Syntactically Meaningful and Transferable
Recursive Neural Networks for Aspect and
Opinion Extraction

Wenya Wang

Nanyang Technological University
Singapore

School of Computer Science and
Engineering

wangwy@ntu.edu.sg

Sinno Jialin Pan

Nanyang Technological University
Singapore

School of Computer Science and
Engineering
sinnopan@ntu.edu.sg

In fine-grained opinion mining, extracting aspect terms (a.k.a. opinion targets) and opinion
terms (a.k.a. opinion expressions) from user-generated texts is the most fundamental task in
order to generate structured opinion summarization. Existing studies have shown that the syn-
tactic relations between aspect and opinion words play an important role for aspect and opinion
terms extraction. However, most of the works either relied on predefined rules or separated
relation mining with feature learning. Moreover, these works only focused on single-domain
extraction, which failed to adapt well to other domains of interest where only unlabeled data are
available. In real-world scenarios, annotated resources are extremely scarce for many domains,
motivating knowledge transfer strategies from labeled source domain(s) to any unlabeled target
domain. We observe that syntactic relations among target words to be extracted are not only
crucial for single-domain extraction, but also serve as invariant “pivot” information to bridge the
gap between different domains. In this article, we explore the constructions of recursive neural
networks based on the dependency tree of each sentence for associating syntactic structure with
feature learning. Furthermore, we construct transferable recursive neural networks to automat-
ically learn the domain-invariant fine-grained interactions among aspect words and opinion
words. The transferability is built on an auxiliary task and a conditional domain adversarial
network to reduce domain distribution difference in the hidden spaces effectively in word level
through syntactic relations. Specifically, the auxiliary task builds structural correspondences
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across domains by predicting the dependency relation for each path of the dependency tree in the
recursive neural network. The conditional domain adversarial network helps to learn domain-
invariant hidden representation for each word conditioned on the syntactic structure. In the end,
we integrate the recursive neural network with a sequence labeling classifier on top that models
contextual influence in the final predictions. Extensive experiments and analysis are conducted
to demonstrate the effectiveness of the proposed model and each component on three benchmark
data sets.

1. Introduction

Fine-grained opinion mining (Pang and Lee 2008; Liu 2011) aims to extract impor-
tant information from opinionated texts. It consists of several subtasks, including as-
pect/opinion terms extraction (Hu and Liu 2004; Qui et al. 2011; Yin et al. 2016; Wang
et al. 2017), aspect categorization (Lu, Zhai, and Sundaresan 2009; Zhao et al. 2010;
Chen, Mukherjee, and Liu 2014; Lakkaraju, Socher, and Manning 2014; He et al. 2017),
and aspect-dependent sentiment classification (Jiang et al. 2011; Dong et al. 2014; Ma
et al. 2017). Among them, aspect and opinion terms extraction serves as the most fun-
damental task, which involves the identification of explicit entity features or attributes
from user-generated texts, along with the opinions being expressed. For example, in a
restaurant review “They offer good appetizers,” the aspect term to be extracted is appetizers,
and the opinion term is good.

Many existing studies have focused on single-domain aspect/opinion terms extrac-
tion, which can be classified into two categories: supervised learning and unsupervised
learning. Under supervised learning, the task is formulated as a sequential labeling
problem that predicts a label for each token. For example, Jin and Ho (2009), and
Li et al. (2010) applied graphical models with extensive feature engineering for each
token, including lexicon-based features and syntactic features. Deep learning models
were also proposed to learn high-level features for each token (Liu, Joty, and Meng
2015; Yin et al. 2016; Li and Lam 2017; Wang et al. 2017). However, Liu, Joty, and
Meng (2015) only used recurrent neural networks to model the sequential relations
without considering syntactic structures. Yin et al. (2016) learned relation embeddings
as a pretraining step that was separated from discriminative feature learning for final
predictions. Wang et al. (2017) and Li and Lam (2017) applied attention models without
explicit relation information. For unsupervised learning, most approaches are designed
based on a set of predefined rules. Hu and Liu (2004) applied association rule mining
to extract product features and Qiu et al. (2011) manually constructed some rules that
associate aspect words and opinion words through syntactic relations. These rules are
used to augment the set of target terms iteratively from a seed collection. However,
these approaches highly rely on hand-coded rules and are inflexible. Existing work
shows that syntactic structure plays an important role for propagating information
between aspect and opinion words, yet they fail to associate feature learning with
syntactic relation learning. To overcome the aforementioned limitation, we propose a
dependency-tree-based recursive neural network that integrates syntactic tree structure
into the deep model. In our preliminary work (Wang et al. 2016), we have developed
this deep architecture for single-domain extraction and have demonstrated promising
results. Based on this intuition and our observation that syntactic relations are invariant
across different domains, we further develop a transferable recursive neural network to
solve the more challenging problem of cross-domain extraction.
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Note that existing supervised approaches cannot be directly applied for cross-
domain extraction because a model trained on the source domain is not applicable for
the target domain due to the large domain shift. Only a few unsupervised domain adap-
tation approaches have been proposed to transfer word-level knowledge from a labeled
source domain to the unlabeled target domains for fine-grained extraction. Li et al.
(2012) proposed a bootstrap method to iteratively expand the opinion and aspect
lexicons in the target domain by exploiting source-domain labeled data and cross-
domain common relations between the aspect terms and opinion terms. Ding, Yu, and
Jiang (2017) proposed integrating auxiliary supervisions based on predefined rules on
top of a recurrent neural network to learn domain-invariant hidden representation for
each word. However, both methods require pre-mined syntactic patterns and the prior
knowledge of a sentiment lexicon as a bridge. On the one hand, though the existing
domain adaptation methods (Li et al. 2012; Ding, Yu, and Jiang 2017) have shown
that syntactic relations or patterns among the aspect words and opinion words are
invariant across different domains and are crucial as the pivot knowledge to bridge
the gap, they fail in terms of flexibility and error propagation. On the other hand,
as mentioned earlier, we proposed a dependency-tree-based recursive neural network
for modeling syntactic interactions automatically through information propagation.
Inspired by these two points, we further develop a transferable recursive neural net-
work (TRNN) to transfer feature learning across domains through domain-invariant
syntactic relations. Different from the single-domain model, TRNN encodes each de-
pendency relation into a vector, on which an auxiliary task is integrated to predict
its corresponding dependency relation category. The auxiliary task helps to cluster
relation vectors with similar dependencies across domains, which builds structural
correspondences across different domains. To explicitly align word feature spaces for
source and target domains, we incorporate a conditional domain adversarial network
(cDAN) that takes word features and their corresponding dependency relations as the
input. Inspired by Ganin et al. (2016), the cDAN involves a domain discriminator that
competes with the extraction model to align source and target spaces conditioned
on syntactic structures. We observe that dependency relations may not be accurate
when the parser is not perfect, which brings inevitable noise to the learning process.
This can be alleviated through an auto-encoder that clusters the relations into their
intrinsic relation groups. In the end, we further incorporate a sequence model, namely,
a recurrent neural network, to exploit the contextual interactions within a sentence.
Extensive analysis is provided to investigate the effectiveness of the proposed model
for knowledge transfer.

Compared with our preliminary work (Wang et al. 2016; Wang and Pan 2018), the
contributions of this article are summarized as follows.

¢  We integrate both of the preliminary works with the core idea on
exploring recursive neural networks for both single-domain and
cross-domain aspect/opinion terms extraction. We introduce how we
extend the single-domain model toward the cross-domain setting.

*  Besides constructing the auxiliary task as in Wang and Pan (2018), we
further introduce a conditional domain adversarial network in the model
to improve the knowledge transferability across domains.

*  We conduct more extensive experiments to verify the effectiveness of the
proposed model for cross-domain, fine-grained sentiment analysis.
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2. Related Work
2.1 Aspect and Opinion Term Extraction

The problem of aspect/opinion terms extraction has been actively studied. Among the
earliest work, Hu and Liu (2004) proposed using association rule mining to extract
product aspects, and use synonyms and antonyms in WordNet to extract opinion terms
through seed opinion set expansion. In follow-up work, syntactic relations among
aspect words and opinion words were further exploited for the extraction task (Popescu
and Etzioni 2005; Wu et al. 2009; Qiu et al. 2011). As a typical example, Qiu et al. (2011)
adopted manually designed rules associating syntactic relations to double propagate
and augment the sets of aspect words and opinion words. These rules usually deduce
an aspect or opinion word if it belongs to some POS tags and has certain dependency
relations with other extracted words. However, these methods all heavily depend on
predefined rules for extraction and are restricted to specific types of POS tags for aspects
and opinions, making them inflexible. As another category, topic models were also
proposed for aspect extraction (Mei et al. 2007; Titov and McDonald 2008; Lu, Zhai,
and Sundaresan 2009; Li, Huang, and Zhu 2010; Zhang et al. 2010; Chen, Mukherjee,
and Liu 2014). For instance, Mei et al. (2007) used a mixture model based on both aspect
and sentiment models. Titov and McDonald (2008) proposed a multigrain topic model
that is able to discover both global topics and local topics. Li, Huang, and Zhu (2010)
proposed the MaxEnt-LDA hybrid model to jointly discover both aspect and opinion
words, which can leverage syntactic features. However, topic models are not suitable
for explicit target terms extraction within each sentence and are difficult to align topics
to their semantic meanings.

