American Journal of Computational Linguistics 68

A CRITICAL LOOK AT A FORMAL MODEL
FOR STRATIFICATIONAL LINGUISTICS

Alexander T. Borgida
Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A7

SUMMARY

We present here a formalization
of the stratificational model of linguis-
tics proposed by Sampson [13] and inves-
tigate its generative power. In addition
to uncovering a number of counter-
intuitive properties, the results present-
ed here bear on meta-theoretic claims
found in the linguistic literature. For
example, Postal [113 claimed that strati-
ficational theory was equivalent to
context-free phrase-structure grammar,
and hence not worthy of further interest.
We show, however, that Sampson's model,
and several of its restricted versions,
allow a far wider range of generative
powers. In the cases where the model
appears to be too powerful, we suggest
possible alterations which may make it
more acceptable.

69

1. Introduction

Linguistic theories are at least partially interested
in presenting the regularities found in natural languages. Given
the current dominance of the Transformational Generative (TG)
school in the field of linguistics, it seems necessary for
theories competing for attention to possess a formal model. In
addition to the advantages normally derived from presenting
results through a formalism, such as precision, succinctness and
verifiability, one can also comment on the veracity of meta-
theoretic claims. It was using such formal arguments that
Chomsky and his collaborators demonstrated the inability of
finite automata and of context-free grammars to describe all
natural language constructs. Similarly, the formal work of Peters
and Ritchie [8,9] was important in uncovering inadequacies of two
notions of TG theory namely, the "recoverability of deletions
condition" and the "universal base hypothesis",

Finally, since many generative linguists want grammatical
theories which characterize natural languages, they fault any
theory which is ™too powerful" in the sense of being able to describe
languages which clearly cannot be natural languages, such as non-
recursive sets, Furthermore, computer scientists working on
natural languages will have to give in the future more considera-
tion to the work of linguists, especially on "exotic'" languages,
in order to be able to observe a wider range of phenomena. Such

access will be facilitated if the formalismsin which the grammars

70

are presented lend themselves to computer implementation for
purposes such as parsing, testing, etc. This entails, among other
things, that linguists should avoid as much as possible features
which make their grammars generate non-recursive sets, and hence
it is one of the purposes of the present paper to point out such
features and discuss possible ways of avoiding them.

In this paper we will discuss one model proposed for the
stratificational theory cf linguistics. This theory, advanced by
S. Lamb, H.A. Gleason Jr. and their collaborators ([51,[61,[7]),
advocates that languages be described in terms of several sub-
systems, known as strata. Each stratum has its own set of units
and a tactics specifying the "correct" ("allowable") structures
on that stratum. A specific grammar might for example have strata
corresponding roughly to semantics, syntax-morphology and phonology,
although this is by no means standard. Furthermore, the strata

are linearly ordered as levels, and there 1s a realization relation

which connects adjacent strata by attaching to every well-formed
structure on one stratum, zero or more accompanying structures
on the adjacent strata. Note therefore that a particular
utterance has simultaneous expression on each stratum.

In this paper we examine the formal model for stratifi-
cational linguistics proposed by Sampson ([13]). This model uses
rewrite grammars Gl’GZ"" to describe the tactics, while the

realization relation is essentially a rewrite system R acting as a

transducer between the languages of the tactics. More specifically,

71

realization connects adjacent tactics Gj and Gj+1 by matching
sentences u in the language generated by Gj with those sentences

v in the language of Gj+1 which can be derived from u by using
rules from R. An important property of the linguistic realization
relation is the fact that every structure on some stratum can

have only a finite number of "realizates' on the next stratum.
This means that the rewrite system R must be constrained so that
it has no recursive symbols. Such a rewrite system will be called
acyclic.

We investigate here the effect of acyclic rewrite systems
acting as transducers on axiom sets, varying the type of the
derivations and rules allowed.

We prove in this paper that regular languages are
closed under transduction by acyclic rewrite systems, but that
the linéar context-free languages are mapped onto the recursively
enumerable sets. This implies that stratificational grammars
with non-selfembedding tactics would be too weak while those with
even one context-free tactics would be too strong. If the
realization derivation is restricted to be in some sense '"left-
most", then we show that the transduction can be performed by
a finite,state device known as an a transducer. Furthermore, if
productions with null right-hand sides are not allowed in an
acyclic rewrite system then all the derivations can be made left-
most. This provides one possible method of restricting the genera-

tive power of acyclic rewrite systems.

72

By deriving a recursive characterization of the languages
generated with n-strata in terms of (n-1)-stratal languages, we
can show that if the realization is restricted to being leftmost,
then the languages described are homomorphic images of the inter-
sections of the languages generated by the tactics. In particular,
this means that we can find natural families of stratificational
grammars which generate far example the sets recognized in real
time by nondeterministic multitape Turing machines. This result
partially confirms a hitherto unproven claim by Sampson, and
discredits Postal's [11] classiciation of stratificational grammars
as just another variant of context-free phrase-structure grammars.

Finally, we investigate the use of ordered rules in

linguistic grammars and prove that in several models they allow
the generation of sets which are not even recursively enumerable
a clearly unsatisfactory situation.
The remainder of the paper is structured as follows,
In Section 2, we present the formal definitions and notation to
be used, including the formal model for stratificational grammars.
In Section 3, we examine the properties of "acyclic rewrite systems",
which form the principal novel component in our definition of
stratificational grammars. We then return in Sectiom 4 to examine

the generative power of stratificational grammars and relate the

results to linguistics.

