(& & ((INFL -) (PLU +) rest) & &)

Add (BAR 0) as default to all entries with V and N
specifications.

(((N n) (V v) "(BAR) rest)) = >
(& & ((BAR 0) (N n)(V v) r e s t) & &)

Add (PLU -) as default to all noun entries.

(((V -) (N +) - (P L U) rest)) = >
(& & ((N +) (V -) (PLU -) r e s t) & &)

Add (INFL +) as default to all entries with (BAR -1)
specifications.

(((B A R - 1) ' (I N F L) rest)) = >
(& & ((INFL +) (BAR -1) rest) & &)

Add (INFL +) as default to all entries with (BAR 0)
specifications.

(((BAR 0) "(INFL) rest)) = >
(& & ((INFL +) (BAR 0) rest) & &)

Add (QUA -) as default to all adjective entries.

(((BAR 0) (V +) (N +) "(QUA) rest)) = >
(& & ((BAR 0) (V +) (N +) (QUA -) rest) & &)

Add (DEF -) as default to all entries with (QUA +)
specifications.

(((Q U A +) ' (D E F) rest)) = >
(& & ((DEF -) (QUA +) rest) & &)

Add (AUX -) as default to all verb entries.

(((BAR 0) (V +) (N -) "(AUX) rest)) = >
(& & ((AUX -) (BAR 0) (V +) (N -) rest) & &)

Add (BARE-ADJ +) as default to all entries with
(AFORM NONE) specifications.

(((AFORMNONE)-(BARE-ADJ) rest)) =>

(& & ((BARE-ADJ +) (AFORM NONE) rest) & &)

Add (BARE-ADJ +) as default to all adjective entries
with (INFL +) specifications.

(((V +) (N +) (INFL +) "(BARE-ADJ) rest)) =>
(& & ((BARE-ADJ +) (V +) (N +) (INFL +) rest) & &)

ACKNOWLEDGEMENTS

This work was supported by SERC/Alvey grant
GR/C/79114.

REFERENCES

Bear, John. 1986 A Morphological Recognizer with Syntactic and
Phonological Rules. In: Proceedings of the llth International
Conference on Computational Linguistics. Bonn, West Germany:
272-276.

Black, Alan W.; Ritchie, Graeme D.; Pulman, Stephen G.; and
Russell, Graham J. 1987 Formalisms for Morphographemic De-
scription. In: Proceedings of 3rd Conference of the European
Chapter of the ACL. Copenhagen, Denmark.

Briscoe, Edward.J.; Craig, I.; and Grover, Claire. 1986 The Use of the
LOB Corpus in the Development of a Phrase Structure Grammar
of English. In: Proceedings of6th ICAME, Amsterdam. (To be
published eds. Meijs, W., and van der Steen, G.J.).

Gazdar, Gerald; Klein Ewan; Pullum, Geoffrey K. and Sag, Ivan A.
1985 Generalized Phrase Structure Grammar. Blackwell, Oxford,
England.

306 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Graeme D. Ritchie, Stephen G. Pulman, Alan W. Black, and Graham J. Russell A Framework for Lexical Description

Ingria, Robert. 1986 Lexical Information for Parsing Systems: Points
of Convergence and Divergence. In: Proceedings of Workshop on
Automating the Lexicon, Grosseto, Italy.

Karttunen, Laud and Wittenburg, Kent. 1983 A Two-level Morpho-
logical Analysis of English. Texas Linguistics Forum 22, Depart-
ment of Linguistics, University of Texas, Austin, Texas: 217-228.

Karttunen, L. 1983 KIMMO: A general morphological processor.
Texas Linguistics Forum 22, Department of Linguistics, Univer-
sity of Texas, Austin, Texas: 165-186.

Kay, Martin. 1985 Parsing in Functional Unification Grammar. In:
Dowty, D.; Karttunen, L. and Zwicky, A. (eds). Natural Lan-
guage Parsing. Cambridge University Press, London: 251-278.

Koskenniemi, Kimmo. 1983a Two-level model for morphological
analysis. In: Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence. Karlsruhe, West Germany:
683-685.

Koskenniemi, Kimmo. 1983b Two-level Morphology: a general com-
putational model for word-form recognition and production. Pub-
lication No. 11, University of Helsinki, Helsinki, Finland.

Koskenniemi, Kimmo. 1985 Compilation of Automata from Two-
Level Rules. Talk given at Workshop on Finite-State Morphology,
CSLI, Stanford, CA July 1985.

Russell, Graham J.; Puiman, Stephen G.; Ritchie, Graeme D. and
Black, Alan W. 1986 A Dictionary and Morphological Analyser for
English. In: Proceedings of the 1 lth International Conference on
Computational Linguistics. Bonn, West Germany: 277-279.

Selkirk, Eiisabeth O. 1982 The Syntax of Words. MIT Press, Cam-
bridge, Mass.

Stanley, Richard. 1967 Redundancy Rules in Phonology. Language
43, No.2: 393--436.

Thorne, James P.; Bratley, Paul and Dewar, Hamish. 1968 The
Syntactic Analysis of English by Machine. In: Michie, Donald,
Ed., Machine Intelligence 3, Edinburgh University Press, Edin-
burgh, Scotland: 281-309.

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 307