These models are referred to as unsupervised learning methods, which achieve
inferior results compared with supervised methods that utilize label information for
discriminative feature learning. For supervised learning, the task is modeled as a se-
quence labeling problem. In Jin and Ho (2009), Jakob and Gurevych (2010), Li et al.
(2010), and Ma and Wan (2010) graphical models, for example, hidden Markov models
or conditional random fields (CRFs), were proposed to learn context interactions among
the input sentence according to the connections in a graph. These methods rely on
rich hand-crafted features and do not consider interactions between aspect terms and
opinion terms explicitly. Another direction applied a word alignment model to capture
opinion relations among a sentence (Liu, Xu, and Zhao 2012; Liu et al. 2013). The
methods in the direction, however, require sufficient data to identify desired relations.
Recently, a number of deep learning models have been proposed (Liu, Joty, and Meng
2015; Zhang, Zhang, and Vo 2015; Yin et al. 2016; Li and Lam 2017; Wang et al. 2017;
Xu et al. 2018). Liu, Joty, and Meng (2015) applied a recurrent neural network on top of
pretrained word embeddings for aspect extraction. Yin et al. (2016) proposed learning
dependency path embeddings to explore relations among words, but failed to incorpo-
rate relation embedding learning into a joint model that may propagate label errors to
feature learning. Wang et al. (2016) proposed using the dependency-tree-based recursive
neural network to learn high-level aspect-opinion interactions. Wang et al. (2017) and
Li and Lam (2017) proposed using an attention mechanism for extracting target words
without explicit syntactic relations. When it comes to cross-domain extraction, existing
supervised methods usually fail, because the aspect terms from two different domains
are usually disjoint (e.g., laptop vs. restaurant), leading to a large domain shift in the
feature vector space.
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2.2 Domain Adaptation

Many domain adaptation methods have been proposed for cross-domain sentence-level
or document-level sentiment classification. Some of them aim to utilize pivot informa-
tion that are shared across domains as a bridge to align different feature spaces (Blitzer,
Dredze, and Pereira 2007; Pan et al. 2010; Bollegala, Maehara, and ichi Kawarabayashi
2015; Yu and Jiang 2016). Another group of work directly learn shared spaces across
different domains through projection via auto-encoders (Glorot, Bordes, and Bengio
2011; Chen et al. 2012; Zhou et al. 2016) or the domain adversarial network (Li et al.
2017). Few studies have addressed the problem of cross-domain fine-grained opinion
extraction. Jakob and Gurevych (2010) proposed a cross-domain CRF that is built on
nonlexical invariant feature engineering (e.g., POS tags and dependency relations).
Li et al. (2012) developed a boosting-style method to iteratively expand the aspect
and opinion sets in the target domain through manually defined rules incorporating
common syntactic relations among aspect and opinion words across domains. Ding,
Yu, and Jiang (2017) explored pivot knowledge on opinion lexicon and syntactic rela-
tions to build correspondences across domains and applied a recurrent neural network
with auxiliary tasks to learn domain-invariant word representations. However, existing
methods largely depend on predefined pivot information that are fixed and inflexible.
Recently, we proposed a recursive neural structural correspondence network (Wang
and Pan 2018) that integrates an auxiliary task on dependency relation prediction to
build structural correspondences across domains. In this work, we further extend our
previous idea for more accurate cross-domain aspect and opinion terms extraction.

3. Problem Definition and Motivation

3.1 Problem Definition

Formally, the task of aspect and opinion terms extraction can be formulated as a
sequence tagging problem. The input is a sequence of words s={w;,...,w,} with
pretrained word embeddings x = {x1,x,...,x,}, where each x; € RP is the word
embedding for w;. The objective is to predict a label for each word, resulting in a label
sequence y = {v1,Y2,...,Yn}, with y; € L. We adopt the BIO encoding scheme with
five different classes, namely L={BA, IA, BO, IO, N}, where BA or BO represents the
beginning of aspect term or opinion term, respectively. IA or IO represents the inside

LAPTOP | RESTAURANT

Figure 1
An example of two reviews in different domains with similar syntactic patterns.
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position of aspect term or opinion term, respectively, and N represents “None of the
above.” Note that a sequence of predictions with BA at the beginning followed by
IA indicates a multi-word aspect term, which is similar for opinion terms. For cross-
domain aspect and opinion terms extraction, we are given a set of labeled data in the
source domain Dg = {(xiS , yl-S )}?LS1 as well as a set of unlabeled data in the target domain

Dr = {(x]T)}]Z\Ile. The objective is to transfer knowledge from source domain to the target

domain in order to obtain label sequences y' in the target domain.
For ease of illustration, we first introduce some definitions. A syntactic structure for
each sentence is reflected via a dependency tree as shown in Figure 1, which can be ob-

tained from a dependency parser. A dependency path, for example, horriblemstaﬁ,
consists of a child word staff, a parent word horrible, and a dependency relation (DR)
“nsubj.” We name this relation as upward DR for its child node and downward DR for
its parent node.

3.2 Motivation

Syntactic structure has been shown to be crucial for aspect and opinion terms extraction
because there are certain dependency relations existing among the aspect and opinion
words for information propagation. For example, given the sentence “the staff in this
restaurant was so horrible to us,” the aspect term staff and the opinion term horrible has
the dependency relation nsubj. Given that horrible is already extracted and the relation
nsubj is frequently observed between aspect and opinion words, the aspect word staff
should be identified accordingly. Most existing work either encodes the relations into
manual-designed rules or focuses on learning semantically meaningful word features
through deep neural networks without associating syntactic information. We propose a
remedy to this problem by incorporating syntactic structures into the process of feature
learning. We name the proposed model a single-domain recursive neural network
(SRNN), which is constructed according to the dependency tree of each sentence. An
illustration of the recursive process is shown on the left-hand side of Figure 2. The model
computes the hidden representation for each parent node in the tree hierarchy based on
its own embedding as well as the hidden representations of its child nodes. As a result,
the hidden space encodes the features from their dependents according to the syntactic
structure, thus propagating information among syntactically related words.

hfantastic

single-domain | cross-domain

Figure 2
An illustration of different recursive structures.
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Different from sentence- or document-level knowledge transfer, aspect and opinion
term extraction across domains require fine-grained word-level adaptation, which is
much more challenging. Existing work has designed hand-coded rules and a sentiment
lexicon as pivot information—for example, in Figure 1, given a review sentence “their
software with upgraded version is fantastic” in the source domain and “the staff in this
restaurant was so horrible to us” in the target domain. If horrible has been extracted as a
common sentiment word, and “ASPECT-nsubj-OPINION" has been identified as a com-
mon syntactic pattern from the source domain, staff could be deduced as an aspect term
using the identified syntactic pattern (Li et al. 2012). With a similar idea, Ding, Yu, and
Jiang (2017) encoded these common patterns into specific rules that are integrated as
auxiliary tasks into a recurrent neural network. These works indicate the importance of
invariant syntactic information between words as a bridge between different domains.
However, their drawback is reflected by restraining the pivot information within a few
manually defined rules that are fixed and inflexible. Although the proposed SRNN is
able to propagate information among aspect and opinion words automatically through
the tree structure, this kind of interaction is hard to capture when label information is
not available in the target domain. A crucial question to ask is how to transfer these
important interactions from the source to the target domain.

To answer that, we propose a transferable recursive neural network with the fol-
lowing two characteristics: (1) Instead of hand-coded pivot knowledge, our model auto-
matically learns the syntactic features through dependency-tree-based recursive neural
networks. (2) The syntactic structure is treated as invariant features across different
domains. We observe that the dependency relations are domain-invariant. When two
pairs of words in the source and the target domains have the same dependency relation,
the corresponding words tend to have similar functionalities. For example, staff and
horrible in the restaurant domain is connected via the dependency relation nsubj, which
also connects software and fantastic in the laptop domain. We shall observe that both staff
and software are targeted subjects, and both horrible and fantastic are adjective qualifiers,
irrespective of their domains. With this intuition, word-level knowledge across domains
could be transferred via common syntactic structures. We propose two transferable
modules based on dependency trees to realize knowledge transfer. The first module
is an auxiliary task for predicting dependency relations between each connected word
pair. The second module is a conditional domain adversarial network for projecting the
representations of syntactically-similar words into a common space.