73

2. Definitions

We repeat here some important definitions from [127], and
assume that the reader is familiar with the other basic notions
of formal language theory.

A vocabulary V is a finite set of symbols, and we use v
to denote the set of all non-null strings comsisting of symbols
from V; using e to denote the null string, we also define V* to be

v' oy {e}.

A rewrite system RW is a pair (V,R) where V is a vocabulary

and R is a finite set of rules (productions) of the form u -+ v,
%

where u € V+ and v € V ; u 1s known as the left hand side of the

production (lhs.) and v is its right hand side (rhs.).

+ . i i .
A word x ¢ V is said to directly derive or generate in R

another word y e V* (denoted by x =>p y) iff there exist words
u,v,w,z such that x = wuz, y = wvz and u + v belongs to R, Let =+>p
be the transitive closure of =>p> and =*>R its transitive reflexive
closure. A sequence of words WisWos oo e W such that

Wy =>p W, =>p - =>R W is said to be a (free) R-derivation (or

simply a derivation) of W from Wy
3
Given a rewrite system RW = (V,R) and a subset AX of V ,

the language generated by R from axiom set AX with free derivations

is defined to be the set L (AX,RW) = {w|ueAX, u=*>_w}.

R
Given the rewrite system RW = (V,R), define the dominance

relation < on V x V by: d<b iff xby - udv is one of the

productions in R (for some strings x,y,u,v) or if there exists

some ¢ in V such that d<c and c<b. Then RW is defined to be

74

acyclic (abbreviated a.r.) iff the relation < is anti-symmetric

and anti-reflexive.

If u» v is a production in a rewrite system, it will be

called a null rule if v is the null string e, and it will be

called context-free if |u|, the length of u, is 1.

A rewrite grammar G is a quadruple (N,T,S,P) where N and T

are the sets of nonterminals and terminals respectively, S is a
distinguished nonterminal and.Aﬁ = (NuTy P) is a rewrite system.
In this case, if u =*>, w then this is called a G-derivation, or

a derivation in G, and the language generated by ,G,denoted by
L(G), is defined to be the set {t|S =%*> t in G, teT*}. We assume
the reader is familiar with the terminology of type 0 (recursively
enumerable or RE), type 1 (context sensitive), type 2 (context
free) and type 3 (regular) languages, and corresponding families
of grammars and automata. A type 2 grammar will be called linear
if all its productions are of the form A - aBb, where A,B ¢ N,

a,b e Tu {e}, and will be called selfembedding if for some AeN

there is a G-derivation A =*> uAv where u and v are not null,
New languages can be obtained from old ones through such
set operations as union, intersection and concatenation,
One can also define. mappings over strings and then extend
them to sets of strings in the obvious way. One such mapping

is the substitution s which associates with every symbol b of

some alphabet T, a set of words s(b) over another alphabet T';
defining s(xy) = s(x)s(y) and s(e) = e, a substitution can be

extended to strings. If the sets s(b),are regular, finite or

75

e-free then s is said to be regular, finite or e-free respectively;

if s(b) contains a single word then s is called a homomorphism,

and the braces for sets are dropped. A homomorphism h can also

be e-free, or it can be length-preserving, if |h(b)| = 1 for all

symbols b. If | is a family of languages then we use H () and
HO(I_) to represent the families of languages obtained from
elements of | through e-free homomorphisms and homomorphisms

respectively.

One final operation on strings is reversal defined by

Rev(b) = b if |b| < 2 and Rev(xy) = Rev(y)Rev(x).

Ohe can also use automata to perform mappings between

strings. The a-transducer M = (K,Tl,TZ,kO,F,T) is an extension

of the finite automaton, where T1 and T2 are the input and output
w

alphabets, and 7 is a finite subset of K x T1 X T; x K (the transi-
tion set). The relation |- is defined on K X T: X T; by the rule
(k,uv,z) |- (k',v,zx) if (k,u,v,k') ¢ 7. The output of M for
input . word w is one of the strings in the set

{zl(ko,w,e) I—* (k,e,z}, keF}. An a-transducer is said to be

e-output free if for any (r,u,v,s) in t, the string v cannot be null.

A collection of languages A is said to be closed under

the operation o if o(L) ¢ A whenever L ¢ A. A (full) trio is a

family of languages containing at least one non-empty set, closed
under e-free homomorphism (arbitrary homomorphism), inverse

homomorphism, and intersection with regular languages.

76

Finally, omitting detailed justification (see [3]), the

following formal definition captures the essential aspects of the

notion of stratificational grammar, as presented by Sampson [13]:

Definition An n-stratal rewrite grammar (n-RSTRAT) 1s a 5-tuple

RST = (n,TCT,RLZ,V

C,VE), where VC and VB are the set of '"content

units'" and "expression units'" respectively, TCT = (Gl,Gz,...,Gn)

is a vector of n rewrite grammars, and RLZ = (R ,R.,...,R_) is a
n’ 1 n

vector of n+l acyclic rewrite systems. The transduction performed

by such a grammar will be defined by T-RSTRAT(RST) = {(u,v)|w0=ueVE,

% . K.) i
Wn+l-VEVE, there exist wj € L(Gj) such that w.= >wj+1 via Rj

derivations for j = 0,1,...,n}. Its language is described by

L-RSTRAT(RST) = {v]|(u,v) € T-RSTRAT(RST)}.

