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We discuss the use of  logic for natural language (NL) processing, both as an internal 
query language and as a programming tool. Some extensions of  standard predicate calculus 
are motivated by the first of  these roles. A logical system including these extensions is 
informally described. It incorporates semantic as well as syntactic NL features, and its 
semantics in a given interpretation (or data base) determines the answer-extraction process. 
We also present a logic-programmed analyser that translates Spanish into this system. It 
equates semantic agreement with syntactic wei l - formedness ,  and can detect  certain 
presuppositions, resolve certain ambiguities and reflect relations among sets. 

1. Introduction 

The idea of using logic as a conceptual f ramework 
in question-answering systems is not new. The fact 
that it can formally deal with the notion of logical 
consequence makes it particularly attractive for repre- 
senting meaning. Standard predicate calculus, howev- 
er, does not seem adequate for representing all the 
semantic features of natural language (NL),  e.g. pre- 
suppositions and the subtleties of meaning involved in 
NL quantifiers. Nevertheless, some recent develop- 
ments indicate that logic can play an important  role in 
NL processing. 

In the first place, recent linguistic research [15,18] 
has arrived at interesting results concerning the exten- 
sion of standard predicate calculus in order to provide 
a bet ter  formal model of language. 

Secondly, programming in logic [19,29] has become 
possible since the development of the P R O L O G  pro- 
gramming language at Marseille [3,5,27]. Logic can 
now be used both as the underlying formalism and as 
the programming tool. As has been shown in [30], no 
loss in eff iciency need be involved with respect to 
languages such as LISP, even though higher level fea- 
tures are supported in P R O L O G  (e.g. non-deter -  
minism). 

Thirdly, most P R O L O G  implementations include a 
version of metamorphosis  grammars (MGs),  a logic- 
based formalism useful in particular for describing NL 
processors in terms of very powerful  rewriting rules 
[5]. 

Finally, the evolution in data base technology has 
been tending more and more towards the use of logic, 
both for data description and for queries [14]. 

Drawing on these developments ,  we have imple- 
mented (starting in 1976) successive experimental data 
base query systems, each written entirely in PROLOG.  

The first system [6] represented the hardware and 
software catalogues for the Solar 16 series of comput-  
ers. The user could ask it to build up a computer  con- 
figuration satisfying his particular needs. We then 
developed a simpler but more general system which 
accepts different data bases to be consulted in Spanish 
or in French [7]. This system was later adapted to 
Portuguese consultation by H. Coelho and L. Pereira 
(personal communication, 1978), and to English con- 
sultation by D. Warren and F. Pereira (personal com- 
munication, 1980). In both cases, notably few modifi- 
cations were needed. 

The data base querying features that evolved from 
the development  of these successive systems were 
coupled with NL representat ion features into a single 
logical formalism. Its linguistic motivation and general 
outline has been described by A. Colmerauer  in [4], 
and its motivation from the data base querying view- 
point has been studied in [10]. The formal definition 
corresponding precisely to our multilingual system can 
be found in [11]. 

In this paper we present a thorough description of 
the main principles under ly ing ' these  NL processors.  
There is some overlap with previous work of the au- 
thor [9], to make this paper self-contained. 
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We first discuss what features are convenient  in a 
computa t ional ly  useful logical represen ta t ion  of N L  
sentences. Then we present  an informal definition of 
the logical sys tem possessing these fea tures  which 
serves as our internal  query language. Finally, we 
show a s tep-by-s tep  development  of a P R O L O G  ana- 
lyser for Spanish, after  an informal description of our 
programming tools. 

A complete  listing of our P R O L O G  Spanish gram- 
mar  is given in the Appendix in the Microfiche Supple- 
ment  to this issue of the Journal. 

The discussion of our analyzer  is not intended to be 
normative:  al ternative solutions for the problems we 
encounte red  are certainly conceivable .  Moreover ,  
many  of our choices were constrained by the hardware  
and software tools available to us. We merely show 
one way of using logic throughout  a N L  query system, 
which has proved feasible within modest  computa t ion-  
al environments .  (Our  system was first implemented  
on a 32K, T-1600  minicomputer ,  using a 1975 version 
of P R O L O G . )  

The research repor ted here has mot ivated fur ther  
work  on log ic -p rogrammed N L  processors  for  data  
bases (e.g. [2,22,32], and on the need of extending the 
original M G  formalism [24]. On the other hand, the 
data base componen t  of this system, together  with that  
of the SOLAR 16 system [6], has also influenced other  
researchers  (cf. [2,31]). 

A comprehensive description of the data base com- 
ponent  of our system can be found in [13]. The SO- 
L A R  16 system has only been  repor ted  in [6]. 

2. Mapping Natural Language into Logic 

This section discusses several NL processing prob-  
lems and suggests ways of solving them, through care-  
ful choices for the internal language 's  features.  We 
arrive at a typed,  three-valued,  se t -or iented  logical 
system, which we shall call L3. Its role is a double 
one. On the one hand, its syntax serves as a more 
r igorous and informat ive  al ternat ive to NL, making 
semantic  features of N L  sentences explicit. On the 
other hand, its semantics provides a clear definition of 
the answer-extract ion process: the evaluation of an 
L3 formula yields either a truth value (corresponding 
to a yes-no question) or the representat ion of a set 
(corresponding to a wh-quest ion) .  Spanish is used as 
the concre te  point  of reference.  Rela ted  work  for  
French is [4]. 

2.1 Meaningfulness, Ambiguity and Semantic Types 

A N L  processing sys tem must  have a means  for 
checking semant ic  as well as syntact ic  well- 
formedness ,  in order to reject  semantically anomalous  
sentences.  

A widespread solution to this problem consists in 
first generat ing a "deep  s t ruc ture"  of the sentence,  
taking only syntax into account,  and then performing 
all the necessary semantic  operat ions and checks on it. 

As has already been observed [26], this of ten im- 
plies a t radeoff  be tween  syntactic and semantic  com- 
plexity. But it should be  emphasized that  it is overall  
simplicity and efficiency that  are important .  It  seems 
likely, at least for limited computa t ional  resources and 
a given coverage of NL,  that  a several-pass analyser  
will take more space and time than a one-pass  analys- 
er. 

Mtrreover~ linguists themselves  are not unanimous 
as to whether  the semantic  componen t  should be sepa- 
rate  or intermingled with the syntact ic  c o m p o n e n t  
[21]. 

While taking no sides in this discussion, we shall 
describe a f r amework  in which syntactic and semantic  
analysis take place during a one-pass ,  non-  
determinist ic process,  and which, as we have said, has 
proved sufficient even on small machines.  

Where  logic is concerned,  there is a simple and 
elegant way of dealing with meaningfulness:  by using 
types. Types,  by the way, are also a useful means for 
associat ing the universe of  predica te  calculus to the 
relations in a particular data base. 

They are also useful for improving efficiency: a) 
by narrowing the search space, as only those values in 
a var iable 's  associated domain (or type) need be con- 
sidered, and b) by avoiding futile access to the data 
base, as absurd queries can be rejected by the analyser  
on the grounds of domain incompatibil i ty.  

Another  interest in using types is that  they provide 
an eff icient  means  for  discarding readings that  are 
syntact ical ly  acceptab le  but  semant ical ly  incorrect .  
Take  for instance the query: 

Cu~l es el salario del empleado que vive en Lomas?  
What is the salary of  the employee who lives in Lomas? 

From syntax alone,  there  is no way to decide 
whether  the antecedent  of the relative clause is " the 
salary of the employee"  or " the employee" .  But in a 
type-checking system in which the first a rgument  of 
the relation "l ive" is associated with the human do- 
main, and in which e m p l o y e e s - - a n d  not sa l a r i e s - - a re  
known to belong to this same domain,  the first reading 
is not even possible. 

Ambigui t ies  concerning di f ferent  meanings  of a 
word can of ten be resolved through domain checking. 

Types  can also be used to place modif iers  o ther  
than relative clauses. Our  system, however ,  does not 
exploit them in this way, al though it does check that  
the modifiers it encounters  are of the expected  type. 
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Finally, let us ment ion that types in a finite world 
can contr ibute to solving an important  problem arising 
in P R O L O G  programs in which negat ion is defined by 
proof  failure (i.e., the failure to prove a given fact is 
taken as proof  of its negative counterpart) .  This is the 
case for most  practical data bases. As a discussion of 
this problem falls outside the scope of this paper,  the 
interested reader is referred to [12]. 

