American Journal of Computational Linguistics Microfiche 52

A COMPUTATIONAL TREATMENT

OF

COORDINATE CONJUNCTIONS

CaroL RAZE

Linguistic String Project

New York University
New York 10012

Copyright © 1976

Association for Computational Linguistics

SUMMARY

The present paper describes a computational solution to
the problem of locating words that are zeroed under conjunc-
tion. In this solution, which is based on general properties
>f conjunctional constructions, a mechanism locates zeroed
elements in the conjunction strings and cross-references them
with respect to elements in the head construction. Constraints
can then be applied to elided conjuncts as though they were
expanded, and transformational expansion, which reconstructs
the complete sentences underlying conjunctional occurrences,
can be carried out straightforwardly by following the pointers
which have been set up.

!

The main innovation is called "stacking''. It is a non-
deterministic programming device which causes restrictions
(i.e., subprograms applying detailed constraints) to be re-

executed on conjoined segments whenever the restriction 1is

inovked on an element which has a conjunct.

S U S G S S .

CONTENTS

COMPUTATIONAL TREATMENT OF COORDINATE CONJUNCTIONS

The definition of conjunction strings

Restrictions under conjunctions;
Less common deletion forms
Implementation

References

Acknowledgment

Appendix - The LSP parsing system

stacking

20

30
31
32

A COMPUTATIONAL TREATMENT OF COORDINATE CONJUNCTIONS
Carol Raze

One particularly intricate problem in the computer parsing of natural
language texts is the complexity introduced into the parsing system by con-
junctions. This complexity is due to the richness of conjunctional construc-
tions and to the material implicit in sentences containing conjunctions. The
computational problem can be divided into three parts: (I) generating parse
trees which cover the occurrences of conjunction-headed strings in sentences;
(II) locating words in the sentences which are repeated implicitly in a
"zeroed," i.e., elided, form in particular positions in conjunction strings;
and (IIT) reconstructing the complete sentences underlying conjunctional
occurrences when the application requires such an expansion.

A generalized algorithmic solution to problem (I) was provided over
a decade ago by the New York University Linguistic String Project (LSP) in the
framework of linguistic string analysis (Sager et al. 1966, Sager 1967, Raze
1967), and similar devices have been described more recently, €.9., by Woods in
the framework of augmented transition networks (Woods 1973). The present
paper describes a computational solution to problem (II), locating the words
that are zeroed under conjunction. In this solution, which is based on gen-
eral properties of conjunctional constructions, a mechanism locates zeroed
elements in the caonjunction strings and cross-references them with respect
to elements in the head construction. Constraints can then be applied to
elided conjuncts as though they were expanded, and transformational expansion,
which was problem (III) above, can be carried out straightforwardly by fol-
lowing the pointers which have been set up.

The main innovation is called "stacking." It is a nondeterministic

programming device which causes restrictions (i.e., subprograms applying

detailed constraints) to be re-executed on conjoined segments whenever the
restriction is invoked on an element which has a conjunct. Since the con-
straint usually applies to a combination of words in the main string and in
the conjunct, the device must ensure that the proper grammatical relation
holds between these werds. That is, it treats these separated words as a
single linguistic entity, obtaining the effect of a full expansion of the con-
junctional occurrence without carrying out the physical rearrangement and
copying or the parse tree. The strategy of treating ellipsis in two steps
(locating deleted elements and later carrying out the physical expansion) is
important for a solution to conjunctions for several reasons. First, it is
costly and often fruitless to expand a conjunctional string until one is sure
one has a good parse. Second, to get a good parse one has to execute restric-
tions on the generated parse tree.including the conjunction subtrees, and this
requires locating deleted eléments. And third, the decision as to whether
conjunctional constructions should be expanded or not is application specific,
This article is divided into four sections: 1. The Definition of
Conjunction Strings; 2. Restrictions under Conjunctions; Stacking; 3. Less

Common Deletion Forms; and 4. Implementation. An appendix describes the LSP

system.

1. THE DEFINITION OF CONJUNCTION STRINGS

Constructions containing coordinate conjunctions CONJ have the overall
form: A CONJ B, where A and B are structuresof the same type in the gram-
mar. In linguistic string grammar, A and B are particular elements or
sequences of elements in defined strings of the grammar. An element or a
sequence of elements in a string occurrence may be conjoined by a conjunctional

string which consists of the conjunction followed by another occurrence of the

same type of string element (or elements) that precedes the conjunction. In

Hearsay and rumors can ruin careers we have and rumors (AND + SUBJECT) con-

joined to Hearsay (SUBJECT) in the ASSERTION string, which consists of the
elements SUBJECT + TENSE + VERB + OBJECT. (See Appendix for string defini-

tions.) And in Rumors can ruin careers and can cause much hardship we have

and can cause much hardship (AND + TENSE + VERB + OBJECT) conjoined after

Rumors can ruin careers (SUBJECT +'TENSE + VERB + OBJECT).

Computationally, to include all the conjunctional combinations of a
large grammar in the grammar definitions would complicate the grammar and
make it immense. Instead, an interrupt mechanism can be used to achieve the
same result.* An interrupt occurs when a conjunction is reached while parsind
a sentence. When an interrupt occurs, a conjunctional node is attached to the
part of the tree being built. To illustrate, a simplified tree of the type the

LSP system would generate for the noun phrase Hearsay and rumors hastily printed

is shown in Fig. 1. After Hearsay is matched as a noun, an interrupt occurs,
and the special process node ANDSTG is attached to the right of Hearsay. How-
ever, a restriction of the LSP grammar limits the insertion of a special pro-

cess node to occurring only in LXR type sequences or im strings,+ and therefore

*The mechanism described here for generating conjunction strings was first pro-
grammed by James Morris for the 1966 IPL version of the LSP system (Sager et
al. 1966), It was expanded in the FAP version of the LSP system, programmed
by the author (Raze 1967), and is also part of the current FORTRAN implementa-
tion by Ralph Grishman (Grishman 1973). As noted above, the LSP systém is not

the only system to employ a dynamic device for generating conjunction parse

trees.

+An LXR definition consists of three elements: a position for the left adjuncts
of X, a core position for the word class X, and a position for the right adjuncts

of X. See Appendix for a definition of the term "string" as used formally in

the LSP grammar.

FIGURE 1

Parse tree of noun phrase: Hearsay and rumors hastily printed

LNR
lEN NVAR ANDSTG - 3N
x *N AND Q-CONJ |VENPASS
Hearsay and NVAR LVSaA LVENR - Eé&w,E§§SOBJ “§Y_-(§A
*N DSTG ILV *VEN RV
rumors ‘*D printed
hastily

ANDSTG is rejected in the lowest level. This restriction avoids various re-
dundancies created by conjoining at intermediate levels and regularizes the
points of conjunction in the parse tree. When insertion fails, the parser
detaches the special process node and continues parsing as if no interrupt
had occurred. Another interrupt may occur, however, after the next element
in the tree has been satisfied. Thus for the noun phrase in Fig. 1 an inter-
rupt occurs after NVAR is satisfied and ANDSTG is attached to the right of
NVAR. ANDSTG consists of and followed by the general conjunctional string
Q-CONJ. Q-CONJ contains a restriction which generates a definition for Q-GONJ.
Its definition consists of a set of alternate values: the first value is the
element to the left of the inserted node, the second consists of the two
elements to the left of the inserted node, etc. Thus, in Fig. 1 Q-CONJ is
NVAR (rumors). The parser resumes by constructing element RN of LNR, Here

the right adqjunct hastily printed adjoins the conjunction of hearsay and rumors.

Another analysis for the noun phrase hearsay and rumors hastily printed is shown

in Fig. 2. 1In this case hearsay has no right adjunct and Q-CONJ consists of

the elements NVAR and RN (rumors hastily printed). The difference in these

two trees shows the ambiguity. in the given sentence.