In this formal model, the grammar is thought of as
transducing "meaning" into '"sound" in the following manner:
starting with a string of '"content units" (expressing the meaning
of an utterance), the realization rewrite rules are repeatedly
applied until a string of "expression units" is obtained. The
realization derivation is constrained by the requirement that for
each tactics there existsan intermediate stage in the realization
derivation which conforms to the tactics specifications (i.e.
belongs tv the language generated by the tactics). The above
formalism 1s based mainly on Lamb's version of stratificational

linguistics; an alternate approack, closer in spirit to Gleason's

model, is presented in [3].

77

3. Generative power of acyclic rewrite systems

To begin with, we remark that the formal definition of
stratificational grammars in [13] allows in the realization system
rewrite rules with null left-hand sides (i.e. rules of the form
e - u). Unfortunately, such rules could be applied to some string
an arbitrary number of times. In our stratificational model,
this would result in any string having an infinite number of
realizates. Furthermore, rules of the form e » u can also be
used to establish context-free dependencies in strings generated
even from singleton axiom sets. For example, if R = ({c,d},{e+cd})
then XL({e},R) = {wIWE{C,d}*, w has the same number of '"c" and
"d" symbolsl}l, which is known to be a non-regular centext-free
Jlanguage. The phenomena described above do not appear to have
linguistic equivalents, and run counter to the stratificational
philosophy which envisages only finitely many realizations for
any structure.

As 1t turns out, 1in practice rules of the form e + u
are only required to introduce in the realization derivation
syntactically determined elements, such as '"do" in questions.

Such insertians need however be performed only once, at the end

of every realization derivation between two tactics. Therefore
they can be accomplished through normal acyclic rules if each

e -+ u in R is replaced by rules v + uw and v + wu for all v =+ w in
R. For this reason, we will continue to use the definition of

rewrite systems which only allows productions with non-null left-

hand sides.

78

We next investigate the effect of a.r. on simple types of

axiom sets.

Theorem 3.1 Let AX be a regular set over alphabet T and let E be

some alphabet disjoint from T. If RW = (V,R) is an a.r. then

*
&f(AX,RW) n E is also a regular set.

Proof Let G = (N,T,S,P) be a type 3 grammar generating AX, and

without loss of generality assume that NG n VR is empty. Further-
more, normalize R so that all its rules are of the form a+bc, a-+e
or bc+d. This can be accomplished in a 3-step process: first,
replace rules of the form u » abv (a,beV, u,VeV*) by rules u + aa,
a » bv where a is a new symbol; repeat this until all rules have
rhs. no longer than two symbols. Next, replace rules of the form
abu + v by ab + a, au » v, until all lhs. of rules are at most two
symbols. Finally, eliminate rules of the form a - b by adding to R

a rule y + zbz' whenever y =+ zaz' is in R,

Our goal is to produce a type 3 grammar such that R-
derivations are "precomputed" in its productions, For example,
if the grammar G originally had productions X+aY and Y-bZ, while

R contained the rule ab+d, then the final grammar would contain

production X-+dZ.

For this purpose, consider the following iterative construc-

tion:

INITIALTZATION: Eet G1 be G; let T' = T v VR'

CONSTRUCTION 1: For every integer i, given grammar Gi = (Ni,Ti,SG,Pi),

construct from 1t a type 3 grammar Gi+1 = (Ni+1,T',SG,Pi+1) as

follows:

79

1. for every aeTi, let P(i.a) be the set of all productions
in Gi which have the symbol "a" on the rhs.;

2. to begin with, let P:i1 contain Pi’ and Ni+1 contain Ni;

3. IF b+cd 1s a production in R, THEN for every A+bB in P(i,b),

ADD to N1+1 a nonterminal [A;B;b>cd], and ADD to Pi+1

productions A+c[A;B;b+cd].and [A;B;b+cd]+dB;
4, IF b+e is in R, THEN for every A-»bB in P{(i,b) ADD production

A+B tp Pi+1;
5. IF bec+d is in R, THEN for every pair of productions A-+bB

in P(i,b), and C+cD in P(i,c), ADD to Pi+ the new production

1
A+dD if B=>"C in G ;

END;

Suppose that we were able to establish that

Z(L(6),R) = U L(G,) (1)

i=1
From the construction it is easy to see that Pi is always a sub-

set of Pi+1 (and hence L(Gi) c L(Gi+1))’ and if

Gm = Gm+1 for some index m (2)

(i.e. no new productions are added to Gm in Construction 1), then

GJ would be equal to Gm for every j > m.

But, if such an m exists then & (L(G)IR) = U L(Gi) = L(Gm)
i=1
and Gm is the type:3 grammar we are looking for. Therefore, it

remains to establish equalities (1) and (2).

