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1. Introduction

Natural language parsing can be formulated as a series of decisions that read words in
sequence and incrementally combine them to form syntactic structures; this formulation
is known as transition-based parsing, and is often coupled with a greedy inference
procedure (Yamada and Matsumoto 2003; Nivre 2003, 2004, 2008). Greedy transition-
based parsing is attractive because the number of operations required to build any
projective parse tree is linear in the length of the sentence, making greedy versions
of transition-based parsing computationally efficient relative to graph- and grammar-
based alternative formalisms, which usually require solving superlinear search prob-
lems. The challenge in transition-based parsing is modeling which action should be
taken in each of the states encountered as the parsing algorithm progresses.2

Because the parser state involves the complete sentence—which is unbounded in
length—the representational challenge faced by the modeler is to find a finite encoding
of an infinite space. This challenge is usually dealt with by making assumptions about
state equivalence by selecting features of the state believed by the model-builder to be
most informative (e.g., the next three words in the sequence, the roots of the two most
recently built subtrees and their left- and right-most children, and so on).3

In this article, we advocate a recursive approach, in which complex parser states are
represented as the composition of simpler ones, and these are constructed incrementally
as parsing proceeds. Thus, we operate in a paradigm in which the model builder de-
signs recursive architectures that automatically discover effective views of the complete
parser’s evolving state rather than explicitly engineering which features of the state to
focus on. This construction enables us to avoid making explicit state-equivalence as-
sumptions. We present one such architecture based on advances in recursively defined
neural networks. Our state representation integrates information from a wide range of
sources:r the complete remaining unprocessed words in the input buffer,r the complete history of parser transition actions on this sequence, andr the complete contents of the stack of partially constructed syntactic

structures.

This global sensitivity of the state representation contrasts with most previous work in
transition-based parsing that considers only a “narrow view” of the parser state when
extracting features used to predict actions. Our work is complementary to previous
approaches that develop alternative transition operations to simplify the modeling
problem and enable better attachment decisions (Nivre 2007, 2008, 2009; Bohnet and
Nivre 2012; Choi and McCallum 2013) and to feature engineering (Zhang and Nivre
2011; Ballesteros and Bohnet 2014; Chen, Zhang, and Zhang 2014; Ballesteros and Nivre
2016).

Our model is related to recent work that uses neural networks in dependency
parsing (Chen and Manning 2014; Weiss et al. 2015; Zhou et al. 2015; Andor et al. 2016).

2 The term “state” refers to the collection of previous decisions (sometimes called the history), resulting
partial structures, which are stored in a stack data structure, and the words remaining to be processed.

3 These state equivalence assumptions are similar to the Markov assumptions made in modeling stochastic
processes, according to which a potentially unbounded state history can be represented only in terms of a
finite number of the most recent states.
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That work can broadly be understood as replacing a conventional linear classifier with a
neural network classifier but still only considering a “narrow view” of the parser state,
whereas our work uses recursively defined networks to incorporate sensitivity to the
complete parser state.

Using recursive/recurrent neural networks to compute representations of un-
boundedly large histories has been proposed previously (Henderson 2003; Titov and
Henderson 2007b; Stenetorp 2013; Yazdani and Henderson 2015). Our innovation is to
make the architecture of the neural network identical with the structure of stack data
structures used to store the parser state. To do so, the technical challenge we must solve
is being able to access, in constant time, a fixed-size representation of a stack as it evolves
during the course of parsing. The technical innovation that lets us do this is a variation
of recurrent neural networks with long short-term memory units (LSTMs), which we
call stack LSTMs (Section 2). These can be understood as LSTMs augmented with a
stack pointer that is manipulated by push and pop operations (in contrast to classic
LSTMs that only ever read inputs sequentially).

Our parsing model uses three stack LSTMs to construct the parser state represen-
tation: one containing the unprocessed input tokens, one containing the stack of partial
syntactic trees, and one containing the history of parse actions (Section 3). Because the
stack of partial syntactic trees may contain both individual tokens and partial syntactic
structures, representations of individual tree fragments are computed compositionally
with recursive neural networks, similar to Paulus et al. (2014).

