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An efficient parsing algorithm for augmented context-free grammars is introduced, and its application to 
on-line natural language interfaces discussed. The algorithm is a generalized LR parsing algorithm, which 
precomputes an LR shift-reduce parsing table (possibly with multiple entries) from a given augmented 
context-free grammar. Unlike the standard LR parsing algorithm, it can handle arbitrary context-free 
grammars, including ambiguous grammars, while most of the LR efficiency is preserved by introducing the 
concept of a "graph-structured stack". The graph-structured stack allows an LR shift-reduce parser to 
maintain multiple parses without parsing any part of the input twice in the same way. We can also view our 
parsing algorithm as an extended chart parsing algorithm efficiently guided by LR parsing tables. The algo- 
rithm is fast, due to the LR table precomputation. In several experiments with different English grammars 
and sentences, timings indicate a five- to tenfold speed advantage over Earley's context-free parsing algo- 
rithm. 

The algorithm parses a sentence strictly from left to right on-line, that is, it starts parsing as soon as the 
user types in the first word of a sentence, without waiting for completion of the sentence. A practical 
on-line parser based on the algorithm has been implemented in Common Lisp, and running on Symbolics 
and HP AI workstations. The parser is used in the multi-lingual machine translation project at CMU. Also, 
a commercial on-line parser for Japanese language is being built by Intelligent Technology Incorporation, 
based on the technique developed at CMU. 

1 INTRODUCTION 

Parsing efficiency is crucial when building practical 
natural language systems on smaller computers such as 
personal workstations. This is especially the case for 
interactive systems such as natural language database 
access, interfaces to expert systems, and interactive 
machine translation. This paper introduces an efficient 
on-line parsing algorithm, and focuses on its practical 
application to natural language interfaces. 

The algorithm can be viewed as a generalized LR pars- 
ing algorithm that can handle arbitrary context-free 
grammars, including ambiguous grammars. Section 2 
describes the algorithm by .extending the standard LR 
parsing algorithm with the idea of a "graph-structured 
stack". Section 3 describes how to represent parse trees 
efficiently, so that all possible parse trees (the parse 
forest) take at most polynomial space as the ambiguity of 
a sentence grows exponentially. In section 4, several 

examples are given. Section 5 presents several empirical 
results of the algorithm's practical performance, including 
comparison with Earley's algorithm. In section 6, we 
discuss how to enhance the algorithm to handle 
augmented context-free grammars rather than pure 
context-free grammars. Section 7 describes the concept 
of on-line parsing, taking advantage of left-to-right oper- 
ation of our parsing algorithm. The on-line parser parses 
a sentence strictly from left to right, and starts parsing as 
soon as the user types in the first word, without waiting 
for the end of line. Benefits of on-line parsing are then 
discussed. Finally, several versions of on-line parser have 
been implemented, and they are mentioned in section 8. 

2 THE CONTEXT-FREE PARSING ALGORITHM 

The LR parsing algorithms (Aho and Ullman 1972, Aho 
and Johnson 1974) were developed originally for 
programming languages. An LR parsing algorithm is a 
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shift-reduce parsing algorithm deterministically guided by 
a parsing table indicating what action should be taken 
next. The parsing table can be obtained automatically 
from a context-free phrase structure grammar, using an 
algorithm first developed by DeRemer  (1969, 1971). We 
do not describe the algorithms here, referring the reader 
to chapter 6 in Aho and Ullman (1977). We assume that 
the reader is familiar with the standard LR parsing algo- 
rithm (not necessarily with the parsing table construction 
algorithm). 

The LR paring algorithm is one of the most efficient 
parsing algorithms. It is totally deterministic, and no 
backtracking or search is involved. Unfortunately, we 
cannot directly adopt the LR parsing technique for 
natural languages, because it is applicable only to a small 
subset of context-free grammars called LR grammars, 
and it is almost certain that any practical natural 
language grammars are not LR. If a grammar is non-LR, 
its parsing table will have multiple entries; 1 one or more 
of the action table entries will be multiply defined (Shie- 
ber 1983). Figures 2.1 and 2.2 show an example of a 
non-LR grammar and its parsing table. Grammar  symbols 
starting with "*" represent pre-terminals. Entries "sh n" 
in the action table (the left part of the table) indicate the 
action "shift one word from input buffer onto the stack, 
and go to state n". Entries "re n" indicate the action 
"reduce constituents on the stack using rule n". The 
entry "ace"  stands for the action "accept" ,  and blank 
spaces represent "error".  The goto table (the right part 
of the table) decides to what state the parser should go 
after a reduce action. These operations shall become 
clear when we trace the algorithm with example 
sentences in section 4. The exact definition and operation 
of the LR parser can be found in Aho and Ullman 
(1977). 

We can see that there are two multiple entries in the 
action table; on the rows of state 11 and 12 at the 

(1) S - - >  NP VP 
( 2 )  S - - >  S PP 
(3 )  NP - - >  *n 
(4 )  NP - - >  * d e t  *n 
( 5 )  NP - - >  NP PP 
(6 )  PP - - >  *prep NP 
(7 )  VP - - >  *v NP 

Figure 2.1. An example ambiguous grammar. 

column labeled "*prep".  Roughly speaking, this is the 
situation where the parser encounters a preposition of a 
PP right after a NP. If this PP does not modify the NP, 
then the parser can go ahead to reduce the NP into a 
higher nonterminal such as PP or VP, using rule 6 or 7, 
respectively (re6. and re7 in the multiple entries). If, on 
the other hand, the PP does modify the NP, then the 
parser must wait (sh6) until the PP is completed so it can 
build a higher NP using rule 5. 

It has been thought that, for LR parsing, multiple 
entries are fatal because once a parsing table has multiple 
entries, deterministic parsing is no longer possible and 
some kind of non-determinism is necessary. We handle 
multiple entries with a special technique, named a graph- 
structured stack. In order to introduce the concept, we 
first give a simpler form of non-determinism, and make 
refinements on it. Subsection 2.1 describes a simple and 
straightforward non-deterministic technique, that is, 
pseudo-parallelism (breadth-first search), in which the 
system maintains a number of stacks simultaneously, 
called the Stack List. A disadvantage of the stack list is 
then described. The next subsection describes the idea of 
stack combination, which was introduced in the author 's  
earlier research (Tomita 1984), to make the algorithm 
much more efficient. With this idea, stacks are repres- 
ented as trees (or a forest). Finally, a further refinement, 
the graph-structured stack, is described to make the algo- 

0 
1 
2 sh7 
3 shlO 
4 re3 

State *det *n *v *prep $ NP PP VP S 

sh3 sh4 2 1 
sh6 acc 5 
sh6 9 8 

5 
6 
7 
8 
9 

10 
11 
12 

re3 re3 
reZ re2 

sh3 sh4 11 
sh3 sh4 12 

re1 re1 
re5 re5 re5 
re4 re4 re4 
re6 r e 6 , s h 6  re6 9 

r e 7 , s h 6  re7 9 

Figure 2.2. LR parsing table with multiple entries. 
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rithm even more efficient; efficient enough to run in 
polynomial time. 