To,prove (1), we first define a new type of derivation

("singles, left-right pass") relation "=0>R" as follows:

80

u =Q>R v iff there exists integer n such that for j = 1,...,n

xJ > yj is a rule in R and zj is some string with the property that
u = zoxlzi...knzn and v = 20Y127+Yp2q (if n = 0, then u = v).
We then claim that

L(G,

i+1) = {w]|3 veL(G;) such that v =o>

R wl (3)

This. equality can be demonstrated by straightforward inductions
on, respeetiviiy, fmne Jengths:eof JdJewivatisns im Gi+1, and the
integer n appearing in the definition of =0>p- In both cas€s

the important points are that if A => bB in Gi (A,BeNi, beTi)

then either A => bB in 3541 (by step 2 in Construction 1) or A => uB
if b > uis 1n R (by steps 3 or 4); and if A => bB =*> bC => bcD
in G1 then A => dD in Gi+1 in case bc » d is in R (step 5).

We are now in a position to prove (l). First, suppose that w
belongs to L (L(G),R) and w was obtained from u ¢ L(G) = L(G,) in
an R-derivation with n steps: u = Uy => p Uy =>p ... =>pu =>w,
If we note that for any strings X,y x =>n Y implies x =0>p Y
then by (3) we have for i = 1,...,n that u, e L(Gi). But then
wo=u, must beloni to L(Gn), and hence to i§1 L(Gi). Conversely,

if w belongs to U

1=lL(Gi) then there must exist an index m such that

W € L(Gm). Using (3) it is then trivial to prove by induction on m
that there exists v ¢ L(G) such that v = Vq S0>p V, S0>p...=0>p V. =W
for some'v, ¢ L(G;) (1 = 1,...,m). But in that case w ¢ L(L(G),R)

because by definition x =0>p ¥ implies that x =*>R y for any

strings x,y. This concludes the proof of identity (1).

81

To prove (2), one might try to demonstrate that the
construction halts after some precomputable number of steps. This
approach unfortunately runs into the following problem: the
addition of a new production to Gi in step 4, allows new pairs of
variables B' and C' to be connected by a derivation B'=>*C'; this
may allow new production A'+dD' to be added to Gi+l~in step 5,
which in turn may eventually allow step 4 to add a new rule to
Gj for some j>i, etc.

The above compels us to look for an alternative proof of
(2): exhibiting a grammar G° such that every Gi is a subgrammar
of G°. This would mean that the increasing sequence of grammars
Gl’GZ"" is bounded above, and hence converges to one of its

elements.

To construct G°, remember that by definition of R there
is an anti-symmetric relation < on VR' Using this, we assign to
every symbol in V and every production in R a unique index number,

according to the following algorithm:

INDEXING ALGORITHM:
1. I(b) := 0 for every beV such that there is no deV and dsb;
2. FOR i=0 to |V| DO WHILE not all symbols have an index;
IF I(b)=1i § b+cd is in R, THEN I(c) := I(d) := i+l and
I(b>cd) := i+1;
IF I(b)=i & I(c)<i § bc*d is in R THEN I(d) := i+1 and
I(bc+d) := 1i+1;

82

IF I(b)

=1 § I(c)<i & cb>d is in R THEN I(d) := i+1 and
I(bc+d) := i+l;
IF I(b) = i1 and b»e is in R THEN I(b»e) := i+l;
END

END
By the acyclicity of R, the above algorithm produces a unique
value for every symbol and production. Suppose the highest index
value assigned is n. Then G° will be constructed from G by repeated
modification in n passes through the following:
CONSTRUCTION 2: Let 6° = (N°,T',S,P°) be G initially;
FOR i=1 to'n DO
* in the i-th pass, add to G° all possible productions
representing derivations by index i rules #*/
1. For every symbol 'd' in VR such that I(dj =1,
let P(d) be the set of all productions currently
in Go, with 'd' on the rhs.;
2, IF b»dc (or b»e) 1s in R and has index i (iff
I(b)=1i), THEN alter ¢° in exactly the same way as in

steps 3 (or 4) of CONSTRUCTION 1; (except that

PO

0 .

and N~ are used instead of Pi+1 and Ni+1)'

3. IF bc»d is in R and has index i, THEN for every pair
of productions A>bB ia P(b) and C-»>cD in P(c), ADD

to P° the new production A»dD (whether or not

B=>*C in G°).

83

Note that in the i-th pass the only productions added to G°
have on the rhs: a terminal symbol of index strictly greater than
i. Therefore, in successive passes through the loop after the i-th
one, P(d) remains unchanged for all symbols "d" with L(d) < i.
Furthermore, the output G° remains unchanged if passed through
CONSTRUCTION 2 a second time.

Secondly, note that if some grammar K remains unchanged by
CONSTRUCTION 2 then it does so through CONSTRUCTION 1 as well,
because every rule in R is eventually considered in CONSTRUCTION 2,
and in each case at least those productions which would have been
added by CONSTRUCTION 1 are added by CONSTRUCTION 2.

Therefore, since G is a subgrammar of Go, Gi will be so for

every i greater than 1, and the proof is completed. O

Increasing the range of sets from which we choose the axiom

sets, we obtain the following:

Theorem 3.2 Let G = (N,T,SG,PG) be an arbitrary type 0 grammar.