The parser depends on vector representations of word tokens. Such representa-
tions are most commonly learned as a dictionary lookup function (i.e., a map of each
word type to a vector), but they can take a parameterized form that is, for example,
sensitive to orthographic or morphological properties of a word’s surface form (Botha
and Blunsom 2014). For languages with rich inflective morphology, surface clues can
be quite helpful for parsing (Ballesteros 2013). In Section 4, we compare the classical
lookup-table approach to a recently proposed model that combines representations of
individual characters (using sequential LSTMs) to obtain a representation of the word.
With no explicit morphological annotation, we find that the latter representation gives
a large performance increase when parsing Statistical Parsing of Morphologically Rich
Languages (SPMRL) data sets in languages with agglutinative morphology or extensive
case systems (Seddah et al. 2013; Seddah, Kübler, and Tsarfaty 2014), and performs as
well as the table method in analytic languages. We further find that, without part-of-
speech tags, this technique benefits all languages, and that in some cases this approach
obviates the need for explicit part-of-speech information.

This article also explores two different approaches to training. Transition-based
parsers are trained to optimize the score of the correct parsing action, given a parser
state. The simplest strategy for choosing pairs of states and actions for training is
one that follows a deterministic static oracle that maps each dependency tree from a
treebank into a sequence of states and actions. However, this strategy only generates
states that result from a history of correct parsing actions. As a result, models learned
with this kind of training may not be robust to errors made at test time. We therefore
also investigate a training procedure that also aims to teach the parser to make good
predictions in sub-optimal states, facilitated by the use of dynamic oracles (Goldberg
and Nivre 2012). The experiments in this article demonstrate that by coupling stack
LSTM-based global state representations with dynamic oracle training, parsing with
greedy decoding can achieve state-of-the-art parsing accuracies, rivaling the accuracies
of previous parsers that rely on exhaustive search procedures.
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This article is an extension of publications by Dyer et al. (2015) and Ballesteros
et al. (2015). It contains a more detailed background about LSTMs and parsing, a
discussion about the effect of random initialization, more extensive experiments with
standard data sets, experiments including explicit morphological information that
yields much higher results than the ones reported before, and a new training algorithm
following dynamic oracles that yield state-of-the-art performance while maintaining a
fast parsing speed with a greedy model. An open-source implementation of our parser,
in all its different instantiations, is available from https://github.com/clab/lstm-

parser.

2. Stack LSTMs

In this section we provide a review of LSTMs (Section 2.1), the core component of our
parsing algorithm, and then define stack LSTMs (Section 2.2).

Notation. We follow the convention that vectors are written with lowercase, boldface
letters (e.g., v or vw); matrices are written with uppercase, boldface letters (e.g., M, Ma,
or Mab), and scalars are written as lowercase letters (e.g., s or qz). Structured objects such
as sequences of discrete symbols are written with lowercase, bold, italic letters (e.g., w
refers to a sequence of input words). We use a semicolon to denote vector concatena-
tion (e.g., [a; b]). Discussion of dimensionality is deferred to the experiments section
(Section 6).

2.1 Long Short-Term Memories

Recurrent neural networks (RNNs) are non-linear functions from vector sequences to
vector sequences. The term “recurrent” evokes the iterative application of the same
function, given each prefix of the input, to calculate a “hidden state” vector. Con-
cretely, let xt be the tth input vector and ht be the tth state vector. The incremental
calculation is:

ht = σ(Wxxt + Whht−1 + d)

Wx ∈ Rdout×din Wh ∈ Rdout×dout d, ht ∈ Rdout xt ∈ Rdin

That is, the vector xt is “read” in and a linear map is applied to it alongside the previ-
ous state vector ht−1, then passed through a nonlinear function (here, a component-wise
logistic sigmoid, denoted σ). The state may then be further transformed to produce an
output, either at each timestep or just at the end of the sequence.

The parameters of the RNN—here, Wx, Wh, and d—are estimated to minimize a loss
function on the training data. The gradient for this loss tends to “vanish” (go to zero)
as we trace it back to earlier iterates in a long sequence. This means that long-range
dependencies along the input sequence are hard to capture in a learned RNN (Bengio,
Simard, and Frasconi 1994).