2.1 HANDLING MULTIPLE ENTRIES WITH STACK LIST 

The simplest idea would be to handle multiple entries 
non-deterministically. We adopt pseudo-parallelism 
(breadth-first search), maintaining a list of stacks (the 
Stack List). The pseudo-parallelism works as follows. 

A number of processes are operated in parallel. Each 
process has a stack and behaves basically the same as in 
standard LR parsing. When a process encounters a multi- 
ple entry, the process is split into several processes (one 
for each entry), by replicating its stack. When a process 
encounters an error entry, the process is killed, by 
removing its stack from the stack list. All processes are 
synchronized; they shift a word at the same time so that 
they always look at the same word. Thus, if a process 
encounters a shift action, it waits until all other processes 
also encounter a (possibly different) shift action. 

Figure 2.3 shows a snapshot of the stack list right after 
shifting the word with in the sentence I saw a m a n  on the 

bed in the apartment  with a telescope using the grammar in 
Figure 2.1 and the parsing table in Figure 2.2. For the 
sake of convenience, we denote a stack with vertices and 
edges. The leftmost vertex is the bottom of the stack, 
and the rightmost vertex is the top of the stack. Vertices 
represented by a circle are called state vertices, and they 
represent a state number. Vertices represented by a 
square are called symbol vertices, and they represent a 
grammar symbol. Each stack is exactly the same as a 
stack in the standard LR parsing algorithm. The distance 
between vertices (length of an edge) does not have any 
significance, except it may help the reader understand the 
status of the stacks. In the figures, "*p" stands for *prep, 
and "*d" stands for *det throughout this paper. 

Since the sentence is 14-way ambiguous, the stack has 
been split into 14 stacks. For example, the sixth stack 

(0 S 1 *p 6 NP 11 *p 6) 

is in the status where I saw a man  on the bed has been 
reduced into S, and the apartment  has been reduced into 
NP. From the LR parsing table, we know that the top of 
the stack, state 6, is expecting *det or *n and eventually a 
NP. Thus, after a telescope comes in, a PP with a telescope 

will be formed, and the PP will modify the NP the apart- 

ment ,  and in the apartment  will modify the S I saw a man.  

We notice that some stacks in the stack list appear to 
be identical. This is because they "have reached the 
current state in different ways. For example, the sixth 
and seventh stacks are identical, because I saw a m a n  on 

the bed has been reduced into S in two different ways. 
A disadvantage of the stack list method is that there 

are no interconnections between stacks (processes), and 
there is no way in which a process can utilize what other 
processes have done already. The number of stacks in the 
stack list grows exponentially as ambiguities are 
encountered. 3 For example, these 14 processes in Figure 
2.3 will parse the rest of the sentence the telescope 14 

0 S I *P 6 

0 5 1 *P 6 

0 5 1 ~ 6  

O 5 ~ ~P 6 

0 S 1 ~P 5 NP !1 ~P & 

0 S I QP & NP 11 ~P 5 

0 NP 2 ~v 7 NP 12 ~p 6 NP I1 *P 6 

0 NP 2 * v  7 NP 12 *p 6 ~ !1 *P 8 NP ~ *P 6 A i A m A n A ~ A ~ o ~  ~ 

O S 1 ~ 6 NP I I  *p 6 NP 11 *P 6 

0 NP 2 ~v 7 NP 12 ~p 6 NP I1 ~P 6 J m J m J a J m ~  i J a J  

0 $ 1 ~P 6 NP I1 *P 6 
u ~ n  v m ~ u ~  

0 NP 2 Ov 7 NP I !  op A 

O NP 2 *v  7 NP I1 *P 8 
A D A i ~  i A m A  
~ m ~ i ~  i ~ i ~  

Figure 2.3. Stack list: after shifting with in 
I saw a m a n  on the bed in the apar tment  with a telescope 

(with the the grammar and the table in Figures 2.1 and 2.2). 

times in exactly the same way. This can be avoided by 
using a tree-structured stack, which is described in the 
following subsection. 

2.2 WITH A TREE-STRUCTURE STACK 

If two processes are in a common state, that is, if two 
stacks have a common state number at the rightmost 
vertex, they will behave in exactly the same manner until 
the vertex is popped from the stacks by a reduce action. 
To avoid this redundant operation, these processes are 
unified into one process by combining their stacks. 
Whenever two or more processes have a common state 
number on the top of their stacks, the top vertices are 
unified, and these stacks are represented as a tree, where 
the top vertex corresponds to the root Of the tree. We call 
this a tree-structured stack. When the top vertex is 
popped, the tree-structured stack is split into the original 
number of stacks. In general, the system maintains a 
number of tree-structured stacks in parallel, so stacks are 
represented as a forest. Figure 2.4 shows a snapshot of 
the tree-structured stack immediately after shifting the 
word with. In contrast to the previous example, the tele- 

scope will be parsed only once. 
Although the amount of computation is significantly 

reduced by the stack combination technique, the number 
of branches of the tree-structured stack (the number of 
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o 0 - - - - - . . . . . . , _ _ ~  , ~ 
6- ' :  

O ' m N P  ~ 6 v  ~ _ " ~ ~ _  . . /  
oQ ; ' ;  ~ ' =  ~-" - =,2 

Figure 2.4. A tree-structured stack. Figure 2.5. A graph-structured stack. 

bottoms of the stack) that must be maintained still grows 
exponentially as ambiguities are encountered. In the next 
subsection, we describe a further modification in which 
stacks are represented as a directed acyclic graph, in 
order to avoid such inefficiency. 

2.3 WITH A GRAPH-STRUCTURE STACK 

So far, when a stack is split, a copy of the whole stack is 
made. However,  we do not necessarily have to copy the 
whole stack: even after different parallel operations on 
the tree-structured stack, the bot tom portion of the stack 
may remain the same. Only the necessary portion of the 
stack should therefore be split. When a stack is split, the 
stack is thus represented as a tree, where the bot tom of 
the stack corresponds to the root of the tree. With the 
stack combination technique described in the previous 
subsection, stacks are represented as a directed acyclic 
graph. Figure 2.5 shows a snapshot of the graph stack. It 
is easy to show that the algorithm with the graph-struc- 
tured stack does not parse any part of an input sentence 
more than once in the same way. This is because, if two 
processes had parsed a part of a sentence in the same 
way, they would have been in the same state, and they 
would have been combined as one process. 