Specifically, TRNN is built on a recursive structure shown in the right-hand side
of Figure 2. Different from SRNN, we also embed each DR into the distributed vector
space. The model maps each DR into a distributed vector s, which can be regarded
as a relation vector. The relation vector is then taken as the input to generate the hidden
representation for the parent word. Based on this construction, the auxiliary module ap-
plies a relation classifier on top of the relation vector 1y to predict which dependency
relation it belongs to. This classifier is trained in a supervised manner with the ground-
truth relation labels for both domains. At the same time, it draws those relation vectors
in the same class close to each other. As a concrete example, in Figure 1, the relation
vectors for the dependency paths “software-nsubj-fantastic” and “staff-nsubj-horrible” in
both domains should lie in close proximity. As a result, fantastic and horrible are clustered
in the hidden space. In a word, the auxiliary module transfers knowledge of word
representations with similar syntactic functionalities across domains via dependency
relations.

According to Figure 2, the auxiliary module only aligns the hidden representations
for the words with the same downward DR, but ignores the situation when they have
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the same upward DR. Moreover, the transferability implicitly depends on the learned
relation vectors. To explicitly learn a domain-invariant hidden representation for each
word and exploit the dependency correspondences for the other direction, we integrate
a second transferable module: a cDAN that takes the concatenation of the hidden vector
and the upward DR for each word as the input. Motivated by Ganin et al. (2016), a
DAN consists of a domain discriminator that competes with the target model until it
cannot differentiate the features between different domains. This enforces the model to
learn domain-invariant representations for final predictions. The cDAN is introduced
in Mirza and Osindero (2014) and Long et al. (2018) and incorporates class constraints
when discriminating between different domains. In our problem setting, the domain
discriminator is applied on top of the hidden vector space and is conditioned on the
upward dependency relation for each word. However, the dependency relations are not
guaranteed to be accurate, especially for user-generated texts. It might harm the learn-
ing process for both the auxiliary task and cDAN when some noise exists for certain
relations. This problem of noisy labels has been addressed using perceptual consistency
(Reed et al. 2015). Inspired by the taxonomy of dependency relations (de Marneffe and
Manning 2008), dependencies with similar functionalities could be grouped together
(e.g., dobj, iobj, and pobj all indicate objects). We propose using an auto-encoder to
automatically group these relations in an unsupervised manner. The reconstruction loss
serves as the consistency objective that reduces label noise by aligning relation features
with their intrinsic relation group.

4. Preliminary Model

4.1 Domain Adversarial Network

The domain adversarial network was proposed in Ganin et al. (2016) for the problem of
unsupervised domain adaptation. Unlike most traditional transfer learning approaches,
which learn a mapping of features either from one domain to another domain or from
both domains to a common space, DAN incorporates domain-distribution learning into
the feature learning itself. The objective of learning a DAN is twofold: (1) The model
should be discriminative for the main task in the source domain. (2) The model is
indiscriminative for data distributions in different domains. In this case, DAN embeds
the knowledge transfer process into the learning of representations, such that the final
predictions can be obtained from the source classifier because the features are already
invariant across domains. To achieve this objective, the DAN is designed in the follow-
ing procedure.

Assume we have a multi-layer neural network F(:; 0¢) as the feature extractor, where
0 denotes the parameters involved in the neural network. Let Y(-;6,) denote the final
classification layer with parameters 0,. Given an input instance x, a typical forward
computation usually generates Y(F(x; 0f);0,) as the final prediction that can be com-
pared with the ground-truth labels for back-propagation. When two different domains
are involved with labels provided only for the source domain, the feature extractor
F(-;6) learned in the source domain is not applicable for the target domain due to the
domain shift. To address this issue, a domain discriminator D(:; ;) is incorporated in
the learning process. Specifically, when feeding an instance x either from the source
domain or target domain, the model will generate the following two outputs:

y = Y(F(x;6¢);6,)
d = D(F(x; 6¢); 64)
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with y and d indicating the main prediction and domain prediction, respectively. d is
a two-dimensional vector, where each entry represents the probability that x comes
from the source domain (x ~ Ds) or target domain (x ~ Dr). During training, we aim
to minimize the domain discriminator loss, but at the same time maximize the domain
confusion for the main predictor:

ng+nr

ng
min 7=~ L, (Y0670, 9) — s » La(D(F(xi;87); 0,), &)
i=1 i=1

n5+nT

min ﬁ ; L4(D(F(x;; 0); 64)d;)

where £, and £; denote the loss for the main prediction task with true label §; and

loss for the domain prediction task with true label d;, respectively. The update process
involves a gradient reversal layer for the domain predictor that results in the following
updates:

oL oL
_ Y _\Sd

0 0 0L,
v Py T 98,
oL

The DAN as defined here assumes similar data distributions between the source and
target domains in general. However, in many cases, the input data do not commit a
universal but multimodal distributions. For example, when multiple classes exist, the
data under each class can be regarded as following one unique distribution. Motivated
by this point, Long et al. (2018) proposed a conditional domain adversarial network.
Specifically, the domain discriminator is applied on the joint distribution of data and
classes, instead of only on the input data. The addition of conditional information
for the domain classifier can be revealed by replacing the original D(F(x; 6y); 6,;) with
D(F(x; 6f), g; 04), where g represents the class information. With this addition, the net-
work is trained to align the source domain and the target domain conditioned on their
corresponding classes.

5. Model Architecture

In this section, we begin with the description of SRNN for the single-domain extrac-
tion problem followed by TRNN for the cross-domain setting. Both of the proposed
models are constructed from the dependency tree of each sentence and process in a
recursive manner where higher-level nodes in the tree hierarchy are obtained after
the computation of their child nodes. SRNN treats each different dependency rela-
tion as a transformation matrix that is involved in the forward computation for each
node, whereas TRNN embeds each dependency path into a distributed vector that
acts as a bridge to transfer knowledge across different domains. For final predictions,
both single-domain and cross-domain RNNSs are combined with a sequence model-
ing module gated recurrent unit (GRU), a special form of recurrent neural network.
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The joint model takes the output of SRNN or TRNN as the input feature representations
for GRU, and generates the final output for each word for classification. The detailed
constructions are shown in the following sections.

5.1 Single-Domain Recursive Neural Networks

In our preliminary work (Wang et al. 2016), we proposed a dependency-tree-based
recursive neural network for single-domain aspect and opinion terms extraction. Dif-
ferent from existing work, the proposed model incorporates the syntactic structure of a
sentence into an automatic representation learning architecture, such that the important
relation information could be propagated to the feature learning process. An example
of the model structure is shown in Figure 3. Specifically, the network takes word em-
bedding x,, for each word as the input and produces the hidden vector h,, as the output.
The hidden vector is computed in a recursive manner according to the dependency tree
of each sentence generated from a dependency parser. In Figure 3, the bottom arrows
indicate the dependency relations for certain word pairs with the relation type shown
under the arrows. Each relation connects a child word (end of the arrow) to a parent
word and each word only has one parent. Given this dependency structure, we can
build a hierarchical tree such that each node in the tree represents a word in the sentence.
The parent word for each relation lies in higher hierarchy than its children.

The computation of the recursive neural network starts with the leaf nodes and
recursively reaches to the root. Formally speaking, the hidden representation h,, for the
nth word is computed as

h, =f(Wy X, +b+ > W, -hy)
ke,

where W, € R¥*? is a transformation matrix for word embeddings. W, € R¥*4 is one
of the relational transformation matrices for hidden vectors. We assign |R| different
relational transformation matrices, where R = {nsubj, dobj, ...} is the set of different
dependency relations. Hence 7, € R indicates the dependency relation between the
nth node and kth node. K, is the set of child nodes that depend on node n. In a

ha
loool
99
|4 dobj
H"/m/zb/ 000
I'I"Yn/m)(/
hl m W, @ ’Lg Wv
W, )
njpoo] mfood wmlood mlooo

jﬁ

they offer good appetizers

nsubj

amod

root, dobj

Figure 3
The structure of a dependency-tree-based recursive neural network.
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word, the hidden vector for each node is obtained from its own word embedding,
together with the hidden representations from its children. This construction embeds
syntactic interactions among the input words into their hidden representations. To be
more specific, consider the example shown in Figure 3. The dependency between the

aspect word appetizer and the opinion word good is x4 (appetizers) M) x3 (good),
which leads to the following equation

h4 :f(wv'x4+b+wamod'h3) (1)

We can observe that the feature for good, together with the relational transformation
matrix, affects the final feature for appetizers. When this interaction between aspect
words and opinion words is frequently seen in the training corpus, the model could
learn this pattern to help predictions in the test phase.

