American Journal of Computational Limguistics wicroriche 29 : 2

COMPUTER GENERATION OF SENTENCES
BY SYSTEMIC GRAMMAR

JOHN SELF
Department of Information Science-

University of Melbourne
Parkville, Victoria, Australia 3052

ABSTRACT

The paper describes a computer model of svstemic grammar,
a penerative grammar for natural language. A program is
explained which pgiven the features of an iter, determines the
structure of that item according to a svstermic grammar specifiec
as data. The program thus demonstrates the principles of
systemic grammar, a brief summarv of the mechanics of which is
also included. 3Some implications of the program for systemie
grammar itself are discussed. In particular, it is shown that
previous definitions of the omeration of structure-building

rules require modification.

26

1. Introduction

This paper describes a computer model of systemic grammar, a
grammar for natural languages developed by Halliday and
colleagues at University College, London (Halliday, 1961, 197n).
Svstemi¢ grammar has recently been of interest to comnutational
grammarians, primarily as a result of the impressive work of
Winograd. (1972), who developned a natural language understanding
system one component of which was strongly influenced by the
principles of systemic grammar. More recently, Power (1974) has
also investigated how systemic grammar can be used to analvse
natural language. There have, however, been no attemnts to use a
computer to investigate systemic grammar itself. As Friedman
(1971) says, in introducing her computer model of
transformational grammar, adequate natural language grammars are
bound to be so complex that some mechanical aid in investigating

their proverties will be mandatory.

The aims, then, of developing a computer model of systemic
grammar are threefold. First, the model enables the grammar to
be tested, i.e. it enables contradictions, amhigpguities and
incompletenesses in the grammar to be found. Ffecondly, the model
enables systemic grammar itself to be improved, since the
consequences of adjusting parameters and rules can be more easily
followed. And, thirdly, the model serves as a demonstration of

how systemic grammar 'works'

27

Earlier descriptions of systemic grammar were somewhat
ihcomplete, but that of Hudson (1971) seems sufficientlv precise
to encourage the feeling that a computer program could be based
upon it. The program described below generates (in the
linguistic sense) natural language sentences, i.e. "assigns
structural dsscriptions to sentences" (Chomskv, 1965). It is

not concerned directly with understanding or producing senternces,

2. The Mechanics of Svstemic Grammap

This section brieflv describes the generative apnaratus of
systemic grammar - for a fuller discussion, and for linguistic
justifications of the processes, the reader is refeéerred to
Hudson (1971), from which the example grammar and generations

given later are taken.

In systemic grammar, "structures are entirely predictable
from features: given all of an item's features, we can predict
exactly what its sfructure will be" (Hudson., pg 87). 1In

general terms, an item's features or classes are those

categories to which it belongs irresvective of the narticular
sentence to which the item belongs; an item's functions are
those categories to which it belongs as a result of its role in
a sentence. For example,

"must" has the features MODAL-VERB, FINITE-VERB (among others)

and in the sentence

28

"Must it grow darker?" has the functions !PRE~SUBJECT,
!MOOD-FOCUS (among others)

(A preceding ! will be used to distinguish functions from

features.) An item's structure is defined by its immediate

constituents' functions and the sequence in which they occur.

Given all the features that an item has, tHe item's
structure may be determined, according to systemic Emammar, by

the sequential application of rules of four kinds:

(1) feature-realisation rules

In the simplest case, these rules are of the form "if item
has feature x then its structure will contain function y" - y is

said to be the realisation of x. Some rules are conditional in

that the realisition only holds if certain other features are or
are not present., Also, some rules specify that tw¢ functions

must be conflated, i.e. both functions apply to the same immediate

constituent. (Further details of these and the following rules
are given later when the program is discussed.) The application
of the feature-realisation rules provides an unordered set of

functions, some of which may be conflated.

(2) structure~building rules

These rules expand and order this set of functions to provide
the structure of the item. Structure-building rules are themselves

of four kinds, which in the simplest case are of the following form:

29

(@) addition ruleg: "if function y (or some combination of

functions) is present, then so must be function z (possibly
conflated with other functions)".