The graph-structured stack looks very similar to a 
chart in chart parsing. In fact, one can also view our 
algorithm as an extended chart parsing algorithm that is 
guided by LR parsing tables. The major extension is that 
nodes in the chart contain more information (LR state 
numbers) than in conventional chart parsing. In this 
paper, however, we describe the algorithm as a general- 
ized LR parsing algorithm only. 

So far, we have focussed on how to accept or reject a 
sentence. In practice, however, the parser must not only 
accept or reject sentences but also build the syntactic 
structure(s) of the sentence (parse forest). The next 
section describes how to represent the parse forest and 
how to build it with our parsing algorithm. 

3 AN EFFICIENT REPRESENTATION OF A PARSE FOREST 

Our parsing algorithm is an all-path parsing algorithm; 
that is, it produces all possible parses in case an input 
sentence is ambiguous. Such all-path parsing is often 
needed in natural language processing to manage tempo- 
rarily or absolutely ambiguous input sentences. The 
ambiguity (the number of parses) of a sentence may 
grow exponentially as the length of a sentence grows 
(Church and Patil 1982). Thus, one might notice that, 
even with an efficient parsing algorithm such as the one 
we described, the parser would take exponential time 
because exponential time would be required merely to 
print out all parse trees (parse forest). We must therefore 
provide an efficient representation so that the size of the 
parse forest does not grow exponentially. 

This section describes two techniques for providing an 
efficient representation: subtree sharing and local ambi- 
guity packing. It should be mentioned that these two 
techniques are not completely new ideas, and some exist- 
ing systems (e.g., Earley's  (1970) algorithm) have 
already adopted these techniques, either implicitly or 
explicitly. 

3.1 SUB-TREE SHARING 

If two or more trees have a common subtree, the subtree 
should be represented only once. For example, the parse 
forest for the sentence I saw a m a n  in the p a r k  with a 

telescope should be represented as in Figure 3.1. 
To implement this, we no longer push grammatical 

symbols on the stack; instead, we push pointers to a node 
of the shared forest. 4 When the parser "shifts" a word, it 
creates a leaf node labeled with the word and the pre-ter- 
minal, and, instead of the pre-terminal symbol, a pointer 
to the newly created leaf node is pushed onto the stack. 
If the exact same leaf node (i.e., the node labeled with 
the same word and the same pre-terminal) already exists, 
a pointer to this existing node is pushed onto the stack, 
without creating another node. When the parser 
"reduces" the stack, it pops pointers from the stack, 
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S 

$ 

*n  * v  *el * n  
I saw a man 

5 S 

p d *n "p *el *n 
In the apt wTth a tel 

Figure 3.1. Unpacked shared forest. 

creates a new node whose successive nodes are pointed 
to by those popped pointers, and pushes a pointer to the 
newly created node onto the stack. 

Using this relatively simple procedure, our parsing 
algorithm can produce the shared forest as its output 
without any other special book-keeping mechanism, 
because it never does the same reduce action twice in the 
same manner. 

3.2 LOCAL AMBIGUITY PACKING 

We say that two or more subtrees represent local ambigu- 
ity if they have common leaf nodes and their top nodes 
are labeled with the same non-terminal symbol. That is to 
say, a fragment of a sentence is locally ambiguous if the 
fragment can be reduced to a certain non-terminal 
symbol in two or more ways. If a sentence has many local 
ambiguities, the total ambiguity would grow exponential- 
ly. To avoid this, we use a technique called local ambigui- 
ty packing, which works in the following way. The top 
nodes of subtrees that represent local ambiguity are 
merged and treated by higher-level structures as if there 
were only one node. Such a node is called a packed node, 
and nodes before packing are called subnodes of the 
packed node. An example of a shared-packed forest is 
shown in Figure 3.2. Packed nodes are represented by 
boxes. We have three packed nodes in Figure 3.2; one 
with three subnodes and two with two subnodes. 

Local ambiguity packing can be easily implemented 
with our parsing algorithm as follows. In the graph-struc- 
tured stack, if two or more symbol vertices have a 
common state vertex immediately on their left and a 
common state vertex immediately on their right, they 
represent local ambiguity. Nodes pointed to by these 
symbol vertices are to be packed as one node. In Figure 
2.5, for example, we see one 5-way local ambiguity and 
two 2-way local ambiguities. The algorithm is made clear 
by the example in the following section. 

/ 

"1'1 tV 'Dcl *N ~D *~ ~n ~p *el *n 
I saw a man in the al~t w i th  a tel 

Figure 3.2. Packed shared forest. 

Recently, the author (Tomita 1986) suggested a tech- 
nique to disambiguate a sentence out of the shared- 
packed forest representation by asking the user a minimal 
number of questions in natural language (without show- 
ing any tree structures). 

4 EXAMPLES 

This section presents three examples. The first example, 
using the sentence I saw a man in the apartment with a 
telescope, is intended to help the reader understand the 
algorithm m6re clearly. 

The second example, with the sentence That informa- 
tion is important is doubt ful  is presented to demonstrate 
that our algorithm is able to handle multi-part-of-speech 
words without any special mechanism. In the sentence, 
that is a multi-part-of-speech word, because it could also 
be a determiner or a pronoun. 

The third example is provided to show that the algo- 
rithm is also able to handle unknown words by consider- 
ing an unknown word as a special multi-part-of-speech 
word whose part of speech can be anything. We use an 
example sentence I * a *, where *s represent unknown 
words. 

4.1 THE EXAMPLE 

This subsection gives a trace of the algorithm with the 
grammar in Figure 2.1, the parsing table in Figure 2.2, 
and the sentence I saw a man in the park with a telescope. 

At the very beginning, the stack contains only one 
vertex labeled 0, and the parse forest contains nothing. 
By looking at the action table, the next action, "shift 4", 
is determined as in standard LR parsing. 

O 
Next W o r d  = T • Isb41  
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When shifting the word I, the algorithm creates a leaf 
node in the parse forest labeled with the word I and its 
preterminal *n, and pushes a pointer to the leaf node 

onto the stack. The next action, "reduce 3, is determined 
from the action table. 