Then there exists a linear context-free language LING, and an a.r.
RO (which is dependent only on the set N u T), such that
%
L(G) = &L(LING,Ry) n T

Proof (Notational convention: let V = N v T, and if e{-,~,v} then

use V to represent the set {d]aeV}, and w = él...é. if w = al..:aj.)
It is known ([1]) that there exist two linear context-free

languages L1 and LZ’ as well as a homomorphism h, such that

L(G) = h(L1 n Lz). We have constructed ([L37) pairs of new such
languages:

84

- - - ~ - - - - "~ ~ o~ ~ W *
= %) 9 % %S %! % ;
Ly = ({554%8%) u {%vy...%v (3S.%8%v ... %v, . %zim>0, 2T,
+ .
vieVG,Rev(vi_l) = Voi-1 for i =1,...,mn-1}
and
- - - Y .Y ~ v -+ .
L2 = {%wl%...wn%$%wn+l%...M2n|n>0, wieV for i<n,

and Rev(wn_i) => for i = 0,...,n-1}

G "n+i+l
In this case, the homomorphism h is defined as h(x) = x 1f xeT, null
otherwise. Qbserve that Ly is dependent solely on the vocabulary

V and 1t only checks whether the strings around the central

“%éG%$§' are mirror images of each other. But the following
rewriting system does exactly the same job, and, in addition,

performs the homomorphism h:

R, = {%S

0 asa for aeT}

G§$%+e, 5%+e, xx»e for all xeV,

Then T* n <Z(L2,R0) = h(L1 n Lz) = L(G) and by observation it is
clear that Ro'is acyclic. 0
This result 1is surprising, especially from a linguistic point
of view, and demonstrates the power of acyclic rewrite systems.
Since it is undesirable that linguistic mechanisms be so powerful,
we will attempt to put bounds on them. One way to do so is to
restrict the places where steps in derivations can occur.
Essentially, in a k-leftmost derivation there is a k-symbol
wide "window" on the derivational forms where rewriting can occur,

and this window is only allowed to move to the right.

85

Definition 3.1 Let w, = w, => ,,. => W be an R-derivation, where

0 1
for i = 1,...,n productions ui+vi are used to obtain w. = X.v.u,
*
= (XL ,Y. W, . i his i aid
from We g xiuiyi(xl,yl,wlev) For any integer k, this is s
to be a k-leftmost derivation if for all i = 1,...,n-1 there exist

*
S and ti in V such that x.

1 < n < .
; tis1 with Isil < k and |ti| < |t

1+1l
This definition of R-derivations gives rise to the new language
L(AX,RW,k-1d) = {w]|xeAX, x=>§w in k-leftmost derivation}.

Theorem 3.3 Given an a.r. RW = (V,R), there exists an a-transducer

0, such that L (AX,R,k-1d) = @R(AX).

Proof By the acyclic nature of the rules in R, any string of
length k can be rewritten into a string of length at most kdt where
d is the length of the longest rhs. of a rule in R, and t is the.
nunber of symbols in V. Therefore, if we define a Turing machine
transducer OR which simulates on its wotrking tape k-leftmost R-
derivations, then 1t need have only a bounded, finite-length tape.
But this can obviously be kept in a finite memory, and hence ©

R
can be made into an a-transducer. 0

Therefore, leftmost constraints on R-derivations lead to a
much more restricted version af rewrite systems becduse all trios
(in particular LINEAR-CFL) are closed under a-transduction.

A second method of bounding the power of a.r. is to restrict

the sform of the productions allowed in R.

Theorem 3.4 If RW = (V,R) is an a.r. with no null productions,
then for every axiom set AX, L(AX,RW) = Z£(AX,RW,k-1d) for some

constant k.

86

Proof Suppose R has r rules involving t symbols and let c be
the length of the longest lhs. of a production. Now observe

. t
that if v =>; w, then no symbol i1n w can have more than k=c ancestors

in v, all of which must be adjacent in v (i.e. the presence of a

symbol in w can depend only on the presence of at most k adjacent
symbols in v). This value of k can be obtained as follows: since

the rules are acyclic, new symbols must appear after every application
of a production and hence every symbol in w can be the result of
applying at most t.productions; since each of these uses at most c
symbols as context, we get the value of ct. The adjacency require-
ment comes from the condition that there be no e-rules in R.

Consider new some R-derivation tXv =%» tt (t,%,VEV*, XeV), where

no symbol in t is rewritten, but X is. We will prove by induction

on the length of the dervivation that there is an equivalent k-

leftmost derivation.

Basis. If the derxivation has 0 ©r 1 steps then it jis

clearly k-leftmost.

Induction step. Break up the dérivatiom into steps, to

seeé where X 1s rewritten:

tXv 6*> tXwy => tizv ="> tt
1

where we used rule Xw " Yz in step (:).

Now find the last production in (:) which produces only

non-ancestors of Y.

(a) If there is no such production, then by our oapening

remarks (:) must be k-leftmost, and hence (:) can be made k-leftmost

by induction.

87

(b) Otherwise, suppose that the last such rule was a+p. Then
we claim that the derivation in further detail is

* - _* oy - _*
tXv ="> txulag2<f; tXu,pu, ="> tqulpuz, > thulpu2 > tt

£
The signifitant part of this claim is that no prdduction in (:)
affects the string pu,, and this is true by our choice of a—+p

as the last production generating non-ancestors of Y, hence of

Yz, and the necessary contiguity of ancestors. But now note that

step (:) can be postponed to yield the following reordered

derivation:

=__,* =:"~ ~ —_ ~ . ~ _=* ~
tXv > tXulocu2 > tqulocu2 thulauz(:; thulpu2 > tt

By repeating the construction in part (b) on (:) = (:)(:)
this time (instead of (:)(:)(:)) we will eventually (by a
second induction, if desired) achieve case (a), and thus
complete the proof. #

Note that in the above proof we had only excluded the use
of null rules (the symbol p could not be null) so that other
productions with left-hand sides longer than right-hand sides
are still allowed in R.