LSTMs are a variant of RNN designed to cope with the vanishing gradient problem
(Hochreiter and Schmidhuber 1997; Graves 2013). They introduce an extra memory
“cell,” a vector ct at each timestep. More specifically, LSTM cells process inputs with
three multiplicative gates that control what proportion of the current input to pass into
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the memory cell (it) and what proportion of the previous memory cell to “forget” (ft).
The updated value of the memory cell after an input xt is computed as follows:

it = σ(Wixxt + Wihht−1 + Wicct−1 + di)

ft = 1− it

ct = ft � ct−1 + it � tanh(Wcxxt + Wchht−1 + dc)

where � is the component-wise (Hadamard) product. The value ht of the LSTM at each
timestep is controlled by a third gate (ot) that is applied to the result of the application
of a nonlinearity to the memory cell contents:

ot = σ(Woxxt + Wohht−1 + Wocct + do)

ht = ot � tanh(ct)

W◦x ∈ Rdout×din W◦h, W◦c ∈ Rdout×dout it, ft, ct, ot, ht, d◦ ∈ Rdout xt ∈ Rdin

Note that our formulation differs slightly from the classic LSTM formulation in that it
makes use of “peephole connections” that connect both cell values (the cs) and hidden
states (the hs) to the gates (Gers, Schraudolph, and Schmidhuber 2003) and that it
defines the forget gate so that it sums with the input gate to 1 (Greff et al. 2015).

To improve the representational capacity of LSTMs (and RNNs generally), LSTMs
can be stacked in “layers” (Pascanu et al. 2013). In these architectures, the input LSTM
at higher layers at time t is the value of ht computed by the lower layer (and xt is the
input at the lowest layer).

Finally, output is produced at each timestep from the ht value at the top layer:

yt = g(ht)

yt, ht ∈ Rdout

where g is an arbitrary differentiable function. We use the identity function in this
article.

2.2 Stack Long Short-Term Memories

Conventional LSTMs model sequences in a left-to-right order.4 Our innovation is to
augment the LSTM with a “stack pointer.” Like a conventional LSTM, new inputs are
always added in the right-most position, but in stack LSTMs, the current location of
the stack pointer determines which cell in the LSTM provides ct−1 and ht−1 when
computing the new memory cell contents.

In addition to adding elements to the end of the sequence, the stack LSTM provides
a pop operation that moves the stack pointer to the previous element (i.e., the previous
element that was extended, not necessarily the next-right-most element). Thus, the

4 Ours is not the first deviation from a strict left-to-right order: previous variations include bidirectional
LSTMs (Graves and Schmidhuber 2005) and multidimensional LSTMs (Graves, Fernández, and
Schmidhuber 2007).
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Figure 1
A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single
element (left), the result of a pop operation to this (middle), and then the result of applying a push
operation (right). The boxes in the lowest rows represent stack contents, which are the inputs to
the LSTM, the upper rows are the outputs of the LSTM (in this article, only the output pointed to
by TOP is ever accessed), and the middle rows are the memory cells (the cts and hts) and gates.
Arrows represent function applications (usually affine transformations followed by a
nonlinearity); refer to Section 2.1 for specifics.

LSTM can be understood as a stack implemented so that contents are never overwritten;
that is, push always adds a new entry at the end of the list that contains a back-pointer
to the previous top, and pop only updates the stack pointer.5 This control structure is
schematized in Figure 1.

By querying the output vector to which the stack pointer points (i.e., hTOP), a
continuous-space “summary” of the contents of the current stack configuration is avail-
able. We refer to this value as the “stack summary.” Note that this structure allows a
given sequence history to have various different “continuations” that are independent
from each other but are all linked to the same history. Signals from each continuation
can then be backpropagated to the same shared history. Although elements near the top
of the stack are likely to influence the stack summary the most, the LSTM has additional
flexibility allowing it to learn to extract information from arbitrary points in the stack
(Hochreiter and Schmidhuber 1997).

Although this architecture is novel, it is closely related to the recurrent neural
network pushdown automaton of Das et al. (1992), which added an external stack
memory to an RNN; the continuous stack transducers of Grefenstette et al. (2015); or
the one proposed by Joulin and Mikolov (2015). Our formulation preserves the discrete
push and pop operations of conventional stack data structures, whereas prior work uses
continuous-valued relaxations of these.