FIGURE 2
Another parse tree of noun phrase:

Hearsay and rumors hastily printed

LNR

1LN NVAR RN ANDSTG

, M“Mmahwwwmﬁ
!*N AND CONJ

Q-
Hearsay lNVAR

i %N 'VENPASS
1

[S

rumors LVSA LVENR SA PASSOBJ RV SA

& - -

R UPRRUNNRWUSNP N N SOOI L]

DSTG [LV *VEN RV

s e g e e~ g

J*D printed

hastily

2. RESTRICTIONS UNDER CONJURITIONS; STACKING.

A sentence with a conjunction presents a problem for the application of
detailed constraints to the parse tree (restrictions), an essential part of
the parsing process. The tree structure will be different from that assumed
by the restriction; conjunctional strings will have been inserted and the
conjunctional strings themselves may be truncated versions of defined strings.
To appreciate what this problem means, one must keep in mind that a grammar
like that of the LSP for processing English text sentences is very large by
comparison with grammars used in most other natural language processing sys-
tems, which are directed to particular subsets of English. The LSP grammar
consists of approximately 3500 lines. The restrictions comprise by far the
largest part of the grammar, and without them, text parsing-is out of the
question. In addition, we have found that roughly one third of all text sen-

tences contain coordinate or comparative conjunctions, many times in complicated

interrelation. It is therefore essential that there be a means for executing
restrictions on sentences containing conjunctions.

One solution to this problem is to rewrite all the restrictions so that
they test for conjunctions and accommodate truncated segments. This was done
in earlier versions of the LSP parser but that involved a tremendous amount of
detail and both increased and c¢omplicated the grammar enormously. As an alter-
native, in some cases the sentence can be expanded so that the restrictions
operate on complete strings. But in other cases this is not possible because
the expansion necessitates the introduc¢tion of certain transformations which
should be done later. In the present system we therefore use a general solu-
tion whereby restrictions are re-executed automatically for conjunctional oc-

currences. Thus, in the analysis shown in Fig. 1 of Hearsay and rumors hastily

printed the selectional restriction will be executed autgmatically for the

sequences hearsay printed and rumors printed. This is equivalent to expanding

the sentence into two assertions, namely, (Someone) printed hearsay and (Someone)

printed rumors. The actual expansion is performed in the transformational

phase (if the application requires expansion), which takes place after the
surface analysis is obtained. However, for the correct surface analysis it is
crucial that the restrictions operate on expanded or complete strings. Thus,
the conjunction computation performs some of the function of expansion prior
to the transformational phase.

To apply restrictions to sentences containing conjunctions, a non-
deterministic programming mechanism, which we call the stacking mechanism,
was incorporated into the parser. This mechanism saves the conjoined struc-
ture so that the restriction can be re-executed for the conjoined structure.
In principle, the same method can be ‘applied to any grammar containing restric-
tions as long as the structure assigned to the conjunctional occurrence is of

the same type as the one assigned to the segment that precedes the conjunction.

10

An efficient restriction component of a grammar makes use of routines
for pieces of code which are used again and again. Then the stacking mechanism
can be implemented efficiently by changing the routines rather than the more
nmumerous restrictions. In the LSP case, the routines which were modified are
those which locate a basic type of structure in the parse tree, such as the
routines CORE, HOST, ELEMENT, LEFT-ADJUNCT, etc.* In addition to locating struc-
tures the modified routines must also test whether or not the structures are
conjoined. When a restriction calls a routine which locates a conjoined struc-
ture, that routine in turn calls an operator which saves the conjoined struc-
ture(s) along with the place of the routine within the sequence of operations
being executed in the restriction. The operator puts this information on a
re-execution stack. The routine returns to the original structure located and
the restriction interpreter executes the rest of the restriction. At this point
the restriction interpreter is "looking at" the original structure located by
the routine. When a restriction is successful the restriction interpreter uses
the information on the re-execution stack to resume execution of that restric-
tion. The restriction is resumed at the point immediately after the call to
the routine so that the routine itself is not called again. Instead however,
the restriction interpreter will "look at" the conjoined structure previously
located and sayed by the routine. For example, when the verb-object selec-

tion restriction WSELl is executed on the sentence They printed hearsay and

rumors, it calls the CORE routine to obtain the core of the object, The CORE
routine will go to hearsay, locate and stack rumors, and return to hearsay.

WSEL1 will be successful for printed hearsay. WSELl will be resumed therefore

at the point after the call to the CORE routine and rumors, which was saved

*See Appendix for a detailed description of the routines.

11

by the CORE routine, will be plugged in as though it was just obtained by the

CORE routine. WSELl will be successful for printed rumors. A trace of the

execution of WSEL1l which shows the re-execution of the restriction on the con-
junct appears in Fig. 3. Various cases of WSELl with examples are explained
in detail below.

An effect of dynamic generation of conjunctional parse trees is that in
addition to locating conjoined values, provision must be made for restrictions
to function properly on the non-conjunctional grammar, in new situations due
to conjunctions; a routine may be operating in a structure into which conjunc-
tional strings have been inserted, or in a truncated versioh of a defined string
or host-adjumrct sequence. For example, the LSP RIGHT-ADJUNCT routine is as-
sumed to start at a node X in an LXR type node. Without conjunctions the
RIGHT-ADJUNCT routine goes one node to the right from X to arrive at the right

adjunct of X. 1In Fig. 2 for the noun phrase rumors hastily printed, RIGHT-

ADJUNCT, starting at the core position NVAR subsuming rumors, goes one node to

the right to arrive at its right adjunct RN (hastily printed). However, with

conjunctions the routine must go right until it lands at a non-conjunctional

node. Thus, in Fig. 1, for the noun phrase hearsay and rumors hastily printed,

RIGHT-ADJUNCT goes from NVAR (hearsay) past the conjunction string (and rumors)

to RN. When RIGHT~-ADJUNCT starts in the conjunctional string at NVAR (rumors),
RN is not to its right. To go to RN, the routine locates the corresponding
preconjunction element NVAR (hearsay) and goes to RN from there.

To illustrate how the stacking mechanism works we will explain in detail
how restriction WSELl is executed for several sentences with conjunctions.

WSEL1 is housed in the center string ASSERTION:*

*WSEL1 is also housed in other strings containing object and verb elements, but

for our example we will only consider the st¥ing ASSERTION. In the statement

12

WSELl = IN ASSERTION: IF ALL OF SOBJECT-NOUN,
SGOVERNING-VERBE,
$FORBIDDEN~-NOUN-LIST
ARE TRUE

THEN $NOCOMMON.
$SOBJECT-NOUN = THE CORE X1 OF THE OBJECT

X10 IS N OR PRO.
$GOVERNING-VERB = AT X10, COELEMENT VERB X4 EXISTS.
SFORBIDDEN-NOUN-LIST = THE CORE OF X4

HAS ATTRIBUTE NOTNOBJ X5.

The above restriction statements have the following functions: $SOBJECT-NOUN
checks that the core of the object position is a noun or pronoun; S$SGOVERNING-
VERB tests that a verb coelement exists; and SFORBIDDEN-NOUN-LIST checks that
the given verb has an attribute NOTNOBJ.* If all these conditions are satis-
fied the selection check $NOCOMMON is made.

SNOCOMMON = LISTS X1 AND X5 HAVE NO COMMON ATTRIBUTE.
If the noun does have a subcategory that is on the subcategory list of NOTNOBJ,
then $NOCOMMON fails and that noun is not accepted as the object of the given verb.

Consider the parse tree for the sentence shown in Fig. 4, They spread

rumors and they print hearsay. In SOBJECT-NOUN, in oxrder to go to the core of

the OBJECT, OBJECT must first be located. This is accomplished by the routine

(The first footnote is continued from p. 8)
SGOVERNING-VERB we can therefore use the routine COELEMENT with argument VERB.

In the actual restriction a more general routine VERB-COELEMENT is used. This
restriction was described in full, without reference to its operation on con-

junction sentences, in Sager and Grishman 1975.

*NOTNOBJ is assigned in the word dictionary to transitive verbs; its attributes
for a given verb are those noun subclasses of the grammar which are not appro-

priate noun objects of the given verb (in scientific writing).