Finally, we include for completeness the following result
whose proof is trivial.

Proposition 3.5 Let RW = (V,R) be an a.r. which has only

context free rules. Then there exists a finite substitution Sp

such that for every axiom set AX, L (AX,RW) = sR(AX). #

88,

4, Stratificational Grammars

We now réturn to the notion of stratificational grammar which
led us originally to consider acyclic rewrite systems. To begin
with, note that the original definition of n-RSTRAT grammar has
®o constraint on the derivations occuring on the tactics, while in
practice linguists appear to view the derivations as being leftmost
(1.e. the leftmost nonterminal is the one rewritten). Therefore,
throughout the following discussion we will examine the
differences arising out of this variation.

First, we present a recursive characterization of the
n-RSTRAT languages. For this purpose, define the language generated
by a 0-RSTRAT grammar RST® = (0,(),(RO),VC,VE) as L-RSTRAT (RST?)
;ﬁ(Vé;Ro) n V;. Then the following theorem is an obvious conse-

quence of the definition of L-RSTRAT:

Theorem 4.1 If RST = (n’(Gl""’Gn)’(RO""’Rﬁ)’VC’VE) is an
n-RSTRAT grammar, and TOP(RST) is the (n-1)-RSTRAT grammar
(n'l’(Gl""’Gﬁ—l)’(RO""’Rn—l)’VC’Tn)’ then L-RSTRAT(RST) =

*
L (L~RSTRAT(TOP{RST)) n L(G),R) n V.

Using Theéorems 4.1, 3.1 and the known closure properties
of the reguldr languages, it is casy to see that if all the tactics
Gli"”Gh,Of an n-RSTRAT grammar arc non-sclfcmbedding then the
stratificational grammar can generate only a regular language.

On the other hand, as soon as one of the tactics is allowed

to be of type 2 and sclfembedding, then by Theorems 4.1 and 3.2

89

the. RSTRAT grammar can geherate an arbitrary RE set. Even.more
surprisingly, this can be accomplished using a '"universal
realization relation", meaning that to obtain any RE set we need
only vary the tactics, not the realization rewrite system. This
situation is similar to that found for TG in [9], where the
transformational component can be varied while the base grammar is
kept fixed.

Therefore, in this stratificational model there seems to
be no alternative between the insufficient descriptive power of
finite.automata and the excessive power of arbitrary Turing
machines. These results hold even if the derivations on the
tactics are constrained to be leftmost. We must therefore search
for further limitations on the realization process. In section 3
we considered several possible ways of doing this, namely
eliminating null or context-dependent rules, or making the
realization derivation leftmost. In linguistic grammars there is
a clear need for context-dependent realization rules, hence these
cannot be eliminated. Although in Sampson's model null realiza-
tion rules appear to be needed (more on this below), it is
possible to envisage alternative models which avoid them. By
Theorem 3.4, the absence of null rules is equivalent to restllctfzg
the realization derivatign to being k-leftmost. Furthermore,
based on current linguistic literature there appears to be no
objection to limiting the redlization to being k-leftmost.
Therefore, we will examine the gemerative power of n-RSTRAT

grammars under this constraint.

90

Theorem 4.2° I£ STR = (n,CGl,...,Rn),(RO,...,Rn),VC,VE) is an
n-RSTRAT grammar with realization derivations restricted to be
k-leftmost for some integer k, then there exist homomdbrphism h
and languages Ll""’Ln such that for i = 1,...,n L(Gi) is of the

same type' as.L., and L-RSTRAT(STR) = h(L; n...n L).

Proof The proof is based on a number of results about:trios,

which we summarize here from [4]:

(a) For i = 1,...,n the families of languages of the same
type as L(Gi) are trios.
(b) If || is a trio then H(L) is a trio and HO(L) is a full trio.
(c) If Ll""’Ln are trios then H(H(L1 Neeon Ln-l) n Ln) is
a trio and it is equal to H(I_1 Ne..n Ln-l n Ln); similarly
'HO(H(L1 Neven Ln-l) nLn) = HO(I_1 Neeoh Ln—l n Ln) is
a full trio.
(d) trios are closed under intersection with regular sets and
e-output bounded a-transductions, while full trios are
also closed under arbitrary a-transduction.

.We now prove the. theorem by induction on n.

Basis. For n=1, by Theorems 4.1 and 3.3 there exist a

— * Y * -
transducers Gl and OO such that L-RSTRAT(RST) = @l;GO(VC)nL(Gl))nVE,

then our theorem holds by notes (a) and (d) above with h being the

identity map.

Induction step. For the,case n+l, by Theoremsad.l and 3.3

there exiksts a-transducer ®n¥1 such that L-RSTRAT(RST) is equal to

%
0, ,1 (L-RSTRAT(TOP(RST)) n L(G_,,)) n Vg. (4)

! Meaning type 3, type 2, type 1, type 0, linear language.

