
The FINITE STRING Newsle t te r

S i t e R e p o r t

Control l ing C o m p l e x S y s t e m s of Linguistic
Rules

Rod Johnson
University of Manchester Institute of Science and
Technology, U.K.

Steven Krauwer
Rijksuniversiteit, Utrecht, Holland

Mike Rosner
Fondazione dalle Molle, ISSCO, University of Geneva,
Switzerland

Nino Varile
Commission of the European Communities,
Luxembourg

[Most of the ideas in this paper evolved during work
on design studies for the EEC Machine Transla t ion
Project Eurotra. We are grateful to the Commission
of the European Communit ies for permission to pub-
lish these ideas, and to our Eurot ra colleagues - par-
ticularly Maghi King, Dieter Maas, Bente Maegaard,
and Serge Perschke - for many useful contributions,
which have been influential in moulding our current
thinking.]

Introduction

In this paper we discuss some of the design decisions
we have made in defining a software environment for
a large scale Machine Transla t ion (MT) project . A
general purpose MT system intended for commercia l
application should ideally have many features, such as
robustness and t ransparency, in com m on with any
large industrial software implementat ion. At the same
time, consideration of the way in which a good MT
system is built and maintained suggests an approach
more characteristic of AI programs and Exper t Systems
(ES) in particular. There may be conflicts be tween the
tight style of top-down design and implementa t ion
advocated by designers of conventional industrial soft-
ware and the rather empirical, heuristic style of devel-
opment typical of more loosely structured knowledge-
based systems. Our suggested solution to these con-
flicts involves an enhanced form of control led Pro-
duction System (PS), which combines maximal t ran-
sparency and modular i ty with the advantages of the
characteris t ical ly declarat ive and locally uns t ruc tured
organisation of the typical PS architecture. Although
our ideas derive originally f rom our current preoccupa-
tion with MT system design, the general principles we
have adopted should be equally valid for the construc-
tion of any large language processing system.

Production Systems

The advantages and disadvantages of the PS style of
programming are well known - a good review is Davis
and King (1977) , a l though they say relat ively little
about the use of PS for linguistic problems. The PS
architecture is particularly suited to knowledge-based
systems which depend on having access to large
amounts of relatively homogeneous , factual knowl-
edge. It is also easy, in principle, to add to and sub-
tract f rom the knowledge base since factual knowledge
is intended to be decoupled f rom procedural applica-
tion. In this regard, a PS has obvious attractions for
applications in MT.

A typical PS used to represent linguistic computa -
tions might have the following organisation: the data
base would be some collection of tree structures; the
rules would consist just of a pair of structural descrip-
tions; and the interpreter would repeatedly match the
lef t-hand sides of rules against the data base, building
right-hand structures every time there is a successful
match. The paradigm example of a PS in MT is proba-
bly Co lmeraue r ' s (1970) Q-sys tem, in which the
TAUM METEO system is writ ten (Chandioux 1976).

In theory, the PS style of programming looks very
at tractive for MT. In practice, however , as a PS be-
comes large it becomes increasingly difficult to con-
trol. Supposedly independent rules begin to interact in
unforeseen ways, of ten with obscure consequences .
When it becomes necessary to modify the behaviour of
the in terpre ter - as inevi tably happens - users are
forced to introduce the necessary control information
into rules. Because all communicat ion be tween rules
takes place through the data base, rules become com-
plicated by extra tests on and assignments to arbi trary
flags which have no meaning for anyone but the user
responsible for their int roduct ion, but which, once
created, survive permanent ly in the data base. In the
end, the PS becomes even more complex and obfusca-
tory than the corresponding procedural program it was
intended to replace.