2.1.1 Contextual  Typing 

The use of variable typing to constrain the parse 
and aid in disambiguation is not new. Many language 
p rocesso r s - - such  as L U N A R  [34], C O - O P  [17], LAD-  
D E R  [16], P H L I Q A 1  [ 1 ] - - r e s o r t  to some kind of 
typing to provide these capabilities. 

In our particular approach,  the selection of a se- 
mantic interpretat ion is dynamically made on a syntac- 
tic basis. This takes place automatically,  in the stand- 
ard P R O L O G  matching of terms. A simplified expla- 
nation follows, and more precise details are given in a 
later section. 

Briefly, referential  words (nouns, verbs and adjec- 
tives) parse into predicates  whose arguments  are 
typed. For  instance, the verb "to paint"  might induce 
predicates of the form: 

paint (person-x,object-y) 

The expected types of a predicate 's  arguments  are 
given in lexical entries. Ambiguous referential  words 
have a lexical entry for each possible combinat ion of 
meaning and syntactic role they can accept.  For  in- 
stance, the word "blue" can designate an object ' s  col- 
our or a person 's  mood, giving rise to the following 
entries: 

Adjective (sad(person-x)) = blue 
Adjective(blue (object-x)) = blue 

where the funct ion terms act as internal r e p r e s e n t a -  
tions of the word. During the parsing process, which 
is non-determinist ic,  the correct  parse is automatically 
chosen by matching appropriate  terms. For  instance, 
"Which blue door is John painting?" " " would generate  a 
formula containing predicates of the form "door ( t - z ) " ,  
, I  • pa in t (pe r son - John , t - z ) "  and " p ( t - z ) " ,  where p is 
either "sad"  or "blue" .  Only those lexical rules allow- 
ing t to take a value (namely,  t=ob jec t )  that is com- 
patible with its three occurrences will result in a suc- 
cessful parse. Thus, the "sad"  interpretat ion is ruled 
out by type requirements.  

As we shall see later, types are actually represented 
by expressions that reflect subcategorizat ions and al- 
low for domain intersections to be found automatical ly 
simply by leaving the P R O L O G  interpreter  to match  
these expressions. 

2.2 Presupposit ions,  Quant i f iers and a 
Three-Valued Logic 

Typed calculus in itself is not enough to make all 
sentences  meaningful .  A third logical t ruth value 
would be useful, because in NL there are two ways in 
which a s ta tement  may fail to be true: either because 
its negation holds, or because something presupposed 
by the s ta tement  fails to be satisfied. In the latter 
case, the s ta tement  is felt to be pointless rather  than 
false. 

There is another  reason why it must not be consid- 
ered false. Take for instance the statement:  

El sombrerero  loco odia a Alicia. 
The mad hatter hates Alice. 

In a context  in which no hat ter  is mad, it is obviously 
not true. However ,  we cannot  consider it false either, 
since then the s ta tement  

El sombrerero  loco no odia a Alicia. 
The mad hatter does not hate Alice. 

would have to be considered true. 

The nonexis tence  of a re ferent  for  the definite 
noun phrase makes the whole sentence pointless. The 
existence of more than one referent  would also make 
it pointless. This is because the Spanish singular defi- 
nite article induces a presupposi t ion of existence and 
uniqueness on the noun phrase ' s  referent.  

Our t rea tment  of quantif ication has been devised to 
account  for  those presupposi t ions  induced by N L  
quantifiers. We prefer  to call them "determiners" ", as 
they include all articles, cardinal numbers  and words 

l '  '1  I I  '1  such as some , many  , etc. 

If a sentence contains a determiner,  a quantif ica- 
tion of the form " those(x ,p)"  is introduced, where x is 
a typed variable and p is a logical formula in our sys- 
tem. Its evaluation yields the set of all x 's  in x 's  asso- 
ciated domain  which satisfy p. According to the 
determiner ' s  meaning, presupposi t ions about  the cardi- 
nality of  such a set are represented within the output  
formula.  For  instance, "Three  blind mice run" is rep- 
resented as 

equal(card(those(x,and(mice(x),  
and(blind(x) ,run(x) )) ) ),3 ) 

which says that the cardinality of the set of those blind 
mice that  run is 3. 

Definite articles introduce the formula " i f ( f l , f 2 ) " ,  
the value of which is "point less"  whenever  f l  fails to 
be satisfied, and has the same value as f2 if f l  is true. 

Figure 1 shows an example,  using the eas ier - to-  
picture tree representat ion.  The formula  represented 
in Figure 1 will evaluate to "point less"  if the set of 
mad hat ters  does not contain exactly one element.  
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i f  

I 

equal hate 

I I 
. . . . . . . . . . . . . . . . . . . . .  

I l l I 
card ! those A l i c e  

I I 
those . . . . . . . . . .  

I I I 
. . . . . . . . . .  x and 

I I I 
x and . . . . . . . . . . .  

I I I 
. . . . . . . . . . . .  h a t t e r  mad 

I l I I 
h a t t e r  mad x x 

L I 
X X 

Figure 1. Representation of "The mad hatter hates Alice". 

Examples  of pragmat ica l ly  based  systems are 
P H L I Q A 1  [1] and C O - O P  [17]. The semant ic  ap- 
proach is taken for instance in [23], where it serves in 
part icular  to check presupposi t ions  induced by pro-  
nouns. 

2 . 2 . 1  S p a n i s h  D e t e r m i n e r s  a n d  T h e i r  T r a n s l a t i o n s  

We can now examine the general process by which 
a de te rminer  in t roduces  a " those"  formula.  Le t  us 
consider a sentence consisting of a noun phrase fol- 
lowed by a verb  phrase,  in which the noun phrase  
contains a noun introduced by a determiner.  We can 
first represent  the sentence through a th ree-branched  
quantif icat ion of the form: 

q(x,f l , f2)  

where q is a quant i f ier  into which the de te rminer  
translates,  f l  is the noun phrase ' s  translation,  and f2 is 
the verb phrase ' s  translation. Intuitively, f l  specifies 
the domain of quantification,  and q states what  por-  
tion of the domain f2 holds for. Our  previous exam- 
ple, for instance, can first be represented as in Figure 
2. 

Notice that the "if"  formula could be used for rep- 
resenting other  types of presupposi t ions as well (e.g., 
those of factive predicates) ,  al though our system only 
uses it for the presupposi t ions of definite articles. 

An al ternat ive approach  to false presuppos i t ion  
detect ion is the pragmat ic  one, in which false presup- 
positions are caught by noting their empty  extensions 
in the data base, and a two-valued logic is preserved.  
The quest ion of whether  a pragmat ic  or a semant ic  
analysis of presupposi t ions is best  is far f rom settled, 
and we shall not  a t t empt  to solve it here. Le t  us 
merely note the following: 

a) The pragmat ic  and semant ic  approaches  
are not incompatible:  one can both report  
pragmatically detected failed assumptions,  
and assign non-tradi t ional  truth values to 
the sentences containing them. 

b) Subtler t ru th-value  ass ignments  facil i tate 
low-cost  overall  responses of the system. 
For  instance, a given presupposi t ion 's  fail- 
ure can both  be pointed  out during its 
local evaluation, and carried on (via t ruth-  
values) to upper  levels, for the system it- 
self to see and to possibly take fur ther  
action of its own (such as trying al terna- 
tive ways of complying with the request) .  

Although not exploited in this sense in our system, 
this feature would allow a more flexible t rea tment  of 
presupposit ions,  as it would enable the system to de- 
cide, for instance, in which cases they can be safely 
and usefully ignored. 

the 

I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I I 
and hate 

. . . . . . . . . . . . . . . . . . . . . .  

l I I t 
h a t t e r  mad x A l i c e  

l l 
X X 

Figure 2. A first representation of "The mad hatter hates Alice". 

In our implementat ion,  a var iable ' s  associated do- 
main depends both  on f l  and f2 in the following man-  
ner: each predicate known to the data base system 
has a domain associated with each of its arguments .  
For  instance, "mad"  and "ha t te r"  could require their 
a rguments  to belong to the human domain,  whereas  
"ha te"  could require its first a rgument  to belong to the 
animal domain. 