91

But by induction, there exist homomorphism h'" and languages

"
Ll"

Substituting this in (4) and applying notes (a), (b) and (c) we

.,,L; such that L-RSTRAT(TOP(RST)) = h"(L; n...n~L;Q.

find a homomarphism h and languages Lr,...,L of the same type

n+l

asILH,;..,LH and L(anl) such that L RSTRAT(RST) = h(L1 ﬂ...nLn+1).

Remark that by Theorems 3.4 and 3.5 the same result holds
in the case when the realizations do not contain null rules, and by
examining the above proof it can be seen that the homomoxrphism h

can be restricted to being e free in this case.

The following converse to Theorem 4.2 can be easily

established:

Theorem 4.3 Given homomorphism h from T to T', and rewrite

grammars Gl""’Gn with terminal alphabets T, then for i = 0,...,n

there exist context-free acyclic rewrite systems Ri such that

L-RSTRAT((n, (G, .- +,6.), (Ry,-++,R), T,T") = h(L(G)n...aL(C,)).

Proof For j<n, define Rj to be {a+a|aeT}, by the definition of
RSTRAT-derivations this will simulate the intersection of the
languages generated by the tactics. Finally, define R, to be

{a+h(a)|aeT}, thus performing the homomorphism on the intersection. #

To begin with, the above theorems partially confirm Sampson's
hitherto unproven claim ([13: page 111) that stratificational
languages are the Tesult of intersecting the languages of the

tactics. Note however two important qualifications to this claim:

92

the realization derivation must be k-leftmost and a homomorphism
must be applied to the intersection of the languages.

Theorems 4.2 and 4.3 show that with k-leftmost realization
derivations, the type i languages (i = 1,2) can be obtained by
using a type i grammar on one of the tactics, and making the
other ones non-selfembedding. If all the tactics generate
context-free languages (as in the case when tactic-derivations
are leftmost) then n-RSTRAT grammar can generate the homomorphic
intersections of the CFLs. For n=2, this is known to equdl the
RE sets if null realizations are allowed; if null realization rules
are not allowéd then for n>3 the n-RSTRAT grammars generate the
family QUASI of sets recognized by nondeterministic Turing
machines in real or linear time ([2]). These observations
demonstrate that n-RSTRAT grammars can be appropriately modified
so that they generate various language families intermediate
between the-regular and RE sets., Unfortunately, even when the
realization derivation is restricted to being k-leftmost, 1-RSTRAT
grammars with context-sensitive tactics and 2-RSTRAT grammars
with context-free tactics can generate the RE sets, unless
null realizations are restricted. The basic problem with
restricting null rules lies in the pronounced bias of this model

towards the realization of terminal units from one tactics to the

next. In practice, in order to describe linguistic phenomena it is
necessary to hawve information about the entirc derivation process

on some tactics. Sampson accomplishes this by introducing '"pseudo-

93

termihals" into strings; for example, if the application of
production x+y is to be noted for later use, then either rule x-py
or x+yp would be used in the tactics to introduce p as a marker

of the occurrence of x+y. The chief drawback of this approach is
thét the "pseudo-terminals" such &5 p must eventually be deleted,
making null rules necessary. One possible solution may be to dis-
cover some bound on the number of null rule applications needed,
resembling the "cycling function™ proposed by Peters and Ritchie
([91). Another solution is to consider a new formal model which

allows realization to access umniformly all parts of the derivations

on tactics; this approach is considered in [3].

Before concluding, we take a brief look at thc problems

raised by one addition to the basic model discussed so far,

ndmely ordered rules. It has often been found useful in

linguistic descriptions to use rules of the form "A+u if some
condition C holds, otherwise A>v'; basically, these types of
rule§ avoid stating the negation of condiition C, which may be
cumbersome. In certain stratificational descriptions, this has
lapsed into the use of rules of the form "A+u if this can lead
to a completed derivation, otherwise A»v'". This notion is
formalized by Sampsoa through the assignment of "weights" or
"preference values" to certain rules. Thus A+u may be given
value 1 while A»v receives value 0, and these values are

accumulated throughout the derivation, At the end, only those

expression strings resulting from some content string are taken

94

which have derivations with maximal preference values. The
fundamental problem with this use of "ordered rules'" is that

even in context-sensitive grammars it is in general recursively

undecidable whether a certain derivation can be successfully

completed or not. In fact, we show that using "ordered rules'

we tan geneTate even non-recursively enumerable sets, an obviously

undsirable situation.

Theorem 4.4 There exists a context-sensitive grammar G with one

"ordered rule" which generates a non-RE language.

Proof The proof rests on the well known result that there exists

an RE language L° over some alphabet T, whose complement is not RE,

and that there is a type 1 grammar c° = (NQ,TO,SO,PO), where
° = Ty {b,#}, such that L(GO) = {W#bi(WQIWeLO, i(w) 1s some
integer, depending on w } ([127). Consider the grammar

G' = (N',T',S',P') where N' = N° vy T° y {V,8',Z}, &' =T y T,
P' contains P° and additional productions as described below.
The grammar G' behaves informally as follows:

(a) from S', we generate some string wS' such that WeT*,
using productions from £S' + aS'|aeT};

(b) then we apply the ordered rule " S' = Ys® with weight 1,
S' + 7 with weight 0"; the plan is that the new nonterminal Y can
be rewritten into a terminal, ¥, 1f and only 1f Y appears 1n a
string belonging to {wYw#} {b}* (i.e. 1ff rules of G° can be

used to rewrite S° into some w#bJ, where w is thc same as the guess

made in ({a)). Once some derivation from s° 1s completed, it is

95

clear that context-sensitive rules can be,used to check out the
apove condition for Y. In addition, the same rules can place
"bars" over all the symbols thus checked, resulting, if successful,
in a sentence of the form whwib.