For the purposes of MT, these observat ions are par-
ticularly disturbing. Genera l purpose MT systems are
de facto large, and thus particularly prone to the dan-
gers we have just described. Nor is there any reason
to suppose that a single interpretat ion scheme will be
appropriate for all the tasks necessary for MT - string
manipulation, phrase structure analysis, arbi t rary tree
transductions, dictionary lookup, plausibility weighting
of conflicting analyses, and so on. After all, we want
to offer users flexibility and naturalness of expression,

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 199

The FINITE STRING Newsletter Controlling Complex Systems of Linguistic Rules

and these features are not really consis tent with a
single way of doing things.

Thus, al though we see the appeal of a PS architecture
for MT, we have to concede that it not only fails to
satisfy the requirements of any conventional industrial
software, it does not even provide users with the flexi-
bility they need to solve the kinds of ill-defined, open-
ended problems that habitually arise in MT. In the
rest of this paper, we describe a solution that main-
tains the declarative, empirical style, characterist ic of a
PS, within a f r amework conducive to the top-down,
modular construct ion of robust systems.

H o m o g e n e i t y

The first r equ i rement we had, especial ly given the
peculiar context in which we are working, was to de-
fine a degree of homogenei ty over the whole system.
So as not to conflict with the equally important criteri-
on of experimental flexibility, this homogenei ty is lim-
ited to rather superficial aspects of the system design.
Thus we have imposed a uni form rule syntax, such
that any interpreter in the system must be defined to
operate with that syntax or a subset of it. Similarly,
we have constrained the class of structures that rules
can be writ ten to manipulate. The nature of these
constra ints - which are in fact less restr ict ive than
they seem - will be discussed e lsewhere (Johnson,
Krauwer , Rosner and Varile, in preparat ion) , and we
shall not discuss them fur ther here.

Enhancing PS Control Faci l i t ies

The pover ty of the control structure of a typical PS is
evident if we consider a chain of Q-systems, represent-
ing the interpreter as a rule-applying au tomaton de-
fined by the regular expressions

(1) Q = P1,P2 Pn

(2) Pi = (ril I r iEl"" I r i j l ' ") * (j = 1,2 ni)

where the Pi are the individual Q-sys tems and rij is the
jth rule of the ith Q-system. The interpretat ion of the
regular expressions is as follows:

(1) Execute Q by execut ing the Pi in sequential
order.

(2) Execute each Pi by i terat ively applying all its
rules in parallel until no applicable rule can be
found.

Expressed in this way, the available control strategies
become clear: we can apply packets of rules in se-
quence, and, within a rule packet , we can apply rules
i teratively in parallel. Nothing else is possible.

There is, however , no reason why we should not be
able to generalise these three basic control notions of
sequential, parallel, and i terated application to produce
much richer and more interest ing control strategies.
The idea of a regular control language, which we have

adopted in our design, is similar in spirit to the general
scheme developed by Georgef f (1979, 1982) for char-
acterising PS control.

The basic control construct in our model is a process,
which may either be simple (composed only of rules)
or complex (constructed out of other processes) . An-
other name for a simple process, in our terminology, is
a grammar. A complex process is defined by writing
down a regular express ion over the names of o ther
processes in the system, for example

P = A,B,C
Q -- x l v l z
R = (P I Q) *

This simple generalisation gives us a far more powerful
range of strategic options than does a simple PS like
the Q-system. However , it still leaves a number of
important open questions, especially about what goes
on inside a g rammar and what data processes are actu-
ally applied to. We address these questions in the next
two sections.

Limit ing Side Ef fects

One of the most serious problems with a large PS is
the impossibi l i ty of predict ing what in format ion will
actually be present in the data base at any given time.
It is this, more than any other aspect of PS design, that
causes rule-writers to include in their rules all kinds of
extraneous tests simply to avoid spurious rule applica-
t ion in si tuations where the rule is not in tended to
apply.

