
Slot Grammars
M i c h a e l C. M c C o r d

Computer Science Depar tment
Universi ty of Kentucky

Lexington, Kentucky 40506

This paper presents an approach to natural language grammars and parsing in
which slots and rules for filling them play a major role. The system described provides
a natural way of handling a wide variety of grammatical phenomena, such as W H -
movement, verb dependencies, and agreement.

1. Introduction

This paper presents a formalism for natural lan-
guage grammars , with accompanying parser. The
grammars are called slot grammars because they are
organized around slots (grammatical relations) and
rules for filling them. The parser works bo t tom-up
and maintains, for each phrase being built up, a list
called the available slots list, ASLOTS. A phrase
can grow by having one of the slots in its ASLOTS
list filled by a suitable adjoining phrase.

As a phrase grows, its ASLOTS list general ly
shrinks, because slots are ordinarily removed f rom
ASLOTS as they get filled. However , a slot can be
marked as multiple and then receive more than one
filler. A more interesting exception to the shrinking
of ASLOTS is that the procedure for filling a slot
may operate on ASLOTS itself and add new slots to
it. The operat ion of raising builds such new slots as
"copies" of slots in the ASLOTS list of a filler
phrase. Certain s tandard grammatical constructions,
such as W H - m o v e m e n t , can be handled with this
raising operat ion.

The parser processes the words of a sentence
f rom left to right, at each stage working out all the
slot-fillings that develop when the new word is
thrown in with the phrases that have already been
built up. However , a given phrase grows middle-out.
Its history begins with a word which is its head, and
its slot-fillers may be adjoined on the left or the
right. A lef t -adjunct ion, if appropr ia te , is made
immediately, because the filler already exists; but a
r ight-adjunct ion waits till more words have been
processed. Middle-out const ruct ion allows more
data-directed control. For instance, the initial value

of the ASLOTS list of a phrase is determined par-
tially by the lexical entry for its head word.

In computat ional linguistic background, the sys-
tem is most closely related to the augmented phrase
s tructure g rammars (APSG' s) of George He idorn
(1972,1975) . In APSG' s , syntact ic and semant ic
slots (relat ion at t r ibutes) are heavily used, though
not as systematically as in slot grammars, because
the APSG sys tem does not mainta in an ASLOTS
list. The APSG parsing algorithms are bo t tom-up;
and in the sample grammars , phrases are usually
built up in a middle-out fashion, starting with a head
word and adjoining items on the left or the right.

Al though slot g rammars are organized mainly
around slots, they also make use of states, and thus
have a relationship to the augmented transit ion net-
works (ATN' s) of Woods (1970,1973) . But the use
of states in slot grammars is much more constrained
than in ATN's , and, in general, slot grammars are
contrasted with A T N ' s in the paper.

On the linguistic side, the theory p roposed is
most closely related to work in the systemic gram-
mar tradit ion (Hudson, 1971,1976; McCord , 1975,
1977), especially to Hudson ' s theory of daughter-
dependency grammar (Hudson, 1976). 1 The work of
Kac (1978) is also related; and there are some con-
nect ions to the t radi t ion of Kenne th Pike and
Char les Fries (Cook, 1969), at least in the basic
notion of slot and filler.

The paper is intended as a contr ibution to natural
language syn tax and parsing. Very little is said
about semantics. However , the system could readily

1 I wish to thank Richard Hudson for many useful
discussions pertinent to the present work.

Copyright 1980 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is
granted provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright
notice are included on the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 0 / 0 1 0 0 3 1 - 1 3 $01.00

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 31

Michael C. McCord S lo t Grammars

be augmented with procedures that build up seman-
tic interpretations along with syntactic analyses. In
such a " c o m p l e t e " system, semantic and pragmatic
knowledge would be applied concurrently with syn-
tactic knowledge; but syntax would still play a guid-
ing role in the processing.

Section 2 of the paper, The centrality of slots,
argues for the advantages of an ASLOTS list, mainly
in connect ion with verb dependencies, unbounded
movement rules, and conjunctions. Section 3, States
and slots, explains how states are used and basically
how slot-filling takes place. A simple diagrammatic
notat ion for slot grammars is introduced. Section 4,
Formal representation of syntax, describes the form
of the input of syntax to the program (which is writ-
ten in LISP). Section 5, Representation of frames by
the system, gives details of the data structures used
by the system. Section 6, The lexicon, describes the
formal representat ion of the lexicon, and argues for
some of the advantages of data-directed control.
Section 7 is an Outline of the parsing algorithm. Sec-
tion 8 gives A sample grammar and discusses some
of the linguistic choices made in it. Section 9 is a
Summary of the characteristics of the system.

2. The centrality of slots

In natural language parsing, common control
devices are the use of states (as in transition net-
works) and the examination of individual slots and
flags. These devices are used in slot grammars, but
in a restrained way. The most central control device
is the maintenance of the available slots list,
ASLOTS. The claim of this section is that this is
linguistically and computationaUy natural, especially
in conjunction with bot tom-up parsing and middle-
out construction of phrases.

The ideas will be illustrated with the formation of
verb phrases (VP's) . Following Heidorn (1972,
1975), I use this term to include a verb with any of
its sisters, even the subject. The data structure used
by the slot grammar system for analyzing a VP, dur-
ing parsing, is called the VP frame. This is an asso-
ciation list of registers and their values, much as is
used in ATN parsing (Woods, 1973). The values of
registers can be procedures as well as "declarat ive"
structures. There is some parallel of characteristics
of these frames with the frames of Minsky (1975)
and Winograd (1975). Complete details will be
given in Section 5.

The main register of concern now is ASLOTS.
The initial ASLOTS register for a VP frame might
contain the list (SUBJ IOBJ OBJ ADVL). If the
SUBJ slot can be filled, then the system forms a
new VP frame showing SUBJ filled and having its
ASLOTS reduced to (IOBJ OBJ ADVL). Some
slots, such as ADVL (adverbial), may be marked as
multiple slots in the grammar, and these are not re-

moved from ASLOTS when they are filled. The
members of ASLOTS are in general optionally filled.
Any checking for obligatory slots must be done ex-
plicitly in the grammar. Although ASLOTS is stored
as a list, it is t reated as an unordered set; the posi-
tion of a slot in ASLOTS has no effect on whether
it can be filled.

One advantage of this approach is that one can
express verb-dependencies in an immediate and sim-
ple way. Instead of classifying verbs by features
like transitive, one can just initialize the ASLOTS
register of the VP frame so that it contains the slot
OBJ. The initialization information that is special to
a given verb is stored in the lexical entry for the
verb, in a list of slots called the sister-dependency list
of the verb. (These slots correspond roughly to
sister-dependency rules in the theory of Hudson,
1976.) For example, the s is ter -dependency list
s tored with the verb give might be (IOBJ OBJ).
When a VP frame is formed with give as its head, its
initial ASLOTS will include (IOBJ OBJ). Certain
other slots, such as SUB J, A U X L (auxiliary), and
ADVL, are common to all verbs, so it would be
redundant to list them in the lexicon. These are
default slots and are listed in the general syntax of
the VP. (These slots cor respond roughly to
daughter-dependency rules in Hudson, 1976.) In set-
ting up the initial value of ASLOTS, the parser au-
tomatically combines the default slots with the
s is ter-dependency slots of the part icular verb, so
that the initial VP frame for give would have
ASLOTS = (SUBJ A U X L ADVL IOBJ OBJ).