{(b) conflation rules: "if some condition expressed in terms

of functions is satisfied then some function mrust be conflated
with certain other functions".

(c¢) sequence rules: "if two functiens y and z are present

then v must be conflated with, precede or not follow z".

(d) compatibility rules: "functiongs v and z must not be

conflated".

Addition and conflation rules are onlv applicable if the resultant
structure does not conflict with a sequence or compatibility rule.
Structure-building rules are not extrinsically ordered in any wav.
After applying these rules, we have a complete specification of
the item's structure, in that we have specified function-
"bundles", each of which consists of the functions of one of the

immediate constituents of the item.

(3) function-realisation rules

These rules specify which features are implied by an item's
functions. They are of the form "if a structure contains
function y the corresponding item must have feature x". Applied
to the function-bundles obtained from (2), these rules help to

determine the features possessed by the immediate ¢onstituents.

30

(4) systems

System networks specify which features are implied by other
features. These networks are equivalent to rules of the form
"if feature x is present then so is one (or all) of a set of
features, and conversely", These rules expand a set of features
(possibly the result of applying (3) , not necessarily into a
complete set, since some features mav be freely selected. The
feature-realisation rules may then be recursivelv applied to

this set of features, if required.

3. The Program

The program reads in a definition of a systemic grammar
(provided as data so that it may be changed without necessitating
major modifications to the program) and generates a structure
from a specified list of features. The interested reader should
have no difficulty in relating the rules given below to the
grammar given by Hudson (pg. 53-101). The rules are shown in the
form in which they are presented to the program, and are numbered
to ease explanation and understanding of the program's execution.
In order to enable the reader to follow the computer generations

given later, an English interpretation of selected rules follows:

31

(1) feature-realisation rules

Rule 13 (below) means "if an item has the feature

INTERROGATIVE then, provided it also is DEPENDENT, its structure

contains the function !QUESTION (which is thereby introduced if

not already present) conflated with !BINDER",

NO TFEATURE

(CLAUSE
(PHRASE

(WORD
(INDEPENDENT
(DEPENDENT
(DEPENDENT
(DEPENDENT
(IMPERATIVE
(INDICATIVE
(INDICATIVE
(DECLARATIVE
(INTERROGATIVE
(INTERROGATIVE

RS OO EF W
w N O

(POLAR
(NON-POLAR
(WH

el
LY

(ALTERNATIVE
(SUBJECT-FOCUS
(SUBJECT-FOCUS

2
O oo ~3

(MODAL
(NON-SUBJECT-FOCUS
(NON-MODAL
(INTRANSITIVE
(TRANSITIVE
(TRANSITIVE

NN
W N O

NN
wn F

(TRANSITIVE
(ATTRIBUTIVE
(ATTRIBUTIVE
(ATTRIBUTIVE
(NON-ATTRIBUTIVE
(NON-ATTRIBUTIVE
(ACTIVE

(PASSIVE
(PASSIVE
(ACTOR-SPECIFIED
(ACTOR-UNSPECIFIED

WNNNN
OO o~2N

W W
N =

«w W
= w

«
1~

Similarly, rule 32

REALISATION CONDITION
1PROCESS)
'HEAD)
1STEM)

-)

1BINDER)
1SUBJECT)
'FINITE)

-)

'SUBJECT)
IFINITE)

-)
1MOOD-FQCUS
(+ !'QUESTION

-)
-)
(¢ !QUESTION

INDEPENDENT)
'BINDER)
DEPENDENT)

'MOOD-FOCUS)
INDEPENDENT)

'ALTERNATIVE)

('OUESTION = !SUBJECT) WH)

(!ALTERNATIVE = !SUBJECT)

ALTERNATIVE)
!MODAL)

!GOAL)

1ACTOR (NOT ACTOR-

UNSPECIFIED))
!TRANSITIVE)

(¢ IATTRIBUANT =
{ ATTRIBUTE)
1COPULAR)
(+ TACTOR =
I1INTRANS)
(IACTOR =
(!GOAL =
'PASSIVE)
(+ !'AGENT =
~-)

ISUBJECT))

!SUBJECT))

!SUBJECT))
!SUBJECT))

'ACTOR))

32

may conflate !ACTOR and ISUBJECT, but only if both are already
present. (There are -omplications, explained later, when the

function to be conflated with, e.g. !BINDER and !SUBJECT above,

ig absent.)