Now, given the kind of contro l organisa t ion de-
scribed in the last section, we can observe that, when
we define a process in terms of a collection of embed-
ded processes or grammars , the only impor tant aspects
of the behaviour of the embedded processes are the
kinds of structure they accept as input and the kinds
of structure they produce as output. To achieve the
ef fec t we need we in t roduce the not ion of a filter.
Every process or g rammar has associated with it a pair
of filters, which are syntact ical ly just s t ructural de-
scriptions like the lhs of a rule. The input filter, or
expectation of the process, is used to supply to the
process just those structures that can be successfully
matched: if nothing in the data base matches the ex-
pectat ion, the process is simply not invoked. When
the process terminates, the output filter, or goal of the
processes , allows to pass to the calling process just
those structures built by the process that match the
goal.

The effect of the introduction of filters into a con-
trolled PS is quite dramatic. Side effects may appear
but never survive the process in which they are creat-
ed. It becomes possible to test modules in isolation,
simply by simulating data base states on which they
are supposed to operate . In the same way, processes
can be designed top down, with fairly strong guaran-

200 American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983

The FINITE STRING Newslet ter Control l ing Complex Systems of Linguistic Rules

tees that each process will do what it was supposed to
do, provided its componen t parts deliver what they are
supposed to deliver. Errors are easier to trace because
the behaviour of a process can be unequivocally de-
fined.

If to this we add the impor tan t side benef i t that
processes automatically become self-documenting, it is
apparent that with this device we have been able to
capture almost all of the advantages of structured pro-
gramming, without losing the essentially declarat ive
spirit of the enterprise.

Modifying the Interpreter

As we have remarked above, the semantics of a rule in
a PS depends ultimately on the characteristics of the
interpreter that applies it. It is important that a gener-
al and flexible system would be able to accommodate
a wide variety of different task-or iented interpretat ion
schemes. Within the f ramework we have been devel-
oping, it should not be difficult to implement safely
virtually any interpreter that satisfies the homogenei ty
criteria stated above. As far as neighbouring process-
es are concerned, the internal behaviour of a grammar
is of no interest provided it operates on and produces
wel l - formed structures. As it happens, we have so far
only considered implementa t ion of one pa ramete r -
driven interpreter which applies rules according to the
same principles as those that govern the application of
processes discussed above ('Enhanc ing PS Cont ro l
Facilities ') . It appears that this interpreter is likely to
be adequate for a wide variety of s tructure-processing
tasks in the immediate future. When new interpreters
are required, we do not anticipate serious difficulties
in integrating them into the system.

Conclusion

In designing a sof tware env i ronment to suppor t MT
systems - a kind of meta-MT-sys tem - we have at-
t empted to provide a basic, declarat ive, p rob lem-
oriented architecture that is readily accessible to po-
tential users. Our guiding theme has been to try to
separate factual f rom control information without los-
ing the declarative essence of a good PS. By adding
filters to a controlled PS, we have been able to incor-
porate most of the principles of structured program-
ming into a declarative f ramework. The design princi-
ples adopted should lead relat ively painlessly to the
construct ion of robust, modular , and easily extendible
MT systems, while retaining the desirable flexibility for
loosely structured experimental construct ion character-
istic of a PS.

References

Chandioux, J. 1976 METEO: Un Syst6me Op6rationnel pour la

Traduction Automatique Des Bulletins M6t~orologiques destin6s
au Grand Public. META 21: 127-133.

Colmerauer, A. 1970 Les Syst~mes-Q. Internal publication #43.
University of Montreial.

Davis, R. and King, J.J. 1977 An Overview of Production Sys-
tems. In Elcock and D. Michie, Eds., Machine Intelligence 8.
Ellis Horwood: 300-332.

Georgeff, M. 1979 A Framework for Control in Production Sys-

tems. AI Memo #322. Stanford University.
Georgeff, M. 1982 Procedural Control in Production Systems.

Artificial Intelligence 18:175-201.
Johnson, R.L.; Krauwer, S.; Rosner, M.A.; and Varile, G.B. A

Flexible Data Model for Linguistics Representation. (in prepa-
ration)

American Journal of Computat ional Linguistics, Volume 9, Numbers 3-4, July-December 1983 201