3. Dependency Parser

We now turn to the problem of learning representations of dependency parser states. We
preserve the standard data structures of a transition-based dependency parser, namely,
a buffer of words to be processed (B) and a stack (S) of partially constructed syntactic
elements. Each stack element is augmented with a continuous-space vector embedding
representing a word and, in the case of S, any of its syntactic dependents. Additionally,
we introduce a third stack (A) to represent the history of transition actions taken by the

5 Goldberg et al. (2013) propose a similar stack construction to prevent stack operations from invalidating
existing references to the stack in a beam-search parser that must (efficiently) maintain a priority queue of
stacks.
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Figure 2
Parser state computation encountered while parsing the sentence an overhasty decision was made.
Here S designates the stack of partially constructed dependency subtrees and its LSTM encoding;
B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed
through a rectified linear unit nonlinearity to produce the parser state embedding pt. An affine
transformation of this embedding is passed to a softmax layer to give a distribution over parsing
decisions that can be taken.

parser.6 Each of these stacks is associated with a stack LSTM that provides an encoding
of its current contents. The full architecture is illustrated in Figure 2, and we will review
each of the components in turn.

3.1 Parser Operation

The dependency parser is initialized by pushing the words and their representations
(we discuss word representations in Section 4) of the input sentence in reverse order
onto B such that the first word is at the top of B and the ROOT symbol is at the
bottom, and S and A each contain an empty-stack token. At each timestep, the parser
computes a composite representation of the stack states (as determined by the current
configurations of B, S, and A) and uses that to predict an action to take, which updates
the stacks. Processing completes when B is empty (except for the empty-stack symbol), S
contains two elements, one representing the full parse tree headed by the ROOT symbol
and the other the empty-stack symbol,7 and A is the history of transition operations
taken by the parser.

6 The A stack is only ever pushed to; our use of a stack here is purely for implementational and expository
convenience.

7 The parser has the root as the last token to be included in the buffer, following Ballesteros and Nivre
(2013).
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The parser state representation at time t, which we write pt, which is used to
determine the transition to take, is defined as follows:

pt = max {0, W[st; bt; at] + d}

st, bt, at ∈ Rdout pt, d ∈ Rdstate W ∈ Rdstate×3dout

where W is a learned parameter matrix, d is a learned bias term, and bt, st, and at are
the stack LSTM encodings of B, S, and A, respectively. These are then passed through
a component-wise rectified linear unit (ReLU) nonlinearity (Glorot, Bordes, and Bengio
2011).8

Finally, the parser state pt is used to compute the probability of the parser action
at time t as:

p(zt | pt) =
exp

(
g>zt

pt + qzt

)
∑

z′∈A(S,B) exp
(
g>z′ pt + qz′

) (1)

pt, gz ∈ Rdstate

where gz is a column vector representing the (output) embedding of the parser action
z, and qz is a bias term for action z. The set A(S, B) represents the valid transition
actions that may be taken given the current contents of the stack and buffer.9 Because
pt = f (st, bt, at) encodes information about all previous decisions made by the parser,
the chain rule may be invoked to write the probability of any valid sequence of parse
transitions z conditional on the input as:

p(z | w) =
|z|∏

t=1

p(zt | pt) (2)

3.2 Composition Functions

Recursive neural network models enable complex phrases to be represented composi-
tionally in terms of their parts and the relations that link them (Hermann and Blunsom
2013; Socher et al. 2011, 2013a, 2013b). We follow previous work in embedding depen-
dency tree fragments that are present in the stack S in the same vector space as the token
embeddings discussed in Section 4.

A particular challenge here is that a syntactic head may, in general, have an arbitrary
number of dependents. To simplify the parameterization of our composition function,
we combine head-modifier pairs one at a time, building up more complicated structures

8 In preliminary experiments, we tried several nonlinearities and found ReLU to work slightly better than
the others.

9 In general, A(S, B) is the complete set of parser actions discussed in Section 3.3, but in some cases not all
actions are available. For example, when S is empty and words remain in B, a SHIFT transition is
obligatory (Nivre 2008).
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head
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det
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Figure 3
The representation of a dependency subtree (top) is computed by recursively applying
composition functions to 〈head, modifier, relation〉 triples. In the case of multiple dependents of
a single head, the recursive branching order is imposed by the order of the parser’s reduce
transition (bottom).

in the order they are “reduced” in the parser, as illustrated in Figure 3. Each node in this
expanded syntactic tree has a value computed as a function of its three arguments: the
syntactic head (h), the dependent (m), and the syntactic relation being satisfied (r). We
define this by concatenating the vector embeddings of the head, dependent, and relation
and applying a linear operator and a component-wise nonlinearity as follows:

c = tanh (U[h; m; r] + e)

c, e, h, m ∈ Rdin r ∈ Rdrel U ∈ Rdin×(2din+drel )

For the relation vector, we use an embedding of the parser action that was applied to
construct the relation (i.e., the syntactic relation paired with the direction of attachment);
U and e are additional parameters learned alongside those of the stack LSTMs.