(2) structure-building rules

(a) Addition rule 2 means "!MODAL and !PASSIVE, if present,
must be conflated with !POST-SUBJECT, added if necessary".
Rule 1 means "if !MOOD-FOCUS is present but not conflated with

!SUBJECT then !PRE~SUBJECT must be added if not already pre .t"

NO ADDITION RULE CONDITION

((+ !PRE-SUBJECT) (+ !MOOD-FOCUS # !SUBJECT))
((+ !POST-SUBJECT = !MODAL !PASSIVE))

((+ 'POST-VERB = !ATTRIBUTE !ACTOR !GOAL))

((+ !EN = !PROCESS) (+ !PASSI¥E))

£ WO

(b) Conflation rule 1 means "if !MOOD-FOCUS is not

conflated with !QUESTION then !PRE-SUBJECT and !MOOD-FOCUS

must be conflated, if present".

NO CONFLATION RULE CONDITION

1 ((!PRE-SUBJECT = {MOOD-FOCUS)

(1MOOD-FOCUS # !NUESTION))
2 ((!PROCESS = !COPULAR !TRANSITIVE !INTRANS))

33

(c) Sequence rule 1 means "whichever of !MOOD-FOCUS or
!BINDER is present, if either, will precede or be conflated
wvith the first of !PRE-SUBJECT and !SUBJECT, if present, which,
if both are present, will be in the specified order, and
!POST-SUBJECT, if present, will follow the last of these functions,
if any, and tPROCESS, if present, will follow or be conflated with
the last of these functions if any, and !POST-VERB, if present,

will follow the last of these functions, if any".

NO SEQUENCE RULE

1 C((!MOOD-FOCUS OR !BINDER)
=» (IPRE-SUBJECT -> !SUBJECT)
-» !POST-SUBJECT
=» !PROCESS
-> 'POST-VERB)
2 (!FINITE
= (!PRE~SUBJECT
= (!MODAL -> !PASSIVE)
~-> !PROCESS))

(d) Compatibility rule 1 means " !POST-SUBJECT must not
be conflated with !PRE-SUBJECT"

NO COMPATIBILITY RULE

(IPOST-SUBJECT # !PRE-SUBJECT))
(!POST-VERB # [QUESTION))
(!POST-VERB # !BINDER))
(!POST-VERB # !SUBJECT))

£ wn -
Yty

34

(3) function-realisation rules

Rule 12 means "if an item hag none of the functions

!SUBJECT, !GOAL, !ATTRIBUTE or !AGENT then if it has !BINDER,

it has the feature CONJUNCTION"

NO

O OO EF O
N O

13
1y
15

FUNCTION

(1COPULAR
(!EN

(!FINITE

(1INTRANS

(tMODAL
(1PASSIVE
(IPROCESS
(!TRANSITIVE
(1AGENT

(TALTERNATIVE
(!ATTRIBUTIVE
(!BINDER

(!GOAL
(!QUESTION
(_!SUBJECT

REALISATION CONDITION
COPULAR-VERB)

EN-FORM)

FINITE-VERB)
INTRANSITIVE-VERB)
MODAL-VERB)

BE)

LEXICAL-VERB)
TRANSITIVE-VERB)
PREPOSITIONAL)

DISJUNCTIVE)

(OR ADJECTIVAL NOMINAL PREPOSITIONAL))

CONJUNCTION (NOT (OR
!SUBJECT !GOAL
!ATTRIBUTE !AGENT)))
(OR NOMINAL DEPENDENT))

QUESPIONING)
(OR NOMINAL DEPENDENT))

(4) systems

35

Rule 10* means "an item with feature INTRANSITIVE also has

one of the features ATTRIBUTIVE and NON-ATTRIBUTIVE, and also

has the features naming its supersystems, i.e. 9, 23 and 1,

i.e. CLAUSE and ITEM".