However, this architecture is not directly applicable for the cross-domain setting.
Given labeled source domain and unlabeled target domain, a straightforward idea is
to share the parameters learned in the source domain for target predictions. Although
sharing relational transformation matrices aligns with the fact that dependency rela-
tions are domain-invariant, this cannot guarantee learning of domain-invariant hid-
den representations. Specifically, when the two aspect words from two domains have
disjoint features and children according to the dependency trees, the resultant hidden
vectors are also dissimilar. This motivates a novel construction to facilitate knowledge
transfer discussed in the following section.

5.2 Transferable Recursive Neural Networks

The overall architecture of TRNN is shown in Figure 4. Given an input sentence with pre
trained word embedding x for each word, the model recursively computes the hidden
representation h for each word as the output of TRNN. Meanwhile, knowledge transfer
takes place via two transferable components: an auxiliary task as well as a conditional
domain adversarial network are adopted to learn domain-invariant representations.
Specifically, given a dependency path, TRNN first produces a relation vector r;; through
its connected words. Then an auxiliary task takes r; as the input for classifying its
dependency relation (nsubj in this case). To reduce the negative effect brought by noisy
relation labels generated from imperfect parsers, an auto-encoder is incorporated to
generate relation clusters yg as an encoding step. The decoding process produces exact

relation label yll-;- as well as reconstructing the input relation vector. The learned relation
vectors serve as a bridge across different domains when they are used to compute h;
as the hidden representation for its parent word. To explicitly map two domains into
a common space, a cDAN is adopted with a domain discriminator. The input to the
discriminator is a concatenation of h; and one-hot relation feature yg representing the
relation cluster to which the upward dependency relation belongs. This construction
aims to align word features across different domains based on their syntactic structure.
We describe each component in detail in the following sections.

5.2.1 Recursive Neural Networks with Auxiliary Tasks. Similar to SRNN, TRNN is recur-
sively constructed according to the pregenerated dependency tree for each sentence.
To make the model transferable across different domains, we embed each dependency
relation in the tree into a distributed vector space, which can be taken as the input to
an auxiliary task. For concrete illustration, we present the RNN with auxiliary tasks
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T J[O oo GRU
j+1 /! i
TRNN
Ty
the staff in this restaurant was S0 horrible to us
nsubj

Figure 4
An overview of the proposed model.

RNN with auxiliary tasks

tlg:ii/soﬁ\mrv with upgraded version is fantastic the staff in this restaurant was so horrible to us

amos

cOop o ; i
ase advmod
ase cop

poss o case
F case det
nmod

nmod root nmod
Source i Target

nsubj

Figure 5
An example of RNN with auxiliary tasks for both source and target domains.

for both source and target domain in Figure 5. The model computes the hidden rep-
resentation h; for each word recursively from leaf nodes to higher-level nodes in the
tree. Instead of using child node features as in SRNN, we incorporate a dependency
relation vector to produce the hidden representation for the parent nodes. Specifically,
we begin with input word embedding x; €RP for each node. Consider the source-
domain sentence shown in Figure 5 as an example. For ease of illustration, we ignore
some words in the middle of the sentence. The hidden vectors for the leaf nodes are first
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generated through a non-linear transformation on the input vectors:
h; = tanh(W,x; + b) and hg = tanh(W,xs + b)

with W, € R*P as a transformation matrix. To obtain hidden vectors for non-leaf
nodes, a relation vector r;; €R? is generated first for each dependency path that con-
nects them to their child node. Here, i and j denote the indices of the parent and
child word of the dependency edge, respectively. For example, the relation vector for

x7 (fantastic) Lub]> x; (software) is computed as
r;, = tanh(Wyhy + Wox7)
Then the hidden vector for fantastic can be obtained through
h; = tanh(Wnsub]- 1, + W,xy + b)

by the transformation of its own input embedding as well as the relation path vectors
that connect it to its dependents. Then an auxiliary task is integrated on relation vectors
to predict its corresponding dependency relation type:

91;2 = softmax(Wgry, + bg)

where Wy € R¥*4 is the relation classification matrix. The auxiliary task applies to each
dependency path and is a K-class supervised classification problem with K representing
the total number of different dependency relations in the corpus. During training,
the supervision of relation labels yg €RX can be obtained for both source and target
domains via the dependency parser. Through this auxiliary task, the relation vectors
{r;}’s are grouped together according to relation types, that is, similar or the same
dependency relations from the source and target domains are projected within close

bj

nsubj
proximity in the vector space. As the example shown in Figure 5, 17, for fantastic——

software and rg, for horriblem staff are close to each other. As a result, these relation
vectors could be regarded as a bridge for word knowledge transfer across domains: The
hidden representations of the parent words (h; for fantastic and hg for horrible) for these
relations are aligned, irrespective of the domains.

In general, the hidden representation h; for the i-th node is produced through

h; = tanh(> W, 1;; + Wyx; + b) )
JEM,;

where r1;; = tanh(W;h; + W,x;)
Here M; is the set of child nodes of w;, and WRi]. is the relation transformation matrix tied

with each relation R;;. For leaf nodes, the first term on the right-hand side of Equation
(2) is removed. The predicted relation label vector 95 for rj; is

95 = softmax (Wg - 1 + bg) ©)
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We adopt the cross-entropy loss for relation classification between the predicted label
vector }75 and the ground-truth yf}- to encode relation side information into feature
learning:

N
R =~ Vi 108 Fij (4)

n=1

Through the auxiliary task, similar dependency relations in source and target domains
are trained to be clustered in the relation vector space, which are then used to build
correspondences between their parent words across two domains via Equation (2). In
this case, words with similar syntactic functionalities are projected within close distance
for both domains. Hence, the final word classifier trained from the source domain can
be directly transferred to the target domain.

5.2.2 Addition with Conditional Domain Adversarial Networks. The auxiliary task intro-
duced in Section 5.2.1 implicitly maps the hidden representations across different
domains into a shared space through clustered relation vectors. To achieve more ex-
plicit adaptations, we further apply a cDAN with a domain discriminator to learn
disentangled and transferable representations for domain adaptation. However, directly
applying a cDAN for each word only assumes unitary distributions for both source and
target domains. In fact, multimodal distributions should be observed for input words
corresponding to different syntactic functionalities. To address this point, and motivated
by Long et al. (2018), we adopt conditional cDANs that condition the domain discrimi-
nator on the dependency structure of a sentence. Specifically, the domain discriminator
D generates a probability distribution P(D|h,y®) as already shown in Figure 4, where
y© refers to the relation label feature. We denote D = 1 as the source domain and D = 0
as the target domain. Then the domain discriminator computes

9 = P(D|h;,y5,) = softmax (Wy[h; : y§;] + by) )

where m indicates the index of the parent node for w;. Note that the dependency tree
assigns each node with only one parent, hence m is unique. [:] represents concatenation
of vectors. y©. is a one-hot vector with entry 1 representing the index of the correspond-
ing dependency relation between w; and w,,. The domain discriminator is learned by
minimizing the classification error of distinguishing the source from the target domains.
At the same time, the main prediction model learns transferable representations that
are indistinguishable by the domain discriminator. This process corresponds to the
following two objectives:

ng ng—+nr

min » 0, (y;, §;) vZ Ly, 9% 6)
i=1
ng+nr

miny Y la(yf, 99 (7)

i=1

where {, is the cross-entropy loss between final ground-truth labels and word-level
predictions. Similarly, £; is the cross-entropy loss for domain classifier. y controls the
tradeoff between the main prediciton loss and the domain confusion loss. We apply the
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c¢DAN on each node in the tree. On the one hand, by confusing the domain discriminator
on the concatenation of hidden vectors and relation features from different domains,
the model is able to align source and target domains on the joint distributions of word
features and dependency structures. On the other hand, the conditioned information
refers to the upward dependency relation for each word. Compared with the auxiliary
task, which focuses on learning transferable word features based on the downward
dependency relations, cDAN works in the other direction and further improves the
transferability of the model when combining with the auxiliary module. That is, these
two transferable modules aim at learning syntactically sensitive word representations
that are transferable across domains.