Next  Word  = 'saw'  
o o 4 

I reS1  0 [ ' n  ' I ' ]  

We reduce the stack basically in the same manner as 
standard LR parsing. It pops the top vertex "4"  and the 
pointer "0"  from the stack, and creates a new node in the 
parse forest whose successor is the node pointed to by 
the pointer. The newly created node is labeled with the 

N e x t  W o r d  = 'saw'  

left-hand side symbol of rule 3, namely "NP". The point- 
er to this newly created node, namely "1",  is pushed onto 
the stack. The action, "shift 7", is determined as the next 
action. Now, we have 

0 1 2 0 [ ' n  ' I ' ]  
i s b ? l  | [NP ( 0 ) ]  

After executing "shift 7", we have 

Next  Word  = 'a '  

0 [ ' n  ' I ' ]  
0 ! 2 2 7 I (NP ( 0 ) )  
O - I H H l - e  tsh sl z (.v 'sa, ' ]  

After executing "shift 3", we have 

Next  Word  = 'man '  

o I 2 2 7 
~ dllk aim d lh  

o ( - ,  ' t ' )  
3 3 
= ~ [sh I o l  t the ( 0 ) )  

w Z ( ' v  ' s a . ' ]  
3 [ * d o t  'm"] 

After executing "shift 10", we have 

Next  Word = ' in '  

0 .I, 2 2 7 
WW m WP' me 

0 ( ' .  ' l ' ]  
3 3 4 I o  t [NP ( 0 ) )  
am MEt • w qW m m ~ [ro 41 t [ °v  ' s a w ' ]  

3 [ 'd iet  'a  ° )  
4 [ * r l  'man'] 

The next action is "reduce 4". It pops pointers, "3"  
and "4",  and creates a new node in the parse forest such 
that node 3 and node 4 are its successors. The newly 

Next  Word = ' in '  

created node is labeled with the left-hand side symbol of 
rule 4, i.e., "NP". The pointer to this newly created node, 
"5",  is pushed onto the stack. We now have 

0 ! 2 2 ? ~ 12 I r - ? )  
- -  w - -  w - .  , -  lsk-.La 

0 ( ' n  ' I ' ]  
1 (NP ( 0 ) )  
I ( ' v  ' saw ' ]  
3 [ ' d e t  ' a ' ]  
4 ,[*n "man'] 
5 (NP (3 4 ) )  

At this point, we encounter a multiple entry, "reduce 
7" and "shift 6", and both actions are to be executed. 
Reduce actions are always executed first, and shift 
actions are executed only when there is no remaining 
reduce action to execute. In this way, the parser works 
strictly from left to right; it does everything that can be 
done before shifting the next word. After executing 
"reduce 7", the stack and the parse forest look like the 

following. The top vertex labeled "12"  is not popped 
away, because it still has an action not yet executed. Such 
a top vertex, or more generally, vertices with one or more 
actions yet to be executed, are called "active". Thus, we 
have two active vertices in the stack above: one labeled 
"12",  and the other labeled "8".  The action "reduce 1" 
is determined from the action table, and is associated 
with the latter vertex. 
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Next  Word  = ' in '  

2 2 5 12 

l r .  t I 

0 ( 'n ' I ' ]  
I [ .P (o))  
z ( -v  'say ' ]  
3 [ 'det  ' a ' ]  
4 [ 'n  'man'] 
S [NP (3 4)]  
6 (vp (z s))  

Because reduce actions have a higher priority than 
shift actions, the algorithm next executes "reduce 1" on 

the vertex labeled "8".  The action "shift 6" is deter- 
mined from the action table. 

Next  Word = ' in '  

o , i 2. 2. t , , , ]  
q P ~ i ~  I tier u I  

Isk s l  

O [ ' n ' X ' ]  
t ("P (0)]  
Z ( ' v  'Saw'] 
3 [ '~Ot ' a ' ]  
4 ( 'n  ' m n ' ]  
s ( .P (a 4)]  
+ (vp (z s)]  
7 [s ( t  6) ]  

Now we have two "shift 6'"s. The parser, however, 
creates only one new leaf node in the parse forest. After 
executing two shift actions, it combines vertices in the 

stack wherever possible. The stack and the parse forest 
look like the following, and "shift 3" is determined from 
the action table as the next action. 

Next  Word  = ' the '  

Jllk III dlt 

w Ish 3) 

0 [ 'n  ' l ' ]  
I [NP ( 0 ) ]  
Z [ ' v  'saw'] 
3 . [ 'de t  ' a ' ]  
4 [ 'n  ' m n ' ]  
s [.P (3 4))  
6 [VP (Z 5)) 
7 ts (1 6))  
8 [ 'prep '4n ' ]  

After about 20 steps (see below), the action "accept" 
is finally executed. It returns "25"  as the top node of the 
parse forest, and halts the process. 

o t 2 2 • 5 12 

I I  I l l  

1 .41  

I I  I I  
ire sl  

Im s l  

I re Sl 

S Ire Zl 

l i t  s l  

~ ,  , /  - - t , . , ,  

~ S  Ire I I  

7 i ~ I  It .  II 
s Inll 

I+  i l  

\ , 
~ $  k .  21 

o ! | 2 ? 5 I |  ! • i t  I I  1.141 

Isi  i l  

o t ~ 2 

_°_' £_+ ~ g _ ~ ! L , , t ,  

I ~  I o i  
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Ire 41 

Ire t l  

0 I 2 2 • S 12 9 • I t  I I  

2 0 ~  Ire Sl 

I re  !1 

0 i 2 ~ • ~ 12 8 6 21 t !  

Ire Sl 

I r e 6 1  

Ire 21 
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Ice OI 

(re 1| 

-° '- -z ~ Z 2 ' 2  23 , 
" - ~ - -  --- ,L t . o S l  

0 t 2 2 • 222 12 
Ire 71 

(to l ' |  

0 I 2 
I,* t I 

Ire 21 

I ~o l  

Ire ~l 

• :z~ v 
O----11--O am! 

The final parse forest is 
o C'" ' t ' ]  
t (Np (0)1 
Z ( 'v  ' sa , , ' ]  

C'aot ' , '  ] 
4 ( 'n  ' - a n ' ]  
s C.P (3 4)] 
e CVP (z s)]  

tO [-n 'DI rk ' ]  Z~ [PP (tO {9)] 
11 [,P (g tO)] Zl C.e !11 20)] 
tz CPp (e t t ) ]  zz Cue ( I3 zo)] 
13 ( .p  (s tz ) ]  z3 fpp (s 21)] 
14 Cup (z t3)1 z t  CVP 12 zz ) ]  
t S [ S  (1 14) (7 12)] ZS (S ( t  Z4) (IS 22 ) ' ( 7  Z3)]  
18 [eprop ' w t t h ' ]  

7 Cs (1 e)]  17 ( 'sot  'a ' ]  
8 ('prep "on'] t$ ( 'n  "s¢opo'] 

C'eot ' t n o ' J  tg (NP (17 ~e)]  

4.2 MANAGING MULTI-PART-OF-SPEECH WORDS 

This subsection gives a trace of the algorithm with the 
sentence That information is important is doubtful, to 
demonstrate that our algorithm can handle multi-part-of- 
speech words (in this sentence, that) just like multiple 
entries without any special mechanism. We use the gram- 
mar at the right and the parsing table below. 