NO

1
23
2
3
25
26
27
m
5
28
6
7

8
9
10
11
12

24
13

14

15
29
16
17
18
19
20
21
22

NAME (IF ANY)

(ITEM

(CLAUSE

(-
(INDEPENDENT
(DEPENDENT
(INDICATIVE

(-

(-
(INTERROGATIVE
(NON-POLAR

(INTRANSITIVE
(TRANSITIVE
(PASSIVE

(PHRASE
(-

(-
(WORD

(VERB
(-

(NON-FINITE-VERB

(FINITE-VERB
(-

(GRAMMATICAL-VERB
(NON-MODAL-VERB

(LEXICAL-VERB

The *OR in the subsystems column indicates

SUPERSYSTEM SUBSYSTEMS

- (*OR 23 24 18))

1 (AND 2 9))

23 (X0R 3 25))

2 (OR IMPERATIVE 26))

2 27)

3 27)

(OR 25 26) (AND 4 8))

27 (OR DECLARATIVE 5))

y (OR POLAR 28))

5 (AND 6 7))

28 (OR WH ALTERNATIVE))

28 (OR SUBJECT-FOCUS
NON-SUBJECT-FOCUS))

27" (OR MODAL NON-MODAL))

23 (OR 10 11)) |

9 (OR ATTRIBUTIVE NON-ATTRIBUTIVE))

9 (OR ACTIVE 12))

11 (OR ACTOR-SPECIFIED
ACTOR-UNSPECIFIED))

1 (AND 13 14))

2 (OR NOMINAL ADJECTIVAL
ADVERBIAL PREPOSIT.ONAL))

24 (*OR NON-QUESTIONING

~ QUESTIONING))

1 (OR 29 CONJUNCTEON))

15 (AND 16 19))

29 (*OR 17 18))

16 (*OR FORM-0 EN-FORM ING-FORM))

16 (OR PAST-VERB PRESENT-VERB))

29 (*OR 20 22))

19 (*OR 21 MODAL-VERB))

20 (*OR DO BE HAVE))

19 (OR COPULAR-VERB

INTRANSITIVE-VERB
TRANSITIVE-VERB))

®* the systems are so numbered to correspond with Hudson's
labellings (pg. 71).

36

that the first named feature or rule is the "default" ontion,

taken unless there are environmental reasons for selecting

another.

The rules of the grammar are in fact input and stored in
the form of McCarthy lists (McCarthy, 13965), and the program

is written in a list-processing extension of BCPL (Self, 1975).

It is important to realise that the fules are not
extrinsically ordered in any way, and that the program may
(conceptually) execute the rules in any order, with the
objective of finding a structure consistent with all rules.

Hence, rules are executed recursively, with backtracking when

inconsistenices become apparent.

The generation of the structure of a sentence with the
features CLAUSE, INDEPENDENT, INDICATIVE, INTERROGATIVE,
NON-POLAR, WH, SUBJECT-FOCUS, NON-MODAL, TRANSITIVE, PASSIVE
and ACTOR-UNSPECIFIED, e.g. "Which of the tents were errected?"
(Hudson, pg. 100), is shown below. Each piece of output is
preceded by an indication of the rule that has been executed,

e.g. FR 1 indicates the first feature-realisation rule. Tn

the printout of structures,

w >

indicates that A, B, .. (which may be functions or structures)

are conflated. Similarly,

- 2. ? 37
A A A
B B B

indicate, respectively, that A precedes B, that A precedes or
is conflated with B, and that the order of A and B is undetermined.
When A, B, .. are all functions, then these appear as, e.g.