5.2.3 Reduce Label Noise with Auto-encoders. The dependency relations are crucial for
transferring knowledge across different domains. As discussed in the previous sections,
the relations serve as auxiliary labels as well as conditional features for cDAN, hence,
the accuracy of generated dependencies substantially affects the final prediction perfor-
mance. However, the dependency parsers are not perfect and could produce incorrect
dependency relations. Moreover, if we treat each unique relation as one class, there will
be more than 40 different classes for the auxiliary task, which makes the classifier hard
to learn. To resolve this problem, we propose integrating an auto-encoder into TRNN
to cluster dependency relations and reduce the dimensions. We assume that there is a
set of latent groups of relations: G = {1,2,...,|G|}, where each relation belongs to only
one group. For the auxiliary task of relation predictions, an auto-encoder is applied on
top of the relation vector r; before feeding it into the auxiliary classifier (Equation (3)).
The goal is to encode the relation vector to a probability distribution of assigning this
relation to any group. As can be seen Figure 6, each relation vector r;; is first passed
through the auto-encoder as follows:

exp (rl']I' Woenc8 )

Z exp (rl"jF Wencgli)
k'eG

p(Gij = k|rj) = )

where G;; denotes the inherent relation group for rj;, g, €R? represents the feature

embedding for group k, which is randomly initialized. W,,.€R%*? is the encoding
matrix that computes bilinear interactions between relation vector r;; and relation group
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Figure 6
An auto-encoder for relation grouping.
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embedding g;. Thus, p(G;; = klr;;) represents the probability of r; being mapped to
group k. Different from traditional auto-encoders, where the encoding process generates
a continuous hidden vector, the auto-encoder used in this model has a discrete form
where the encoding process generates a probability distribution for group assignment as
shown in Equation (8). Directly conducting decoding from p(G;; = k|r;;) is meaningless,
because the semantic meanings are not aligned between probability distribution and the
input relation vector. To address this issue, we compute an accumulated relation group
embedding for r;; as

|G|

8ij = ZP(sz = klr;)g, ©)
pt

For decoding, the decoder takes g;; as input and tries to reconstruct the relation feature
input r;;. Moreover, g;; is also used as the higher-level feature vector for r;; for predicting
the relation label. Therefore, the objective for the auxiliary task in Equation (4) becomes:

g = ERl + (XERZ + B€R3 (10)
where
2
b, = ||t — Waeety | a1
N
tr, = D ~Vhin 108 ¥ (12)
n=1
I
b, ~ 1- GG 1)

Here (g, is the reconstruction loss with Wy, being the decoding matrix, (g, follows
Equation (4) with yf;:softmax (WRgi]- +bg), and {g, is the regularization term on
the correlations among latent groups with I being the identity matrix and G being a
normalized group embedding matrix that consists of normalized g;s as column vectors.
This regularization term enforces orthogonality between g, and g;, for k # k’. Indeed,
we expect the auto-encoder to learn meaningful relation groups such that intra-group
relations are close to each other, whereas inter-group relations are distinct from each
other (achieved by an orthogonality constraint on relation groups). We will qualitatively
show later in the experiments that similar dependency relations are clustered after
training, for example, iobj and dobj belong to the same group. « and 3 are used
to control the trade-off among different losses. With the auto-encoder, the auxiliary
task of relation classification is conditioned on group assignment. The reconstruction
loss further ensures the consistency between relation features and groupings, which is
supposed to dominate classification loss when the observed labels are inaccurate.

To reduce the negative effect of noisy relations on cDAN, we replace the explicit
one-hot relation feature with relation cluster labels. Specifically, y¢. in Equation (5)
becomes a one-hot vector with yfti[k] =1, where k indicates the index of the relation
group it belongs to. We can treat k as a pseudo-label for relation clusters, which is
obtained as k = arg max p(Gy;|t,;) given Equation (8) computed from an auto-encoder.

720



Wang and Pan Aspect and Opinion Extraction

5.3 Joint Training with Sequence Prediction Models

The recursive neural networks mainly capture syntactic interactions among a sequence,
but ignore sequential correlations. To address this limitation, we propose a joint model
that consists of two components: The first component is a SRNN or TRNN for single-
domain or cross-domain setting, respectively, to explore syntactic interactions among
aspect and opinion words. The second component is a GRU, which is a variant of
recurrent neural networks to model contextual interactions among a sentence. GRU
is able to learn long-term dependencies through gating units compared to standard
recurrent neural networks, and at the same time less prone to over-fitting compared
to long short-term memory (LSTM). Unlike our preliminary work (Wang et al. 2016),
which adopts CRF as the sequential model, we choose GRU because of its ability to
learn high-level feature interactions and its smoother integration with recursive neural
networks. The resultant joint model combines both syntactic and sequential influences
that are both crucial for the extraction task. Here we use SRNN-GRU/TRNN-GRU to
denote the final joint model.

Besides syntactic structures, sequential interactions are also crucial for aspect and
opinion terms extraction, for example, a token labeled as BA could infer the following
token with high probability of being IA in a multi-word aspect term. Given label N for
the current token, it is impossible for the next token to have label IA or IO. To incorpo-
rate such sequential information, we propose integrating a GRU-based recurrent neural
network on top of RNN to form a joint model. In this case, the input for GRU is the
hidden representations h; learned by SRNN/TRNN for the i-th token in the sentence.
Formally, given h;, the final feature representation h'; for each word is obtained through

W,=(1-¢)oh, 1 +¢0oz (14)
where

¢ = o(W,h'i_; + Uchy)
z; = tanh(W,(g; ® h';_;) + U;h))
8 = o-(wgh/i—l + Ughi)

Here, ¢; and g; are control gates to decide the information flow. The final token-level
prediction is made through

¥, = softmax (W, - h'; + b)) (15)

where W; € R>*?’ transforms a d’-dimensional feature vector to class probabilities (note
that we have five different classes as defined in Section 3.1). For unsupervised domain
adaptation, we use shared parameters for both TRNN and GRU network in each do-
main, because the characteristic correlations between syntatic-related words or adjacent
words are invariant across different domains.

For supervised single-domain setting, the joint model is trained on labeled training
data in a specific domain, which is then evaluated on the test set in the same domain.
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We use the cross-entropy loss as the training objective:

smgle Z ¢ (le Yl (16)

where 7 is the total number of labeled training instances. For the cross-domain setting,
to train the joint model with only labeled data Ds={(x, y: )} 2, in the source domain,

we generate another two sets of training data, including Dg = {(r], )}n5+nT for the

auxiliary relation prediction task as well as Dy ={(x;, ., y‘fn)}';filnT for c¢DAN. Both Dy
and Dy contain the combination of source and target training instances. The total loss is
the combination of token-prediction loss {,, relation-prediction loss {, and domain loss

Edi

ng+nr ng+ng
Ze (i 9:) + A Z RS I =7 D talyd, 91 (17)
i=1 m=1

where ¥, is the predicted extraction label in Equation (15), and £y is defined in Equation
(10) for TRNN with auto-encoders or Equation (4) without auto-encoders. With cDAN,
we adopt the Gradient Reversal Layer proposed by Ganin et al. (2016) to update the
parameters. Specifically, we denote 8, Or, 8;, and 6, as parameters for feature learn-
ing, auxiliary relation prediction task, domain discriminator, and final prediction task,
respectively. The Gradient Reversal Layer process will update the parameters as the
following:

9f<—6f—u<géi +7\gg§—yggjr> (18)
ey<—ey—u<§éz> (19)
Br < Og — (Agei) (20)
0, 0; — 1 (y gé‘;) (21)

where 1 is the learning rate, and A and 'y are trade-off parameters to control the impact of
auxiliary loss and domain adversarial loss. The parameters for token-level predictions
and relation-level predictions are updated jointly such that the information from the
auxiliary task could be propagated to the target task to obtain better performance. This
idea is in accordance with structural learning proposed by Ando and Zhang (2005),
which shows that multiple related tasks are useful for finding the optimal hypothesis
space. In our case, the set of multiple tasks includes the target terms extraction task and
the auxiliary relation prediction task, which are closely related. The parameters are all
shared across domains.
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Table 1
Data statistics with number of sentences for each domain. w/1 = with ground truth labels; w/o 1
= without labels.

