
The FINITE STRING Newslet ter Site Report

Si te R e p o r t

Computat ional Linguistics at BBN Labs

Andrew Haas
BBN Labs, Cambridge, Massachusetts

Our research has three chief goals: to handle connected
discourse instead of sentences in isolation, to discover the
intentions behind discourse as well as its literal meaning,
and to handle failures (by the program or its user) grace-
fully. To achieve these we must make progress in other
areas - planning and knowledge representation. I will
survey our work in computational linguistics and then
consider the supporting efforts in related areas of AI.

Personnel: Robert Bobrow, Madeleine Bates, Candace
Sidner, N. S. Sridharan, Remko Scha, Ralph Weischedel,
Marc Vilain, Andrew Haas, David Stallard, Marie
Macaissa, Margaret Moser, Robert Ingria, Jos De Bruin,
Bradley Goodman, James Schmolze.

1. Natural Language

1.1 Parsing and semantic interpretation

How can semantics be incorporated into parsing without
sacrificing the generality and transportability of the
grammar and the parser? Semantic grammars are effi-
cient because they mix syntax and semantics. Syntactic
results are checked for semantic correctness continuous-
ly, and no time is wasted building syntactic structure that
later turns out to be semantically absurd. Semantic gram-
mars also pay a high price for this efficiency. Their
syntactic knowledge is hard to modify because it is not
stated in a general way - the program knows about
"Noun Phrases Denoting People", and "Noun Phrases
Denoting Books" and so on, but not about noun phrases.
And since the syntactic and semantic knowledge are
intertwined, there is no hope of transporting the syntactic
knowledge to a new domain.

We have been developing a parser that cleanly sepa-
rates syntax and semantics, but is as efficient as a seman-
tic grammar. We achieve this partly through a control
structure called a cascade that links the parser and
semantic interpreter, partly through proper represen-
tation of semantic knowledge. Like others, our parser
calls semantics to check that newly built constituents are
OK; but it also calls semantics each time it attaches a
newly built constituent to a higher constituent. Thus
semantic checking of a proposed attachment for a prepo-
sitional phrase does not wait until the clause is finished.

We represent a mixture of semantic and syntactic
knowledge in a KL-2 taxonomy. Like a semantic gram-
mar, our system has concepts such as "Noun Phrase
Denoting a Person" and "Noun Phrase Denoting a
Book". Unlike a semantic grammar, our system does not
take them as primitive - they are defined in terms of
concepts like "Noun Phrase", "Person", and
"Denotat ion". An efficient algorithm uses these defi-
nitions to classify incoming constituents, and once they

are classified we can retrieve the rules that build their
semantic interpretations.

This work is being done by Robert J. Bobrow and
Madeleine Bates, supported by David Stallard, Margaret
Moser, and Robert Ingria.

1.2 Plans and discourse

We believe that the goals of understanding connected
discourse and responding to unspoken intentions are
closely related, because the structure of discourse reflects
the intentions behind it. A discourse consists of units,
and each unit expresses one intention of the user. To find
the intentions one must divide the discourse into units.

We aim to build a plan parser - a program that takes a
set of possible plans and a series of parsed sentences, and
discovers the speaker 's plans. The parser will use surface
cues to detect the boundaries of discourse units - for
example, sentences starting with " O K " or "Anyway" . It
will also rely on the speaker to make his meaning plain. If
it reaches a point where several plans are consistent with
the evidence, it doesn' t undertake an elaborate search in
an effort to rule some of them out. It assumes that the
user will make his purpose clear later on, and waits for
further input.

As an example, suppose the system is displaying a
semantic net on the user's screen, and the concept "bird"
is in the middle of the screen. We might get the following
dialogue:

User: I can' t fit a new concept below it. Can you move
it up?

(System moves concept higher on the screen.)

User: OK, now put the concept "eagle" below it.

The word " O K " indicates that one of the user's
intentions has been fulfilled, and marks the end of a unit
of discourse concerned with that intention. "now" intro-
duces a new unit, concerned with the user's intention to
place the concept "eagle" below "bird". This work is
being done by Candy Sidner.