13

FIGURE :

Trace of WSELL

WSEL1 BEING EXECUTED IN NRJFCT WHICH SLBSUMES HEARS,Y ANP FUMORS .,
IMPLY(AND{ ¢ STARTATL (RRJFCT)) «> NBJECT=HRARSAY AND RUMDRS .,.) + STOKE
(Xt)+ (DORE_=> NzHEARSAY (%wswxwisw, GTACKING NSHUMORS sdwxanasr))
*# STOREC X3)+ 1ot (N, PRO))+ LOPKS X410)+ (VERRSCO[LEMINT =>
VERRPRINTFD)+ STOSF(¥4) + LAOKL X4 Yy + (CONF =-> TVepRINTED)
ATTRRL ¢ NOTNORY) Y 4 STOREC X5) +)+ NOT(COMMONAT(LnfK(X3)

* LODKC YR) 4) e) o+) s ;

RESTRICTICN RESTARTFI NUF TH STACKING AT yNDF W
WHICH SURSUMES RUMARS
) % STORE(X3) + IS¢ (A, PRO)) 4+ LCOKL X{n)+ (VFRH«COFLEVENT »>
VERI=zPRINTED) + STORF{ ¥4) + LNCK(X4) «+ (CORF => TV=PRMIFN)
ATTRIC (NOTHORJ))+ STCREC X5)+)+ NOT(COMMONATC LOfk{ X&)
#LOKE XS) %) =))4

OBJECTY MAS BEFAs COMPLETEDR SOBSIMING HEARSAY ANN RLMERS
SUCCESSFI'L PASSE Nn, 1

RUVNING TIME = 1.518
NCPES IN THEF = R7

THEY PRINTED WEARSAY AND nymMOns
PARSE 1

1, SFENTEMCE & JNTROUDUCER CFENTER ENLMARX
2-

2, ASSERTION = SA SJBJEFrT <A TEWEE SA VYUPRP SA ORJECY LY &4
THEY PRINTED HFEARSAY ArD 3,

3. GnCON. = NVAR
RUMIRS

14

STARTAT (OBJECT) . STARTAT both locates OBJECT and calls the stack overator for
each conjoined OBJECT. Thus for the sentence in Fig. 4, STARTAT will go to the
first OBJECT (subsuming rumors) and will save the second ORBJECT (hearsay).. When
STARTAT is completed the CORE routine is called to locate the core of OBJECT.
In this example it locates ‘the noun rumors.

SGOVERNING-VERB goes to VERB, which is a coelement of OBJECT. It does
this by first locating OBJECT (which was saved in register X10 by SOBJECT-NOUN)
and by calling the COELEMENT routine. Thus in Fig. 4, COELEMENT (VERB) goes
from the first OBJECT to its coelement VERB (spread). It locates all conjuncts
of this VERB and determines whether or not to call the stack operator. VERE
(spread) has a conjunct but in this case COELEMENT (VERB) will not stack the
conjoined VERB (print) because this VERB has its own coelement OBJECT. When
COELEMENT returns, the restriction interpreter is looking at the first VERB.

WSEL1l is successful for spread rumors. Since there is something on the re-

execution stack, the execution of WSELl is resumed. It is resumed in S$OBJECT-
NOUN at the point immediately aftér the call to STARTAT (OBJECT). However,

this time the restriction interpreter is located at the second OBJECT. The
core (hearsay) of the second OBJECT is obtained and the rest of the restriction
is executed for the second time. 1In particular, COELEMENT (VERB) goes to the

second VERB (Erint) from the second OBJECT and WSELl is successfiul for print

hearsay.
FIGURE 4
Parse tree of They spread rumors and they print hearsay
ASSERTION
1
SA SUBJECT SA TENSE SA VERB SA OBJECT ANDSTG RV SA
4 - e A . re Y o Y 1 .- - A Y S
They spread Yumors 1

¥, 5
(AND SA Q-CONJ

*

[SUBJECT SA TENSE SK VERB SA OBJECT

— e a
—- - - e

theye print hearsay

15

For the sentence shown in Fig. 5, They may spread but not print the

rumoxrs, the execution of WSELl is different. The OBJECT (the rumors) has no

conjunct but the VERB does. In this case the COELEMENT (VERB) routine goes
to the first VERB (spread) from OBJECT and saves the second VERB (pxint) on

the re-execution stack. WSELl is successful for spread rumors. Its execu-

tion is therefore resumed in S$GOVERNING-VERB at the point just after the
call to COELEMENT (VERB), However, this time the restriction interpreter is
looking at the sécond VERB (print). Therefore, the well-formedness of

print rumors is also checked.

FIGURE 5
Parse tree of

They may spread but not print the rumors.

ASSERTION

~ — ?
.

Y a

lSA SUBJECT SA TENSE SA VERB BUTSTG SA OBJECT RV SA

.

They may spread the rumors

BUT NOT SA Q-CONJ

but not VERB

pfint

For the sentence shown in Figure 6, They heard and printed facts and.

rumors, the execution of WSELl is again different from the previous examples.
OBJECT itself has no conjunct but the core of OBJECT does. Thus, when CORE
is called in SOBJECT-NOUN, the CORE routine will locate N (facts) and will
place the second N (rumors) on the re-execution stack. Likewise, the
COELEMENT (VERB) routine will not find a conjunct for the VERB position itself

However, the core of the VERB has a conjunct. When CORE is called in

16

SFORBIDDEN-NOUN-LIST, it will locate tv (heard) and will place the second tv
(printed) on the re-execution stack. This will result in WSEL1l being executed

for all four verb + object noun sequences: heard facts, heard rumors, printed

facts, printed rumors.

FIGURE 6
Parse tree of

They heard and printed facts and rumors.

ASSERTION
lSA SUBJECT SA TENSE SA VERB SA OBJECT RV SA
They]LV VVAR ANDSTG RV 2lf

I
*tv AND SA Q-CONJ

.

heard and VVAR
j*tv
a’ NSTGO printed
NSTG
‘ LNR
Lg__,NVARMMHANDSTG BN
I;N AND ?A Q—CONJ
facts and NVAR
*N
rumors

The following is an example of how the stacking mechanism helps to re-

solve syntactic ambiguity. In the sentence He printed rumors and his friend

also, there are two possible parses. In one analysis the object of printed
consists of the conjoined nouns rumors and friend. This analysis wculd

be rejected by WSELl (assuming orint to have NHUMAN as a value of NOTHORT)

17
in the following wmanner. When the CORE routine is called in
SOBJECT-NOUN, the noun rumors is located and the conjoined noun friend is
placed on the re-execution stack. Printed is located by $GOVERNING-VERB.

Printed rumors is successful and WSELl is re-executed for printed friend.

However, printed has NHUMAN on its NOTNOBJ list and friend has a noun sub-
category NHUMAN. Thus $NOCOMMON fails and this analysis is rejected.
Another analysis of this sentence contains a second (implicit) occur-

rence of printed rumors: He printed rumors and his friend also (printed

rumors). The conjoined string consists of SUBJECT (his friend) followed by

VERB and OBJECT, which both are assigned the values NULLC (Section 3).

3. LESS COMMON DELETION FORMS
Some conjunctional strings differ from the usual form of conjunctional
occurrences in that the deleted elements are not contiguous to the conjunc-

tion. For example, in He printed the facts but his friend did not, the verb

and object printed the facts have been deleted in the conjunctional string; the

positions of the deleted verb and object in but his friend did not do not

immediately follow but, but follow the tense position (did). This type of
conjunctional occurrence is covered in the LSP grammar by a node called NULLC.
The NULLC is automatically satisfied without subsuming a sentence word if
certain conditions are met. When it occurs in a parse, it represents the
fact that a required element of a string-conjunct has been deleted in such a
position that the resulting parse tree does not have similar structures on
either side of the conjunction. Thus, in the parse of the preceding sentence, =
shown in Fig. 7, the verb and object of the assertion following but both have
the value NULLC.

Before a NULLC node is accepted, several "zeroing" restrictions must be

satisfied. The general conditions for acceptance of a NULLC node are that

18

FIGURE 7
Parse tree of

He printed the facts but his friend did not.

ASSERTION

lfA SUBJECT SA TENSE SA VERB SA OBJECT BUTSTG

o el e R R R

He printed the facts

J

LBU'I‘ SA Q-CONJ

leUBJECT SA TENSE SA VERRE SA OBJECT

A Py . [

: T 1 |
] 1
his friend did NULLC NULLC

1) it be within a conjunctional string; 2) the pre-conjunctional element
which corresponds to the deleted element subsume some sentence word(s); and
3) that the zeroing pattern be one of a few types known to be acceptable for
conjunctional strings with this type of deletion (see examples below). Thus
in the example sentence shown in Fig. 7, the verb of the assertion following
but will have the value NULLC, and conditions 1-3 are met as followss:

1) NULLC is in a conjunctional string--the string headed by but.

2) The corresponding pre-conjunctional verb subsum&s printed.

3) The NULLC verb is not contiguous to the conjunction but, but
follows the tense in the conjunctional string, this construction
being one of the allowed patterns of zeroing.

In addition to establishing conditions for accepting NULLC nodes, the
"zeroing" restrictions have another very important function. They locate
the material that would have been repesated in the conjoined phrase but which
was "zeroed," that is, deleted or elided, and they save that information.
When the appropriate structure is located for a NULLC node, the location is

saved via a node-attribute mechanism.

19

The restriction assigns to the NULLC node the node attribute LINKC,

whose value points to the pre-conjunctional structure that would have been

repeated.