(1)  S - - >  NP VP 
( 2 )  NP - - >  * d e t  "n 
( 3 )  NP - - >  *n 
( 4 )  NP - - >  * t h a t  S 
( 5 )  VP - - >  *be * a d j  

0 
1 
2 
3 
4 
S 

6 
7 
8 
9 

10 

State *adJ *bo "det *n * tha t  $ NP S VP 

sh5 sh4 sh3 2 1 
Acc 

s h 6  7 
sh5 sh4 sh3 2 8 

to3 
s h 9  

ShlO 
r o t  r o t  
to4 
re2 
re5 reS 
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At the very beginning, the parse forest contains noth- 
ing, and the stack contains only one vertex, labeled 0. 
The first word of the sentence is that, which can be cate- 
gorized as *that, *det or *n. The action table tells us that 

Next  Word  = ' that '  

all of these categories are legal. Thus, the algorithm 
behaves as if a multiple entry is encountered. Three 
actions, "shift 3", "shift 4", and "shift 5", are to be 
executed. 

o Is. si 
O ish 4] 

lsh 51 

After executing those three shift actions, we have 

Next  Word  = ' i n f o rma t i on '  

0 3 

O ~ _ _ O  (sh 41 
|error ] 0 [ ' t h a t  ' t h a t ' ]  

1 [*n ' t h a t ' ]  
Z [ ' d e t  ' t h a t ' ]  

Note that three different leaf nodes have been created 
in the parse forest. One of the three possibilities, that as 
a noun, is discarded immediately after the parser sees the 

Next Word = 'is' 

next word information. 
actions, we have 

0 3 3 4 
0 2 ~  Ire 31 

Ire 21 

After executing the two shift 

0 [ ' that  ' that ' ]  
1 [ 'n ' tha t ' ]  
2 ( 'aet  ' that ' ]  
3 [ 'n  'Information'] 

This time, only one leaf node has been created in the 
parse forest, because both shift actions regarded the 
word as belonging to the same category, i.e., noun. Now 

Next  Word  = ' is '  

we have two active vertices, and "reduce 3" is arbitrarily 
chosen as the next action to execute. After executing 
"reduce 3", we have 

0 0 3 4 2 0 [ ' t h a t  ' t h a t ' ]  
0 2 ~  1 [ ' n  ' t h a t ' ]  

lsh61 2 [ ' d e t  ' t h a t ' ]  
[re 21 3 [ ' n  ' tn romat ' ion ' ]  

4 [NP (3) ]  

After executing "reduce 2", we have 

Next  Word  = ' is '  

0 0 3 4 2 0 [ ' t h a t  ' t h a t ' ]  
1 [an ' t h a t ' ]  

[ s h 6 l  2 [ ' a e t  ' t h a t ' ]  
~ ~ . - '  3 [ ' n  ' t n roma t ton ' ]  

W 4 [.P (3)]  
s [.P (z 3)] 

After executing "shift 6", we have 

Next Word = 'important' 

0 [ ' t h a t  ' t h a t ' ]  
O 0 3 4 2 6 6 I [an ' t h a t ' ]  
A m ,,h m A 2 [ ' do t  ' t h a t ' ]  
'm',,. -- 'qw - - ~  mm = [sh 1O] 3 [*n ' in rormat |on ' ]  

4 [.P (3) ]  
s [xP (z 3)] 
8 [eba ' tS ' ]  

After executing "shift 10", we have 

Next Word = 'is' 

d l k  m m  ~ m m  

-- -- w l reSl  

0 [ ' t h a t  ' t h a t ' ]  
I [ ' n  ' t h a t ' ]  
2 [*det  ' t h a t ' ]  
3 [*n " informat ion ' ]  
4 [NP (3)3 
S [.P (Z 3)] 
e [-be ' i s ' ]  
7 [*adj ' impor tant ' ]  
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Af t e r  execut ing " reduce  5" ,  we have 

Next Word = ' is' 

0 0 3 4 2 B 7 
- -  ~ Ire I l m 

0 [ ' t h a t  ' t h a t ' ]  
1 [ ' n  ' t h a t ' ]  
2 [ ' d e t  ' t h a t ' ]  
3 [ ' n  ' i n f o r m a t i o n ' ]  
4 [NP (3 ) ]  
S [NP (2 3)]  
e [-be ' t s ' ]  
7 [*adJ ' I m p o r t a n t ' ]  
$ [VP (6 7)]  

Now, there are two ways to execute  the ac t ion 
" reduce  1" Af te r  execut ing " reduce  1" in bo th  ways,  
we have 

0 0 3 ~ 8 
[re 41 

[ e r ro r ]  

0 [ * t h a t  ' t h a t ' ]  
1 [ *n ' t h a t ' ]  
2 [ *de t  ' t h a t ' ]  
3 [*n ' i n f o r m a t i o n ' ]  
4 [ .P (3 ) ]  
s [ . e  (z 3)]  
e [ 'ha ' i s ' ]  
7 [ *ad j  ' important ' ]  
o IV .  (6 7)]  
9 [s (4 s)]  

Next Word : ' is' 

An error  act ion is finally found  for the possibil i ty,  that 
as a de terminer .  Af t e r  execut ing " reduce  4" ,  we have 

Next Word = ' is '  

0 i1 2 
[sh 61 

0 [ ' t h a t  ' t h a t ' ]  8 [VP (6 7)3 
1 [ ' n  ' t h a t ' ]  9 [S (4 8)3 
2 [ . n e t  ' t h a t ' ]  10 IS (5 8 ) ]  
3 [*n ' I n fo rma t i on ' ]  11 [NP (0 9) ]  
4 [NP (3 ) ]  
S ["P (Z 3 ) I  
6 [*be ' t s ' ]  
7 [*adj  ' Impor tan t ' ]  

Afte r  execut ing "shi f t  6" ,  and several  s teps later ,  we 
have 

[sh 10] 

Next Word = '$' 

0 It  2 ~ 6 13 I0  
d l k  n l i m ~ .  

m 'qW m ~ m 'qlW 

0 |~ 2 14 7 
Ire I l 

[oc©l 

Ire 51 

0 [ * tha t  ' t h a t ' ]  
1 [ ' n  ' t h a t ' ]  
2 [ ' d e t  ' t h a t ' ]  
3 [*n ' i n f o rma t i on ' ]  
4 [NP (3 ) ]  
S [nP (2 3)]  
e [*be ' i s ' ]  
7 [*adj  ' important ' ]  

e [vP (6 7)]  
[s (4 8) ]  

lo [s (s 8) ]  
t l  [NP (o 9 ) ]  
tz [ 'be ' i s ' ]  
13 [*adj  'doubtful ' ]  
14 [VP (12 13)] 
xs IS (11 14)] 

The parser  accepts  the sentence ,  and re turns  " 1 5 "  as 
the top  node of the parse  forest .  The fores t  consists  of 
only one tree which is the des i red  s t ructure  for  That 
information is important is doubtful. 