This t rea tment of verb-dependencies is more
direct than the use of transitivity features or encod-
ing in transition network states, because this initial
ASLOTS list expresses more directly what the verb
"needs" to be the head of the VP. The semantic
interpretat ion of the VP should be built (partially)
f rom these slots and their fillers, and the syntax of
the VP is guided by the filling of these particular
slots. Fur thermore, this method ties in nicely with
the middle-out construction of the VP; search pro-
ceeds outward from the item that sets the goals.

Not only does the slot grammar system initialize
ASLOTS appropriately, but it also updates ASLOTS
as parsing proceeds. At any point, ASLOTS pro-
vides a natural expression of what remains to be
adjoined to the VP. Most parsers (e.g. ATN and
APSG parsers) keep track of what slots have been
filled, but it seems reasonable also to keep track of
what slots may yet be filled, and use these in the
control mechanism. Then rules that might be ap-
plied to fill a slot like OBJ never become activated
if OBJ is not available.

For instance, Heidorn (1972) has a rule roughly
like the following:

32 Amer i can Journa l of Compu ta t i ona l Linguist ics, Vo lume 6, Number 1, Janua ry -March 1980

Michael C. McCord Slot Grammars

VP(TRANS,-~OBJ) NP - - > V P (O B J = N P) .

This says that when a transitive VP with OBJ slot
unfilled is fol lowed by an NP, then a new VP is
formed with OBJ filled by the NP. The rule will be
tested every time a VP is formed, and this will be
fruitless if the verb is not transitive (cannot take an
OBJ) or if it already has an OBJ. Notice that OBJ
is (implicitly) ment ioned three t imes (counting the
TRANS) in the rule, whereas one feels somehow
that OBJ should be ment ioned only once, since the
rule is about filling the OBJ slot. Fur thermore , if
one had a slot that could be filled by more than one
kind of filler (not just an NP) then this sort of rule
would have to be duplicated for each type of filler.

The appropr ia teness of basing search on an
available-slots list seems especially clear in a lan-
guage like Japanese with a rather free order of VP
constituents. Suppose a g rammar is to be writ ten
which captures the simple idea that the verb comes
at the end of the VP, and the preceding NP ' s have
case markings and can come in any order. In a slot
grammar, the verb can activate a VP f rame which
has an ASLOTS list appropr ia te for that verb. Then
the VP frame "looks to the left" , filling slots in AS-
LOTS, and removing non-mult iple slots f rom AS-
LOTS as it goes. In a situation that starts with, say,
four slots and removes all but one, only this one slot
will be relevant for further expectat ions in looking
to the left, and rules will not be a t t empted needless-
ly.

Still ano ther reason for basing expecta t ions on
ASLOTS has to do with the way raising construc-
tions can be t reated in bo t tom-up , middle-out analy-
sis. Many languages allow unbounded raising of
items, as in

(1) Which chair does Mary believe John said
he was sitting in?

Here the question arises as to what syntactic role
the initial NP which chair fills. Two VP levels and a
PP down, there is a slot OBJ which is the object of
the preposit ion in. Does which chair fill OBJ direct-
ly? If we try to write rules which accomplish this,
we have to make them search down VP chains of
arbi trary length and be aware of possible branching
due to conjunctions, as in

(2) Which chair does Mary believe that AI bought
and John was sitting in?

It seems that the rule for filling the object of the
preposi t ion should not have to "know about" these
complications. The complications are created by VP
complementa t ion of verbs like believe and by con-
junctions like and. The constructions that create the
complications should take responsibili ty and should
smooth the way for the placing of which chair.

In slot grammars this is handled by the operat ion
of raising slots. Every slot has a procedure at tached

to it called its slot-rule, which can test for the sorts
of fillers the slot might have and can per form ac-
tions. RAISE is a possible action, and is illustrated
as follows. Consider a sentence like

(3) Which chair does Mary believe that AI bought?

The VP frame for believe has a slot C O M P (verb-
complement) which can be filled by another VP. To
the right of believe is a VP that AI bought. This VP
is " incomple te" in the sense that its ASLOTS regis-
ter still contains a slot OBJ. In the slot-rule for
C O M P there is an instruction to RAISE all members
of the filler 's ASLOTS that belong to a specified
list. (Some slots, such as verb auxiliaries, are not
raised by COMP.) Raising a slot means creating a
new member of the matrix VP ' s ASLOTS which is a
sort of " image" of the lower slot. It has the same
slot-rule and it is marked as being associated with
the lower slot. A slot may be raised through several
levels, but a pa th showing its origin is maintained
for the purpose of semantic interpretat ion.

In sentence (3) when the C O M P slot for believe
raises the lower OBJ to a new slot OBJ1, this is
available to be filled by which chair at a cer tain
stage when the top VP is looking to the left.

The W H - m o v e m e n t that appears in sentences
(1) , (2) , and (3) is a special kind of unbounded left
movement (the left-dislocated i tem can be moved out
of an unbounded number of embedded VP's) . An-
other kind is topicalization, as in

(4) This chair, she said you could put in the room.

Raising applies to unbounded left movemen t in gen-
eral, and in fact the same RAISE operat ion invoked
by the VP C O M P slot is used for handling both (3)
and (4).

In A T N grammars , unbounded left movement is
handled by the H O L D facility (Woods, 1970, 1973).
The A T N puts the lef t -dis located i tem (like this
chair in (4)) on a special stack by the H O L D action,
and then at a later oppor tune time removes it f rom
the stack while traversing a virtual arc --- in the case
of (4), an arc parallel to the ve rb -ob jec t -NP arc ---
so that this chair becomes the object of put.

The H O L D method does not mix well with
bo t tom-up parsing, however, because it depends on
using the complete left context at each point. (The
i tem retr ieved on a virtual arc could have been held
anywhere f rom the beginning of the sentence.) Since
bo t tom-up , middle-out analysis appears to be best
for natural language (as this paper a t tempts to
show), and since RAISE is a viable alternative to
H O L D , we have an argument against H O L D .

Fur thermore , raising appears to be more general-
ly applicable than H O L D . As hinted at in the dis-
cussion of (2) above, conjunct ion construct ions
should also involve raising. In that sentence, the

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 33

Michael C. McCord S lo t Grammars

and frame should be responsible for creating the
conjoined VP frame spanning that AI bought and
John was sitting in, whose ASLOTS contains a slot
OBJ1 which is related to both the object of bought
and the object of id, by raising. This OBJ1 is fur-
ther raised by the COMP slot of believe to a slot
which is finally filled by which chair.