Once the LINKC attribute is assigned, any constraint can locate

this structure and fhus identify the words that have been deleted. 1In the

LSP system the actual physical rearrangement of the parse tree is not done

until the transformational phase. However, the actual "filling in" trans-

formation is simple and straightforward because thé main bulk of the work

(locating the material identical to what is zeroed) is done by the restric-

tions in

the parsing phase. For conjunction strings with the NULLC type of

deletion, restrictions can be executed only after the filling in of deleted

elements

has been done.

Some examples of the NULLC deletion types which are covered by the LSP

grammar appear in parentheses in the following sentences:

He

He

He

He

He

He

He

printed facts but his friend did not (print facts).

washed the dishes but she did not want to (wash the dishes).
should have tried to wash the dishes but he did not (try to wash
the dishes).*

ate supper and she (ate supper) too.

played the played the piano and she (played) the drums.

left and (he left) fast.

tried to wash the dishes but she was not willing to (try to wash

the dishes).*

*This senteénce contains an ambiguity as to how much material was deleted:

try to wash the dishes vs. wash the dishes.

20

4., IMPLEMENTATION

The basic routines* of the LSP grammar were modified to handle conjunc-
tions. They were modified to locate the appropriate conjoined structure(s) and
call an operator which saves those structure(s). In addition, the routines
were modified to function properly in the non-conjunctional grammar for the
new situations which occur when conjunctions are present. Although these
changes involve some of the basic routines only, the restrictions use these
routines so often so that the changes have to be as efficient as possible.
Otherwise the execution time of a restriction would be greatly increased.

To save much repetitious moving around the tree, pointers are attached
to the appropriate nodes of the tree via a node-attribute mechanism which is
described in Sager and Grishman 1975. Each element E. in a conjunctional

2

string of the form El CONJ E2 is assigned a node attribute called PRECONJELEM
which points to the corresponding element El in the string p>rior to conjunc-

tion. Likewise each El is assigned a node attribute called POSTCONJELEM

which points to the corresponding element E_ in the post-conjunctional string.

2
The node attribute assignments are done by a well-formedness restriction
housed on the conjunctional string. Once the node attributes are assigned,
the routines can quickly obtain (or check for) conjoined values of a node by
using its node attribute POSTCONJELEM. And when a routine is called from
inside a truncated string segment, it can quickly move to the corresponding
pre-conjunction element by obtaining the node attribute PRECONJELEM. From
that point the routine can then locate the appropriate element. For example

in Fig. 1, the second NVAR (rumors) has been assigned node attribute

PRECONJELEM pointing to a NVAR (hearsay). Using the node attribute PRECONJELEM

*See Appendix for a detailed explanation of the basic routines.

21

of the second NVAR, RIGHT-ADJUNCT qgoes to the first NVAR and then goes two
nodes to the right to RN.

Not all restrictions may be re-executed for sentences containing con-
juhctional occurrences. For example, those restrictions testing number
agreement have to be changed to explicitly test for the occurrence of a con-
junction. Therefore, those restrictions must use routines that do not stack.
Each routine that calls the stack operator has a counterpart which does not.
The routines are written so that in each pair, the one which stacks calls
on the nonstacking version as a subpart.

We will now go into the details of those routines that were modified
for conjunctions. The explanations here will be concerned with the modifica-
tions only.

Most of the basic routines fall into three categories: 1) those which
begin at X or go down to X. STARTAT(X), ELEMENT(X), LAST-ELEMENT and
NELEMRT* are in this category. These routines concern only one element of a
string or sequence. 2) The routines which go right or left to X. HOST,
RIGHT-ADJUNCT, LEFT-ADJUNCT, NEXT-ELEMENT, PREVIOUS~-ELEMENT and COELEMENT (X)
are in this category. These routines involve two elements of a string or
sequence. 3)*‘The routines which start at or go up to X. IMMEDIATE (X),
STARTAT (X) , PRESENT-ELEMENT, IT, PRESENT-STRING, IMMEDIATE-NODE are in this
category. Because the conjunction modification can be generalized depending
on which category a routine is in, only several routines are needed to handle
various conjunction operations. The actual modification to many of the

routines therefore consists of adding a call to one of the few routines which

handle conjunctional operations.

*Core is also in this category; however, this routine needs to perform some

extra operations to get to the conjoine8 core word.

22

The routine that handles stacking for routines of category (1) above is

called S$STACK-TEST: ¥

$STACK-TEST = IF S$POSTCONJ THEN $STACK-CONJUNCTS.
$POSTCONJ = THE PRESENT-ELEMENT HAS NODE ATTRIBUTE POSTCONJELEM.

(GLOBAL)

It is assumed that the restriction interpreter is "looking at" X when $STACK-
TEST is called. If an element El has a corresponding element E2 in a con-
junctional string El will have the node attribute POSTCONJELEM. This provides
a quick test to determine whether or not a node has a conjunct. If El does

not have the node attribute POSTCONJELEM, SPOSTCONJ fails and S$STACK-~TEST is
finished; if El has the node attribute POSTCONJELEM, the attribute POSTCONJELEM
has a value, namely E2. When SPOSTCONJ is finished the restriction inter-
preter will be "looking at" E2.
SSTACK~CONJUNCTS = VERIFY ITERATE S$STACK-X.
SSTACK-X = DO SPOSTCONJ; STACK.

$STACK~CONJUNCTS locates all the conjuncts of the node by iterating
$STACK-X. It then returns to the starting node. $STACK-X goes to each con-
junct by first executing $POSTCONJ and then calling STACK, the operator which
puts the conjunct on the re-execution stack. In Fig. 4, starting at the first
OBJECT, S$STACK-TEST will call STACK for the second OBJECT. It will return to
the first OBJECT, before exiting, as a result of the VERIFY command.

The routines that handle stacking for those routines in category 2 above
are called $STACK-FOR-LEFT-TO-X and S$STACK~-FOR-RGHT-TO-X respectively. We
will only go into the details of $STACK-FOR-LEFT-TO-X since $STACK-FOR-RGHT-TO-X

is similar. When S$STACK-FOR-LEFT-TO-X is called, the restriction interpreter

*In our system $STACK-TEST is actually a global address instead of a routine,

This was done because it is faster to execute an address than a routine.

23

is assumed to be at X. It is also assumed that the routine which called
$STACK-FOR-LEFT-TO-X started at some node Y, saved Y in register X200 and
wept from Y left one or more nodes to arrive at X. For instance, this
occurs when the routine COELEMENT (VERB) is called from OBJECT in Fig. 4.

$STACK-FOR-LEFT-TO-X = IF $POSTCONJ
THEN VERIFY $STACK-IF-NO-Y-RGHT. (GLOBAL)

If X has a corresponding element in a conjunctional string it will have the

node attribute POSTCONJELEM. If X does not have the node attribute POSTCONJELEM,
$STACK-FOR-LEFT-TO-X is finished. If it does have node attribute POSTCONJELEM,
$STACK-IF-NO-Y-LEFT is executed to determine whether or not to stack the
conjunct(s):

$STACK-IF-NO-Y-RGHT = IF $SPOSTCONJ
THEN EITHER ALL OF $NO-Y-TO-RIGHT,
$DO-STACK,
$STACK~IF-NO-Y-RGHT

OR TRUE.

SNO-Y-TO~-RIGHT = NOT ITERATE GO RIGHT UNTIL TEST FOR X200 SUCCEEDS.
$DO-STACK = STACK.

Looking at Fig. 4 assume COELEMENT (VERB) is called when the restriction
interpreter is at OBJECT (rumors). The COELEMENT routine locates the first
VERB (spread). The premise of $STACK-FOR-LEFT-TO-X is successful because this
VERB has a conjunct and $STACK-IF-NO-Y-RGHT is executed. The premise of
$STACK-IF-NO~-Y-RGHT is successful: a conjunction is found, in this case the
second VERB (print). The restriction interpreter remains at the second VERB
while the rest of the implication is executed. 1In this example, there is
OBJECT, (hearsay) to the right of the second VERB; therefore $NO-Y~TO-RGHT
fails. As a result VERB (print) is not stacked. 1In Fig. S5, if COELEMENT (VERB)

is called when the restriction interpreter is at OBJECT (the rumors) the VERB

24

(spread) is located. It has a conjunct, which is stacked. In this case
SNO-Y-TO-RGHT is successful since there is no OBJECT to the right of the
second VERB.