I said above that discourse gets its structure from the
intentions of the speaker. Discourse also follows certain
rules of its own, and we are investigating this structure
also. If I say "I t ' s snowing", the word " i t" does not refer
to anything. It is there because English syntax demands
that sentences have subjects. In the same way, discourse
has a syntax independent of the user's plans and goals. In
narrative, for example, successive clauses describe
successive events. If we read "He went to the window
and pulled aside the curtains", we understand that he
pulled the curtains aside after going to the window. One
might suppose that this is a matter of pragmatics rather
than discourse rules - obviously one must go to the
window before pulling aside the curtains. We can see
this is wrong by reversing the clauses. " H e pulled aside
the curtains and went to the window" sounds strange
because discourse rules tell us that he must have pulled

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 215

Site Report The FINITE STRING Newsletter

aside the curtain before going to the window, but prag-
matics rejects this. Thus we can see that discourse rules
have a life of their own. We intend to devise a formal
syntax and semantics of discourse along these lines. Ulti-
mately we hope to combine both approaches to
discourse, showing how speaker 's intentions operate
within the framework of discourse rules. This is the work
of Remko Scha collaborating with Livia Polanyi of the
University of Amsterdam.

1.3 Planning utterances

The first step in planning a response is to classify the
current discourse situation. Perhaps the user has made an
error, and the system must explain the problem; perhaps
the system failed to understand the user, and needs clar-
ification; perhaps we have a simpler situation, such as a
question that demands a direct answer.

Attached to each class of situation is a content selec-
tor. This program will choose the system's discourse
goals - goals like answering the user's question, inform-
ing the user that there's a problem, or asking the user
what he meant. Its choice will depend on the user 's plans
and the information the user needs to carry out those
plans. Suppose. the user asks the system to display some-
thing, but there is no room. The system shouldn't just
inform the user of the problem - it should offer some
solutions. If it knows the user's current plan it may real-
ize that some of the information on the screen is no long-
er useful, and offer to erase it.

When the system has decided what speech acts to
perform, it must organize them into a coherent piece of
discourse. They must be placed in order, and appropriate
discourse markers added. To produce smooth text we
must refer to objects by pronouns, not names or
descriptions, as much as possible; but we can' t refer to an
object by a pronoun until it 's brought into focus. We will
order the sentences so that we can use pronouns as much
as possible. We can also convey some information by the
ordering of sentences. Consider the following dialogue:

User: I want to display the concept "bird".

System: There 's no room on the screen. I can move the
current display up, or erase it and save it.

The user understands that the system's first sentence
describes a problem, and the second offers two solutions.
The order of the sentences is crucial - think how odd it
would sound if the system had used the same two
sentences in the other order.

When the information has been ordered, and discourse
markers inserted, we have a message plan. This plan will
be turned into English text by NIGEL - a generation
program written by William Mann of USC/Informat ion
Sciences Institute. This work is being done by Margaret
Moser and Robert Ingria.

1.4 Ill-formed input

Many workers agree that handling ill-formed input is a
crucial problem for natural language research. They disa-
gree about what " i l l - formed" means - is it ill-formed by
native speakers' standards, or by the program's stand-
ards? We take the latter position. This means that some
of what we treat as ill-formed may be perfectly good by
human standards. This seems a little odd, but the same
thing happens to people when they talk to a speaker of
another dialect. His language is well-formed by the stan-
dards of his community, but until you learn their dialect
you must treat it as ill-formed by the only standard you
know.

We intend to handle ill-formed input by using
discourse context, which consists of the plans and goals
conveyed by the speaker 's discourse. The speaker has
high-level goals (like registering for a class, or finding out
where the best housing is) and discourse goals (like
answering a question, or clarifying something he doesn ' t
understand). For example, consider the following
dialogue:

User: I 'm interested in housing in the Rolling Hills
area. What grade school do they attend?

System: P.S. 32.

User: Any swimming pools nearby?

Suppose the user's last utterance is beyond the system's
ability to parse. It knows that the user is trying to decide
whether he should buy a house in Rolling Hills, and this
gives a clue to the meaning of the utterance. This work is
being done by Ralph Weischedel at BBN, by Sandra
Carberry (working on ellipsis) and by Lance Ramshaw
(studying impossible requests), both at the University of
Delaware.