When a three-branched quantif icat ion is generated,  
the variable it creates is typed by the intersect ion of 
all those domains it has been  associated with by  the 
predicates appear ing in ei ther f l  or f2. In our exam- 
ple, x 's  type would be human (the intersection of the 
human and the animal domains) .  

Instead of generating a different  quantif ier  for each 
determiner,  it is useful to represent  all quantifications 
through a single one of the form: 
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for(x,p,c) 

the intuitive meaning of which is: "c holds for the set 
E of all x's in x 's  domain which satisfy p".  In the 
formula c, the set E will be represented simply by the 
variable x, so that x plays a double role. 

Each quantif ication is thus assigned an equivalent 
" for"  expression, in which the determiner ' s  meaning is 
represented.  Here  are the representat ions of some of 
our Spanish quantifiers. The rest are considered in 
Section 2.2.1.2. 

un(x , f l , f2 )  = fo r (x ,and( f l , f2 ) ,g rea te r - than(ca rd (x) ,0 ) )  
a 

todo(x,f  1 ,f2) = for (x ,and( f l  ,not ( f2) ) ,equal (card(x) ,0) )  
every 

el(x,f 1 ,f2) = for (x , f l  , i f(equal(card(x),  1 ) ,f2)) 
singular the 

los (x,f 1 ,f2) = for(x,f  1 , i f (greater- than(card(x) ,  1 ) ,f2)) 
plural the 

ningfin(x,f l , f2)  = fo r (x ,and( f l , f2 ) , equa l (ca rd(x) ,0 ) )  
n o  

i (x , f l , f2)  = for (x ,and( f l , f2 ) ,equa l (card(x) , i ) )  
any cardinal number 

unos(x , f l , f2 )  = a lgunos(x , f l , f2)  = 
some fo r (x , and( f l , f2 ) ,g rea t e r - than (ca rd (x ) , l ) )  

Notice that we have chosen to translate "un"  (a) as 
"at  least one"  (a frequent sense for "un") .  In order 
to avoid ambiguity,  "1"  should be used to mean 
"exact ly one".  This convent ion is particularly useful 
when negation is involved. For instance, "No  tengo 
un centavo"  (I  have not a cent) would be wrongly rep- 
resented in the "exact ly one"  interpretation: it would 
state that  the number  of cents I possess is not 
one,which means it can either be 0,2,3, etc. 

Finally, any formula of the form "for (x ,p ,c )"  can 
be replaced by just the formula c, in which all occur- 
rences of x have been replaced by the formula: 

those(x,p) 

representing the subset of x's domain whose elements 
satisfy p. This replacement  takes place in the data 
base component  of our system. 

The reader can now verify that the representat ions 
shown in Figures 1 and 2 are equivalent. 

2 . 2 . 1 . 1  Q u a n t i f i e r  H i e r a r c h y  

In our NL subset ,  quant if ier  hierarchy obeys  the 
following three rules, which perhaps are too simplistic, 
but have proved useful. A more thorough description 
can be found in [4]. 

Rule 1: A determiner  in a verb ' s  subject intro- 
duces a quantif ication which dominates  all quantif ica- 
tions in t roduced by the verb ' s  complement ( s ) .  For  

instance, "Toda  rosa tiene (algunas) espinas" (Every 
rose has (some) thorns) is represented:  

toda(x , rosa(x) ,a lgunas(y ,espinas(y) , t iene(x ,y) ) )  
every rose some thorns has 

Notice that  the representat ion 

some(y,thorn(y),every(x,rose(x),has(x,y)))  

would be incorrect,  as it means instead: " there  exists 
a particular set of thorns which every rose has".  

- Rule 2: Whenever  a noun has a complement ,  the 
quantif ication introduced by the complement ' s  deter-  
miner  dominates  the one in t roduced by the noun ' s  
determiner.  For  instance, "Sfibato autografia  el libro 
de cada visitante" (Sizbato autographs the book o f  each 
visitor) is represented:  

cada(x,vis i tante(x) ,e l (y , l ibro-de(x,y) ,  
au tograf ia (Sabato ,y) ) )  

each visitor the book-of  autographs 

- Rule 3: When a referential  word (a verb,  a noun 
or an adjective) has more than one complement ,  quan- 
tification takes place f rom right to left: the r ightmost 
complemen t  generates  a quant i f icat ion which domi-  
nates the quantif icat ion(s)  introduced by the lef tmost  
complement(s) .  For  instance, "Rafil regala un espejo 
a cada nifio" (Raid gives a mirror to each child) is rep- 
resented: 

cada(x ,n ino(x) ,un(y ,espejo(y) , regala(Raul ,y ,x) ) )  
each child a mirror gives 

2.2.1.2 Determiners with a Negative Implication 

As a general rule, the negat ion introduced by "no"  
in a sentence  is t ransla ted by placing the opera to r  
"no"  (not) right af ter  the quantif icat ion introduced by 
the subject. For  instance, "La  indemnizaci6n no com- 
pensa el despido de Mart in"  (The indemnity does not 
compensate for Martin's dismissal) is represented:  

la(x , indemnizacion(x) ,no(e l (y ,despido-de(Mart in ,y) ,  
compensa(x ,y) ) ) )  

the indemnity not the dismissal-of compensate 

But negation is not always explicit. The Spanish 
determiner  "ningfin" (no) can be regarded as an im- 
plicit negation, since it expresses that  no port ion of 
the domain  of quant i f icat ion satisfies the s ta tement  
involved. 

In a non-inverted subject position (e.g., "Ningfin 
elefante vuela" -No elephant flies), it generates a spe- 
cial quantifier called "ningfin",  the representat ion of 
which takes this fact into account,  as we have seen. 

There are two other  cases, however ,  in which the 
determiner  "ningfin" coexists with an explicit negation. 
These cases require a different quantifier,  as otherwise 
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the negation would be represented twice. These cases 
are: 

- In a subject position, with subject -verb  inversion: 
the "ningfln" determiner  is assimilated to the "every"  
quantifier. For  instance, "No  vino ningfln a lumno" 
(No student came) is represented:  

todo(x ,a lumno(x) ,no(v ino(x) ) )  
every student not came 

- In a position other  than the subject: the "ningfln" 
de te rminer  is assimilated to the indefinite ar t icle 's  
quantifier. For  instance, "Car los  no tiene ningfln 
hijo" (Carlos has not any chiM) is represented:  

no(un(x,hi jo (x),t iene (Carlos ,x)))  
not a child has 

Another  special case is the negat ion preceding the 
" todo"  (every) determiner,  e.g. "No  todo p~jaro can- 
ta"  (Not every bird sings). The analyser considers "no 
todo"  as a single determiner  generating its own associ- 
ated quantifier: 

no- todo(x,f l , f2)  = 
for(x,and(f l  ,not (f2)) ,greater-than(card(x),0))  

2.3 Distributive, Collective, and Respective Plural 

Semantically, different kinds of plurals can be dis- 
tinguished. For  instance, the sentence "Ana  y Juan 
hablan espafiol y franc6s" (Ann and John speak Span- 
ish and French), which translates roughly into 

speak({Ann,John] ,  {Spanish,French]) ,  

introduces a distributive plural and must therefore  eval- 
uate to true (false) if the following formulas are all 
true (false): 

speak(Ann,Spanish) 
speak(John,Spanish) 
speak(Ann,French) 
speak(John,French) 

On the other  hand, the sentence "A y B son paralelas" 
(A and B are parallel), which translates into 

parallel({A,B]), 

introduces a collective plural and must evaluate to ei- 
ther true or false as a result of testing the whole set 
{A,B} for the proper ty  of being parallel. 

Finally, the sentence "Ana  y Juan ganan respecti-  
vamente  1000 y 800 dolares" (Ann and John respec- 
tively earn 1000 and 800 dollars), which translates into 

earn({Ann,John] ,  {$1000,$800}),  

introduces a respective plural and must evaluate to true 
(false) if the following formulas are both  true (false): 

earn(Ann,$1000) 
earn(John,S800) 

Notice that  both  distributive and respective plurals 
presuppose that  the set of formulas to be tested all 
have the same truth value. Whenever  such a presup-  
position is not satisfied, the plural predicat ion is nei- 
ther true nor false. In the logic L3, the predicat ion is 
assigned the "poin t less"  t ruth value; but  in an im- 
p rovement  of this system, we are proposing the use of 
a fourth truth value, called "mixed" ,  for this situation. 
It  seems more appropr ia te  to differentiate "point less"  
and "mixed" ,  so that  the system has easy access to 
locally detected semantic  information,  in case it needs 
to take fur ther  action. 