(c) Z on the other hand simply travels across the string w
and places 'dots" on top of every symbol, using rules from
{sZ » Z&|seT}

The result will be that L(G') = {ﬁ#ﬁﬁbjlweLo} u {W|w¢L0}.

Suppaose that L(G') 1is RE, and let h be the homomorphism which
deletes all symbols not in T, and removes the dots from the
others. Then h(E(G')) is also RE because the RE sets are closed

under homomorphism; but h(L(G')) is the complement of Lo, and

thus not in RE by our choice of L°. Therefore by contradiction,

L(G') is not RE,

A similar proof can be given for stratificatienal grammars
with two or more context-free tactics. These results draw
attention to the need to redefine the notion of "ordered rule"
in stratificational usage, and point out that care must be taken
whenever fqormalizing aspects of linguistic practice.

In conclusion, our investigation of the formal properties
of the stratificational model proposed by Sampson revealed certain
unintuitive properties which make it less desirable as a tool for
natural language description. Thus, the use¢ of realization rules

with null lcft hafd sides was shown to allow unbounded number of

96

realizations for certain strings. More significantly, we showed
that n-RSTRAT grammars with even one tactics allowing self-
embedding could generate all RE sets. Since there are well known
problems raised by this possibility, most significant being the
inability to decide grammaticality, we identified a linguistically
acceptable restriction on the realization, namely k-leftmost deriva-
tions’, which led to improvements in some situations. Under this
additifonal constraint, classes of n-RSTRAT grammars were shown.to
variously generate the context-free languages, the Quasi-realtime
languages and the context-sensitive languages. Unfortunately, even
in this case n-RSTRAT grammars could generate non-recursive sets,
unless null realizations were restricted, and we discussed the
problems inhepent in this approach. Finally, we examined the
definition of "ordered rules'" used in some stratificatidnal
grammars, and formalized by Sampson, showing that it allowed the
generation of even non-RE sets with type.1l tactics.

The above formal results about the generative power of
stratificational grammars hopefully answer the requests of critics
such as Pit'ha ([101), and demonstrate the inaccuracy of
Postal's classification of stratificational grammars as$ simply
variants of context-free phrase structure grammars. The Tesults
also indicate some of the problem arecas in this formal model for
stratificational linguistics. We emphasize though that the problems
are specific to this particular formalism, and should not be taken
ags condemnations of stratifica‘tional linguistics in gencral, since

there are other stratificational medels which aveid these pitfalls-.

97

Acknowledgements

I would 1like to thank Professor Ray Perrault for his

much appreciated advice and help both during my graduate student

career and after it. I am also grateful to Teresa Miao for typing

this paper and to Peter Schneider for proof reading it.

References

(1] Baker, B. and R. Book (1974). "Reversal Bounded.Multi-pushdown
Machines'", J. Computer Systems Science - 8, 1974, 315-332.,

[2] Book, R.V. and S.A. Greibach (1970). "Quasi-realtime Languages",
Math. Systems Theory - 4, 1970, '97-111,

[3] Borgida, A.T. (1977). “Formal Studies of Stratificational
Grammars', Ph.D. Dissertation, University of Toronto, also
Technical Report No.ll1l2.

[4] Ginsburg, S. (1975). Algebraic and Automata-Theoretic
Properties of Formal Languages, North-Holland Publishing Co.

[51 Gleason, H.A. Jr. (1964). "The organization of language: a
stratificational view'", Monograph Series on Language and-
Linguistics - 17, p.75-95, Georgetown University.

m
(@)Y
=i

Lamb, S. (1966). Outline of Stratificational Grammar,
Georgetown University Press, Washington. g

[7] Lockwood, D.G. (1972). Introduction to Stratificatienal
L1ngu15t1cd, Harcourt Brace Jovanovich,.Inc.

[8] Peters, P.S. and R,W. Ritchie (1971). "On restricting the

base component of Transformational Grammars", Information and
Control - 18.

[9]1 Peters, P.S. and R.W. Ritchie.(1973). "On tlie generative

power of Transformational Grammars" Information Sciences - 6,
£9-83, -

(107 'Pit'ha, P. (1974). "On a new form of Lamb's stratificational
grammar', "Siovo a Slovesnost - 35, p.208-218; translated from
the original Czech by D.G. Tockiwood.

98

[11] Postal, P. (1964). Constituent Structure: A Study of
Contemporary Models of Syntactic Description, Indiana

University, Bloomington, Ind. First appeared in Int. J. Amer.
Linguistics - 30.1, part 3.

{121 Salﬁmaa, A. (1973). Formal Languages, Academic Press,,New
York.

[13] Sampson, G. (1970). Stratificational grammar: Definition

a
and an Example, Janua Linguarum, Series Minor: 88, The Hague
Mouton.