We are working on another kind of ill-formed input:
definite descriptions that contain errors. We have
studied a large corpus of natural dialogues, in which one
person tells another how to assemble a toy water pump.
It 's hard to describe the parts of the pump accurately, but
the assembler has the parts in front of him and often
manages to find the right part despite the other person's
mistakes. These examples suggest a strategy of relaxa-
tion: weakening the given description until it fits one of
the known objects. The trick is deciding which parts of
the description to weaken, and how. This requires know-
ledge of common errors - for example, color names are
easily confused. We have a taxonomy that includes a
large class of errors, for noun phrases and other
constructs. We plan to complete the implementation of
an algorithm that corrects errors in definite descriptions,
and to explore techniques for dealing with the other
classes of errors. This work is Bradley Goodman's .

216 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

The FINITE STRING Newsletter Site Report

2. Knowledge Representation and Planning

Progress in these areas requires progress in the closely
related areas of knowledge representation and planning.
To assign semantic interpretations to sentences we need
a knowledge representation language rich enough to
express the content of those sentences. To detect seman-
tically impossible parses we need an inference engine
complete enough to detect conflicts between proposed
interpretations and the system's knowledge of the
domain. In order to analyse and synthesize discourse, we
need programs that plan utterances and that recognize
the plans behind another 's utterances. Finally, we must
consider parallel computation - both for efficiency and
for the insights that come from thinking in this way.

2.1 Hybrid systems

In knowledge representation, our goal is a domain-inde-
pendent inference engine that handles an expressive
language without sacrificing efficiency. We can do this
with a hybrid system: one with several components, each
specialized to a particular kind of inference, and each
supplying the others with the information they need. The
individual components can be efficient because they are
specialized; the whole system is expressive because its
language includes several kinds of representation devices.
The trick is to make sure that each component supplies
the others with the information they need, without
drowning them in a flood of facts.

We have built a hybrid system called KL-TWO, with
two components. One (called PENNI) is a version of
David McAllester's RUP. It handles propositional logic,
equality, and truth maintenance. The other component
(NIKL) handles inheritance in a hierarchy of properties.
In NIKL we can assert that a husband is (by definition) a
married man. If we then assert in PENNI that John is a
man and John is married, the system will combine these
two assertions into a single property, which sums up its
knowledge of John. Using lambda notation, we can write
the property as

(lambda x. (man x) & (married x))

NIKL now attempts to fit this property into its hierarchy
of properties. It discovers that the property is identical to
the known property of being a husband, and adds to
PENNI's data base the statement

(man John) & (maried John) -] (husband John)

from which PENNI can infer that John is a husband.
Notice that the full quantification mechanism of first-
order logic does not exist in this system, which simplifies
its search problem enormously. Yet we can use NIKL to
define a husband as a married man, which is equivalent
to saying (all x (man x) & (married x) [-] (husband x)).
Thus we get a limited form of quantification - limited
enough to be tractable, and not too limited to be useful.

In the future we will add more components to this
system, such as a program for reasoning about time.
Marc Vilain and Marie Macaissa are building our hybrid
system at BBN. The development of NIKL has been
joint work with USC/ In fo rmat ion Sciences Institute,
principally involving Tom Lipkis and William Mark.

2.2 Planning

Natural language programs need to plan their own speech
acts and to perceive the plans behind the user's speech
acts. The standard situation calculus planners cannot do
these jobs, for two reasons. First, they assume that no
two actions can overlap in time; one must finish before
the other begins. This is not realistic if there are two
agents (the system and the user) - the user might begin
an action while the system is in the middle of another
action. Second, these planners can make only hypothet-
ical statements about the future - statements like "if the
robot were to put block A on block B, then block A
would be above block C". They cannot make factual
statements like "the robot will put block A on block B".
But the user has factual beliefs about the system's future
actions. If he orders the system to print a report on the
line printer tomorrow morning, he believes that the
system is going to do this - and the system must under-
stand that he believes it.