Distributive and collective plurals are distinguished 
in the lexicon by syntact ical ly  marking  the relat ion 
they translate into. 

Respec t ive  plurals are not  handled in our  imple-  
mentat ion:  they were introduced (although with only 
two logical values) in the Portuguese version of our 
system, where the analyser  recognizes  them through 
the words " respect ive"  and "respect ively" .  

2.4 Sets 

Relations must  be allowed to apply on sets if we 
are to deal with collective relations. Sets are moreover  
natural  enough in data base applications, as retrieval 
of ten concerns sets of objects  satisfying certain prop-  
erties. They  can also be useful for defining types. We 
represent  them either extensionally ( through lists) or 
intensionally ( through " those"  formulas) .  

Set opera t ions  are implicit  while p a r s i n g - - a s  dy- 
namic type checking involves intersect ing various 
d o m a i n s - - a n d  also during formula  evaluation (i.e., in 
the data  base  c o m p o n e n t  of our sys tem).  In bo th  
cases they are kept  invisible to the user. 

In particular,  the user can refer  to either sets or 
individuals when defining a new relation, and rely on 
the sys tem to make  appropr ia te  inferences  f rom his 
definitions. 

2.5 Linguistic Coverage 

Our NL  subset is extendible in the sense that the 
user can define those referential  words (nouns,  verbs 
and adject ives)  associa ted with his par t icular  data  
base. This includes the definit ion of synonyms,  always 
useful regarding different  users '  views of a data  base. 

The analyser  uses a syntactic variant  of P R O L O G ,  
called (normal ized)  me tamorphos i s  g rammars  (MGs)  
[5]. As such, MGs  share a most  useful feature  of logic 
programs:  a p rob lem's  descript ion and the program 
which solves it are one and the same. This is due to 
the existence of an operational as well as a declarative 
interpretat ion for logic programs [19]. 
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Thus, the grammar shown in the Appendix (in the 
Microfiche Supplement) both provides a formal defini- 
tion of our linguistic coverage (in its declarative read- 
ing) and is the analyser itself (in its procedural read- 
ing, which the P R O L O G  interpreter gives it). 

An informal description of its coverage follows. 

- Fixed vocabulary 

Determiners: 
el la los las un una unos unas 

the a some 

ningfm todo i 
no every any cardinal number 

Prepositions: all Spanish prepositions 

Conjunction: y and 

Relative pronouns: que quien donde cuyo cual(es) 
~: which who where whose 

Interrogative pronouns: 
qu6 cu~nto(s) d6nde qui6n cu~l 

which how much/many where who which 

Negative particle: no 

Variable vocabulary. Each particular data base 
includes a definition of its associated proper names, 
nouns, adjectives and verbs. Only simple verbal forms 
in the third person are allowed. 

- Structure. Sentences are either declarative or inter- 
rogative, in the active voice. A declarative sentence 
consists of a subject, an optional negation particle, a 
verb and its modifiers (in the restricted sense de- 
scribed below). 

A subject consists of a noun phrase. A noun 
phrase is either a series of proper names or a kernel 
followed by noun modifiers and relative clauses (both 
optional). 

A noun phrase's kernel consists of an optional det- 
erminer, an optional series of adjectives, a noun, and 
possibly a series of adjectival groups. Mass nouns are 
not dealt with. An adjectival group is an adjective 
with modifiers. 

A modifier (of a noun, an adjective or a verb) is 
just a noun phrase as described above, possibly intro- 
duced by a preposition. 

Both relative and interrogative clauses are modified 
versions of a declarative sentence, where some ele- 
ments have changed places and some have been re- 
placed by a relative or an interrogative pronoun. 

Figure 3 gives a sample consultation session with 
the system. The data base being consulted concerns 
individuals grouped as either salesmen, administrative 
employees, managers,  sites, departments or salaries. 
The first two sets are grouped to form the employee 
domain, which together with the manager domain 
forms the human domain. The data base contains the 

1. Hola. (Hello.) 
Diga. (I am listening.) 

2. Con qui6n est~ casada Eva? 
(Who is Eva married to?) 
Con Adhn. (To Adhn.) 

3. Aden y Eva viven en Lanfis? 
(Do Adhn and Eva live in Lanits?) 
No. 

4. D6nde viven Eva y Aden? 
(Where do Eva and Aditn live?) 
En Montechingolo. (In Montechingolo.) 

5. Los departamentos viven en Lanfls? 
(Do departments live in Lanus?) 
No entiendo su frase. 
(I cannot understand your sentence.) 

6. Cu~ntos vendedores no trabajan en Dep- l ?  
(How many salesmen do not work in Dep-l ?) 
2. 

7. Qu~ vendedores no trabajan en D e p - l ?  
(Which salesmen do not work in Dep-l ?) 
Aden y Beatriz. (Adan and Beatriz.) 

8. Con qui6n est~ casada la empleada cuyo salario es 
3 millones? 
(Who is the employee (+fern.) whose salary is 3 mil- 
lion married to?) 
Con Zoilo. (To Zoilo.) 

9. Curies son las empleadas con cuya jefa trabaja 
Quintin? 
(Which are the employees (+fern.) whose manager 
(+fern.) Quintin works with?) 
Beatriz y Eva. (Beatriz and Eva.) 

10. No todos los empleados viven en Lanfls. 
(Not every employee lives in Lanlts.) 
Muy cierto. (Quite true.) 

11. Ningfln empleado vive en Lanfis. 
(No employee lives in Lanits.) 
No es cierto! (It is not true.t) 

12. El vendedor que vive en T6mperley gana 4 mil- 
lones. 
(The salesman who lives in Tbmperley earns 4 
million.) 
Hay alguna presuposici6n falsa en su afirmaci6n. 
(There is a false presupposition in your statement.) 

13. Cu~l es el lugar donde no vive ningfln empleado? 
(Which is the place where no employee lives?) 
T6mperley. 

14. Cu~ntas personas viven en T6mperley? 
(How many people live in Tbmperley?) 
Ninguna. (None.) 

15. Con qui6n est~ casado Daniel? 
(Who is Daniel married to?) 
Con nadie. (To nobody.) 

Figure 3. A sample consultation session. 
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relat ions live-in, earn,  married,  marr ied- to ,  work-a t ,  
work-wi th  and manager -of .  Unary  relat ions named  
after  each domain are implicit in any data base. 

3. The Internal Query Language: L3 

Informally,  three kinds of L3 formulas can be dis- 
tinguished: typed formulas t, s ta tement  formulas s, and 
integer formulas n. 

- a typed f o r m u l a  t denotes  a subset of a given do- 
main. It can be either a list of constants,  a variable or 
an expression of the form " those(x ,s )" .  

- a s ta tement  f o r m u l a  s evaluates to either true, false, 
or pointless. It can take any of the forms: 

r ( t l  . . . . .  tn) where r is an n-ary predicate symbol  
corresponding to a distributive, col- 
lective or respective relation. 

and(s l , s2 )  
if(s 1,s2) 
not(s)  
equa l (n l ,n2)  
g rea t e r - than (n l ,n2 )  

- an integer f o r m u l a  n l  denotes  an integer number ,  
and can take one of the forms: 

j where j is an integer such that  j > 0  
card(t)  

Fur ther  details can be found in [11]. 

4. Tools for Wr i t ing  the Analyser  

A brief and informal introduction to logic programs 
and me tamorphos i s  g rammars  is given here, for  the 
sake of completeness.  Fuller accounts can be found in 
[5,19,20,29]. 

4.1 On Logic Programming 

Logic programs are essentially sets of clauses of the 
form: 

B < - -  A1,A2 ..... An 

called Horn  clauses, where B and Ai are atomic formu-  
las, and all variables in the atomic formulas are under-  
s tood to be universally quantified. " < - - "  is read "if" ,  
and the commas  s tand for  conjunct ion.  An empty  
r ight-hand side denotes  a non-condi t ional  assert ion of 
fact. For  example,  

1) l ikes(mother(x) ,x)  < - -  
every x is l iked  by his-her-its  mother  

2) l ikes(Rover,y)  < - -  l ikes(y,Rover)  
Rover  l ikes every y who l ikes h im 

In the rest  of the paper  (except  for the figures), 
variables appear  in italics in order to distinguish them 
f rom constants.  