The details for raising by conjunctions have not
been completely worked out, but the general situa-
tion seems tO be roughly as follows. When a con-
junction frame sees two frames of the same category
on either side (the two conjuncts) , it should con-
struct raised slots corresponding to the intersection
of the ASLOTS lists of the conjuncts. (In calculat-
ing the intersection, two slots that are already raised
are considered equal if they originated f rom the
same slot.) For example, in the sentence

(5) John ate and slept.

we could consider the ate frame to have ASLOTS =
(SUBJ A U X L ADVL OBJ), but the slept frame
would have ASLOTS = (SUBJ A U X L ADVL) .
The intersect ion would be (SUBJ A U X L ADVL) ,
and these slots would be raised to slots (SUBJ1
AUXL1 ADVL1) in the conjoined VP ate and slept.
Then John fills SUBJ1, to form the complete VP
(5). There is no object slot available in the con-
joined VP. On the other hand, the conjoined VP
cooked and ate would have both a subject and an
object slot available, and we could get

(6) John cooked and ate the pizza.

In Woods (1973) conjunctions were handled by a
system facility designed specially for conjunctions ---
meaning that the rules for conjunctions are not input
by the grammar writer. The bot tom-up, middle-out
analysis with raising outl ined above seems more
straightforward and more controllable by the gram-
mar writer. Consider a raising t reatment possible
for the following example discussed in Woods
(1973):

(7) John drove his car through and
completely demolished a plate glass window.

The and frame has on its left the VP drove his car
through with ASLOTS = (SUBJ A U X L A D V L
OBJ1), where OBJ1 is raised from the OBJ slot in
the incomplete PP by ADVL. To the right is the
VP completely demolished having ASLOTS = (SUBJ
A U X L A D V L OBJ). The and frame creates the
conjoined VP drove his car through and completely
demolished, having raised ASLOTS = (SUBJ1
AUXL1 A D V L 1 0 B J 2) corresponding to the essen-
tially identical ASLOTS lists of the two conjuncts.
Then SUBJ1 is filled by John and OBJ2 is filled by
a plate glass window, for the analysis of the complete
sentence.

3. States and slots

If all phrases had their heads at the beginning or
end, a n d their other slots could be filled in any or-
der, then all searching could be controlled by the
unordered set ASLOTS. Many languages (including
English) have an intricate combination of free place-
ment of some slot-fillers with ordering restrictions
on others. One conceivable method of controlling
order would be to include tests in slot-rules for the
position of the filler relative to other slot-fillers; but
this seems to result in an unreasonable amount of
testing, especially in languages in which there is a
good deal of fixed order. It appears to be advisable
to use some notion of "s ta te" or "stage" in building
phrases. In middle-out construction, another reason
for using states is to control the direction in which
the construction is proceeding; adjunctions might be
made on the left, then the right, then switch direc-
tions again.

In a slot grammar, each phrase frame has a regis-
ter STATE, which contains an atom somewhat like
an ATN state. Each state has a direction, L E F T or
RIGHT, associated (permanently) with it, the idea
being roughly that if a phrase is in state S, then it is
looking for fillers in the direction associated with S.

A restriction placed on states in slot grammars
which makes their use much more constrained than
in ATN's is that the set of states for a given phrase
type (like VP) is linearly ordered. As a phrase gets
built up, it can move ahead, but can never move
back, in this ordering of states. Because of the line-
ar order, the term stage might be more suggestive
than state.

In the grammar, slots are related to states in the
following way. Each slot is specified to be attached
to one or more states. To fill a given slot with a
proposed filler, one must be able to advance (or not
move back) f rom the current state of the matrix
phrase (along the linear order of states) to a state to
which the slot is attached, with the direction of the
state corresponding to the direction of the proposed
filler.

The following diagram for a small VP grammar
illustrates the use of states and slot at tachment.

(8) 67] (Tq
AUXL > AUXL OBJ

SUBJ >

ADVL

The states are $1, $2, and $3. Here, and in future
examples, the integers in the state names indicate
their linear order. States $1 and $2 have direction
L E F T and $3 has RIGHT. Slots are written under
the states to which they are attached. Note that
A U X L is at tached to both $1 and $2. The sign >

34 Amer ican Journa l of Computational Linguistics, Volume 6. Number 1. January-March 1980

Michael C. McCord Slot Grammars

after a slot indicates that it is a t tached as a state-
advancer. This means that if the slot is filled while
the f rame is in the given state, then the f rame will
advance to the next state (otherwise it stays in the
given state). A U X L is a t tached to $2 as a state-
advancer, but to S1 as a non-s ta te-advancer . Slots
A D V L and A U X L are multiple slots, al though that
is not shown in the diagram.

Here is an example of VP construct ion using VP
grammar (8). The successive VP ' s constructed are
underlined, and to the side of each underline is
shown the slot just filled and the state the VP is in
after the slot-filling.

Could A1 have already left the bus? (9)

HEAD, S I
ADVL, S I

AUXL, S I

SUBJ, S 2

AUXL, S 3

OBJ, $3

When SUBJ is filled at S1, the f rame is advanced to
$2, where it may get an A U X L in a question sen-
tence. Several A U X L ' s may appear in state S1, but
once the SUBJ has been filled, there is a chance for
only one more AUXL, because an A U X L at $2 will
advance the f rame to $3. Also note that there is no
chance for an A D V L be tween the SUBJ and the
preposed question AUXL, as in

(10) *Could already kl have left the bus?

Consider another example:

(11) A1 has left the bus.

HEAD, S I

AUXL, S I

SUBJ, $2

OBJ, $3

This illustrates, in the filling of OBJ, that a slot can
be filled even when the f rame is not yet in a state to
which the slot is at tached; it just has to be possible
to advance to such a state S (only the first such is
used). After the filling, if the slot is a t tached to S
as a s ta te-advancer , then the f rame will be advanced
to the next state af ter S; otherwise it stays in state
S.

The use of states in slot grammars can be consid-
ered a general izat ion of some techniques used by
Heidorn in APSG's . In the g rammar of Heidorn
(1972) , a VP first works to the right gett ing all
postmodifiers of the main verb, then works to the
left getting, all premodifiers. To control this, Hei-
dorn used a regis ter P R M (s tanding for
"premodi f ied") as follows. PRM is preset to off.
Every rule that picks up a postmodif ier checks that
PRM is still off, and every rule that picks up a pre-
modif ier sets P R M to on. The slot g rammar register
S T A T E can be considered a general izat ion of PRM,

in that its values are a toms that control direction of
search.

In a recent APSG grammar for NP's , Heidorn 2
uses a technique which is even closer to our use of
states. 3 He uses a register M L (s tanding for
"modi f ica t ion ' l eve l") which takes on integer values,
and the numerical ordering is used in controlling the
stages of building up an NP, allowing multiple direc-
t ion changes. The le f t -hand sides of product ion
rules of ten check that M L is less than or equal to a
certain value, and the r ight-hand sides set ML to a
certain value. This is similar to our requirement for
advancing states in slot filling.

Now let us extend the VP grammar (8) to one
which accepts a wider range of constructions.

(12)

6q FbF3
OBJ AUXL > AUXL IOBJ OBJ

ADVL SUBJ > COMP

ADVL ADVL

Note that there are two direct ion switches in this
grammar. First S1 and $2 go left; then there is a
switch to the right with $3 and $4, and then a
switch back to the left with $5. Reasons for this
complicat ion will be given below. The additional
slots in this diagram are IOBJ and COMP. IOBJ
(indirect object) accepts only NP's ; the semantically
equivalent t o - fo rm is accepted by A D V L at $4.
(A D V L accepts , say, adverbs and PP 's .) C O M P
(complement) has VP fillers.