We can allow actions to overlap if we say that actions
happen during intervals of time. Likewise conditions hold
during intervals. In situation calculus a possible future is
a series of situations and actions. Having abolished situ-
ations, we take possible futures as primitive objects. One
of the possible futures is the actual future. We can assert
that the system will actually print a document at 9 tomor-
row morning by asserting that in the actual future, the
printing action will happen during an interval that starts
at 9. We can also assert that if the system does not print
this document, the user will get fired. This means that in
every possible future where the system fails to print this
document, the user gets fired. This research is b~¢ Andrew
Haas, who is also working on a planning program that
uses these ideas.

The natural language programs we aim at must help
the user without demanding that he state his goals
completely and correctly at the beginning of the dialogue.
He may leave out something important in his first
remarks, or change his mind. This is quite different from
the usual situation in planning, where a goal is given
completely and correctly in each problem statement. The
planner must be able to begin planning with a partial goal
statement, and ask the user for more detail when needed.
If the user changes his mind, the planner must salvage
parts of the old plan that are still helpful in achieving the
revised goal. Other workers have looked at planning with
incomplete or inaccurate knowledge of the environment.
We aim to extend this to handle incomplete and inaccu-
rate knowledge of goals. This work is Marc Vilain's.

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 217

Site Report The FINITE STRING Newsletter

2.3 Paral le l c o m p u t a t i o n

The obvious reason for parallelism is speed - we would
like our programs to carry on dialogue in real time. If we
allow ill-formed input, we have more possibilities to look
at, and this demands even more computat ion.

The obvious way to use parallelism is to have the
major components of the system - parser, semantic inter-
preter, etc. - run in parallel. We have devised a control
structure called a cascade that allows programs to
produce output cont inuously, rather than in a single
batch when they finish a problem. So the semantic inter-
preter can begin work as soon as the parser produces a
significant hypothesis about the input. Thus we can start
interpret ing the user 's u t terance as soon as he starts to
type, instead of waiting unti l he 's finished.

This kind of parallelism is useful, but it can only speed
up the system a little because there are only a few major
components . In order tO use parallelism more fully, we
are designing a parallel programming language. It is a
general-purpose programming language, leaning towards
the special needs of AI. Unlike some parallel languages,
the user does not turn on the parallelism by calling a
special parallel construct. In this language parallel
computa t ion is normal - you have to go out of your way
to turn it off. Even without a parallel implementa t ion ,
this language will be useful for learning to think in paral-
lel. If you assume that your program will run in parallel,

you are forced to consider which parts of the solut ion
depend on which other parts. This of ten leads to a bet ter
algorithm even if you end up using a serial machine. This
work is by N. S. Sridharan. BBN is building the Butterf ly

- a parallel machine with 128 processors - so we have a
chance to test our ideas with an implementa t ion .

R e f e r e n c e s

Bobrow, R.J. and Webber, B.L. 1981 Architectures for Semantic and
Syntactic Interaction. In: Woods, W.A. et al., Eds., Research In
Knowledge Representation for Natural Language Understanding.
Annual Report (September 1980 to August 198l). Report No.
4785. BBN Laboratories: 65-113.

Goodman, Bradley 1984 Repairing Reference Identification Failures
by Relaxation. In: Sidner et al.: 135-184.

Haas, Andrew 1984 Planning in a Changing World. In: Sidner et al.:
45-75.

Polyani, Livia and Scha, Remko 1984 A Syntactic Approach to
Discourse Semantics. In Proceedings of the 1984 International
Conference on Computational Linguistics. Stanford, California.

Sidner, Candace 1984 Speakers' Plans and Discourse. In Sidner et al.:
101-133.

Sidner, C.L. et al., Eds. 1984 Research In Knowledge Representation
for Natural Language Understanding. Annual Report (September
1983 to August 1984). Report No. 5694. BBN Laboratories.

Sridharan, N.S. forthcoming A Semi-Applicative Language for Artifi-
cial Intelligence.

Vilain, Marc 1984 KL-TWO, A Hybrid Knowledge Representation
System. In: Sidner et al.: 1-29.

Weischedel, Ralph M. and Sondheimer, Norman K. 1983 Meta-Rules
as a Basis for Processing Ill-Formed Input. American Journal of
Computational Linguistics 9(3-4): 161-177.

218 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