With respect  to a given set of clauses (i.e., a pro-  
gram),  the user can ask for relations to be  computed,  
by stating procedure  calls, i.e., clauses of the form: 

< - -  A1,A2,.. . ,An 

This triggers an automat ic  demons t ra t ion  process,  
during which the variables in the call take values for  
which "A1 and A2 and ... and An"  holds. Here  
" < - - "  can be in te rpre ted  as a quest ion mark.  An 
unsuccessful  te rminat ion  implies that  no such values 
exist. 

Thus, with respect  to clauses 1 and 2 above,  the 
following call: 

3) < - -  l ikes(z,Rover)  
Who l ikes  Rover? 

results in z being unified (bound)  to " m o t h e r ( R o v e r ) " .  
The same result would have been obta ined f rom the 
call: 

4) < - -  l ikes(z,Rover) ,  l ikes(Rover,z)  
Who l ikes  and is l iked  by Rover? 

Alternat ive  results for  the same call may  be ob-  
ta ined within non-de te rminis t ic  programs.  For  in- 
stance, if we add the clause: 

likes(Sweetie,Rover) < - -  

then call 3 can al ternatively result in z being bound to 
"Sweet ie" .  

Practical  logic p rogram interpreters ,  such as PRO-  
L O G ,  also include some extra- logical  fea tures  for  
i npu t /ou tpu t  and control  functions.  

4.2 On Metamorphos is  Grammars 

MGs are a powerful  formal ism for describing and 
processing languages, in which: 

- context-sensi t ive rewriting rules can be described. 
- any substring of any length can be rewri t ten into 

any other string. 
- g rammar  symbols  may include arguments.  
- conditions on rule applicat ion may  be specified. 
- sentence generat ion and parsing are provided 

by the processor.  

MGs can be regarded as a convenient  al ternative 
no ta t ion  for  logic programs.  Ra the r  than  defining 
them precisely, we shall exhibit some sample g rammar  
rules and show informally one way of translating them 
into Horn  classes, that  basical ly follows A. 
Co lmeraue r ' s  P R O L O G  axiomat iza t ion  of MGs.  A 
formal  and comprehensive  description can be found in 
[5]. 
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4.2.1 C o n t e x t - F r e e  Ru les  

Grammar rules can be graphically represented by 
considering non-terminals as labeled arcs connect ing 
phrase boundaries. A rule such as S - ->  A B is repre- 
sented as 

s 

I I 
I A B v 
0 . . . . . . .  >0  . . . . . . .  >0  

xO x l  x 2  

or, in Horn-clause terms: 

arrow(S,xO,x2 ) <--  arrow(A,xO,x l  ), arrow(B,xl  ,x2 ) 

which can be read, for  every xO, x l  and x2, there is an 
arrow labeled S between points xO and x2 i f  there is an 
arrow labeled A between xO and x l  and another one 
labeled B between x l  and x2. 

Terminals in a rule are included as part of an 
edge's name and do not give rise to extra atoms. If a 
terminal symbol "a" labels an arc leading to point "x",  
the starting point is named "a.x" (where .... is a bina- 
ry operator in infix notation). Thus, the rule S - ->  a 
B S c can be represented: 

s 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I I 
I a B S c v 
0 . . . . . . .  >0 . . . . . . . .  >0  . . . . . . . .  >0 . . . . . . . .  >0  

a . x O  xO x l  c . x 2  x 2  

arrow(S,a.x0,x2 ) < - -  arrow(B,x,xl  ), arrow(S,xl  ,c.x2 ) 

Strings of consecutive terminals are treated as a 
single one named after their concatenation. 

4.2.2  G e n e r a l  R e w r i t i n g  Ru les  

When the left-hand side of a rule contains more 
than one symbol, a single arrow is not enough to de- 
pict it: we need another path between the extreme 
points. For instance, the rule B a - ->  a B can be 
graphed as: 

B a . x  a 

. . . . . . . . . .  >0  . . . . . . . . . . .  

I I 

I a B v 

0 . . . . . . . . . .  >0 . . . . . . . . . .  >0 

a.xO xO x 

where the lower path represents the right-hand side, as 
usual, and the upper path represents the left-hand side 
of the rule. In terms of Horn clauses, this gives: 

arrow(B,a.xO,a.x) <--  arrow(B,xO,x) 

Notice that no restrictions need be imposed on the 
length of the strings on either side of the rule. 

4.2.3  A Full E x a m p l e  

Completing the last two rules, we obtain an MG 
grammar for the language {anbncn}: 

1) S - ->  a B S c 
2) S - ->  a b c 
3) B a - ->  a B 
4) B b - ->  b b 

where rules 2) and 4) translate respectively into: 

2') arrow(S,a.b.c.x,x) <--  
4') arrow(B,b.b.x,b.x) <- -  

In the Horn-clause formulation of this grammar,  
recognit ion and parsing of a given string (e.g. 
"a.a.b.b.c.c.nil") is automatically obtained through the 
respective P R O L O G  calls: 

5') <--  arrow(S,a.a.b.b.c.c.nil,x) 
6') <--  arrow~,a.a.b.b.c.c.nil,x) 

where the value of x is of no interest to the user. In 
order that he need not specify it, a P R O L O G  predi- 
cate called "syn" (for "synthesize")  is made available. 
Its general form is 

syn(x,y) 

where x stands for the internal representation of the 
surface sentence y. The above commands are there- 
fore actually written: 

5) <- -  syn(S,a.a.b.b.c.c.nil) 
6) <- -  syn(y,a.a.b.b.c.c.nil) 

4.2.4  Pars ing  and G e n e r a t i n g  

MGs can also be written for the purpose of 
generating sentences. The same syn command is used 
for this purpose, except that this time the second argu- 
ment is the one represented by a variable, e.g.: 

<--  syn(S,x) 

In some cases, it is even possible for the same 
grammar to work in both ways, although this requires 
a very careful design. In the rest of this paper, we 
shall only be concerned with parsing. 

4.2.5  A r g u m e n t s  W i t h i n  G r a m m a r  S y m b o l s  

We might normally want the parser to retrieve 
more information than mere recognition. The gram- 
mar shown above, for instance, can be also used to 
retrieve the substring of a's, if it is modified as fol- 
lows: 

1) S(a.x) - ->  a B S(x) c 
2) S(a) - ->  a b c 

Call 6 would now bind y to S(a.a). 
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4.2.6 Conditions and Calculations 

Right -hand  sides of rules may contain P R O L O G  
calls (which we shall note be tween square brackets) .  
They  must  be successfully evaluated for  the rule to 
apply. For  instance, retrieval of the number of a 's  can 
be ob ta ined  in the above  g rammar  by changing the 
first two rules into: 

1) S(n) - ->  a B S(m) c [plus(m,l,n)] 
2) S(1) - ->  a b c 

where "plus" is a P R O L O G  predicate defining addi- 
tion of integers. P R O L O G  calls can also be used to 
enforce conditions on rule applications. 

4.2.7 Normalized MGs 

P R O L O G  only accepts normalized G rules, i.e., of 
the form 

A x - ->  y 

The derivation graph for  "John  laughs" is shown in 
Figure 4. The numbers  identify the rule applied. The 
subst i tut ions needed for  applying the rule appear  as 
r ight-hand side labels. Through them we can recon-  
struct the deep structure " laugh( john)" .  

Sentence(x) 

I 
11 x < - s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I I 
Proper-noun(k) Verb(k,s) 

3 I k <- john 4 I s <- laugh(john) 

I I 

john laughs 

Figure 4. Derivation graph for "John laughs". 

where A is a non- te rmina l  symbol ,  x is a string of 
terminals and y is any sequence of g rammar  symbols.  
This restriction is necessary,  within the schema shown, 
for  t ranslat ing rules into Horn clauses (also called 
definite clauses),  in which at most  one lef t-hand side 
atomic formula is allowed. For  this reason, they have 
also been  called "def ini te  clause g rammars  "t,  in a 
recent  article [24] which compares  them favourab ly  
against the Augmented  Transi t ion Ne twork  formalism, 
introduced by Woods [39]. 