This VP grammar is intended to capture the fol-
lowing intuitive description of a way of building up
a VP. Starting at the head verb, we work left get-
ting possible auxiliaries and adverbials. At some
point, we may get a subject. If so, then there is a
chance for one more auxiliary (in the case of a ques-
t ion sentence). Then we work to the right and may
pick up an indirect object (with no other items in-
tervening be tween it and the head verb). Then, still
to the right, we pick up OBJ, COMP, or any num-
ber of ADVL ' s , in any order. Then, back to the
left, we might find an OBJ or any number of
ADVL' s . Of course if OBJ has already been filled
at $4, it will have been removed f rom ASLOTS and
will not be available at $5. An example in which
OBJ is filled at $5 is

(13) Which chair did John buy ?

OBJ AUXL SUBJ HEAD

2 Private communication to the author.
3 These two techniques were developed independently

of each other.

Amer ican Journal of Computat ional Linguistics, Vo lume 6, Number 1, January-March 1980 35

Michael C. McCord Slot Grammars

Why are there two direction switches? Accept ing
for the moment the reasonableness of starting to the
left with S1 and $2, why not continue left and make
$5 the third state? The answer involves raising. In
sentences like (1), (2), and (3), which chair fills an
object slot raised f rom a VP found by C O M P at $4.
So' $4 has to be visited before $5.

It still might seem that one could make only one
direction switch by starting immediately to the right
after the head verb, as was done in Heidorn (1972).
One reason for going left initially has to do again
with raising. The relative clause slot in the subject
NP can be raised to the right of the head verb, as
in:

(14) The man is here that I was telling you about.

Even if this right extraposi t ion were not handled by
the precise mechanism of raising, it seems reasona-
ble that the subject should already be present in the
VP before "placing" the ex t raposed modif ier cor-
rectly.

Also, it seems plausible psychologically to go left
first, because the auxiliaries and the subject are so
closely related to the verb and their posit ion usually
identifies their role. But the role of a f ronted i tem
like which chair in sentences (1), (2), and (3) can-
not be identified until a good deal of the rest of the
sentence has been processed.

4. Formal representation of syntax

The in terpre ter -parser is writ ten in LISP 1.6 run-
ning on a DEC-10 . There are two functions, SYN-
T A X and L E X I C O N , which accept the g rammar
and preprocess it. They are bo th F E X P R functions
(receiving their arguments unevaluated) . The fo rm
of a call to S Y N T A X will be described in this sec-
tion.

S Y N T A X is called for each phrase- type , such as
VP, NP, and PP. The top-level form of a call is

(SYNTAX phrase- type
STATES:

state-specif icat ion ...
SLOTS:

slot-specification ...
D E F A U L T S :

slot ...)

Before going into more details, let us look at an
example , the formal specif icat ion of the g rammar
shown earlier in diagram (8).

(SYNTAX VP

STATES :

(Sl L) (S2 L) ($3 R)

SLOTS :

SUBJ

(FLR NP) ($I >)

AUXL

(FLR AUX) (SI S2 >)

ADVL *

(OR (FLR ADV) (FLR PP)) ($I)

OBJ

(FLR NP) ($3)

DEFAULTS :

SUBJ AUXL ADVL)

The general rules are as follows. The s tate-
specifications are given in the order to be assigned
to the states. The fo rm of a s tate-specif icat ion is a
list:

(name direction [test-act ion ...])

where the square brackets are metasymbols indicat-
ing optionality. The name is the name of the state
and can be any LISP atom. The direction is L or R.
A test-action, if given, is a LISP form which will be
evaluated, and must give a n o n - N I L result, for a
slot-filling to succeed, whenever the f rame is ad-
vanced to the given state by the slot-filling. For
example, suppose given the state-specif icat ion

($5 L (IS SUBJ))

in a VP syntax. If an a t t empted slot-filling advances
the f rame to state $5, then the test (IS SUB J) will
have to succeed (meaning that the SUBJ slot is al-
ready filled) in order for the slot-filling to succeed.

The general fo rm of a s lot -specif icat ion is as
follows:

name [*] slot-rule s ta te -a t tachments

The optional star indicates that the slot is multi-
pie. During parsing, the system takes care of re-
moving non-mult iple slots f rom ASLOTS as they get
filled,

The slot-rule is a L I S P form which can test for
the sorts of fillers the slot can have, and per fo rm
actions. In the sample g rammar above, the slot-
rules use the test (F L R cat) , which requires that the
filler be of the ca tegory cat. No actions are shown
in this grammar; but possible actions are calls to the
R A I S E funct ion and the set t ing of registers, and
these are exhibited in the g rammar of Section 8,

The last part of the slot-specification is the state-
a t tachments . The required fo rm is

({s ta te-name [>]} ...)

In o ther words, one writes a list of s tate names,
each optionally fol lowed by the sign >. If the sign
> does follow the state, then the slot is a t tached as
an advancing slot, o therwise as a non-advanc ing
slot. The meaning of this for state transit ions was
discussed in the preceding section.

The last par t of the call to S Y N T A X is the se-
quence of defaul t slots. These are col lected by
S Y N T A X into a list and stored on the proper ty list
of the phrase- type , to be used as described in Sec-
tion 2.

36 Amer i can Journa l of Compu ta t i ona l Linguist ics, Vo lume 6, N u m b e r 1, Janua ry -March 1980

Michael C. McCord Slot Grammars

There are a few "primit ive" functions (like F L R
and RAISE) supplied for writing slot-rules and state
test-actions. These will be described as they appear
in examples below.

5. Representat ion of f rames by the system

As ment ioned earlier in Section 2, f rames are
stored as association lists:

({register value} ...)

Because of the non-determinism in the processing, I
follow Woods (1973) in sett ing registers by just
tacking on the new reg i s te r /va lue pair onto the
front of the frame.

There are several special registers known to the
system. Two that have already been discussed ex-
tensively are ASLOTS and STATE. The others are
as follows. CAT contains the a tom which is the
phrase- type, such as VP, or, in the case of words,
the basic part of speech, such as V or N. WORD,
in the case of lexical frames, contains the actual
(inflected) word, and R O O T contains the root form.
F E A T U R E S contains the list of a toms t rea ted as
features. For example, a VP might have F E A -
TURES = (Q U E S T I O N P R O G R E S S I V E) .

LB and RB contain, respectively, the left bound-
ary and right boundary of the phrase or word. A
boundary is an a tom representing the space be tween
two words in the input sentence, or the start or end.
(A phrase always represents an analysis of a con-
nected segment of words in the sentence --- all the
words be tween its left and right boundaries.)

FTEST stands for filler-test and contains a form
which is evaluated (as a test-act ion) by the parser
when the f rame is tried as a filler. More details on
this will be given in the next two sections.