Data set Description # Sentences Training Testing Source Target

R Restaurant 5,841 4,381 1,460 4381 (w/1) 4,381 (w/ol)
L Laptop 3,845 2,884 961 2,884 (w/1) 2,884 (w/ol)
D Device 3,836 2,877 959 2,877 (w/ 1) 2,877 (w/ol)

6. Experiments
6.1 Data and Experimental Set-up

For experiments, we use benchmark customer reviews from three different domains,
namely, restaurant, laptop, and digital devices. The data from the restaurant domain
contains a combination of restaurant reviews from SemEval 2014 task 4 subtask 1
(Pontiki et al. 2014) and SemEval 2015 task 12 subtask 1 (Pontiki et al. 2015). For the
laptop the domain, we extract laptop reviews from the laptop domain in SemEval 2014
task 4 subtask 1. The domain of digital device consists of customer reviews from Hu
and Liu (2004), which include sentences from five digital devices. The statistics for each
domain are shown in Table 1 with the number of sentences. To make robust compar-
isons, we conduct each experiment for three times and take the average performance
as the final result. Specifically, we make three random splits to partition the data in
each domain into a training set and a testing set with the proportion being 3:1. For
each split, the training data are used to train the model, which is then evaluated on
the test set. The numbers of sentences for both training and testing after each split are
also shown in Table 1. For the single-domain problem, we use the labeled training data
from the specified domain to train our model. For unsupervised domain adaptation,
the training corpus consists of both source and target training data, but we only use the
ground-truth labels from the source domain and ignore all the labels from the target
domain in each transfer experiment. As shown in Table 1, when selected as the source
domain, the training set with ground-truth labels (shown as “w/ 1”) is used, and the
training set without labels (shown as “w/o0 1”) is used for the target domain. For a
complete evaluation, in each cross-domain experiment, we conduct both inductive and
transductive testings. The inductive results are obtained using the test data from the
target domain, and the transductive testing evaluates the model on the (unlabeled)
training data from the target domain. We use F1 score for evaluation. Following the
setting from existing work, only exact match could be counted as correct.

To conduct the experiments, we use the Stanford Dependency Parser (Klein and
Manning 2003) to generate dependency tree for each sentence. The input for the whole
network is the pretrained word embeddings obtained using word2vec (Mikolov et al.
2013), which is trained on 3M reviews from the Yelp data set' and electronics data set in
Amazon reviews® (McAuley et al. 2015). We set the dimension of word embeddings as
100. The dimension of final features after GRU network is 50, and the context window

1 http://www.yelp.com/dataset_challenge.
2 http://jmcauley.ucsd.edu/data/amazon/links.html.
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size is 3 for input feature vectors of GRU. Because of the relatively small size of the
training data compared with the number of parameters, we first pre-train SRNN/TRNN
without GRU on top for five epochs. The best pre trained model is selected to further
train the joint model. For single-domain experiments, we use mini-batch with batch
size 25 to train our model. Adaptive learning rate is adopted that is initialized at 0.02.
For cross-domain experiments, mini-batch size is set as 30 and the rmsprop training
strategy is used with the learning rate initialized at 0.01 for pre-training, and 0.001
for joint training. The whole corpus contains 43 different dependency relations, which
is relatively large for the auxiliary task. As mentioned in Section 5.2.3, we cluster
the dependency relations into a small number of relation groups in an unsupervised
manner. The number of groups is set to be 20. The trade-off parameters for the auxiliary
loss o« and {3 are set as 1 and 0.001, respectively. The trade-off parameters for the total
loss A and vy are both set as 0.1. All the hyper-parameters for cross-domain experiments
are selected based on three-round random-split validation on the extraction task in
the source domain and relation prediction task over both source and target domain.
Specifically, for source-domain validation data, we evaluate the model’s performance
on both terms, extraction task and relation prediction task. For target-domain validation
data, we evaluate the performance on relation prediction task.

6.2 Results for Single-Domain Experiments
For meaningful performance comparisons, some typical baselines are selected:

®  CRF-1: A traditional linear-chain CRF consisting of standard lexical
features, including word string (within window-size 5), stylistics, POS tag
(within window-size 5), and so forth.

e CRF-2: An extension of CRF-1 to include syntactic features, including
dependency relations, head word, child words, and so on.

*  LSTM: A recurrent neural network proposed by Liu, Joty, and Meng
(2015). We use the same pretrained word embeddings as ours for fair
comparison.

¢  CRF-embedding: Apply the standard linear-chain CRF with pretrained
word embeddings as the input features. We use the same word
embeddings as our proposed models.

*  SRNN: The single-domain recursive neural networks without any
sequential model on top. We apply softmax prediction directly on the
output vectors from RNN.

. RNCRE: The proposed model in our preliminary work (Wang et al. 2016)
without any mannually designed features. The joint model consists of an
RNN and a CRF on top of the RNN.

e SRNN-GRU: The proposed joint model for single-domain aspect and
opinion terms extraction. Different from RNCRF, SRNN-GRU replaces
CREF at the topmost layer with GRU.

The comparison results in terms of average F1 scores are shown in Table 2. The

first three rows are representative baseline models for sequence tagging problems.
Both CRF-1 and CRF-2 take discrete human-engineered features to train the classifier.
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Table 2
Comparisons with different baselines for single-domain aspect/opinion terms extraction.
Models R L D

AS or AS or AS or
CRF-1 67.50 73.49 67.38 72.07 36.72 55.44
CRF-2 70.10 73.76 68.30 71.36 39.18 57.67
LSTM 74.48 77.05 72.48 73.05 50.52 63.14
CRF-embedding 72.10 75.94 70.22 73.56 46.78 53.44
SRNN 68.15 68.08 64.10 62.37 38.53 50.83
RNCRF 76.78 79.20 72.28 73.74 49.40 63.77
SRNN-GRU 75.70 79.34 73.62 73.31 50.28 64.15

Compared with deep models, the CRF models show inferior performance, demonstrat-
ing the advantage of continuous high-level features learned from deep neural networks.
The linear combination of discrete features in CRF fails to capture high-level interactions
inherent in the feature space. The dependency information enhances the prediction
results when feeding into the CRF model. This demonstrates the effect of syntactic
relations for the extraction task. LSTM greatly outperforms the CRF models, although it
still falls behind our proposed model. The last four rows in Table 2 are variations of the
proposed model. Specifically, CRF-embedding removes RNN for syntactic modeling,
whereas SRNN removes the sequential layer on top. Without integrating both syntactic
and sequential modules, the performance of CRF-embedding and SRNN are much
worse than the joint model, which demonstrates the importance of both components
for aspect and opinion terms extraction. The RNCRF model performs comparably
with SRNN-GRU. This indicates that both CRF and GRU are effective for modeling
sequential interactions.

6.3 Results for Cross-Domain Experiments

We compared the proposed model TRNN-GRU with several baselines for cross-domain
aspect and opinion terms extraction. The baseline models are listed in the following:

*  RNCRE: A joint model of a recursive neural network and CRF proposed
by Wang et al. (2016) for single-domain aspect and opinion terms
extraction. We make all the parameters shared across domains for target
prediction.

¢ RNGRU: A joint model of RNN and GRU. The hidden layer of RNN is
taken as input for GRU. This is similar to RNCRF by replacing CRF with
GRU. The parameters are all shared across domains.

*  CrossCRF: A linear-chain CRF with hand-engineered non-lexical features
that are useful for cross-domain settings (Jakob and Gurevych 2010), for
example, POS tags and dependency relations.

*  RAP: The Relational Adaptive bootstraPping method proposed by Li et al.
(2012) that uses TrAdaBoost to expand lexicons through common opinion
terms and dependency relations.
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*  Hier-Joint: A cross-domain recurrent neural network proposed by Ding,
Yu, and Jiang (2017) for aspect terms extraction across domains. The model
integrates auxiliary tasks that are composed from manually defined rules.

¢ ARNN-GRU: The proposed joint model without cDAN, which was
proposed in our previous work (Wang and Pan 2018), that combines a
dependency-tree-based recursive neural network with GRU. An
auto-encoder is incorporated in the auxiliary task to reduce label noise.

¢  TRNN-GRU: Based on ARNN-GRU, we integrate a conditional domain
adversarial network that takes both word features and parent relation
group as input to transfer knowledge across domains.