As has been  shown in [5], non-normal ized rules can 
be easily replaced by an equivalent set of normalized 
ones. For  instance, B a C b - - >  f g can be replaced 
by B a c b - - >  f g and C - - >  c, where c is a " dummy"  
terminal. F rom the parsing point of view, the results 
are equivalent. 

We can therefore  safely ignore this restriction in all 
that  follows, for the sake of clarity. 

4 . 2 . 8  D e r i v a t i o n  G r a p h s  

Although MGs  can be unders tood declaratively, it 
is somet imes  useful to follow a sen tence ' s  comple te  
derivation, by construct ing a graph which depicts the 
top-down,  lef t - to-r ight  his tory of rule applications.  
We illustrate this through the grammar:  

1) Sentence(s)  - - >  Proper -noun(k)  Verb(k ,s)  . 
2) P roper -noun( tom)  - - >  tom 
3) Proper -noun( john)  - - >  john 
4) Verb(k , laugh(k) )  - - >  laughs 

1 In a restricted sense, DCGs only allow a single non-terminal 
on the left hand side, and are therefore an even more restricted 
form of MGs. A more accurate synonym for "normalized MG" 
might be "full D C G " - - a n  expression suggested by D. Warren and 
F. Pereira in the first draft of [24]. 

Notice that,  once a variable takes a value, this val- 
ue is p ropaga ted  to each of its occur rences  in the 
graph. Thus, when applying rule 4, we use the known 
value of k= john .  Also, variable renaming must  take 
place whenever  necessary in order  to ensure that  the 
rule applied and the string it applies to share no varia-  

bles. 

5. Step-by-Step Development of a Spanish Analyser 

We now develop a small Spanish parsing grammar,  
step by step. Al though oversimplif ied,  it i l lustrates 
practically all of the techniques used to develop the 
g rammar  shown in the Append ix  (in the Microf iche 
Supplement) .  Deep structures and non-terminal  sym- 
bols are in English, for  the convenience of most  read-  

ers. 

5.1 Elementary Sta tements  

The following g r ammar  descr ibes  some simple 
s ta tements  cons t ruc ted  a round proper  nouns,  verbs  

and adjectives. 

S) Sta tement(s)  - - >  P rope r -noun(k )  Verb(k,l,s) 
Complements( l , s )  

V1) Verb(k,l,s) - - >  Verb 1 (be) Adjective(k,l,s) 

V2) Verb(kl  ,list(arg(in,k2 ),nil),live-in(kl,k2 ) ) --> 
Verb 1 (live) 

A1) Adject ive(k,ni l , intel l igent(k))  - - >  
Adj 1 (intelligent) 

A2) Adjective(k l ,list( arg(with,k2 ),nil), 
ang ry -wi th (k / , k2 ) )  - - >  Adj 1 (angry) 
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C 1) Complements(ni l ,s)  - - >  

C2) Complements(list( arg(p,k ),l),s) --> 
Complements( l , s )  Preposi t ion(p)  P roper -noun(k)  

Lexicon: 
L1) Adj 1 (intelligent) - - >  inteligente 
L2) Adj l  (angry) - - >  enojado 
L3) V e r b l ( b e )  - - >  es 
L4) V e r b l ( b e )  - - >  estA 
L5) Verb l ( l ive )  - - >  vive 
L6) Preposit ion(in)  - - >  en 
L7) Preposit ion(with)  - - >  con 
L8) Proper -noun( joan)  - - >  juana 
L9) Proper -noun( tom)  - - >  tomAs 

L10) Proper -noun( london)  - - >  londres 
etc. 

Figure 5 shows the derivation graph for "TomAs 
estA enojado con Juana"  (Tom is angry with Joan).  
Most  of the subst i tut ions shown concern  the deep 
structure, x. The empty  string is denoted by a lambda.  
Some non-terminal  symbols are abbreviated.  From the 
substitutions shown, we can see that x takes the value 
"angry-  with (tom,j oan)" .  

Statement(x) 

I 
S I x < - s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 
Pr-noun(k) 

I 
L9 1 k<-tom 

I 
tomas 

I 

Verb(k,l ,s) 

I 
Compls(ni l ,s)  

I 

VI C1 I 
I 
X 

I I 
Compls(l,s) 

I 
C2 I 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

I I 
Prep(with) Pr-noun(k2) 

I I 
L7 1 L8 I k2<- 

I I joan 
con juana 

I I 
Verb1(be) Ad j ( tom, l , s )  

I I 
L4 I A2 I kl <- tom 

I I 1 <- l i s t ( a r g ( w i t h , k 2 ) , n i l )  

esta I s <- angry-wi th( tom,k2) 

I 
Adj1(angry) 

I 
L2 1 

I 
enojado 

Figure 5. Derivation graph for "Tom~s est~ enojado con Juana". 

5.2 Syntact ic  and Semant ic  A g r e e m e n t  

Syntactic agreement  can be enforced by manipulat-  
ing features such as gender  and number  within every 
rule concerned with syntactic checks. For  instance, 
the modified rules: 

L2) Adj l  (fern-angry) - - >  enojada 
L2 ' )  Ad j l  (mas-angry)  - - >  enojado 
L8) Proper -noun( fem- joan)  - - >  juana 
L9) P rope r -noun(mas - tom)  - - >  tomAs 
A2) Adj(g l -k  l ,list(arg(with,g2-k2 ),nil), 

angry -wi th (k / , k2 )  - - >  Adj 1 (gl-angry) 

make it impossible to accept  a sentence such as: 

TomAs estA enojada con Juana. 
Tom is angry (+fem.) with Joan. 

Semantic  constraints  can be enforced  similarly. 
For  a referential  word to induce a distributive relation, 
for instance, we add a prefix such as 'dr '  in the corre-  
sponding rule, e.g.: 

A1) Adj(g-k,nil,dr(intelligent(k))) - - >  Adj(intelligent) 

and establish the convent ion that  unmarked predicates 
are assumed to be collective. The data base compo-  
nent  of our system can thus distinguish each kind of 
relat ion and ensure an appropr ia te  in terpre ta t ion  in 
each case. 

Types  can be represented in the same way as syn- 
tactic information.  But we want  them to be built up 
during the parse, as a function of the various types 
involved in a given sentence. A quick way to achieve 
this is through unification. We can represent  a type t 
in a manner  that reflects set inclusion relations to oth- 
er types,  e.g.: 

nil&t&t l&...&tn 

where the ti are types such that E ( t ) c E ( t l ) c . . . c E ( t n ) ,  
and & is a binary opera tor  in infix notation. 

Such representat ions may be partially specified, as 
in 

v&employee&human 

which can be matched with all those type representa-  
tions for types conta ined  in or equal  to the 
"employee"  type. For  instance, v can take the values: 

nil 
nil&salesman 
nil&manager 

etc., according to the context.  

In general ,  noun defini t ions will have the mos t  
weight in determining types: since it is nouns that  
introduce data base domains,  their associated types are 
usually completely  specified. Although this convent ion 
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might result in rejecting as semantically anomalous 
sentences that might deserve closer inspection (e.g. 
"Do all the animals speak Lat in?") ,  it would seem a 
reasonable compromise between speed and coverage. 

5 . 3  N o u n  P h r a s e s  

We now modify our grammar so as to handle quan- 
tified noun phrases. Agreement,  both syntactic and 
semantic, is now left out for the sake of clarity. 

For  explanatory purposes, let us imagine a NL 
quantifier as a device which creates a variable k and 
constructs a ' for '  formula s out of k and of two given 
formulas sl  and s2 (respectively standing for the noun 
phrase's and the verb phrase's translations). In terms 
of MG rules, this can be expressed as: 

Determiner(k,sl,s2,s) - ->  det 

where "det" is a given NL determiner. Two sample 
rules follow: 

D 1) Determiner(k,sl ,s2,for(k,sl, 
if(equal(card(k,1),s2 ) ) - ->  el (singular the) 

D2) Determiner( k,s l ,s2 ,for( k,and( s l ,not(s2 ) ), 
equal(card(k),0))  - ->  todo (every) 

A noun, in turn, can be imagined as a device that 
takes the variable created by the quantification and 
constructs a relation, as in the following example: 

NO1) Noun(k,fr iend(k))  - ->  amigo 

We can now relate a noun phrase to a verb phrase, 
through the rules: 

N1) Noun-phrase(k,s2,s) --> 
Determiner(k,sl ,s2,s) Noun(k,sl  ) 

N2) Noun-phrase(k,s,s) - ->  Proper-noun(k)  

S) S t a t e m e n t ( s ) - - >  
Noun-phrase( k,s2,s) Verb( k,l,s2 ) Compls( l,s2 ) 

Thus, a noun phrase can be regarded as a device 
taking a formula s2 (the verb phrase's representation),  
and producing a variable k and a formula s that repre- 
sents the whole statement. In the case of a proper 
noun, s merely takes the same value as s2. 