The final sys tem register is FSLOTS, which is
used to hold the results of already filled slots. The
value of FSLOTS is another association list, of the
fo rm

({slot filler} ...)

where each filler is of course another frame. The
slot /f i l ler pairs in FSLOTS are placed in accordance
the actual posit ions of the fillers in the sentence.
For instance, in the VP

Probably John left yes terday

FSLOTS would be of the form

(A D V L x SUB.I x H E A D x A D V L x).

Notice that in this sort of association list, the same
register can occur more than once, and an earlier
occurrence does not "hide" a later one. There is a
system function

(SLOTSET slot filler direction)

which takes care of updat ing FSLOTS during slot-
filling, putt ing the new pair on the correct side of

FSLOTS. Maintaining FSLOTS as a reflection of
surface order is useful for output t ing parse trees,
and it is also probably impor tant for semantic inter-
pretation.

Notice that the terms register and slot are being
used in distinct ways. Register is the general term
for one of the variables in our associat ion lists.
Slots are specific to the linguistic theory. Besides
the special slot H E A D , they must be ment ioned as
slots in calls to SYNTAX; and any slot relevant to
a given phrase f rame will appear somewhere in its
ASLOTS or FSLOTS.

Although slot /f i l ler associations are all s tored in
the register FSLOTS, each slot is also used as a reg-
ister in the phrase frame. As a register, a slot con-
tains its slot-rule. S Y N T A X stores the slot-rule of a
slot on the proper ty list of the slot (under the prop-
er ty RULE) . But this is basically a default rule, and
the system allows the lexicon to make exceptions, by
informat ion in the s i s te r -dependency list for the
head item. Thus, the slot-rule for C O M P in the
initial VP f rame for a verb like help can be special
to that verb. To allow this flexibility, the slot-rule
for C O M P is s tored in the register COMP. Fur ther-
more, it appears that the slot-rule for a given slot in
a given phrase f rame should actually be allowed to
change while the phrase is being built up. Reasons
for this will be given in the next section, c

6. The lexicon

The lexicon is accepted and preprocessed by the
LISP funct ion L E X I C O N . Each m e m b e r of the
argument list is a lexical entry, of the form:

(word category [feature] ... [form] ...)

Examples are

(JOHN N SG PROPER)

(GIVE V (VM GIVES GIVING GAVE GIVEN)

(SD (IOBJ) (OBJ)))

Here VM and SD stand for "verb morphology" and
"s is ter -dependencies" , and are actually LISP func-
tions.

What L E X I C O N accomplishes for each lexical
entry is to produce f rames associated with the words
involved in the entry, and put them on the proper ty
lists of the words under the proper ty LEX. These
are f rames for the word as filler, as well as initial
f rames for phrases in which the word is H E A D . For
instance, the L E X list for HAS in the trial g rammars
consists of a word f rame which might become a fil-
ler for the A U X L slot in some VP, as well as a VP
frame in which HAS is the main verb.

The forms that appear at the end of a lexical
entry (such as the VM and SD forms above) are
evaluated by L E X I C O N and can add to the collec-
tion of f rames being constructed. If no forms are

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 37

Michael C. McCord Slot Grammars

given, L E X I C O N will only construct a single word
frame (for the word at the beginning of the entry).

Forms like VM add inflected words to the root
word at the head-o f the entry, so that frames get
constructed for all these words. I have not gone
into spelling rules for regular inflections, but these
could easily be added.

The SD form implements the ideas on sister-
dependency slot lists discussed in Section 2. A call
to SD has the form:

(SD {(slot [slot-rule])} ...)

An example is

(SD (OBJ) (COMP (FLR ADJ))).

The slots listed are of course the sis ter-dependency
slots for the verb. The optional slot-rule after a slot
will replace the slot-rule given for that slot in syn-
tax; thus the latter should be considered a default
slot-rule. The function SD constructs the initialized
phrase frame in which the verb is HEAD. The
(initial) ASLOTS list consists of the default slots
from the VP syntax plus the slots specified in SD.
Also, any test-actions associated with the first state
of the VP are evaluated --- as if the H E A D ad-
vances the frame to the first state.

It was argued in Hudson (1977) that subject-
verb agreement rules belong to morphology and not
to syntax. The main point of the argument is that
some verbs make more distinctions than others.
Considering the standard six combinations of person
and number, one notes that nearly all English verbs
make a distinction only be tween the third person
singular and the other combinations --- and this is
only in the present tense. The exceptions are that
the modals make no distinctions (in present or past),
and the verb be makes three distinctions in the pres-
ent and two in the past.

If we put subject-verb agreement in English syn-
tax, we would presumably have to carry along
enough distinctions of person and number tO satisfy
the fastidious verb be. On the other hand, if the
finite verb is gave or can, there is no need for
subject-verb agreement to come up at all. Another
example is that some determiners require number
agreement with the head noun in English, but for
the most common one of all, the, there is no need
for number agreement to enter the picture.

As with s is ter-dependency slots, this is a case
where data-driven processing is called for, and all
agreement rules are put in the lexicon. It was men-
t ioned in the preceding section that the system
knows about a frame register FTEST containing a
test which must be satisfied when the frame is used
as a filler. This is where we place the agreement
check, and the lexicon can adapt it uniquely to the
particular type of verb involved.

The F T E S T employed for agreement uses a
(FEXPR) function CHECK, which is called as fol-
lows:

(C H E C K slot test)

For example, the filler frame for the verb has has in
the FTEST register:

(CHECK SUBJ (NEGF IT PL))

Here the N E G F test requires that the subject does
not have the feature PL (plural). It seems bet ter to
express it negatively, instead of requiring the SUBJ
to have the feature SG (singular), so that for VP
subjects as in

The boys ' being there causes trouble

we will not have to say that the VP subject is SG.

When the finite verb is tried as a filler (either of
A U X L or the VP H EA D) and (C H E C K SUBJ test)
gets evaluated, what happens? A problem is that
the SUBJ may or may not have already been filled
at this point, depending on whether we have certain
question sentences or not. I f SUBJ is already pres-
ent, C H E C K applies the test to the SUBJ filler on
the spot. Otherwise, it adds the test to the slot-rule
of SUBJ, by making a new SUBJ slot-rule of

(COND (test original-SUB J-slot-rule)).

Being able to change slot-rules in this way is anoth-
er reason for storing slot-rules in the slot as register,
as was discussed at the end of the preceding section.

The lexical function VM actually takes responsi-
bility for creating these C H E C K ' s as necessary for
all verbs besides be and the modals. For instance,
VM will create a C H E C K for GIVES, but none for
GAVE.

Another example of data-driven processing which
has been put into the lexicon is the set of require-
ments that English auxiliaries have on other auxiliar-
ies and the main verb. In the VP syntax, there is
simply a multiple slot AUXL, with no dist inction
between kinds of auxiliaries, their ordering, or their
inflectional requirements. But there is the well-
known sequence:

modal perfect-have prog-be passive-be main-verb

with the inflectional requirement that each auxiliary
has on whatever verb follows it.