SSTACK-IF~-NO-Y~RGHT is recursive so that all the cohjoined structures
are located and tested. 1In the above examples if S$POSTCONJ is true starting
at the second VERB then S$STACK-IF-NO-Y-RGHT goes to the next corresponding
post-conjunctional VERB and determines whether or not to stack it. 1In Fig. 8,
after executing the premise of S$STACK~IF-NO-Y-RGHT the restriction interpreter
is at the second VERB., $NO-Y-TO-RIGHT is true and $DO-STACK is executed. it
will stack the second VERB. $STACK~IF-NO-Y-RGHT is called recursively and
the restriction interpreter is at the third VERB. However, OBJECT (them) is
present; therefore §$NO-Y-TO-RIGHT will fail and the third VERB (ignored) will
not be stacked. Routines COELEMENT, HOST, LEFT-ADJUNCT and PREVIOUS-ELEMENT
use S$STACK-FOR-LEFT-TO-X. Routines COELEMENT, HOST, RIGHT-ADJUNCT and

FOLLOWING-ELEMENT use $STACK-FOR-RGHT-TO-X.

25

FIGURE 8
Parse tree of

They heard and did print the rumors but we ignored them.

ASSERTION
l?UBJECT SA TENSE SA VERB ANDSTG SA OBJECT BUTSTG RV SA
B s S A T “1
éhey heard lAND SA Q-CONJ the rumors '
and ITENSE SA VERRB
- 1
did print
BUTSTG
BUT SA Q-CONJ
but SUBJECT SA TENSE- SA VERB SA OBJECT
ignored them

The routines in category 2 were also modified to operate properly if
they start in a truncated segment of a defined string or host adjunct sequence.
For example, if COELEMENT (OBJECT) is called from the second VERB in Figure 5,
the COELEMENT routine will not be able to go left or right to OBJECT. It must
first go to the corresponding pre-conjunctional element and then try to go
left or right to X from there. This is accomplished by $TO-PRECONJUNCTION-Y.

$TO-PRECONJUNCTION-Y = EITHER $PRECONJ OR
$SASSIGN-PRECONJELEM (GLOBAL)
$SPRECONJ = THE PRESENT-ELEMENT- HAS NODE ATTRIBUTE PRECONJELEM.

If the starting node has node attribute PRECONJELEM, S$PRECONJ will go to the
corresponding pre-conjunctional node; otherwise the node attributes
PRECONJELEM and POSTCONJELEM have to be assigned. This is accomplished by

SASSIGN-PRECONJELEM:

$SASSIGN-PRECONJELEM = VERIFY S$LOCATE-CONJNODE;
VERIFY S$ASSIGN~PRE-AND-POST;
DO $PRECONJ.

26

SEOCATE~-CONJNODE = ASCEND 7O Q-CONJ; GO UP; STORE IN X100,

SASSIGN-PRE~AND-POST assigns the node attribute PRECONJELEM to the cur-
rent node. S$SASSIGN-PRE-AND-POST is defined in routine PRE-POST-CONJELEM which
will be described later. After the node attribute PRECONJELEM is assigned,
SASSIGN-PRECONJELEM goes to the correspondihg pre-conjunctional node by exe-
cuting SPRECONJ. ¥For example in Fig. 5, if COELEMENT (OBJECT) is called from
the second VERB, COELEMENT will call S$TO-PRECONJUNCTION-Y to go to the first
VERB; then it will try to go left or right to locate OBJECT.

Another type of adjustment is needed for restriction routines in cate-
gory 3 above. The problem occurs when a restriction is executed starting at
the conjunctional string Q-CONJ. When the definition for Q-CONJ is generated
from the elements of a string, the well-formedness restrictions housed inh the
edements are transmitted along with the elements. The restrictions on those
elements, therefore, were written with the assumption that the starting point
is the string that the restrictions were originally housed in--i.e., two nodes
up from Q-CONJ. For example in Fig., 5, all restrictions in ASSERTION assume
to start at ASSERTION. Thus, the same restriction, starting at Q-CONJ would
fail if, for example, we were to test whether the immediate~nocde of the second
VERB is ASSERTION. Therefore, the routines in category 3 execute $UP-THROUGH-Q
initially:

$UP-THROUGH+~Q = ITERATET $GO-UP-TWICE UNTIL TEST FOR Q-CONJ
FATLS.
$GO-UP-TWICE = GO UP; GO UP.

SUP-THROUGH-Q goes to the node which is two nodes up from the top of a

nest of Q-CONJ's.

Routine PRE-POST~CONJELEM assigns the node attribute PRECONJELEM to the

elements of Q-CONJ. It is assumed that the starting node is the noge above

27

Q-CONJ. To each element of Q-CONJ that is not on the C-NODE list (ANDSTG,
ORSTG, BUTSTG, etc.), it assigns the node attribute PRECONJELEM. Likewise

the corresponding pre-conjunction elements will. be assigned the node attri-

bute POSTCONJELEM.

ROUTINE PRE-POST-CONJELEM = STORE IN X1l00;
DO ELEMENT- (Q-CONJ) ;
DO LAST-ELEMENT-;
ITERATE VERIFY SASSIGN-TEST UNTIL GO LEFT FAILS,
SASSIGN-TEST = EITHER TEST FOR C-NODE OR EITHER $PRECONJ
[COEL1-] OR SASSIGN-PRE-AND-POST.

The routine PRE-POST-CONJELEM saves the starting point in register X100. It
then uses the nonstacking routines* to go to the last element of Q-CONJ. The
node attribute assignments start from the rightmogst node of Q-CONJ and pro-
ceed left. SASSIGN-TEST determines whether or not a node attribute should ke
assigned to a particular node. An assignment is not necessary if the node is
on the C-NODE list or if the assignment was already made for the node. If an
assignment does not have to be made $ASSIGN-TEST is finished; if one has to
be made S$ASSIGN-PRE~AND-POST is executed:

SASSIGN- PRE-AND-POST = STORE IN X500;
STORE IN XO;
GO TO X100;
ITERATE $GO-LEFT UNTIL TEST FOR X500 SUCCEEDS;
EITHER ITERATE S$POSTCONJ [STARTAT]
OR TRUE;
DO $SASSTGN-POSTCONJELEM;
STORE IN XO;
GO TO X500;
DO SASSIGN-PRECONJELEM.

* For each routine that stacks, there is a nonstacking counterpart, The non-
stacking routines are used for restrictions where stacking is not desired--

such as the number agreement restrictions.

28

$GO~LEFT = ITERATET $UPCONJ UNTIL GO LEFT SUCCEEDS; STORE IN X100,
SUPCONJ = GO UP; TEST FOR Q-CONJ; GO UP.

SASSIGN-PRE~AND-POST saves the node to be assigned in registers X500 and XO.
It then goes to the node saved in X100 (which is initially the starting C-NODE)
and locates the corresponding pre-conjunctional .element by executing $GO-
LEFT until it finds a node which has the same name as that in register X500.
That node is saved in X100 so that the search starts there for the next node
to be assigned. $ASSIGN~POSTCONJELEM and $ASSIGN-PRECONJELEM assign the
node attributes.

We will consider the case where the second OBJECT in Fig. 8 1is being
assigned node attribute PRECONJELEM. BUTSTG is saved in register X100.
SASSIGN-PRE-AND-POST saves the second OBJECT in registers X0 and X500. It
then searches for the corresponding pre-conjunctional element by going left
from BUTSTG. The first OBJECT is found. $POSTCONJ fails at the first
OBJECT and S$ASSIGN-PRE-AND-POST remains there. Node attribute POSTCONJELEM
is assigned to the first OBJECT by SASSIGN-POSTCONJELEM:

SASSIGN-POSTCONJELEM = ASSIGN THE PRESENT ELEMENT NODE
ATTRIBUTE POSTCONJELEM.
$SASSIGN-PRECONJELEM = AS$IGN THE PRESENT ELEMENT NODE

ATTRIBUTE PRECONJELEM.

When node attribute POSTCONJELEM is assigned, if there is a node saved in
register X0, that node will automatically be assigned as the value of attribute
POSTCONJELEM by the node attribute assignment operator. In this case the second
OBJECT is in register X0. Therefore the first OBJECT is assigned node attri-
bute POSTCONJELEM with the second OBJECT as its value. After a node attri-
bute assignment is made, register X0 is automatically cleared by the program.
This prevents accidental value assignments from occurring in case the grammar

writer forgets to clear the register. In the above example, after node

29

attribute POSTCONJELEM is assigned to the first OBJECT, the first OBJECT 1is
saved in register X0 by SASSIGN-PRE~AND-POST and the setond OBJECT saved in
X500 is assigned the node attribute PRECONJELEM with the first OBJIECT as its
value.