3.3 Transition Systems

Our parser implements various transition systems. The original version (Dyer et al.
2015) implements arc-standard (Nivre 2004) in its most basic set-up. In Ballesteros
et al. (2015), we augmented the arc-standard system with the SWAP transition of Nivre
(2009), allowing for nonprojective parsing. For the dynamic oracle training strategy,
we moved to an arc-hybrid system (Kuhlmann, Gómez-Rodrı́guez, and Satta 2011) for
which an efficient dynamic oracle is available. It is worth noting that the stack LSTM
parameterization is mostly orthogonal to the transition system being used (providing
that the system can be expressed as operating on stacks), making it easy to substitute
transition systems.

3.3.1 Arc-Standard. The arc-standard transition inventory (Nivre 2004) is given in
Figure 4. The SHIFT transition moves a word from the buffer to the stack, and the
REDUCE-LEFT and REDUCE-RIGHT transitions pop the two items from the top of the
stack, make one of them the parent of the other, and push the resulting subtree back to
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Stackt Buffert Action Stackt+1 Buffert+1 Dependency
S (u, u), B SHIFT (u, u), S B —

(u, u), (v, v), S B REDUCE-RIGHT(r) (gr(u, v), u), S B u r→ v
(u, u), (v, v), S B REDUCE-LEFT(r) (gr(v, u), v), S B u r← v
(u, u), (v, v), S B SWAP (u, u), S (v, v), B —

Figure 4
Parser transitions of the arc-standard system (with swap, Section 3.3.2) indicating the action
applied to the stack and buffer and the resulting stack and buffer states. Bold symbols indicate
(learned) embeddings of words and relations, script symbols indicate the corresponding words
and relations. (gr(x, y), x) refers to the composition function presented in 3.2.

the stack. The arc-standard system allows building all and only projective trees. In order
to parse nonprojective trees, this can be combined with the pseudo-projective approach
(Nivre and Nilsson 2005) or follow what is presented in Section 3.3.2.

3.3.2 Arc-Standard with Swap. In order to deal with nonprojectivity, the arc-standard
system can be augmented with a SWAP transition (Nivre 2009). The SWAP transition
removes the second-to-top item from the stack and pushes it back to the buffer, allowing
for the creation of nonprojective trees. We only use this transition when the training data
set contains nonprojective trees. The inclusion of the SWAP transition requires breaking
the linearity of the stack by removing tokens that are not at the top of the stack; however,
this is easily handled with the stack LSTM. Figure 4 shows how the parser is capable of
moving words from the stack (S) to the buffer (B), breaking the linear order of words.
Because a node that is swapped may have already been assigned as the head of a
dependent, the buffer (B) can now also contain tree fragments.

3.3.3 Arc-Hybrid. For the dynamic oracle training scenario, described in Section 5.2, we
switch to the arc-hybrid transition system, which is amenable to an efficient dynamic
oracle (Goldberg and Nivre 2013). The arc-hybrid system is summarized in Figure 5.
The SHIFT and REDUCE-RIGHT transitions are the same as in arc-standard. However,
the REDUCE-LEFT transition pops the top of the stack and attaches it as a child of the
first item in the buffer. Although it is possible to extend the arc-hybrid system to
support nonprojectivity by adding a SWAP transition, this extension would invalidate
an important guarantee enabling efficient dynamic oracles.10 We therefore restrict the
dynamic-oracle experiments to the fully projective English and Chinese treebanks. In
order to parse nonprojective trees, this can be combined with the pseudo-projective
approach (Nivre and Nilsson 2005).