One alternative would be to have four slots
M O D A L PERF, PROG, and PASS. But a problem
is that this clutters up ASLOTS quite a bit, so that a
lot of slots would keep getting tried uselessly. It
seems be t te r to go more bo t tom-up and proceed
from whatever verbs actually appear. The A U X L
filler be, i f it appears, can check whether the next
verb to its right is an ing-form or en-form, and can
declare that the VP is progressive or passive accord-
ingly. This test-action is put into the lexical entry

38 Amer i can Journa l of Computational Linguistics, Volume 6, Number 1. January-March 1980

Michael C. McCord Slot Grammars

for BE, and L E X I C O N makes it part of the FTEST
for the be filler-frames.

One thing that is done in syntax to facilitate this
testing is to keep a VP frame register VERB1 set to
the current lef t -most verb. Each auxiliary has to
check the features of VERB1. This will appear in
the sample syntax given in Section 8.

The ordering of the auxiliaries is strict, and
checks on this are also made in their filler-tests.
Perhaps it is not even computat ional ly necessary or
psychological ly real to do this in parsing; perhaps
one could leave it to generation.

The multiple slot A U X L collects what could be
thought of as premodifiers of the main verb. An
analog in NP ' s is the multiple slot A D J C which col-
lects premodifiers of the head noun, filled by certain
types of adjectives, adject ive phrases , and NP's .
Here too, there are ordering restrictions as in big red
house vs. *red big house, although it would seem
foolish to enshrine this in syntax by making lots of
slots for different types of noun premodifiers. An
example that makes A U X L look a little more free is
that in some American dialects, more than one mo-
dal can be used, as in might ought to do that, or even
might should do that.

7. Out l ine of the parsing algori thm

The parsing algorithm takes advantage of some
preprocessing done by the function SYNTAX. The
input to SYNTAX shows a linear order on the states
and shows each slot a t tached to certain states. Re-
call (f rom Section 3) the condit ions necessary for
filling a slot SL when the matrix f rame is in state
ST, and the p roposed filler is on, say, the left.
There must be a state s_> ST such that SL is a t tached
to s and the direction of s is LEFT. Suppose such
an s exists. Le t ST1 be the first such. I f SL is a t ta-
ched to ST1 as a s ta te-advancer , let STRANS be the
successor state of ST1; otherwise let STRANS =
ST1. If no s exists, let STRANS be NIL. Let us
call STRANS the left-transform of state ST by slot
SL. The right-transform is defined similarly. These
state t ransforms are precalculated by SYNTAX, and
stored on the proper ty lists of the slots, thus saving
on search time.

The heart of the parsing algorithm is a function

(M O D I F Y IT M A T R I X DIR)

It constructs all f rames which result when the f rame
IT modifies (fills a slot in) the f rame M A T R I X from
the direction DIR. (D I R = L E F T means that IT is
on the immediate left of M A T R I X .)

M O D I F Y proceeds as follows. Let us assume
that DIR = L E F T (the case DIR = R I G H T is en-
tirely symmetric) . Let ST be the current state of
MATRIX. Then for each slot SL in the ASLOTS

list of M A T R I X , M O D I F Y determines whether IT
can fill SL by making the following five tests, in the
order given:

(a) The le f t - t rans form STRANS of ST by SL
must be non-NIL.

(b) The slot-rule of SL is evaluated, and the re-
sult must be non-NIL. This result is called AC-
T I O N and is saved for use in test (d).

(c) The filler-test (the value of the FTEST regis-
ter in IT) must evaluate to non-NIL.

(d) The A C T I O N must evaluate to non-NIL.
(The reasons for this double evaluation of the slot-
rule will be given below.)

(e) If STRANS is not equal to ST, then the test-
act ion associated with STRANS is evaluated and
must give a non -NIL result.

If these five tests are satisfied, then the f rame
M A T R I X is updated as follows. SL is set to IT
using SLOTSET, as in Section 5. ASLOTS is modi-
fied by the delet ion of SL if SL is non-mult iple .
STATE is set to the lef t - t ransform STRANS. Final-
ly, the left boundary of M A T R I X is set to the left
boundary of IT. The presence of this new version
of M A T R I X is recorded by a funct ion INSERT,
described below. Of course the old version of MA-
T R I X stays around, for possible use in other modifi-
cations.

Note that tests (b) and (d) pe r fo rm a double
evaluat ion of the slot-rule: The value obta ined in
(b) should be another LISP form (A C T I O N) , and
this is fur ther evaluated in (d). The reason for this
is that the action per formed by a slot-rule may dis-
turb registers that must be examined by the filler-
test, used in (c). This situation does not come up in
the sample g rammar of the preceding section, but it
will be illustrated in the next section. (In the gram-
mar of the preceding section, all slot-rules just eval-
uate to T if they do not give NIL, so the action, T,
is trivial, and (d) will be satisfied if (b) is.)

The top level function, PARSE, of the parser
takes a sentence, and processes its words left to
right as follows. It creates boundary markers for
the words (as it goes) , and, for each boundary
marker B, it stores on the proper ty list of B, under
the indicator RESULTS, the list of all f rames prod-
uced so far whose right boundary is B.

For each new word W, P A R S E looks on the
L E X list of f rames associated with W (produced by
the lexicon). If this list is empty, W is not in the
lexicon and parsing is halted with an error message.
Otherwise, PARSE calls the funct ion I N S E R T on
each f rame in the L E X list.

The goal of the funct ion INSERT, when it is
given a f rame FR, is to work out all ways that F R
can modify, or be modif ied by, the f rames that al-

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 39

Michael C. McCord Slot Grammars

ready exist, as well as to record the existence of FR
for future modif icat ions (af ter more words have
been processed). For the latter purpose, I N S E R T
simply puts F R on the R E S U L T S list of its right
boundary. For the former purpose, INS ER T does
the following. For each f rame FR1 in the RE-
SULTS list of the left boundary of FR, I N S E R T
calls

(M O D I F Y F R FR1 ' R I G H T)
and

(M O D I F Y FR1 FR 'LEFT) .

Note the recursion that exists because I N S E R T
calls M O D I F Y and M O D I F Y can call INSERT.
The recursion stops because M O D I F Y does not call
I N S E R T if no modifications are possible.

When P A R S E has p rocessed the last word, it
looks for those VP frames that span the whole sen-
tence, and it prints these out in an indented tree
format , as will be descr ibed and il lustrated in the
next section.

8. A sample grammar

The syntax diagrams are shown in Figure 1, and
the input to LISP is shown in Figures 2 and 3. A
port ion of the lexicon is given later.

Le t us first look at the NP syntax. An NP f rame
begins with the head noun in state N1. The test-
actions associated with this first s tate involve
RAISEF, which raises features f rom the most recent
filler (in this case, the head noun) to the matr ix
frame. The result is that the number of the head
noun is made a feature of the NP itself. F rom the
head noun, one can work left getting any number of
adjectives (ADJC is multiple). If a determiner is
selected (filling D E T R) then the NP is advanced to
state N2, so that no more premodifying adjectives
can be picked up. Then one is ready for postmodif i -
ers (in this case, PP 's) , filling the multiple slot REL.
But the f rame can get into state N2 and receive
R E L fillers, as in tea with cream, without being ad-
vanced there by DETR, just because of the fact that
N2 follows N1.

The PP syntax is trivial, just having a preposi t ion
as head, fol lowed by an NP.