Sometimes a routine starts in a nest of Q-CONJ nodes; the corresponding
pre-corijunctional element is not necessarily located on the next higher
level. In Fig. 9 when the second LN (a few) 1s being assigned node attri-
bute PRECONJELEM, PRE-POST-CONJELEM has to go up two QO-CONJT levels to {ind
the corresponding LN. In $GO-LEFT, if the corresponding node is not on the

level being searched, $UPCONJ is executed to locate the next level. 1In the

above example, when $GO-LEFT cannot go left from the second NVAR (women),

SUP-CONJ goes up to the next higher Q-CONJ and then goes up to the next C-

NODE where the search for a corresponding node resumes. Thus LN (a few) is

assigned node attribute PRECONJELEM with LN (all the) as its value,
FIGURE ©

Parse tree of All the men and women and a few children were hurt.

"ASSERTION

SUBJECT SA TENSE SA VERB SA OBJECT RV SA
NSTG wére hurt

LNR

LN NVAR ANDSTG RN

] -1 -
All the men AND SA Q-CONJ

and]NVAR ANDSTG
**MﬂM
women lAND SA Q-CONJ
and [LN NVAR

-

a few éhildren

30

In Fig. 8, when the third verb (ignored) is being assigned node attri-
butes by $ASSIGN~PRE-AND-POST, the restriction interpreter goes left from
BUTSTG and arrives at the first VERB. The node attributes are chained. There-
fore, node attribute POSTCONJELEM of the first VERB should have the second
VERB as its value and node attribute POSTCONJELEM of the second verb should
have the third VERB as its value. $ASSIGN~PRE-AND-POST gets the last node
of the chain after it arrives at the first VERB. This is done by the section
of code . . . EITHER ITERATE $POSTCONJ [STARTAT] OR TRUE; In this

case VERB (ignored) is assigned node attribute PRECONJELEM with value VERB

(print).

REFERENCES

1. Fitzpatrick, E. and N. Sager, The Lexical Subclasses of the Linguistic

String Parser, American Journal of Computational Linguistics; micro-
fiche 2, 1974.

2. Grishman, R., The Implementation of the String Parser of English. 1In

Natural Language Processing, R. Rustin, ed., Algorithmics Press, New
York, 1973.
3. Grishman, R., N. Sager, C. Raze, and B. Bookchin, The Linguistic String

Parser. Proceedings of the 1973 National Computer Conference, 427-434,
AFIPS Press, 1973.

4. Harris, Z.S., String Analysis of Sentence Structure, Mouton & Co., The
Hague, 1962.

5. Raze, C., The FAP Program for String Decomposition of Scientific Texts.

String Program Reports (S.P.R.) No. 2, Linguistic String Project, New
York University, 1967.

6. Sager, N., Syntactic Analysis of Natural Language. Advances in Computers,

vol. 8, 153-158, Academic Press, Inc., New York, 1967.
7. Sager, N., A Computer String Grammar of English, S.P.R. No. 4, Linguistic
String Project, New York University, 1968.

10.

11.

12.

31

Sager, N., A Computer Grammar of English and Its Applications, to be

published by Gordon & Breach in the series Mathematics and Its
Applications. Revised from SPR 4 (1968).
Sager, N., The String Parser for Scientific Literature. In Natural

Language Processing, R. Rustin, ed., Algorithmics Press, New York, 1973.

Sager, N. and Ralph Grishman, The Restriction Language for Computer

Grammars of Natural Language. Communications of the ACM, 18, 390-4Q0,
1975.

Sager, N., Salkoff, M., Morris, J., and Raze, C., Report on the String

Analysis Programs, Introductory Volume. String Program Reports No. 1,

Linguistic String Project, New York University and University of

Pennsylvania, March 1966.

Woods, Wm., in Natural Language Processing, R. Rustin, ed., Algorithmics
Press, New York, 1973.

ACKNOWLEDGEMENT

This work was supported in part by Research Grants GS2462 and GS27925

from the National Science Foundation, Division of Social Sciences, and in part

by Research Grant GN39879 from the Office of Science Information Service of

the National Science Foundation.

32

APPENDIX - The LSP Parsing System

The LSP system obtains a surface structure analysis in the form of a
string decomposition of a sentence. 1In accordance with linguistic string
theory (Harris 1962), each sentence is composed of elementary word sequences
of a few given types, statable as word class sequences (called linguistic
strings). Each sentence ceontains one center string (an elementary sentence)
and zero or more adjunct strings, adjoined to the left or right of elements
of the center string or of other adjuncts. In addition, string occurrences
may be restricted with regard to the subclasses of words that can co-occur
in the same string or in adjoined strings. A string as a whole may also have
adjungt strings (called sentence adjuncts) which occur at stated points in
the string.

Figure Al is an example of the computer output of the string decomposi-

tion of One rumor hastily printed can ruin careers. Line 2 in Fig. Al shows

that rumors can ruin careers is the center string which has the form of an

assertion. Rumor has a left adjunct string LN whose decomposition is shown

on line 3 and a right adjunct string RN whose decomposition is shown on line 4.
LN consists of the quantifier one. RN is the passive string called VENPASS
which consists of the past participle printed preceded by the adjunct hastily.
In this example the object position (PASSOBJ) after the verb is null.
To produce a syntactic analysis of natural language sentences the computer
program uses two components: a word dictionary (Fitgzpatrick and Sager 1974) and
an English grammar (Sager 1968), both of which are geared to handle English scientific
texts. The word dictionary assigns to each word its major syntactic categories, e.g.,

noun, verb, adjective, etc., whichmay in turn have subcategories. The grammar consists

33

FIGURE Al
Computer Output of the String Decomposition of

One rumor hastily printed can ruin careers.

1. SENTENCE = INTRODUCER CENTER ENDMARK
2.

2. ASSERTION = SA SUBJECT SA TENSE SA VERB SA OBJiCT RV SA

3. rumor 4. can ruin careers

3. LN TPOS QPOS APOS NSPOS NPOS

one
4., VENPASS = LVSA VENPASS SA PASSOBJ RV SA

4., printed

5. DSTG =D
hastily

of two parts: a context-free component and a set of restrictions. The con-
text-free component defines the sets of center and adjunct strings of the
grammar. The definitions are written in Backus Normal Form, An example of
a string definition is:

<ASSERTION> ::= <SA><SUBJECT><SA><TENSE><SA><VERB><SA><OBJECT><RV><SA>,
Each of the elements of ASSERTION is also defined in the grammar. In the
above example, SA (sentence adjunct) and RV (post-object right adjunct of verb)
are adjunct sets; therefore their occurrence in a sentence is optional.
SUBJECT, TENSE, VERB, and OBJECT are positions corresponding to required ele-
ments of the string. Each position may have alternate values in different
sentences.

The parser analyzes a sentence by building a parse tree for the sentence.
The tree represents the particular combination of strings and adjuncts whose

terminal nodes combine to produce a well-formed sentence, or more exactly a

34

well-formed sequence of word categories which match those of the sentence

words. A parse tree of ASSERTION for One rumor hastily printed can ruin

careers is shown in Fig. A2. The computer output in Fig. Al is a compressed
version of the parse tree in Fig. a2, In this parse tree the elements of a
string are shown as a sequence of connected sibling nodes. Thus the ele-
ments of ASSERTION are shown one level below the ASSERTION node, in the
order in which they appear in the definition of ASSERTION. The terminal
nodes of the tree are either word class symbols which correspond to sentence
words (*N = rumors) or are null nodes. The null nodes are automatically
satisfied without subsuming sentence words. In adjunct set positions they
represent the fact that adjunct occurrences are optional. (In the parse
tree diagrams the null nodes are omitted.)

A standard type of structure that is frequently seen in the tree is
called the "LXR" node. An example 1is the LNR node in Fig. A2. An LXR defi-
nition consists of three elements: a position for the left adjuncts of X, a
core position for the word class X, and a position for the right adjuncts of
X. The core position as a rule subsumes a sentence word of class X. For
example, in Fig. A2, in the SUBJECT of ASSERTION, NVAR is the core position
of LNR and has the value N corresponding to rumor. NVAR (Noun Variants) will
have one of several alternate values, namely noun, pronoun, Ving, etc. The
"LXR" type structure is important in that both the restrictions and the con-
junction mechanism depend on this regularized representation of an element
and its adjuncts.