Note that we do not implement other recent deep adaptation models for compari-
son (Chen et al. 2012; Yongxin and Timothy M. 2015), because Hier-Joint (Ding, Yu, and
Jiang 2017) has already demonstrated better performance than these models. The overall
comparison results with the baseline models are shown in Table 3 with average F1 scores
and standard deviations shown in brackets over three random splits. The results shown
are based on the inductive setting, which evaluates on the test data in the target domain.
Clearly, the results for aspect terms (AS) transfer are much lower than opinion terms
(OP) transfer, which indicates that the aspect terms are usually disjoint across domains
and are difficult to be adapted, whereas the opinion terms are easier to be aligned
across domains. Hence the ability to transfer aspect knowledge from the source domain
to the target domain becomes more crucial. For more challenging knowledge transfer
in aspect terms, the proposed transferable recursive neural network shows substantial
advantage over other baselines. We can see that both ARNN-GRU and TRNN-GRU
achieve large performance gains for aspect extraction (AS), for example, 6.77%, 6.65%,
and 11.07% improvement over the best-performing baselines for aspect extraction in
R—L, L—D, and D—L, respectively. Without any domain adaptation strategies, RNCRF
and RNGRU demonstrate inferior results by simply adopting the model trained on the
source domain. This indicates the effectiveness of the structural correspondences built

Table 3
Comparisons with different baselines.
Models R—L R—D L—R L—D D—R D—L
AS OP AS OP AS OP AS OP AS OP AS OP
CrossCRF 19.72  59.20 21.07 5205 2819 6552 2996 56.17 659 3938 2422 46.67
(1.82) (1.34) (0.44) (1.67) (0.58) (0.89) (1.69) (1.49) (0.49) (3.06) (2.54) (2.43)
RAP 2592 6272 2263 5444 4690 6798 3454 5425 4544 60.67 2822 59.79
(2.75) (049) (0.52) (2.20) (1.64) (1.05) (0.64) (1.65) (1.61) (2.15) (2.42) (4.18)
Hier-Joint 33.66 - 33.20 - 48.10 - 31.25 - 47.97 - 34.74 -
(147) - (052 - (145 - (049 -  (046) -  (2.27)
RNCRF 2426 6086 2431 5128 40.88 66.50 3152 5585 3459 63.89 4059 60.17
(3.97) (3.35) (2.57) (1.78) (2.09) (1.48) (1.40) (1.09) (1.34) (1.59) (0.80) (1.20)
RNGRU 2423 60.65 2049 5228 39.78 6299 3251 5224 3815 6421 3944 60.85
(241) (1.04) (268) (2.69) (0.61) (0.95) (L.12) (237) (2.82) (L.11) (279) (1.25)
ARNN-GRU 4043 6585 35.10 60.17 5291 7251 4042 6115 4836 7375 51.14 71.18
(0.96) (1.50) (0.62) (0.75) (1.82) (1.03) (0.70) (0.60) (1.14) (1.76) (1.68) (1.58)
TRNN-GRU 40.15 65.63 37.33 60.32 53.78 7340 41.19 6020 5117 74.37 51.66 68.79

(077) (1.01) (0.90) (0.66) (0.91) (045) (1.06) (156) (0.99) (1.03) (127) (1.63)
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using an automatically generated auxiliary task as well as a domain discriminator to
learn domain-invariant features.

Besides the pairwise transfer setting, we also conduct multisource adaptation ex-
periments. Specifically, we select two different domains as source domains with labeled
training data and the third domain as the target domain. Under this setting, two transfer
strategies could be applied: The first strategy mixes the two source domains as a single
domain, which reduces to the pairwise transfer problem. The second strategy is similar
to ensemble learning where each of the two source domains is paired with the target do-
main to train a separate model. The final result is produced as a weighted average of the
predictions made by those separate models. The F1 scores for multisource adaptation
are the following (the best result among 2 strategies): 51.35/73.24 for aspect/opinion
terms extraction when transferring from the laptop and the device domains to the
restaurant domain, 46.77/68.96 for aspect/opinion terms extraction when transferring
from the restaurant and the device domains to the laptop domain, and 41.34/62.10 for
aspect/opinion terms extraction when transferring from the restaurant and the laptop
domains to the device domain. Most of the results are not improved for aspect/opinion
terms extraction compared with the single-source transfer setting. We conjecture that
the reason behind this is the incompatibility among different source domains that leads
to negative transfer effect. More empirical or theoretical studies on the multisource
transfer setting will be conducted in our future work.

6.4 Transfer Analysis

6.4.1 Component Analysis. TRNN-GRU consists of several components that are crucial
for achieving promising results. To investigate the effect of each component, we break
down the joint model to generate a few variants of the proposed model as follows:

e TRNN#*-GRU: Remove relation group clustering for cDAN in the original
proposed model. In this case, the input for cDAN becomes the
concatenation of hidden representation for each word and a one-hot
feature vector indicating the index of the exact dependency relation.

. TRNN°-GRU: Remove conditional relation features for cDAN in
TRNN-GRU. The input for the domain discriminator becomes the hidden
vector for each word.

¢ DRNN-GRU: Remove the auxiliary task for relation predictions. The
model can be reduced to RNGRU, similar to Wang et al. (2016), with a
c¢DAN on top of the hidden representation of each word.

¢ ARNN-GRU: Remove the cDAN model, but only keep the auxiliary task
with the auto-encoder. The resultant model is the same as the one we
proposed in Wang and Pan (2018).

. ARNN*-GRU: Based on ARNN-GRU, remove the auto-encoder for
clustering the dependency relations. The auxiliary task becomes a 43-class
classification problem to predict each exact dependency relation.

¢ TRNN: Remove the sequence labeling model on the top, but use the
hidden representation generated from the recursive neural network for the
final prediction.
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Table 4
Comparisons on each component of TRNN-GRU.

R—L R—D L—R L—D D—R D—L
AS opP AS opP AS opP AS or AS or AS or

TRNN-GRU  40.15 65.63 37.33 60.32 53.78 7340 41.19 60.20 51.17 74.37 51.66 68.79
TRNN*-GRU  38.56 63.70 36.09 60.03 50.61 73.68 41.06 58.24 49.38 74.06 50.25 67.20
TRNN°-GRU 41.06 66.46 34.71 58.77 53.45 72.89 40.07 59.20 49.03 72.78 51.06 69.82
DRNN-GRU  40.68 64.88 3545 60.30 48.58 72.38 40.23 59.31 50.30 73.41 4657 67.45
ARNN-GRU 4043 65.85 35.10 60.17 5291 7251 4042 61.15 4836 73.75 51.14 71.18
ARNN*-GRU 37.77 6235 33.02 57.54 53.18 71.44 3565 60.02 49.62 69.42 4592 63.85
TRNN 33.13 65.54 2419 59.87 28.59 73.11 3523 57.73 36.38 7427 45.16 66.29
TRNN-GRU  37.73 6542 3542 60.55 52.79 73.42 39.85 5833 50.13 73.72 49.11 70.00
TRNN*-GRU  37.35 65.02 34.64 59.76 49.57 7240 39.24 57.80 48.72 7441 4874 68.92
IN TRNN-GRU 40.39 6525 33.02 59.30 52.20 72.97 39.66 58.82 49.09 73.32 49.54 69.82

DRNN-GRU  40.69 64.87 33.59 60.38 46.93 72.62 39.09 57.87 49.64 7359 44.23 66.89

ARNN-GRU  41.27 65.44 3358 60.28 52.48 72.10 39.73 60.18 47.10 72.19 50.23 70.21

ARNN*-GRU  39.07 62.80 31.86 57.81 5251 71.67 35.74 59.72 49.48 69.36 45.69 64.82

TRNN 31.16 65.22 2753 59.88 27.68 7295 36.18 58.25 36.99 7290 47.69 65.95

OuT

For a more complete comparison, we conduct the experiments with both transduc-
tive setting, denoted as IN, and inductive setting, denoted as OUT in Table 4. The results
are the average F1 scores among three splits. By observing similar performance for
inductive and transductive experiments, the robustness of the model can be proved, that
is, the proposed model indeed transfers knowledge from the source domain to the target
domain even when test data in the target domain are not presented during training.
From Table 4, we see that the joint model TRNN-GRU achieves the best performance
most of the time. TRNN*-GRU shows inferior results for all except one experiment
compared with TRNN-GRU. Similary, ARNN*-GRU deviates from ARNN-GRU with
a large gap. These two comparisons indicate the importance of the auto-encoder for
converting explicit dependency relations to their inherent relation groups in order to
reduce the negative effect brought by inaccurate parsers. We also show that cDAN is
advantageous by conditioning the domain discriminator on syntactic relations because
TRNN~°-GRU produces inferior results when removing the relation label features. The
effect of the auxiliary task can be proved by the performance gap between DRNN-GRU
and the final model. By removing the auxiliary component, DRNN-GRU is slightly
worse than TRNN-GRU for R—D, L—D, and D—R, but deteriorates greatly for as-
pect extraction on L—R and D—L. On the other hand, the cDAN is also crucial, by
observing the relatively low performance of ARNN-GRU compared with TRNN-GRU
on most experiments. The results also indicate that the auxiliary task is more effective
for knowledge transfer, compared with cDAN. These two components compensate for
each other in the proposed joint model to achieve the best performance. Finally, the
results for TRNN by removing GRU are much lower than the joint model, which proves
the importance of combining syntactic tree structure with sequential modeling.