The VP syntax is an extension of the grammar
shown earlier in diagram (12). The current gram-
mar has a fairly complete t rea tment of the verb sys-
tem. As outlined in the section on the lexicon, the
requirements of the verb auxiliaries are managed by
keeping a VP register VERB1 set to the currently
lef t -most verb. This is initialized by the state test-
action at tached to state S1 (see Figure 2). This is
executed as soon as the H E A D verb is filled in
(actually in the lexicon), setting the register VERB1
to the value of the slot H E A D (i.e., to the f rame for
the head verb).

Updat ing of VERB1 is handled by the slot-rule
for AUXL:

(==> (FLR V AUX) (= VERB1 I T))

This rule is involved in a non-trivial application of
the double evaluat ion scheme for slot-rules de-
scribed in the preceding section. When

(= = > test action)

is evaluated, the test will first be evaluated. In the
above example, this asks whether the filler is a verb
with the feature AUX. I f the test gives NIL, then
the function = = > returns NIL, Otherwise, = = >
returns the action, unevaluated. The parser saves
this fo rm and evaluates the filler-test for the current
filler auxiliary, which needs to examine VERB1 be-
fore it gets changed. If this test succeeds, then the
parser evaluates the action, (= VERB1 IT) , which
updates VERB1 to the new filler auxiliary.

One addition appear ing in the VP syntax above is
the B I N D E R slot a t tached to state $8. This gets
subjunctions like that, although, if, and whether at
the f ront of the VP.

The other additions of states have to do with the
auxiliaries and the subject in quest ion sentences.
State $3 has no slots at tached, but is just there to
hold the tes t -act ion (A D D F Q U E S T I O N) , as shown
in Figure 2, which is executed for preposed auxiliar-
ies. This adds the feature Q U E S T I O N to the matrix
VP. Note that the state tes t -act ion is placed on the
state that the preposed auxiliary advances the f rame
to, in accordance with the rules described in Section
4. And the preposed A U X L is a t tached to $2 as a
s ta te -advancer so that no more A U X L ' s can appear
to its left. The extra state $3 does not "get in the
way" of other state transitions because of the pre-
processing done by S Y N T A X (described in Section
7).

State $4 is added in order to handle quest ion
sentences in which the head verb is the only verb
and is an auxiliary, as in

Is John H a p p y ? May I? Does he?

This is ref lec ted in the state tes t -ac t ions for $4
shown in Figure 2. The funct ion (IS slot) tests that
that slot is filled; (ISF f rame feature) tests whether
the given f rame has the given feature; ($ register)
gets the value of the register.

In our grammar , the head of a VP is just the last
verb in the verb group, and in elliptical VP ' s will be
t rea ted like a main verb. In an elliptical sentence
like Could he be? the verb be is the H E A D of the
VP and is just a verb which happens to be marked
with the feature AUX. We leave it for other (non-
syntactic) rules to decide whether this VP is ellipti-
cal for something like Could he be happy there? or
Could he be going there?

40 Amer i can Journa l of C o m p u t a t i o n a l Linguist ics, Vo lume 6, Number 1, Janua ry -March 1980

Michael C. McCord Slot Grammars

VP

6q
BINDER

6q
OBJ

ADVL

O7]
AUXL >

O7]
AUXL

SUBJ >

ADVL

J%
SUBJ

[7O
IOBJ

50
OBJ

COMP

ADVL

NP PP

<77
ADJC

DETR >

50
REL

F3
OBJ

Figure 1. Syntax diagrams.

(SYNTAX VP

STATES :

($I L (= VERBI (SL$ HEAD)))

(s2 L)

($3 L (ADDF QUESTION))

SZ~ R

(NOT (IS AUXL))

(ISF ($ VERBI) AUX)

(ADDF QUESTION))

S5 R)

S6 R)

($7 L (IS SUBJ) (CLOSE))

(S8 L)

SLOTS :

BINDER

(FLR SUBJUNCTION) ($8)

SUBJ

(FLR NP) ($I > $4)

AUXL

(==> (FLR V AUX) (= VERBI IT))

($I $2 >)

IOBJ

(FLR NP) ($5)

OBJ

(FLR NP) ($6 $7)

COMP

(==>(FLR VP) (RAISE (OBJ ADVL) $7))

($6)

ADVL

(OR (FLR ADV) (ELm PP))

(SI $6 $7)

DEFAULTS :

BINDER SUBJ AUXL ADVL)

Figure 2. VP syntax.

(SYNTAX NP

STATES :

(NIL (RAISEF SG) (RAISEF PL))

(N2 R)

SLOTS :

DETR

(FLR DET) (NI >)

ADJC *

(FLR ADJ) (NI

REL

(FLR PP) (N2

DEFAULTS :

ADJC DETR REL

(SYNTAX PP

STATES :

(Pl R)

SLOTS :

OBJ

(FLR PP) (Pl

DEFAULTS :

OBJ)

Figure 3. NP and PP syntax.

The slot-rule for C O M P in Figure 2 contains a
call to the RAISE function:

(RAISE (OBJ ADVL) $7).

The first argument to RAISE is the list o f slot types
to be raised. A n y slot in the filler's ASLOTS will
be raised if it is actually OBJ or A D V L o r if it origi-
nally came from one of these slots (by previous rais-
ings). Each raised slot is given a new and unique
name, but a record is kept of where it came from.
It is given the same slot-rule and multiple property
as the slot it was just raised from. The remaining
arguments to RAISE form a state-attachments list,
showing where the raised slots are to be attached.

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 41

Michael C. McCord Slot Grammars

The state $7 to which slots of type OBJ and
A D V L (raised or not) are a t tached is the posit ion
for f ronted items. As an example, the parser gives
two analyses for

When did Mary say John had left?

according as when modifies say or left. In the first
case, when just fills the A D V L slot in the top VP.
In the second, it fills a raised slot in the top VP
which was raised by C O M P f rom the A D V L in the
embedded VP.

We do not want to raise out of just any VP. It
appears that we should not raise out of VP ' s with
fronting. Compare

What do you think that those cost in France?

*What do you think that in France those cost?

This is prevented in the g rammar of Figure 2 by the
state action (CLOSE) at tached to state $7 (the pos-
ition for f ron ted i tems), which sets a flag that
RAISE recognizes. When RAISE sees a C L O S E d
filler frame, it just returns T and does not raise any-
thing. This would happen in the second example
above, where in France fills A D V L at $7 in the em-
bedded VP and closes it. VP ' s with fronting can be
accepted as fillers, as in

I think that in France those cost quite a bit.

I think that this vacat ion we'l l enjoy a lot.

However , it is p robably not right to block raising
solely by internal propert ies of the filler VP. In a
relative clause like whom John saw, raising would
certainly b e blocked, as above, by the fronting. But
in the relative clause who saw John, who just fills the
SUBJ slot, so that no closing is done. Even more
clearly, in the relative clause John saw in Fred is the
man John saw, there is not even a relative pronoun.

The simple answer here is that some slots call
RAISE and others do not. Our slot C O M P calls
RAISE; but REL, the noun pos tmodi f ie r (which
would get relative clauses in an extended grammar) ,
just does not call RAISE.