4. Word Representations

Our parser’s architecture makes heavy use of word representations. We describe
two variants. The first is a “standard” approach in which each word is represented

10 Specifically: For every possible parser configuration p and group of arcs A, if each arc in A can be derived
from p, then a valid tree structure containing all of the arcs in A can also be derived from p. This is a
sufficient condition, but whether it is necessary is unknown; hence the question of an efficient, O(1)
dynamic oracle for the augmented system is an open research problem.
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Stackt Buffert Action Stackt+1 Buffert+1 Dependency
S (u, u), B SHIFT (u, u), S B —

(u, u), (v, v), S B REDUCE-RIGHT(r) (gr(u, v), u), S B u r→ v
(u, u), S (v, v), B REDUCE-LEFT(r) S (gr(v, u), v), B u r← v

Figure 5
Parser transitions of the arc-hybrid system (Section 3.3.3). Bold symbols indicate (learned)
embeddings of words and relations, italic symbols indicate the corresponding words and
relations. (gr(x, y), x) refers to the composition function presented in 3.2.

as a vector, which is pretrained on unannotated data (Section 4.1). The second is a
character-based representation, in which the word’s representation is highly depen-
dent on its orthography. These character-based representations are trained without
additional resources and work well for implicitly capturing the morphology of words
(Section 4.2).

4.1 Standard Word Representations

To represent each input token, we concatenate three vectors: a learned vector repre-
sentation for each word type (w), a fixed vector representation from a neural language
model (w̃LM), and a learned representation (t) of the POS tag of the token, provided as
auxiliary input to the parser. A linear map (V) is applied to the resulting vector and
passed through a component-wise ReLU:

x = max {0, V[w; w̃LM; t] + d}

x, d ∈ Rdin w ∈ Rdword w̃LM ∈ Rdlm t ∈ Rdpos V ∈ Rdin×(dword+dlm+dpos )

This mapping can be shown schematically as in Figure 6.
If there are morphological features available, containing information about gender,

number or case, then we can also concatenate with a fourth vector that is a learned

overhasty JJUNK decision NNdecision

x2 x3

t2 t3w2w̃LM
2 w̃LM

3 w3

Figure 6
Token embedding of the words decision, which is present in both the parser’s training data and
the language model data, and overhasty, an adjective that is not present in the parser’s training
data but is present in the LM data.
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representation (f) of the morphological tags of the token, again provided as auxiliary
input to the parser. The linear map (V) would then be:

x = max {0, V[w; w̃LM; t; f] + d}

x, d ∈ Rdin w ∈ Rdword w̃LM ∈ Rdlm t ∈ Rdpos f ∈ Rdmorph

V ∈ Rdin×(dword+dlm+dpos+dmorph )

This representation lets us deal flexibly with out-of-vocabulary (OOV) words—
those that are OOV in the very limited parsing data but present in the pretraining
language model (LM), and words that are OOV in both. To ensure we have estimates
of the OOVs in the parsing training data, we stochastically replace (with probability
0.5) each singleton word type in the parsing training data with the UNK token in each
training iteration.

Pretrained Word Embeddings. There are several options for creating word embeddings,
meaning numerous pretraining options for w̃LM are available. However, for syn-
tax modeling problems, embedding approaches that discard order perform less well
(Bansal, Gimpel, and Livescu 2014); therefore, we used a variant of the skip n-gram
model introduced by Ling et al. (2015a), named “structured skip n-gram,” where a
different set of parameters is used to predict each context word depending on its
position relative to the target word.

4.2 Modeling Characters Instead of Words

Following Ling et al. (2015b), we compute character-based continuous-space vector
embeddings of words using bidirectional LSTMs (Graves and Schmidhuber 2005).
When the parser initiates the learning process and populates the buffer with all the
words from the sentence, it reads the words character by character from left to right
and computes a continuous-space vector embedding the character sequence, which
is the h vector of the LSTM; we denote it by −→w . The same process is also applied in
reverse (albeit with different parameters), computing a similar continuous-space vector
embedding starting from the last character and finishing at the first (←−w ); again each
character is represented with an LSTM cell. After that, we concatenate these vectors and
a (learned) representation of their tag to produce the representation w. As in Section 4.1,
a linear map (V) is applied and passed through a component-wise ReLU.

x = max
{

0, V[−→w ;←−w ; t] + d
}

x, d ∈ Rdin −→w ,←−w ∈ Rdout t ∈ Rdpos V ∈ Rdin×2dout+dpos

This process is shown schematically in Figure 7.
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Figure 7
Character-based word embedding of the word party. This representation is used for both
in-vocabulary and out-of-vocabulary words.