Notice that the order in which these devices are 
imagined to work is unimportant.  They can be regard- 
ed as term (i.e., tree) constructors which fill in differ- 
ent gaps in those trees they share. For  instance, the 
variable s2 in rule S, which stands for a term of the 
form 

r(t l  ..... tn), 

is given such a form by the Verb device, while the 
Compls device fills in the values of its arguments. The 
Noun-phrase device, on the other hand, can be consid- 
ered a consumer of s2: it uses s2 in order to build up 
s. It does not need s2 to be completely specified, 

however. It merely fits s2 into its place in s, expecting 
that sooner or later it will become completely speci- 

fied. 

We can now modify our rules for complements so 

that they will allow quantified noun phrases as well as 
proper nouns: 

C1) Compls(nil,s,s) - ->  

C2) Compls(list( arg(p,k ),l),s l ,s ) --> 
Compls(l,sl,s2) Prep(p) Noun-phrase(k,s2,s) 

Notice that these two simple rules are enough to han- 
dle verb, adjective, and noun complements. All we 

have to do is modify rules S and N2 as follows: 

S) Statement(s) - ->  Noun-phrase(k,s2,s) 
Verb( k,l,s l ) Compls( l,s l ,s2 ) 

N2) Noun-phrase(k,s2,s) --> 
Determiner( k,s l ,s2 ,s ) 
Noun(k,l,s3) Compls(l,s3,s) 

and add extra rules for nouns, adjectives, or verbs that 

accept complements,  e.g.: 

NO2)  Noun(k l ,list(arg(of,k2),nil),friend-of(k l ,k2 ) ) 
- ->  amigo 

For  uniformity, we rewrite NO1 into: 

NO1)  Noun(k,nil , fr iend(k))  - ->  amigo 

The reader can now make a derivation graph for, 
for instance, "El amigo de Juana ester enojado con 
Tom~s" (Joan's friend is angry with Tom). The deep 
structure shown in Figure 6 should be obtained. 

fo r  

l 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

k f r i e n d - o f  i f  

I t 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

l l 
k Joan 

I I 

equal angry-wi th 

i I 

l l I i 
card 1 k Tom 

I 
k 

Figure 6. Internal representation for "El amigo de Juana est~ 
enojado con Tom~s". 
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5.4 Negat ive Sentences 

To handle negation, we can replace rule S by: 

S) Statement(s)  - - >  Kernel(l,sl,s2,s) Compls(l,sl,s2) 

K) Kernel(l,sl,s2,s) --> Noun-phrase(k,s3,s) 
Neg(s2,s3) Verb(k,l,sl) 

G1) Neg(s,s) - - >  

G2) Neg(s ,not(s))  - - >  no 

where the Neg "device" takes a formula s and prod-  
uces either s itself or not(s) ,  according to whether  the 
negation particle "no"  is absent  or present.  

In sentences like "No vino ningfln a lumno" (No 
student came), there is sub jec t -verb  inversion,  and 
negat ion is represented  twice. The deep structure 
should read: "For  every student,  it is stated that  he 
did not come".  To handle this situation, we take ad- 
vantage of a non-terminal  Case(c)  which can explicitly 
record the role of a given noun phrase as subject. Our 
rules are augmented as follows: 

K) Kernel(l,sl,s2,s) --> Modifier(subject-k,s3,s) 
Neg(s2,s3 ) Verb( k,l,s l ) 

M) Modifier(c-k,sl,s2)--> 
Case(c)  Noun-phrase( k,s l ,s2 ) 

The subject-verb inversion rule is as follows. Its 
application leaves a symbol " Inv"  as a marker.  

I) Modifier(k,s3,s) Neg(s2,s3) Verb(k,l,sl) --> 
Neg(s2,s3 ) Verb( k,l,s l ) Inv Modifier( k,s3 ,s) 

This marker  is used to t ransform a surface 'ningfin' 
quantifier into ' todo '  (every) ,  provided it occurs in an 
inverted subject. Otherwise,  the markers  are erased: 

T) Inv Case(subject) 

M1) Case(subject) - ->  

M2) Inv - ->  

todo - ->  ningfln 

These rules implement  our general t rea tment  of nega- 
tion described earlier. 

The non- terminal  Case(c)  is impor tan t  also in 
handling complement  noun phrases. Such noun phras-  
es introduced by a preposit ion p will have associated 
case prep(p) .  Direct object  noun phrases will have 
case "dir" ,  and so on. We generalize rule C2 to 

C2) Compls(list(arg(c,k),l),sl,s) - ->  

Compls(l,sl,s2) Modifier(c-k,s2,s) 
and add 

M2) Case(prep(p))  - ->  Prep(p) 
etc. 

5.5 Interrogat ive and Relat ive Clauses 

As subject -verb  inversion has already been  defined, 
we can handle Spanish yes-no  quest ions simply by 
adding: 

SE1) Sentence(fact(s)) - ->  Statement(s). 
SE2) Sentence(yes-no(s)) - ->  Statement(s) ? 

(Notice,  by the way, that  the analyser actually prod-  
uces more information than the L3 formula s. The 
data  base componen t  uses this extra  informat ion  to 
determine the form of the answer,  to identify the set 
to be retr ieved (as in rule SE3 below),  etc.). 

Wh-quest ions ,  on the other  hand,  of ten require 
modifiers to be moved  around and replaced by pro-  
nouns. For  instance, "D6nde  vive Tomfis?" (Where 
does Tom live?) can be considered as a variant  for 
"Tomfis vive en k" (Tom lives in k), in which "en  k"  
has been moved  to the beginning of the sentence and 
replaced by "D6nde" .  

Relative clauses usually undergo similar t ransforma-  
tions. For  instance, "El empleado cuya jefa es Juana"  
(The employee whose manager is Joan) can be consid- 
ered as a variant  of "El empleado [la jefa del emplea-  
do] es Juana"  (the employee [the manager of the em- 
ployee] is Joan), where "del empleado"  has shifted to 
just before  " je fa"  to be subsumed,  together  with " la" ,  
by the relative p ronoun  "cuya" .  To handle these 
clauses, we use markers  in the form of g rammar  sym- 
bols; we move the concerned modifiers and then we 
use context-sensit ive rules to replace the appropr ia te  
consti tuents by a pronoun.  We illustrate this for inter- 
rogative sentences such as the above example.  First 
we add an interrogative marker:  

SE3) Sentence(wh(k,s) )  - - >  W h - l ( k )  Statement(s)  ? 

A modifier to be moved  can be handled by the extra 
rule: 

C3) Compls(list(arg(c,k),l),sl,s)--> 
Moved-mod( k,s2 ,s ) Compls( l,s l ,s2 ) 

which places it as the first complement .  It must now 
skip the kernel so as to become the head of the sen- 
tence: 

SK) W h - l ( k )  Kernel(l,sl,s2,s) Moved-mod(k,s3,s4) 
- - >  Wh-2(k)  Modifier(k,s3,s4) Kernel(l,sl,s2,s) 

Finally, it can be replaced by a pronoun:  

PR) Wh-2(k)  Modifier(k,sl,s2) - - >  d6nde 

Figure 7 shows a simplified derivation graph for 
"D6nde  vive Tomfis?",  f rom which the internal repre-  
senta t ion wh(k , l ive - in (Tom,k) )  is obtained.  Argu-  
ments  and substitutions are left out in order to empha-  
size the structure of the derivation. 
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Sentence 
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Figure 8. XG skeleton derivation graph for "D6nde vive Tom~s?" 

Here  ". . ."  stands for  any intermediate  string of 
symbols, which the rule's application leaves untouched 
to the right of "D6nde" .  Thus, the skeleton derivation 
graph would now be as shown in Figure 8. Two rules 
(C3 and SK) have been eliminated, and the resulting 
graph is clearer. 