(= AB ..),

(GENERATE (CLAUSE INDEPENDENT INDICATIVE INTERROGATIVE
NON-POLAR WH SUBJECT-FOCUS
NON-MODAL TRANSITIVE PASSIVE ACTOR-UNSPECIFIED))

FR 1 (!PROCESS)

FR 9 (!SUBJECT !PROCESS)

FR 10 (!FINITE !SUBJECT !PROCESS)

FR 12 (!MOOD-FOCUS !FINITE !SUBJECT !PROCESS)

FR 16 (!FINITE !SUBJECT !PROCESS (= !QUESTION !MOOD-FOCUS))

FR 18 (!FINITE !PROCESS (= !QUESTION !MOOD-FOCUS !SUBJECT))

FR 24 (!GOAL !FINITE !PROCESS (= '!'QUESTION !MOOD-FOCUS
ISUBJECT))

FR 26 (!TRANSITIVE !GOAL !FINITE !PROCESS (= !QUESTION
IMOOD-FOCUS !SUBJECT))

FR 33 (!TRANSITIVE !FINITE !PROCESS (= !GOAL !QUESTION
!MOOD-FOCUS !SUBJECT))

FR 34 (1PASSIVE !TRANSITIVE !FINITE !PROCESS (= !GOAL
IQUESTION !MOOD-FOCUS !SUBJECT))

SQ 1

1PASSIVE
ITRANSITIVE
'FINITE
>
(= !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
1PROCESS
SQ 2

ITRANSITIVE
->
?
(= IFINITE !PASSIVE)

(= !1GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
IPROCESS

38

ADDN 2
?
!TRANSITIVE
->
? |
(= {POST-SUBJECT !FINITE !PASSIVE)
(= !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
'PROCESS
SQ 1
2
ITRANSITIVE
->
(= !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
(= 'POST-SUBJECT !FINITE !PASSIVE)
!PROCESS
ADDN 3
?
ITRANSITIVE
- '
(= !'POST~VERB !GOAL !QUESTION !MOOD-~-FOCUS !SUBJECT)
(= 'POST-SUBJECT !FINITE !PASSLVE)
!PROCESS
COMP 2
?
ITRANSITIVE
(= !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
(= !POST-SUBJECT !TINITE !PASSIVE)
1PROCESS
ADDN &4
?
!TRANSITIVE
->
(= !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
(= !'POST-SUBJECT !FINITE !PASSIVE)
(= 'EN !PROCESS) |
CONF 2
?
-
(= !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
(= !POST-SUBJECT !FINITE !PASSIVE)
(= !TRANSITIVE !EN !PROCESS)
ADDN 3
?
->
(= IPOST-VERB !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
(= !POST-SUBJECT !FINITE !PASSIVE)
(= ITRANSITIVE !EN !PROCESS)
coMpP 2
?
->
(= !GOAL !QUESTION !MOOD-FOCUS !SUBJECT)
(= 1POST-SUBJECT !FINITE IPASSIVE)
(= !TRANSITIVE !EN !PROCESS)

39
(!GOAL !QUESTION !MOOD-FOCUS !SUBJECT)

FNR 13 ((OR NOMINAL DEPENDENT))

FNR 1% (QUESTIONING (OR NCMINAL DEPENDENT))

SY 14 (PHRASE QUESTIONING (OR NOMINAL DEPENDENT))
SY 0 (PHRASE QUESTIONING NOMINAL)

(!{POST-SUBJECT !FINITE !PASSIVE)

FNR 3 (FINITE-VERB)

FNR 6 (BE FINITE-VERB)

SY 21 (WORD VERB GRAMMATICAL-VERB NON-MODAL-VERB BE
FINITE-VERB)

(!TRANSITIVE !EN !PROCESS)

FNR 8 (TRANSITIVE-VERB)

ENR 2 (EN-FORM TRANSITIVE-VERB)

FNR 7 (LEXICAL-VERB EN-FORM TRANSITIVE-VERB)

SY 22 (WORD VERB LEXICAL-VERB EN-FORM TRANSITIVE-VERB)

SY 17 (NON-FINITE-VERE WORD VERB LEXICAL-VERB EN-FORM
TRANSITIVE-VERB)

Thus, the structure generated is

"Which of the tents were erected?"