As with the standard word representations, it is possible to concatenate with a
fourth vector which is a learned representation (f) of the morphological tags of the
token, again provided as auxiliary input to the parser:

x = max
{

0, V[−→w ;←−w ; t; f] + d
}

x, d ∈ Rdin −→w ,←−w ∈ Rdout t ∈ Rdpos f ∈ Rdmorph V ∈ Rdin×2dout+dpos+dmorph

Note that under this representation, OOV words are treated as bidirectional LSTM
encodings and thus they will be “close” to other words that the parser has seen during
training, ideally close to their more frequent morphological relatives. We conjecture that
this will give a clear advantage over a single “UNK” token for all the words that the
parser does not see during training, as done in Section 4.1 and other parsers without
additional resources. In Section 6 we confirm this hypothesis.

Learned Word Representations. Figure 8 visualizes a sample of the character-based bidi-
rectional LSTMs learned representations (using the model referred to as Chars in Sec-
tion 6.4). Clear clusters of past tense verbs, gerunds, and other syntactic classes are
visible. The colors in the figure represent the most common POS tag for each word.

5. Training Procedure

The parser is trained to maximize the conditional probability of taking a “correct”
action at each parsing state. (The definition of what constitutes a “correct” action is
the major difference between static oracle and dynamic oracle training.) We begin with
the simpler strategy of training with a static oracle (Section 5.1), then turn to dynamic
oracles (Section 5.2).

Regardless of the oracle, our training implementation constructs a computation
graph (nodes that represent values, linked by directed edges from each function’s
inputs to its outputs) for the negative log probability for the oracle transition sequence
as a function of the current model parameters and uses forward- and backpropa-
gation to obtain the gradients with respect to the model parameters (LeCun et al. 1998,
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Figure 8
Character-based word representations of 30 random words from the English development set
(Chars model; see Section 6.4). Dots in red represent past tense verbs; dots in orange represent
gerund verbs; dots in black represent present tense verbs; dots in blue represent adjectives; dots
in green represent adverbs; dots in yellow represent singular nouns; dots in brown represent
plural nouns. The visualization was produced using t-SNE; see http://lvdmaaten.github.io/
tsne/.

section 4). The computations for a single parsing model were run on a single thread
on a CPU. Using the dimensions discussed in the next section, we required between
8 and 12 hours to reach convergence on a held-out development set.11

5.1 Static Oracle Training

With a static oracle, the training procedure computes a canonical reference series of tran-
sitions for each gold parse tree. It then runs the parser through this canonical sequence
of transitions, while keeping track of the state representation pt at each step t, as well
as the distribution over transitions p(zt | pt) that is predicted by the current classifier
for the state representation. Once the end of the sentence is reached, the parameters
are updated towards minimizing the cross-entropy of the reference transition sequence
(Equation (2)) by minimizing the cross-entropy (i.e., maximizing the log-likelihood) of
the correct transition p(zt | pt) at each state along the path.

11 Software for replicating the experiments is available from https://github.com/clab/lstm-parser.
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5.2 Training with Exploration using Dynamic Oracles

In the static oracle case, the parser is trained to predict the best transition to take at each
parsing step, assuming all previous transitions were correct. Because the parser is likely
to make mistakes at test time and encounter states it has not seen during training, this
training criterion is problematic (Daumé III, Langford, and Marcu 2009; Ross, Gordon,
and Bagnell 2011; Goldberg and Nivre 2012, 2013, inter alia). Instead, we would prefer to
train the parser to behave optimally also after making a mistake (under the constraints
that it cannot backtrack or fix any previous decision). We thus need to include in the
training examples states that result from wrong parsing decisions, together with the
optimal transitions to take in these states. To this end we reconsider which training
examples to show, and what it means to behave optimally on these training examples.
The dynamic oracles framework for training with exploration, suggested by Goldberg
and Nivre (2012, 2013), provides answers to these questions.

Although the application of dynamic oracle training is relatively straightforward,
some adaptations were needed to accommodate the probabilistic training objective.
These adaptations mostly follow Goldberg (2013).