The restrictions are a set of detailed well-formedness rules which must
be satisfied before an analysis is accepted. The restrictions may be strictly
grammatical, such as one governing the case of a pronoun. Such a restriction

will succeed for They ruined careers but not for Them ruined gareers. Or the

35

FIGURE A2

Parse tree® for One rumor hastily printed can ruin careers.

ASSERTION
SA SUBJECT SA TENSE SA VERB SA OBJECT RV Sa

NSTG W *W RW |LV VVAR RV NSTGC

| LNR con | v NSTG

LN SYAR RN ruin LNR

ohe %N |vEneass LN NVAR RN
rumor |IVSA LVENR SA PASSOBJ RV SA Ly
‘ IV *VEN RV Careers

haétily printed

*The terminal nodes which are null are not shown in the parse tree diagrams.
In order to keep the tree diagrams as uncluttered as possikble the details of
certain substructures have been omitted but the sentence word(s) subsumed by
those substructures are shown. Three vertical dots below which are sentence

words signifies such an omissieon.

restrictions may express Selectional constraints; these will succeed for se-
quences that are considered possible within a given area of discourse. E.g.,

in normal discourse one can say They printed rumors but not They printed

critics. Each restriction is compiled into a series of basic operations and
tests which are performed on the parse tree while parsing a sentence. The
restrictions mainly test conditions between two elements of a string or be-
tween a string element and its adjunct.

Figure A3 illustrates two of the relations used by restrictions. For the

Verb~Object selecticnal restriction of the grammar to operate on They printed

rumors, the coelement relation is used to test whether the co-occurrence of
the object (rumors) and the verb (printed) is well-formed. On the other hand, in

Rumors hastily printed can ruin careers the host-adjunct relation is used to

test the noun rumors and the verb printed since the verb here appears in the

36

right adjunct string of rumors. Because the restrictions use these basic
string relations (coelement, left-adjunct, right-adjunct) so often to test
for well formed sequences, these relations are encoded into basic routines
(COELEMENT, LEFT-ADJUNCT, RIGHT-ADJUNCT, etc.), which in turn use basic tree
operations (up, down, left, right, test for x, etc.), For example, in

the LNR sequence subsuming one rumor hastily printed, shown in Fig. A2, the

routine RIGHT-ADJUNCT goes from the core noun rumor to its right-adjunct

string hastily printed.

FIGURE A3

Restrictions Use String Relations

SUBJECT VERB OBJECT

coelement

they printed Yumors

NVAR

v X
host-adjunct al
rumors hastily printed

The use of the basic routines by the restrictions greatly facilitates
the formulation of the restrictions. One routine contains many tree opera-
tions. The use of these routines also facilitates modification of the gram-
mar. If there is a basic change in the grammar, the affected routines are
changed but the restrictions themselves do not have to be. The extensive use
of routines by the restrictions plays a significant role in the treatment of
conjunctions, as will be described later.

Both the restrictions and the routines are written in a programming language
developed for the LSP (Sager and Grishman 1975). The syntax of the restriction lan-
guage includes three main statement types. One part of the language is similar to
a subset of English in that the statements consist of a subject followed by
a predicate. For example, THE CORE OF THE SUBJECT IS PRONOUN. Another part

of the restriction language consists of logical connectives, such as

37

IF THEN , EITHER OR , BOTH AND , which permit the logical combina-

tion of restriction statements. For example,

IF THE CORE OF THE SUBJECT IS PRONOUN X1
THEN X1 IS NOT ACCUSATIVE.

Another type of restriction language statement consists of a series of com-
mands which are used mainly for writing the routines. A command may consist
of a basic tree operation such as GO UP, or a call to execute a restriction
routjne, such as DO ELEMENT(X), or a call to execute anothar restriction
statement, such as DO $1. There are provisions for saving a node in a regis-
ter and for restoring a node from a register. For example, STORE IN X1,

GO TO X1. The commands may alsoc be logically combined.

BASIC ROUTINES OF THE GRAMMAR
There are about thirty basic routines in the grammar. Described here
in detail are the ones which represent the major grammatical relations among

words in a sentence and are important in the treatment of conjunctions.

CORE ROUTINE
ROUTINE CORE

DO SCORE-PATH.
SCORE-PATH = ONE OF SAT-ATOM, $DESCEND-TO-ATOM, $DESCEND-TO-STRING.
SAT-ATOM TEST FOR ATOM.
$DESCEND-TO~ATOM

]

DESCEND TO ATOM NOT PASSING THROUGH ADJSETIL.
SDESCEND-TO-STRING

DESCEND TO STRING NOT PASSING THROUGH ADJSETL.

The CQRE routine locates the sentence word corresponding to a higher
level grammatical element E by descending to a terminal node ("atom") from E,
This is done by SDESCEND-TO-ATOM. When CORE descends from E it does not loock

at structures which are adjuncts, i.e., on list ADJSET1. Thus for One rumor

hastily printed can ruin careers shown in Fig, A2, above, the routine CORE,

38

starting at SUBJECT, will not search below the left-adjunct node LN (arriving
mistakenly at one) and wlll arrive at N (the noun rumor). Sometimes the
starting location of CORE will be an atomic node. This is provided for by
SAT-ATOM, which tests whether the current node is an atomic node, i.e., on
list ATOM. Sometimes a string occurs in a partlicular sentence in place of a

noun. In His printing rumors ruined careers, shown in Fig. 4, the string

NSVINGO satisfies the SUBJECT OF ASSERTION. This situation is provided for

by $DESCEND-TO-STRING. Thus CORE starting at SUBJECT in Fig. 4, will locate

the string NSVINGO.

ELEMENT ROUTINE

ROUTINE ELEMENT (X)

il

EITHER DO DOWNL (X)
OR $STRING-SEGMENT.

SSTRING-SEGMENT DO DOWN1 (STGSEG) ;

il

DO DOWN1 (X) .

ROUTINE DOWN1 (X) GO DOWN; ITERATET GO RIGHT

UNTIL TEST FOR X SUCCEEDS.

It is assumed that ELEMENT starts at node Y and that X is an element of
the stringlcorresponding to Y. Thus ELEMENT locates X by searching the level
below Y. This is done by routine DOWNL (X) which first goes to the level below
Y by executing the command GO DOWN and then searches the nodes on that level
until it finds X. The latter step is accomplished by an iterate command:
ITERATET GO RIGHT UNTIL TEST FOR X SUCCEEDS.* In Fig. A2 the execution of
ELEMENT (SUBJECT), starting at the string node ASSERTION, will locate the node
SUBJECT. Sometimes it is more convenient to define a string Y by using the
name of another string X in the definition of Y instead of naming all the ele-
ments of Y. This is the case in Fig. A4 where VINGO, a defined string of the
grammar appears as a string segment of NSVINGO. In this situation not all

the elements of NSVINGQ are on one level below NSVINGO but some are one level

*ITERATET is an ITERATE command in which the exit test (the part written after
UNTIL) is the first operation performed.

39

FIGURE A4

Parse tree of His printing rumors ruined careers.

ASSERTION
SA SUBJECT SA TENSE SA VERB SA OBJECT RV SA
_ .) . .
 VINGSTG ru;ned caéeers
NSVINGO
TPOS VINGO
LNSR LVSA LVINGR SA QBJECT
,LN *NS LVY‘fVING ?V NSTGO
his printing NSTG
| LNR
r&mors

below the string segment VINGO of NSVINGO. $STRING-SEGMENT, therefore,
searches one level below Y for a node on the string segment list STGSEG and
if it finds one, it searches for X one level below the string segment. In
Fig. A4, ELEMENT (OBJECT), starting at NSVINGO, first locates VINGO by exe-

cuting DOWN1 (STGSEG) and then locates OBJECT by executing DOWN1 (OBJECT).

COELEMENT ROUTINE

ROUTINE COELEMENT (X) ONE OF S$SAME-LEVEL, $X-IN-SEGMENT, S$Y-IN~SEGMENT.
$SAME-LEVEL = DO COEL1 (X).
$X—~IN-SEGMENT

It

DO COELl (STGSEG) ;
DO ELEMENT (X) .
$Y~-IN-SEGMENT = GO UP;
TEST FOR STGSEG;
DO COEL1 (X).
ROUTINE CODELL (X) = EITHER DO LEFTR(X)
OR DO RIGHTR (X) .
ROUTINE LEFTR (X) = ITERATE GO LEFT UNTIL TEST FOR X SUCCEEDS.

ROUTINE RIGHTR (X) = ITERATE GO RIGHT UNTIL TEST FOR X SUCCEEDS.