1
[! l

1GOAL 'POST-SUBJECT 'TRANSITIVE
IQUESTION 'FINITE 'EN
'MOOD-FOCUS !PASSIVE 'PROCESS
!SUBJECT

"Which of the tents were ' erected?*

The progrdm may then generate the features .of the immediaté
constituents, using the function-realisation rules and systems,
and then repeat the above process to determine the structure of

the immediate congtituents. The first stage of this is indicated

above.

Of course, this is a particularly simple sentence and structure
designed to make it easy to see what the program does, and it

should be clear that considerably more complicated grammars can

40

also be handled. The generative process itself will not usually

involve such straightforward intermediate structures or proceed

g0 immediately to the final structure. For example, the

generation of the structure of a sentence such as "Must it grow

darker?", requiring five 'loops' of the structure-building rules

before a structure compatible with all rules is obtained, is as

follows:

(GENERATE (CLAUSE INDEPENDENT INDICATIVE INTERROGATIVE POLAR

FR
FR
FR
FR
FR
FR

FR
FR

SQ

SQ

10
12
20
27

28
29

MODAL INTRANSITIVE ATTRIBUTIVE))

(!PROCESS)

(!SUBJECT !PROCESS)

(1FINITE !SUBJECT !PROCESS)

(!MOOD-FOCUS !FINITE !SUBJECT !PROCESS)

({MODAL. !MOOD-FOCUS !FINITE !SUBJECT !PROCESS)

(1MODAL !MOOD~-FOCUS !FINITE !PROCESS (= !ATTRIBUANT
!SUBJECT))

(!ATTRIBUTE !MODAL !MOOD-FOCUS !FINITE !PROCESS
(= !ATTRIBUANT !SUBJECT))

(1COPULAR !ATTRIBUTE !MODAL !MOOD~FOCUS !FINITE
1PROCESS (= !ATTRIBUANT !SUBJECT))

1COPULAR
!ATTRIBUTE
IMODAL
IFINITE
=>
'MOOD-FOCUS
->
(= 'ATTRIBUANT !SUBJECT)
'PROCESS

!COPULAR
!ATTRIBUTE
-2
?
(= !FINITE !MODAL)
o>
!MOOD~FOCUS
(= 'ATTRIBUANT !SUBJECT)
IPROCESS

41

ADDN 1

1 PRE-SUBJECI
1COPULAR
1 ATTRIBUTE
-=>
?
(= !FINITE !MODAL)
=->
1 MOOD-FOCUS
(= !ATTRIBUANT !SUBJECT)
1PROCESS
sQ 1

!COPULAR
!ATTRIBUTE

->
?

(

'FINITE !MODAL)

v N

(=5 !MOOD-FOCUS !PRE-SUBJECT)
(= !ATTRIBUANT !SUBJECT)
!PROCESS

SQ 2

1COPULAR
tATTRIBUTE
->
IMOOD-FOCUS
(= !FINITE !MODAL !PRE-SUBJECT)
(= 'ATTRIBUANT !SUBJECT)
'PROCESS
ADDN 2

!COPULAR
{ATTRIBUTE
->
=>
IMOOD-FOCUS
(= {POST-SUBJECT !FINITE !MODAL !PRE-SUBJECT)
(= !ATTRIBUANT !SUBJECT)
IPROCESS
COMP 1

!COPULAR
!ATTRIBUTE
->
=>
IMOOD-FOCUS
(= !FINITE !MODAL !PRE-SUBJECT)
(= !ATTRIBUANT !SUBJECT)
IPROCESS

ADDN 3

SQ 1

CONF 1

CONF 2

ADDN 2

COMP 1

! COPULAR

>

=>
IMOOD-FQCUS
(= !FINITE !MODAL !PRE-SUBJECT)
(= !ATTRIBUANT !SUBJECT)
tPROCESS
'POST~-VERB !'ATTRIBUTE)

!COPULAR

-

=>
!MOOD~-FOCUS
= IFINITE !MODAL !PRE-SUBJECT)
(= !ATTRIBUANT !SUBJECT)
!PROCESS
(= 'POST-VERB !ATTRIBUTE)

! COPULAR

->

{MOOD-FOCUS !TINITE !MODAL !PRE-SUBJECT)
!ATTRIBUANT !SUBJECT)