Although Table 4 shows that the auto-encoder is advantageous for cross-domain ex-
traction compared with the model without it, it is still unclear whether the auto-encoder
indeed reduces label noise brought by inaccurate dependency parsers. To clarify that,
we construct another data set to simulate noisy dependency relations that are common
for informal texts. Specifically, in the source domain of each transfer experiment, for
each relation that connects to any aspect or opinion word, it has 0.5 probability of being
replaced by any other relation. As shown in Table 5, we denote the model trained on
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Table 5

Comparisons with and without antoencoders on noisy dependency relations.

Models R—L R—D LR LD D—R D—L
AS or AS or AS or AS or AS or AS or

ARNN*-GRU 37.77 6235 33.02 5754 53.18 71.44 35.65 60.02 49.62 6942 4592  63.85
ARNN*GRU (r) —4.80 —12.17 —6.81 —-396 —1730 —-571 —278 —245 —959 —208 —586 —4.67
ARNN-GRU 4043 6585 3510 60.17 5291 72.51 4042 6115 4836 7375 5114 7118

ARNN-GRU (r) -116 —6.44 —1.68 —293 -—7.12 255 —221 —2.03 -3.00 —091 —0.69 —3.13
TRNN*-GRU 3856 63.70 36.09 60.03 50.61 73.68 41.06 5824 4938 7406 5025 < 67.20
TRNN*-GRU (r) —-593 —-878 —-319 —284 —-738 —-116 —267 —066 —420 —-129 —-10.69 —542
TRNN-GRU 40.15 65.63 3733 6032 53.78 73.40 4119 6020 5117 7437 5166  68.79

TRNN-GRU (r) —490 -595 —-073 —-220 550 —1.56 -157 —0.12 —-3.31 —0.94 —495 —493

the newly constructed data set with noisy relations as (r). The results for models on
the original data set (without (r)) are shown in F1 scores, whereas the results for their
variants are presented as the reduction in terms of F1 performance compared to the
original data set. For example, for the case of ARNN*-GRU, Table 5 shows —4.80 in the
aspect extraction for R—L. This indicates ARNN*-GRU produces 4.80% lower F1 scores
when trained on noisy data set compared with the original data set. Clearly, ARNN-
GRU gives much better results than ARNN*-GRU on noisy training data, with less than
3.50% drop for most of the experiments. This demonstrates the effectiveness of an auto-
encoder on reducing the negative influences brought by noisy auxiliary labels. Similarly,
the performance of TRNN-GRU without an auto-encoder produces larger deterioration
when the conditioned relation features are very noisy (shown as TRNN*-GRU (r)). This
proves that the auto-encoder makes the model more robust to label noise and helps
to adapt the information more accurately to the target data. Note that a large drop for
L — R in aspect extraction might be caused by a large portion of noisy replacements
for this particular data, which makes it too hard to train a good classifier. This may
not greatly influence opinion extraction, as shown, because the two domains usually
share many common opinion terms. However, the significant difference in aspect terms
makes the learning more dependent on common relations.

6.4.2 Adaptation Analysis. We also demonstrate how the model aligns the two different
domains in the training process via Figure 7. We use a measure of domain distance to
evaluate the effect of knowledge transfer. Specifically, the maximum mean discrepancy
(MMD) (Gretton et al. 2012) is adopted to compute the distance between the source
domain and the target domain. Because the model works on word-level predictions that
treat each word as an instance, we take the average word features for each sentence as
the input to compute the domain distance and use a mixed RBF kernel for the MMD
mapping. Specifically, the mixed RBF kernel consists of three kernels with different
kernel widths: 0.5, 0.025, and 0.0125. We evaluate two forms of features; one is the input
word embedding and the other is the hidden representation for each word obtained
from TRNN. We should expect that the MMD result for hidden representations across
domains is relatively small compared with the word embeddings and is decreasing
while training, which shows that TRNN indeed aligns two different domains. As
shown in Figure 7, the triangle markers on the top trajectory represent MMD values
for input word embeddings across different domains, and the circle markers in the
bottom trajectory represent MMD values for the learned hidden features. Obviously,
the distribution distance in terms of hidden features is much smaller compared with
the one on input features for each transfer experiment. The MMD on hidden features
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Analysis of domain distances for six different transfer experiments during training.

is also monotonically decreasing along the training process. This proves our claim that
our model is able to transfer knowledge across different domains. Moreover, from the
second and third rows of Figure 7, we notice that the MMD between the laptop and
restaurant domains (or MMD between the device and restaurant domains) is much
higher than the one between the laptop and device domains before applying TRNN.
This follows the fact that the laptop domain and the device domain are much more
similar because they both contain the reviews for the digital products. Despite the large
discrepency on word features before training, our proposed model is able to map those
input features that are far apart from two domains to closer proximity in the hidden

space.
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Table 6

Case studies on word and dependency relation clustering through auto-encoders.

G Word Dependency

1 this, the, their, my, here, it, I, our, not det, poss, neg

2 quality, jukebox, maitre-d, sauces, portions, volume, friend, noodles, calamari dobj, iobj, pobj

3 in, slightly, often, overall, regularly, since, back, much, ago prep, mark, advmod
4 handy, tastier, white, salty, right, vibrant, first, ok amod, advmod

5 get, went, impressed, had, try, said, recommended, call, love ccomp, pcomp, xcomp
6 is, are, feels, believes, seems, like, will, would cop, auxpass

To qualitatively show the effect of the auto-encoders for clustering syntactically
similar words across domains, we provide some case studies on the predicted groups
of selected words in Table 6. Specifically, for each relation in the dependency tree, we
use Equation (8) to obtain the most probable group to assign the word in the child node.
This group is also used as the one-hot relation features for cDAN. The left column shows
the predicted group index. The second column shows the corresponding words and the
third column shows representative dependency relations within each specific group.
Clearly, the words in the same group have similar syntactic functionalities, whereas the
word types vary across groups. Dependency relations are also clustered according to
their roles, for example, dobj and pobj both indicate that the child node is an object
of the parent node. Moreover, the same dependency relation might be clustered into
different groups according to different contexts—for example, advmod in some cases
lies in the same group as amod when they both modify some target words, whereas
advmod could also be clustered together with prep when describing some properties.

6.4.3 Robustness Analysis. We also demonstrate the robustness of our model via sen-
sitivity tests. Figures 8 and 9 provide the performance variations by changing the
hyperparameters. Specifically, Figure 8 provides the average performance over six
source-target experiments for varying (3 and the number of clustered relation group |G]|.
Clearly, both experiments are relatively stable with less than 2% difference for aspect
and opinion extraction. Moreover, Figure 8(a) also depicts the result when {3 is set to 0.
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Figure 8
Sensitivity studies for the average results on varying beta and the number of relation groups.
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Sensitivity studies for A, v, and o« on six different transfer experiments.

As shown, when 3 = 0 (which indicates the removal of the orthogonality constraint
for the auto-encoder loss), the performance drops slightly compared with (3 # 0.
This demonstrates that the orthogonality constraint on relation clustering could
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enhance the final prediction performance. Figure 9 demonstrates the sensitivity for A,
v, and «. We can observe that when varying these parameters from 0.1 to 1.0, the
performance for each source-target pair is stable with only small fluctuations. These
two figures both demonstrate the robustness of our proposed model.

6.4.4 Learning Analysis. Furthermore, the ability of TRNN-GRU for knowledge transfer
can be qualitatively shown in Figure 10. Specifically, we compare the results of TRNN-
GRU with baseline model Hier-Joint on the performances with different proportions
of unlabeled target training data from 0 to 1. Obviously, our model shows steady
improvement with the increasing number of unlabeled target data for training. This
pattern proves our model’s capability of learning from target domain for adaptation.

7. Conclusion

In this article, we present the expressiveness and effectiveness of different forms of
dependency-tree-based recursive neural networks for both single-domain and cross-
domain settings. The deep recursive structure together with the dependency-tree in-
formation is able to associate automatic feature learning with syntactic structures,
which have been proven to be crucial for both single-domain and cross-domain
aspect/opinion terms extraction. The proposed models encode the syntactic interactions
among the aspect and opinion words within each sentence for information propaga-
tion. To transfer knowledge across different domains, we integrate an auxiliary task
on dependency relation prediction to build the structural correspondences for words
between the source and target domains. At the same time, a conditional domain ad-
versarial network is incorporated to learn domain-invariant word features based on
their inherent syntactic structure. The proposed model can deal with noisy relation
information effectively through an auto-encoder. Extensive experiments and analysis
have been conducted to demonstrate the effect of each component of the proposed
models quantitatively and qualitatively.
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