The nature of the lexicon for the sample gram-
mar should be fairly clear f rom the discussions in
Section 6 and the present section. Figure 4 shows
part of the trial lexicon, with a sample for each par t
of speech. Enough samples are included to cover
the types of words appear ing in an example parse
given below.

The function NM ("noun morpho logy") is similar
to VM. The funct ion TEST causes its a rgument to
be the filler-test in all the word f rames constructed
for the lexical entry. Note that the word A has such
a test (for number agreement in the NP), but T H E
does not. The verbs T H I N K , G I V E , and SEEM
illustrate different SD lists. The SD form for SEEM
causes the defaul t slot-rule for C O M P to be re-

(LEXICON

JOHN N SG (SD))

HE N PRON SG (SD))

CHAIR N (NM CHAIRS)

WHAT N WH (SD))

LARGE ADJ)

THE DET)

A DET (TEST (NEGF FRAME PL)))

WHICH DET WH)

THAT DET (TEST (NEGF FRAME PL)))

THAT SUBJUNCTION)

IN PREP (SD))

(ALMOST ADV)

(THINK V (VM THINKS THINKING THOUGHT

(SD (COMB)))

GIVE V (VM GIVES GIVING GAVE GIVEN

(SD (IOBJ) (OBJ)))

(SEEM V (VM SEEMS SEEMING SEEMED)

(SD (COMB (FLR ADJ))))

(HAVE V AUX (VM HAS HAVING HAD)

(SD (OBJ))

(TEST (AND

(ISF ($ VERBI) EN)

(NEGF FRAME DO-AUX MODAL)

(ADDF PERF))))

(DO V AUX (VM DOES DOING DID DONE)

(SD (OBJ))

(TEST (AND

(NEGF ($ VERB I) SG ING EN ED)

(NEGF FRAME MODAL PERF PROG PASS

(ADDF DO-AUX)))))

Figure 4. Sample from the lexicon.

placed with (F L R ADJ) , so that sentences like John
seems happy are accepted.

The most complicated entries are for verbs that
can be auxiliaries. Examples for H A V E and DO are
shown. These entries include the main verb use as
well as the auxiliary verb use. The SD form is pert i-
nent for the former, and the TEST for the latter.
For example, the filler-test for the auxiliary H A V E
requires that the next verb to the right (VERB 1) be
a past participle.

Figure 5 shows a sample parse tree, for the sen-
tence Which chair did Mary think John said he al-
most bought? In the tree, subordinat ion is shown by
indentation. The root node for each f rame is la-
beled by i t s ca tegory and features. Fo r lexical
frames, the one daughter of that node is the word
itself. For phrase frames, the daughters are basical-
ly of the fo rm

slot
filler

and these are given in order of actual occurrence in
the sentence. If a slot is a raised slot, for example
the first slot G0019 for which chair, then its

42 Amer ican Journal of Computational Linguistics. Volume 6, Number 1, January-March 1980

Michael C. McCord Slot Grammars

VP DO-AUX QUESTION
G0019 (OBJ COMP COMP)

NP SG
DETR

DET WH
WHICH

HEAD
N SG

CHAIR
AUXL

V AUX ED
DID

SUBJ

NP SG
HEAD

N SG
MARY

HEAD
V

THINK
COMP

VP
SUBJ

NP SG
HEAD

N SG
JOHN

HEAD
V EDEN

SAID
COMP

VP
SUBJ

NP SG
HEAD

N PRON SG
HE

ADVL
ADV

ALMOST
HEAD

V EDEN
BOUGHT

Figure 5. Parse tree for the sentence, "Which chair did
Mary think John said he almost bought?"

"origin" is shown beside it. The origin (OBJ COMP
COMP) means that the original slot from which it
came was OBJ, and the path to it is through two
COMP's. This means that the slot G 0 0 1 9 came
from the third-level embedded VP he almost bought,
so which chair is the object of bought.

Six additional examples, of varying complexity,
are given in the Appendix to this paper which is
included in the microfiche supplement.

9. Summary

We have offered a grammatical system and par-
ser organized around slots and slot-filling, with a
constrained use of states. The parser is driven by
the maintenance of the available slots list, ASLOTS,
consisting of those slots that may yet be filled. Two

advantages of this were emphasized. One is that
ASLOTS permits the expression of dependency rela-
tions in a natural and direct way. The other is that
ASLOTS serves as the vehicle for the raising opera-
tion, which appears to be applicable to several gram-
matical constructions, such as WH-movement .

The parser is bot tom-up and phrases are con-
structed middle-out from their head words. This
scheme is instrumental for both of the above advan-
tages of ASLOTS. First, the dependency informa-
tion associated with head words in the lexicon helps
initialize ASLOTS appropriately. Second, middle-
out construction is appropriate because raised slots
might be filled on the left or the right.

The system seems to represent a good combina-
tion of data-directed and goal-directed processing.
The actual lexical data in the sentence not only in-
fluence the initialization of ASLOTS lists, but also
control whatever agreement checks may be neces-
sary (such as subject-verb agreement and morpho-
logical requirements of auxiliaries). Once the AS-
LOTS list of a phrase frame is determined, it forms
a direct and central expression of goals for filling
out the frame.

References

Cook, W. A. (1969). Introduction to Tagmemic Analysis.
Holt, Rinehart and Winston, New York.

Heidorn, G. E. (1972). Natural Language Inputs to a Simula-
tion Programming System. Technical Report NPS-
55HD72101A, Naval Postgraduate School, Monterey,
California.

Heidorn, G. E. (1975). Augmented phrase structure gram-
mars. In Theoretical Issues in Natural Language Processing,
B. L. Nash-Webber and R. C. Schank (Eds.) , pp. 2-5,
Association for Computational Linguistics.

Hudson, R. A. (1971). English Complex Sentences. Nor th-
Hol land, Amsterdam.

Hudson, R. A. (1976). Arguments for a Non-transformational
Grammar. University of Chicago Press, Chicago.

Hudson, R. A. (1977). The power of morphological rules.
Lingua, 42, 73-89.

Kac, M. B. (1978). Corepresentation of Grammatical Structure.
University of Minnesota Press, Minneapolis.

McCord, M. C. (1975). On the form of a systemic grammar .
Journal of Linguistics, 11, 195-212.

McCord, M. C. (1977). Procedural systemic grammars.
International Journal o f Man-Machine Studies, 9, 255-286.

Minsky, M. (1975). A framework for representing knowl-
edge. In The Psychology of Computer Vision, P. H. Win-
s ton (Ed.), pp. 211-277. McGraw-Hil l , New York.

Winograd , T. (1975). Frame representations and the
declarative/procedural controversy. In Representation and
Understanding, D. G. Bobrow and A. Collins (Eds.), pp.
185-210, Academic Press, New York.

Woods, W. A. (1970). Transition network grammars for
natural language analysis. CACM, 13, 591-606.

Woods, W. A. (1973). An experimental parsing system for
transition networks. In Natural Language Processing, R.
Rust in (Ed.), pp. 111-154, Algorithmics Press, New York.

American Journal of Computational Linguistics. Volume 6, Number 1, January-March 1980 43