4.3 MANAGING UNKNOWN WORDS 

In the previous subsect ion,  we saw the pars ing a lgor i thm 
handl ing a mul t i -pa r t -o f - speech  word  just  like mult iple  
entr ies without  any special  mechanism.  That  capabi l i ty  
can also be appl ied  to handle  unknown  words  (words  

whose  ca tegor ies  are unknown) .  A n  unknow n  word  can 
be thought  of  as a special  type of  a mu l t i - pa r t -o f - speech  
word  whose  ca tegor ies  can be anything.  In the fol lowing,  
we presen t  ano the r  t race of the parser  with the sen tence  
I * a * where  *s represen t  an unknow n  word.  We use 
the same g rammar  and pars ing  table  as in the first  exam-  
ple (F igures  2.1 and 2.2).  

A t  the very  beginning,  we have 

o 

NextWord = '1' • [sh 41 
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Afte r  execut ing "shif t  4" ,  we have 

Next Word = '* '  

0 0 • o [ 'n ' x ' )  
Ire sl 

At this point,  the parser  is looking at the unknown 
word, "*" ;  in o ther  words,  a word  whose ca tegor ies  are 
*det, *n, *v and *prep. On row 4 of  the act ion table,  we 

Next Word = '* '  

have only one kind of act ion,  " r educe  3".  Thus the algo-  
r i thm executes  only the ac t ion  " reduce  3" ,  af ter  which 
we have 

I,h ~l  1 [ .p 

On row 2 of the act ion table,  there  are two kinds of 
actions,  "shif t  6"  and "shif t  7".  This means  the unknown 

Next Word = 'a' 

word  has two possibil i t ies,  as a p repos i t ion  or  a verb.  
Af t e r  execut ing bo th  act ions,  we have 

2 6 
o nn-O ( . .31  
v - v,,, s 

H [sh 31 

e [ 'n  ' I ' ]  
I [Np (0)]  
Z [ 'prep ' " ]  
3 ( .v  ' - ' ]  

After  execut ing "shif t  3"  twice,  we have 

Next Word = '* '  

2 6 
0 i 2./iN-'A,,, 4 3 
e,-mHi.. 3 7  m--e [;h IOJ 

o [ 'n ' x ' ]  
I [ .P (o)]  
2 [*prep ' * ' ]  
3 [ 'v  ' " ]  
4 [ ' de t  ' a ' ]  

At this point,  the parser  is again looking at the 
unknown word,  "*" .  However ,  since there is only one 
entry  on row 3 in the ac t ion table,  we can uniquely de ter -  

Next Word = '$' 

mine the ca tegory  of the unknown  word,  which is a noun. 
Af t e r  shift ing the unknown word  as a noun,  we have 

2 6 

Q - ~ - ~ I ~ ] I - . ~  0 [re • l  

O [ ' n ' X ' ]  
t [NP (0)]  
Z ['prep ' " ]  
3 ( ' v ' " ]  
4 [ 'aet  ' a ' ]  
6 [ ' n ' " ]  

After  execut ing " reduce  4" ,  we have 

Next Word = '$' 

2 G 6 11 
Ire 6] 

~r -- ~ Ire 71 

0 [ ' n  ' I ' ]  
I [ .p  (o)]  
2 [*prep ' * ' ]  
3 [ - ,  ' . ' ]  
4 [*net. ' e ' ]  
S [ ' .  ' " )  
e [NP (4 5)] 

After  execut ing both  " reduce  6"  and " reduce  7",  we 
have 

Next Word = '$' 

7 9 
8 ire 5l  

I t ,  ! I 

0 [ ' n  ' X ' ]  
t [NP (0)3 
2 [ 'prep ' 0 ' 3  
3 [ 'v  ' " ]  
4 I -act  ' a ' ]  
s [ ' .  ' " )  
a C"P (4 s)]  
7 CPP (z 8)]  
a [vP (3 8)]  
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After executing both "reduce 5" and "reduce 1", we 
have 

Next Word = '$' 

9 2 
0 I ~ 0  I e r r ° r |  

lac©i 

o [ 'n ' I ' ]  
s[Ne (0)] 
Z [ 'prep ,e , ]  
3 [-v ' - ' ]  
4 [*det ' a ' ]  
S ['n ' " ]  
s [ .e (4 5)] 
7 [pP (2 e)]  
8 [VP (3 6 ) ]  
9 [NP (1 7)]  

1o (s (1 e)) 

The possibility of the first unknown word being a 
preposition has now disappeared. The parser accepts the 
sentence in only one way, and returns "10" as the root 
node of the parse forest. 

We have shown that our parsing algorithm can handle 
unknown words without any special mechanism. 

5 EMPIRICAL RESULTS 

In this section, we present some empirical results of the 
algorithm's practical performance. Since space is limited, 
we only show the highlights of the results, referring the 

reader to chapter 6 of Tomita (1985)  for more detail. 
Figure 5.1 shows the relationship between parsing time 
of the Tomita algorithm and the length of input sentence, 
and Figure 5.2 shows the comparison with Earley's algo- 
rithm (or active chart parsing), using a sample English 
grammar that consists of 220 context-free rules and 40 
sample sentences taken from actual publications. All 
programs are run on DEC-20 and written in MacLisp, but 
not compiled. Although the experiment is informal, the 
result show that the Tomita algorithm is about 5 to 10 
times faster than Earley's algorithm, due to the pre-com- 
pilation of the grammar into the LR table. The 

~.9 
0 
e 
~ 8  
Q 

E 7 
¢b 
.S6 

1 5  

o 

o o 

o o 
o 

o o 

o 

o O o 0  

0 

o~ 
o 

o o 
° o ~ O o O  o~ 

o o  
n ° i 

5 10 15 

0 

0 
0 

i i i m 
2 0  2 5  3 0  3 5  

Sentence  Length (words) 

3 0  
~J 

~. 2¢ 

1C 
o ° o o 

o8 s°o o ~oO o o 
$ o o 
o o 

° o  o 
o 

0 o 

| i i 
5 10  15 

i i i 

0 2 5  3 0  3 5  

Sentence  Length (words) 

Figure 5.1. Parsing time and sentence length. Figure 5.2. Earley/Tomita ratio. 
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Figure 5.3. Earley/Tomita ratio and grammar size. Figure 5.4. Size of parse forest and ambiguity. 
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Ear ley/Tomita  ratio seems to increase as the size of 
grammar grows as shown in Figure 5.3. Figure 5.4 shows 
the relationship between the size of a produced shared- 
packed forest representation (in terms of the number of 
nodes) and the ambiguity of its input sentence (the 
number of possible parses). The sample sentences are 
created from the following schema. 

noun verb det noun (prep det noun)n-1 

An example sentence with this structure is 

I saw a man in the park on the hill with a telescope .... 