Figure 7. MG skeleton derivation graph for "Donde vive Tomas?". 

An alternative way of moving modifiers within 
MGs is by adding extra arguments to each non-  
terminal possibly dominating a modifier  to be sub- 
sumed by a pronoun,  as has been observed in [25]. It 
is however  useful to be able to picture transformations 
through argument-str ipped derivation graphs, as in the 
technique just exemplified. This leads naturally to 
ways of extending the MG formalism: Figure 7 sug- 
gests that movements might be achieved more easily if 
unidentified substrings can be refer red  to, so that  
whatever  appears in be tween the expected pronoun 
and the mobile modifier can be skipped by the latter 
through a single rule. Such syntactic liberty is allowed 
in extraposit ion grammars (XGs) [25], where, for in- 
stance, rule PR cn be replaced by: 

PR')  W h - l ( k ) . . .  Modifier(k,sl,s2) - ->  D6nde 

6 .  E x t e n s i o n s  

Some of the limitations of our system are quite 
obvious from our discussion; e.g., pronoun references 
are not dealt with, other  than for relative and interro- 
gative pronouns.  Possible extensions and related work 
include the following: 

More flexible modifier scoping rules. The ones de- 
scribed here were adopted as a compromise between 
linguistic power and computat ional  speed. Our choice 
was constrained by the inconvenience of resorting to 
f requent  tests within grammar rules. Although allowed 
in P R O L O G ,  this facility was too costly in the mini- 
computer  version available to us. Meaning distortions 
resulting from too rigid quantifier scoping were, how- 
ever, partly compensated for by using contextual  infor- 
mat ion available through unif icat ion to choose be- 
tween alternative meanings of a given determiner.  An 
interest ing t rea tment  of modifiers in logic grammars 
has been recent ly  proposed in [22]. It involves a 
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three-pass  analyser,  developed within a part icularly 
modular  f ramework,  in which all syntactic structures 
are represented through a single format.  

,4 subtler treatment o f  presupposition detection. Al- 
though the t rea tment  discussed here allows for a quick 
detect ion of failed presupposit ions,  it fails to indicate 
their nature. More helpful answers should make ex- 
plicit the user 's  wrong assumptions,  and possibly cor- 
rect them. The latest version of our system includes 
the former  capability. These problems have been ex- 
tensively addressed in [17], although not in the context  
of logic programs. 

Dialogue extensions, e.g. for data base creation and 
updating in natural language, for clarification of the 
user 's  intended meaning,  etc. Some conversa t ional  
facilities have been developed recently within a logic- 
p rogrammed system for consulting library information 
in Portuguese [2]. 

.4 wider linguistic output coverage. In its current  
version, our system only handles a few answer  for-  
mats, constructed around the sets it retrieves and the 
truth values it assigns to the questions. A synthesizing 
grammar  would be useful, particularly regarding more 
informative answers. Ideally, a single g rammar  should 
work both for sentence generat ion and parsing. 

Application to other language processing problems. 
Notice that  our choice of using English words for the 
deep structures in Section 5 gives the parser a translat-  
ing flavour. The fact that our system has been adapt-  
ed to consultation in various natural languages without 
substantial  modif icat ions to ei ther  the parser  or the 
internal language's  features suggests that it might be 
possible to use a similar f ramework  for language trans- 
lation. Another  possibility is to develop a single, mul- 
tilingual g rammar  capable  of switching to the user ' s  
mother  tongue as soon as the dialogue opens. 

Finally, let us point out that  the evolut ion in 
P R O L O G ' s  features  is likely to make it possible to 
improve on the implementat ion,  at least, of the ideas 
presented here. For instance, our set evaluation primi- 
tives rely too much upon exhaustive domain enumera-  
tion. While solving P R O L O G ' s  negat ion p rob lem 
satisfactorily for small domains,  this is inefficient for 
very large data bases. 

Our previous so lu t ion - -que ry  reordering [ 6 ] - - w a s  
on the whole more adequate,  but incurred the over-  
head of filtering each query through a corout ining 
interface. A recent  DEC -10  P R O L O G  implementa-  
tion of this solution [31,32], however,  has proved very 
efficient  in the Cha t -80  system, which also shares 
other features with SOLAR 16 (namely,  the minimiza- 
tion of the search space through query reordering and 
the addition of a set constructor  predicate).  Some of 
these features  have actually been  incorpora ted  as 
standard into recent P R O L O G  versions (cf. in [28]), 
making it possible to develop more powerful  systems 
at a low cost. 

Similarly, further  MG extensions could make possi- 
ble a wider linguistic coverage with no loss in efficien- 
cy. Provisions for right as well as left extraposit ion,  
for instance, would facilitate a full t rea tment  of coor-  
dination. 

7. Conclud ing  Remarks  

Similar ideas to the ones discussed in this paper  (in 
part icular,  those on quant i f icat ion (cf. [35])) have 
influenced other NL data base systems, namely LU-  
N A R  [30] and P H L I Q A 1  [1]. But in spite of the 
points in common,  our general approach is markedly  
different.  We have tried to incorporate  all relevant  
semantic as well as syntactic NL features into a single 
formalism, in order to do without intermediate sublan- 
guages and have a single process per form the analysis 
of an input sentence. L U N A R ,  on the contrary,  first 
generates deep structures and then maps them into a 
semantic representat ion.  P H L I Q A 1  has several suc- 
cessive levels of semant ic  analysis,  each requiring a 
special formal  language. Some of them are meant  to 
deal with ambiguity,  which in our approach ,  as we 
have seen, is dealt with through the contextual  typing 
of variables during the quantif icat ion process. 

A common  disadvantage  of this in tegra ted  
a p p r o a c h - - n a m e l y ,  that  the syn tac t ic / semant ic  gram- 
mar  obtained is too domain-specif ic  and therefore  less 
t r a n s p o r t a b l e - - i s  avoided by relegating all domain-  
specific knowledge to the domain -dependen t  par t  of 
the lexicon (i.e., noun, verb,  and adjective definitions). 
Fur the rmore ,  the fact  that  semant ic  agreement  is 
equated with syntactic wel l - formedness  evens the rela- 
tive costs of doing semantic versus syntactic tests. 

The use of logic as the single formalism underlying 
all aspects of our system's  development  is a distinctive 
feature  of the approach.  Logic serves both  as the 
theoret ical  f r amework  and as the implementa t ion  
means, In particular, this gives our system a definitely 
non-procedura l  f lavour:  our programs,  as we have 
seen, can be unders tood in purely declarative terms. 

The main strengths of our approach are, we feel: 

Uniformity. Within our data  base system, pro-  
grams, parser,  data, semantic  interpretat ion and query 
evaluation are uniformly represented.  

Formalization. Due to the generalized use of logic, 
important  theoretical  a spec t s - - such  as a rigorous char- 
acterization of our natural  language subset and of the 
syntax and semantics  of our internal  query 
l a n g u a g e - - n e e d  not be dissociated f rom those practi-  
cal aspects concerning the implementat ion.  

Conciseness. We have shown how a fairly compact ,  
one-pass  analyser can suffice to process a useful and 
extendible natural  language subset. 
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Clarity. The parser is modular, in the sense that 
each rule can be unders tood declaratively by itself. 
Problem-independent  concerns (e.g. backtracking,  
pattern-matching, etc.) are all left to PROLOG.  

Performance. These assets do not imply sacrificing 
efficiency. Parsing times have been shown to compare 
favourably against those of the L U N A R  system [30], 
by using an adaptation of our Spanish analyser to Eng- 
lish [24, p.276]. 

As we have also seen, many improvements remain 
to be made. With the present study we hope to moti- 
vate further research into the uses of logic for  natural 
language processing. 

A c k n o w l e d g e m e n t s  

T h e  a u t h o r  w i s h e s  t o  t h a n k  A l a i n  C o l m e r a u e r ,  u n -  

d e r  w h o s e  s u p e r v i s i o n  t h e  r e s e a r c h  p a r t i a l l y  r e p o r t e d  

h e r e  w a s  d e v e l o p e d ;  M i c h a e l  M c C o r d ,  f o r  h is  e n c o u r -  

a g e m e n t  t o  g e t  t h i s  p a p e r  f i n i s h e d ;  a n d  t h e  r e v i e w e r s ,  

f o r  t h e i r  u s e f u l  s u g g e s t i o n s .  
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