ROCESS
'POST-VERB !ATTRIBUTE)

P o W e W ¥

wann

IMOOD-FOCUS !TINITE !MODAL !PRE-SUBJECT)
'ATTRIBUANT !SUBJECT)

!COPULAR !PROCESS) _

!POST-VERB !ATTRIBUTE)

ouon

~
"

!POST-SUBJECT !MOOD~-FOCUS !FINITE !MODAL
!PRE-SUBJECT)

!ATTRTBUANT !SUBJECT)

!COPULAR !PROCESS)

!POST-VERB !ATTRIBUTE)

P YW o Wan
H un

IMOOD-FQCUS !FINITE !MODAL !PRE-SUBJECT)
IATTRIBUANT !SUBJECT)

! COPULAR !PROCESS)

!POST-VERB !ATTRIBUTE)

~ SN NN
W un

43

4, Conclusion

The obvious cqeneclusion - that the mechanics of svystemic
grammar (as described by Hudson) are sufficiently well-defined
to form the basis of a computer model - is, for linguistic
descriptions, a significant one. However, the program also
demonstrates that some pule-descriptions require clarifieation.
For example, feature-realisation and function-realisation rules
are impIlicitly unordered (since features and functions are
unordered), or, more precisely, the rules are to be considered
to apply simultaneously. This causes problems with those rules
which prevent features being introduced (e.g. rules such as
feature-realisation rule 32, which means "if !SUBJECT is present
the realisation is as stated, otherwise the first function, i.e.
'ACTOR, must not be introduced by any other feature-realisation
rule”). The solution seems to be to reapply the rules,

recursively, unfil a structure is produced which is compatible

with all the rules.

More seriously, the expectation that the structure obtained
is independent of the order of application of structure-building
rules is not realised, at least for the grammar specified. For
example, considering the second of the above generations and
applying rules SQ 1, SQ 2, ADDN 2, SO 1, ADDN 1 (in that order)
to the set of functions obtained by the feature-realisation

rules, we generate

44

TPRE-SUBJECT
$COPULAR
!ATTRIBUTE

>

>
tMOOD-FOCUS
(= !SUBJECT !ATTRIBUANT)
(= !FINITE !MODAL !POST-SUBJECT)
'PROCESS
This structure cannot satisfy both sequence rules, i.e. the
generative process is blocked. Clearly, either the grammar
requires modification or it does matter which order the
structure-building rules are applied. Hudson (personal
communication) has concluded that there, are linguistic grounds
for ordering structure-building rules, so that 'abnormal' cases
precede 'normal' ones, with the latter only applying if the

former had not already been applied. Whether it is possible to

do sc consistently requires further experimentation.

Further possible extensions to the work could involve
trying to specify a lexicon so that the generative process ends
up with a structure with words as leaves, and one could also
attempt to apply the rules in reverse, i.e. to start with a
string of words and produce a structural description. Both

problems are, of course, very difficult ones.

Acknowledggment

The author is very grateful to Dr. R.A. Hudson University

College, London) for his commemts on this work.

45

References

Chomsky, N. (1965). Asvects of the theory of syntax.

Cambridge, Mass.: MIT Press.

Friedman, J. (1971). A computer model of transformational

grammar. New York: American Elsevier.

Halliday, M.A.K. (1961). Categories of the theorvy of gramma .
Word 17, 241-292.

Halliday, M.A.K. (1970). Language structure and language

function. In J. Lyons (ed.), New horizons in linguistics,

London: Pelican.

Hudson, R.A. (1971). English complex sentences. London:

North-Holland.

McCarthy, J. (1965). Lisp 1.5 programmer's manual. Cambridge,

Mass.: MIT Press.

Power, R. (1974). A computer model of coenversation. Ph.D,
thesis, University of Edinburgh.

Self, J.A. (1975). CBLP - a computer based learning Drogrammin%

system. J. of. Inst. of Computer Sciences, in press,

Winograd, T. (1972). Understanding natural language. New York:

Academic Press.