The result shows that all possible parses can be repres- 
ented in almost O(log n) space, where n is the number of 
possible parses in a sentence. 5 

Figure 5.5 shows the relationship between the parsing 
time and the ambiguity of a sentence. Recall that within 
the given time the algorithm produces all possible parses 
in the shared-packed forest representation. It is 
concluded that our algorithm can parse (and produce a 
forest for) a very ambiguous sentence with a million 
possible parses in a reasonable time. 
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Figure 5.5. Parsing time and ambiguity. 

6 AUGMENTED CONTEXT-FREE GRAMMARS 

So far, we have described the algorithm as a pure 
context-free parsing algorithm. In practice, it is often 
desired for each grammar nonterminal to have attributes, 
and for each grammar rule to have an afigmentation to 
define, pass, and test the attribute values. It is also 
desired to produce a functional structure (in the sense of 
functional grammar formalism (Kay 1984, Bresnan and 
Kaplan 1982) rather than the context-free forest. 
Subsection 6.1 describes the augmentation, and 
subsection 6.2 discusses the shared-packed represen- 
tation for functional structures. 

6.1 THE AUGMENTATION 

We attach a Lisp function to each grammar rule for this 
augmentation. Whenever the parser reduces constituents 
into a higher-level nonterminal using a phrase structure 

rule, the Lisp program associated with the rule is evalu- 
ated. The Lisp program handles such aspects as 
construction of a syntax/semantic  representation of the 
input sentence, passing attribute values among constitu- 
ents at different levels and checking syntactic/semantic 
constraints such as subject-verb agreement. 

If the Lisp function returns NIL, the parser does not 
do the reduce action with the rule. If the Lisp function 
returns a non-NIL value, then this value is given to the 
newly created non-terminal. The value includes attributes 
of the nonterminal and a partial syntact ic/semantic  
representation constructed thus far. Notice that those 
Lisp functions can be precompiled into machine code by 
the standard Lisp compiler. 

6.2 SHARING AND PACKING FUNCTIONAL STRUCTURES 

A functional structure used in the functional grammar 
formalisms (Kay 1984, Bresnan and Kaplan 1982, Shie- 
ber 1985) is in general a directed acyclic graph (dag) 
rather than a tree. This is because some value may be 
shared by two different attributes in the same sentence 
(e.g., the "agreement"  attributes of subject and main 
verb). Pereira (1985) introduced a method to share dag 
structures. However,  the dag structure sharing method is 
much more complex and computationally expensive than 
tree structure sharing. Therefore, we handle only tree- 
structured functional structures for the sake of efficiency 
and simplicity. 6 In the example, the "agreement"  attri- 
butes of subject and main verb may thus have two differ- 
ent values. The identity of these two values is tested 
explicitly by a test in the augmentation. Sharing tree- 
structured functional structures requires only a minor 
modification on the subtree sharing method for the 
shared-packed forest representation described in 
subsection 3.1. 

Local ambiguity packing for augmented context-free 
grammars is not as easy. Suppose two certain nodes have 
been packed into one packed node. Although these two 
nodes have the same category name (e.g., NP), they may 
have different attribute values. When a certain test in the 
Lisp function refers to an attribute of the packed node, 
its value may not be uniquely determined. In this case, 
the parser can no longer treat the packed node as one 
node, and the parser will unpack the packed node into 
two individual nodes again. The question, then, is how 
often this unpacking needs to take place in practice. The 
more frequently it takes place, the less significant it is to 
do local ambiguity packing. However,  most of sentence 
ambiguity comes from such phenomena as PP-attachment 
and conjunction scoping, and it is unlikely to require 
unpacking in these cases. For instance, consider the noun 
phrase: 

a man in the park with a telescope, 

which is locally ambiguous (whether telescope modifies 
man or park).  Two NP nodes (one for each interpreta- 
tion) will be packed into one node, but it is unlikely that 
the two NP nodes have different attribute values which 
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are referred to later by some tests in the augmentation. 
The same argument holds with the noun phrases: 

pregnant women and children 
large file equipment 

Although more comprehensive experiments are desired, it 
is expected that only a few packed nodes need to be 
unpacked in practical applications. 

6.3 THE LFG COMPILER 

It is in general very painful to create, extend, and modify 
augmentations written in Lisp. The Lisp functions should 
be generated automatically from more abstract specifica- 
tions. We have implemented the LFG compiler that 
compiles augmentations in a higher level notation into 
Lisp functions. The notation is similar to the Lexical 
Functional Grammar  (LFG) formalism (Bresnan and 
Kaplan 1982) and PATR-II (Shieber 1984). An example 
of the LFG-like notation and its compiled Lisp function 
are shown in Figures 6.1 and 6.2. We generate only 
non-destructive functions with no side-effects to make 
sure that a process never alters other processes or the 
parser's control flow. A generated function takes a list of 

arguments, each of which is a value associated with each 
right-ha~d side symbol, and returns a value to be associ- 
ated with the left-hand side symbol. Each value is a list 
of f-structures, in case of disjunction and local ambiguity. 

That  a semantic grammar in the LFG-like notation can 
also be generated automatically from a domain semantics 
specification and a purely syntactic grammar is discussed 
further in Tomita and Carbonell (1986). The discussion 
is, however, beyond the scope of this paper. 

(<S> <==> (<NP> <VP>) 
( ( ( x l  case) = nom) 

Figure 6.1. 

((x2 form) =c finite) 
(*OR" 
(((x2 :time) = present) 
((xl agr) = (x2. agr))) 

(((x2 :time) = past))) 
( (xo) = (xz) )  
((xO :mood) = dec) 
((xo subj) = ( x l ) ) ) )  

Example grammar rule in the 
LFG-like notation. 

(<S> <==> (<NP> <VP>) 
(LAMBDA (XI X2) 
(LET ((X (LIST (LIST 
(AND 
(SETQ X 
(SETQ X 
(SETQ X 

(SETQ X 
(SETQ X 
(SETQ X 
(GETVALUE* X 

(CONS (,QUOTE X2) X2) (CONS (QUOTE XI) X I ) ) ) ) )  

(UNIFYSETVALUE" (QUOTE (XI CASE)) (QUOTE (NOM)))) 
(C-UNIFYSETVALUE" (QUOTE (X2 FORM)) (QUOTE (FINITE)))) 
(APPEND 
(LET ((X X)) 
(SETQ X (UNIFYSETVALUE" (QUOTE (X2 :TIME)) (QUOTE (PRESENT))))) 
(SETQ X (UNIFYVALUE* (QUOTE (X2 AGR)) (QUOTE (Xl AGR)))) 
x) 

(LET ((X X)) 
(SETQ X (UNIFYSETVALUE" (QUOTE (X2 :TIME)) (QUOTE 
x ) ) )  

(UNIFYVALUE* (QUOTE (XO)) (QUOTE (X2)))) 
(UNIFYSETVALUE* (QUOTE (XO :MOOD)) (QUOTE (DEC)))) 
(UNIFYVALUE" (QUOTE (XO SUBJ)) (QUOTE (X1)))) 

(QUOTE (XO))))))) 

(PAST)))) 

Figure 6.2. The compiled grammar rule. 
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7 THE ON-L]NEPARSER 

Our parsing algorithm parses a sentence strictly from left 
to right. This characteristics makes on-line parsing possi- 
ble; i.e., to parse a sentence as the user types it in, with- 
out waiting for completion of the sentence. An example 
session of on-line parsing is presented in Figure 7.1 for 
the sample sentence I s a w  a m a n  w i t h  a t e l escope .  