Given that X and Y are elements of some string, COELEMENT starts at Y and goes

to X. COELEMENT uses several other basic routines: ROUTINE LEFTR (X) goes.

40

left from Y until it locates X; ROUTINE RIGHTR(X) searches to the right of
Y ta locate X; and combining the two, ROUTINE COELl (X) searches both sides of
Y to £ind X. In Fig.a4 COELEMENT (SUBJECT), starting at VERB in ASSERTION,
locates SUBJECT by executing $SAME-LEVEL. ROUTINE LEFTR (SUBJECT) success-—
fully locates SUBJECT, which is to the left of VERB; this satisfies

COEL1 (SUBJECT), which satisfies S$SAME-LEVEL. If X is in a string segment,
COELEMENT will locate it by executing $X-IN-SEGMENT. In Fig. A4,

COELEMENT (OBJECT), starting at TPGS, first locates VINGO by executing
COEL1(STGSEG). It then locates OBJECT by calling routine ELEMENT (OBJECT) .
A different situation occurs when COELEMENT (TPOS) starts at OBJECT. This
situation is handled by $Y-IN-SEGMENT. First, the string segment VINGO is
located by the sequence GO UP; TEST FOR STGSEG. Then TPOS is located by

routine COELl (TPOS), which searches the same level as VINGO to find TPOS.

RIGHT-ADJUNCT ROUTINE

ROUTINE RIGHT-ADJUNCT

DO RIGHT-ADJUNCT-POS;
DO CORE.
ROUTINE RIGHT-ADJUNCT-POS

EITHER $ASCNT OR TRUE;
DO RIGHTR (RADJSET) .

SASCNT ASCEND TO AVAR OR NVAR OR QVAR OR VVAR.

It is assumed that RIGHT-ADJUNCT starts at the core of an LXR type node. It
goes to the core of the right-adjunct position in the LXR sequence., For

example, in the LXR sequence LN NVAR RN (one rumor hastily printed), shown in

Fig. A4 the routine RIGHT-ADJUNCT-POS, starting at N (rumors) ascends to NVAR
by executing $ASCNT and then goes to RN by executing the routine
RIGHTR (RADJSET). RIGHT-ADJUNCT goes to VENPASS by executing the CORE routine.

Thus the passive string VENPASS (hastily printed) is located as the right

adjunct of the noun rumor.

41

LEFT-ADJUNCT ROUTINE

ROUTINE LEFT-ADJUNCT = DO LEFT-ADJUNCT-POS;

EITHER TEST FOR LN

OR DO CORE.
ROUTINE LEFT-ADJUNCT-PQS = EITHER SASCNT OR TRUE;

DO LEFTR(LADJSET) .

LEFT-ADJUNCT is similar to RIGHT-ADJUNCT except it goes to the core of the
left~adjunct positibn of an LXR sequence. If the left-adjunct position is
LN, however, the routine stops there since it is assumed that further opera-

tions will be specified to locate a particular left adjunct of the noun, e.g.

a quantifier or an adjective.

HOST ROUTINE

ROUTINE HOST = CORE OF THE HOST-ELEMENT EXISTS.
ROUTINE HOST-ELEMENT = ONE OF S$AT-LADJ, S$AT-RADJ, S$SAT-~-RNSUBJ IS TRUE.
SAT-LADJ = EITHER TEST FOR LADJSET
OR ASCEND TO LADJSET;
GO RIGHT.
$AT-RADJ = EITHER TEST FOR RADJSET
OR. ASCEND TO RADJSET;
EITHER $RV-IN-STRING
OR GO LEFT.
$RV-IN-STRING = TEST FOR RV;
STORE IN X100;
GO UP;
TEST FOR TYPE STRING:

EITHER $RV-IN-OBJECT OR S$SRV-IN-CENTER.
SRV-IN-OBJECT

il

TEST FOR NTOVO OR NTHATS OR NSNWH OR PNTHATS OR PNTHATSVO
OR PNSNWH;

ASCEND TO OBJECT;

DO VERB-COELEMENT.

$RV-IN-CENTER GO TO X100;

DO VERB-COELEMENT.

42

SAT-RNSUBJ = EITHER TEST FOR RNSUBJ

OR ASCEND TO RNSUBJ;

ASCEND TO SA;

DO COELEMENT (SUBJECT) .
It is assumed that the routine HOST-ELEMENT starts at node Y, which is in
or at an adjunct position in an LXR structure. It goes from the adjunct posi-
tion to the core position of the LXR structure. HOST then goes to the CORE of
the node located by HOST-ELEMENT. For example, consider the operation of the

HOST routine on the parse tree shown in Fig.A2 where HOST starts at the right-

adjunct string VENPASS = hastily printed., S$AT-LADJ fails but SAT-RADJ ascends

to RN by executing ASCEND TO RADJSET and goes left to NVAR. The CORE routine
then locates N (rumors). A similar situation occurs when HOST starts at LN.
TEST FOR LADJSET succeeds and HOST-ELEMENT goes one node to the right to NVAR.

HOST calls the CORE routine which locates N (rumors).
If the HOST routine starts in or at RV (right adjuncts of verb), extra
maneuvering 1is necessary to locate the verb. There are three possibilities.

RV may immediately follow the verb as in He ran quickly, shown in Fig.A5. 1In

this case, SRV-IN-STRING fails because the node above RV (i.e., VERB) is not
on the string list. HOST-ELEMENT therefore goes left to VVAR, whose core is

ran. In some cases, RV follows the object of the verb as in He ran to school

quickly, shown in Fig. A6. In this case, $RV-IN-STRING succeeds. The node
above RV is the string ASSERTION. S$RV-IN-CENTER locates the verbal element
VERB (ran) of ASSERTION by calling routine VERB-COELEMENT (a generalized rou-
tine for finding a verbal coelement). In other sentences, RV is situated in

the middle of an object string. In She told him quickly that he had to leave,

shown in Fig.A7 ,RV is situated after NSTGO (him) in the object NTHATS of the

verb told. In this situation SRV-IN-OBJECT locates the verbal element of

ASSERTION by ascending to OBJECT and calling routine VERB-COELEMENT.

FIGURE A5

ASSERTION parse tree of He ran quickly.

ASSERTION
[SA SUBJECT SA TENSE SA VERB SA OBJECT RV SA
| ‘r; - ILV VVAR RV
he . —
l*tv DSTG
ran *D
quickly
FIGURE Ab6.
ASSERTION parse tree of He ran to school quickly
ASSERTION
SA SUBJECT SA TENSE SA VERB SA OBJECT RV SA
| ! RV
he LV VAR % | PN DSTG
]*tv to school *D
ran quickly
FIGURE A7.

ASSERTION parse tree of She told him quickly that he had to leave

ASSERTION
SA SUBJECT SA TENSE SA VERB

P
- A d

' LV VVAR RV
. - NTHATS

SA OBJECT

43

[4

she I -
*tv NSTGO RV SA THATS

-+ e e +

] H
told him DSTG that he
*D had to

leave
quickly

A similar situation arises in sentences where the right adjunct of the

subject noun does not immediately follow the noun.

In the grammar these oc-

currences are covered by RNSUBJ in the post-OBJECT sentence adjunct position

In All the guests came who were expected

SA, as shown in Fig. AS8.

44

FIGURE A8
ASSERTION parse tree for

All the guests came who were expected.

ASSERTION

lEA SUBJECT SA TENSE SA VERB SA OBJECT RV SA

INSTG came | RNSUBJ

+LNR {| RNWH

|IN NVAR RN IWHS-N

: l*N who were expected

4
All the guests

the right adjunct of guests is WHS-N (who were expected). $AT-RNSUBJ .

locates the position SUBJECT by ascending tc SA from RNSUBJ and by calling

COELEMENT (SUBJECT) from SA. The HOST routine uses CORE to locate N (guests).

STARTAT ROUTINE

When a node name appears alone (without any routine name) as the sub-
ject of a restriction statement, e.g., OBJECT in the restriction statement
OBJECT IS EMPTY, the routine STARTAT is invoked, with the node name as argu-

ment, e.9., STARTAT (OBJECT).

ROUTINE STARTAT (X) EITHER DO DOWN1 (X) OR TEST FOR X.

It is assumed that X is one level below the current node in which case DOWN1 (X)

locates X, or that X is the current node in which case TEST FOR X is, suc-

cessful.

izs s

il

50
L

' i 3 [*]
Lt

TREE
|n| Lt

——

—

evea—
—_—
pr—————
——

2 s e

4

S MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU QF STANDARDS-1963 4