>_ 
> I  
>I 

>I sa_ 
> I  s a w  
> I  saw 
> ]  saw a _  
> I  saw a _ 
> I  saw a b_  
> I  saw a b t _  
> !  saw a b i g _  
> I  saw a b i g  _ 
>1 saw a b i g  m 
> I  saw a b i g  ma_ 
> I  saw a b i g  m_ 
> I  saw a b i g  - 
>I saw a b i g _  
> I  saw a b i _  
> I  saw a b_  
> I  saw a _ 
> I  saw a ~_. 
> l  saw a ma_ 
> I  saw a m a n  
> I  saw a .man 
> I  saw a man ~ 
> I  saw a man w t  
> I  saw a man w i t _  
>1 saw a man w i t h  
> l  saw a man w t t h  
>1 saw a man w i t h  a _  
> I  saw a man wt th  a _ 
> I  saw a man w i t h  a t _  
> I  saw a man w t t h  a t o _  
>I saw a man w i t h  a t e Z _  
> I  saw a man w i t h  a, te le_ 
> I  saw a man wt th  a t e l e s _  
> I  saw a man w i t h  a t e l e s c _  
> I  saw a man w i t h  a t e l e s c o _  
>1 saw a man w i t h  a t e l e s c o p _  
> I  saw a man w i t h  a t e l e s c o p e _  
> I  saw a man 
> l  saw a man 

Starts accepting a sentence. 

Starts parsing "1". 

Starts parsing "saw'. 

Starts parsing "a". 

Starts parsing "big'. 

User changes his mind. 

Starts unparsing "b ig" .  

Starts parsing "man ". 

Starts parsing "with ". 

Starts parsing " a ". 

w i t h  a t e l  escope  . _  Starts parsing "telescope". 
w i t h  a te]escope. User hits <return). Ends parsing 

Figure 7.1. Example of on-line parsing. 

As in this example, the user often wants to hit the 
"backspace"  key to correct previously input words. In 
the case in which these words have already been proc- 
essed by the parser, the parser must be able to "un- 
parse" the words, without parsing the sentence from the 
beginning all over again. To implement unparsing, the 
parser needs to store system status each time a word is 
parsed. Fortunately, this can be nicely done with our 
parsing algorithm; only pointers to the graph-structured 
stack and the parse forest need to be stored. 

It should be noted that our parsing algorithm is not the 
only algorithm that parses a sentence strictly from left to 
right; Other left-to-right algorithms include Earley's 

(1970) algorithm, the active chart parsing algorithm 
(Winograd 1983), and a breadth-first version of ATN 
(Woods 1970). Despite the availability of left-to-right 
algorithms, surprisingly few on-line parsers exist. 
NLMenu (Tennant et al. 1983) adopted on-line parsing 
for a menu-based system but not for typed inputs. 

In the rest of this section, we discuss two benefits of 
on-line parsing, quicker response time and early error 
detection. One obvious benefit of on-line parsing is that 
it reduces the parser's response time significantly. When 
the user finishes typing a whole sentence, most of the 
input sentence has been already processed by the parser. 
Although this does not affect CPU time, it could reduce 
response time from the user's point of view significantly. 
On-line parsing is therefore useful in interactive systems 
in which input sentences are typed in by the user on-line; 
it is not particularly useful in batch systems in which 
input sentences are provided in a file. 

Another benefit of on-line parsing is that it can detect 
an error almost as soon as the error occurs, and it can 
warn the user immediately. In this way, on-line parsing 
could provide better man-machine communication. 
Further studies on human factors are necessary. 

8 CONCLUSION 

This paper has introduced an efficient context-free pars- 
ing algorithm, and its application to on-line natural 
language interfaces has been discussed. 

A pilot on-line parser was first implemented in 
MacLisp at the Computer  Science Department,  Carne- 
gie-Mellon University (CMU) as a part of the author's 
thesis work (Tomita 1985). The empirical results in 
section 5 are based on this parser. 

CMU's machine translation project (Carbonell and 
Tomita 1986) adopts on-line parsing for multiple 
languages. It can parse unsegmented sentences (with no 
spaces between words, typical in Japanese). To handle 
unsegmented sentences, its grammar is written in a char- 
acter-based manner; all terminal symbols in the grammar 
are characters rather than words. Thus, morphological 
rules, as well as syntactic rules, are written in the 
augmented context-free grammar. The parser takes 
about 1-3 seconds CPU time per sentence on a Symbol- 
ics 3600 with about 800 grammar rules; its response time 
(real time), however, is less than a second due to on-line 
parsing. This speed does not seem to be affected very 
much by the length of sentence or the size of grammar, 
as discussed in section 5. We expect further improve- 
ments for fully segmented sentences (such as English) 
where words rather then characters are the atomic units. 

A commercial on-line parser for Japanese language is 
being developed in Common Lisp jointly by Intelligent 
Technology Incorporation (1TI) and Carnegie Group 
Incorporation (CGI), based on the technique developed 
at CMU. 

Finally, in the continuous speech recognition project 
at CMU (Hayes et al. 1986), the on-line parsing algo- 
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r i t hm is be ing  e x t e n d e d  to  hand le  s p e e c h  i n p u t ,  to  m a k e  

the  speech  pars ing  p roces s  e f f i c i en t  and  capab l e  of  be ing  

p ipe l ined  wi th  l o w e r  leve l  p roces se s  such  as 

a c o u s t i c / p h o n e t i c  leve l  r e c o g n i t i o n  ( T o m i t a  1986) .  
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NOTES 

1. This research was sponsored by the Defense Advanced Research 
Projects Agency (DOD), ARPA Order No. 3597, monitored by the 
Air Force Avionics Laboratory under Contract F33615- 
81-K-1539. 

The views and conclusions contained in this document are those 
of the author and should not be interpreted as representing the offi- 
cial policies, either expressed or implied, of the Defense Advanced 
Research Projects Agency or the US Government. 

2. The situation is often called conflict. 
3. Although it is possibly reduced if some processes reach error entries 

and die. 
4. The term node is used for forest representation, whereas the term 

vertex is used for graph-structured stack representation. 
5. In practice; not in theory. 
6. Although we plan to handle dag structures in the future, tree struc- 

tures may be adequate, as GPSGs use tree structures rather than dag 
structures. 
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