5.2.1 Dynamic Oracles. A dynamic oracle is the component that, given a gold parse tree,
provides the optimal set of possible actions to take under a given parser state. In contrast
to static oracles that derive a canonical sequence for each gold parse tree and say nothing
about parsing states that do not stem from this canonical path, the dynamic oracle is
well-defined for states that result from parsing mistakes, and may produce more than
a single gold action for a given state. Under the dynamic oracle framework, a parsing
action is said to be optimal in a given state if the best tree that can be reached after taking
the action is no worse (in terms of accuracy with respect to the gold tree) than the best
tree that could be reached prior to taking that action.

Goldberg and Nivre (2013) define the arc-decomposition property of transition sys-
tems, and show how to derive efficient dynamic oracles for transition systems that are
arc-decomposable (see footnote 10). Unfortunately, the arc-standard transition system
does not have this property. Although it is possible to compute dynamic oracles for the
arc-standard system (Goldberg, Sartorio, and Satta 2014), the computation relies on a
dynamic programming algorithm that is polynomial in the length of the stack. As the
dynamic oracle has to be queried for each parser state seen during training, the use of
this dynamic oracle will make the training times several times longer. We chose instead
to switch to the arc-hybrid transition system (Kuhlmann, Gómez-Rodrı́guez, and Satta
2011), which is very similar to the arc-standard system but is arc-decomposable and
hence admits an efficient O(1) dynamic oracle, resulting in only negligible burden on
the training time. We implemented the dynamic oracle to the arc-hybrid system as
described by Goldberg (2013).

5.2.2 Training with Exploration. In order to expose the parser to configurations that are
likely to result from incorrect parsing decisions, we make use of the probabilistic nature
of the classifier. During training, instead of following the gold action, we sample the
next transition according to the output distribution the classifier assigns to the current
configuration. Another option, taken by Goldberg and Nivre, is to follow the one-best
action predicted by the classifier. However, initial experiments showed that the one-best
approach did not work well. Because the neural-network classifier becomes accurate
early on in the training process, the one-best action is likely to be correct, and the parser
is then exposed to very few error states in its training process. By sampling from the
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predicted distribution, we are effectively increasing the chance of straying from the
gold path during training, while still focusing on mistakes that receive relatively high
parser scores. We believe further formal analysis of this method will reveal connections
to reinforcement learning and, perhaps, other methods for learning complex policies.

Taking this idea further, we could increase the number of error-states observed
in the training process by changing the sampling distribution so as to bias it toward
more low-probability states. We do this by raising each probability to the power of
α (0 < α ≤ 1) and re-normalizing. This transformation keeps the relative ordering of
the events, while shifting probability mass towards less frequent events. As we show
subsequently, this turns out to be very beneficial for the configurations that make use of
external embeddings. Indeed, these configurations achieve high accuracies and shared
class distributions early on in the training process.

The parser is trained to optimize the log-likelihood of a correct action zg at each
parsing state pt according to Equation (1). When using the dynamic oracle, a state pt
may admit multiple correct actions zg = {zgi , . . . , zgk

}. Our objective in such cases is that
the set of correct actions receives high probability. We optimize for the log of p(zg | pt),
defined as:

p(zg | pt) =
∑

zgi
∈zg

p(zgi | pt) (3)

A similar approach was taken by Riezler et al. (2000), Charniak and Johnson (2005),
and Goldberg (2013) in the context of log-linear probabilistic models.

6. Experiments

After describing the implementation details of our optimization procedure (Section 6.1)
and the data used in our experiments (Section 6.2), we turn to four sets of experiments:

1. First, we assess the quality of our greedy, global-state stack LSTM parsers
on a wide range of data sets, showing that it is highly competitive with the
state of the art (Section 6.3).

2. We compare the performance of the two different word representations
(Section 4) across different languages, finding that they are quite beneficial
in some cases and harmless in most others (Section 6.4).

3. We compare dynamic oracles to static oracles, showing that training with
dynamic oracles attains even better performance (Section 6.5).

4. We compare our parser with other existing methods on the CoNLL-2009
data sets (Section 6.6).

6.1 Optimization Procedure Details

Parameter optimization was performed using stochastic gradient descent with an ini-
tial learning rate of η0 = 01; the learning rate was updated on each pass through the
training data as ηt = η0/(1 + ρt), with ρ = 0.1 and where t is the number of epochs
completed. No momentum was used. To mitigate the effects of “exploding” gradients,
we clipped the `2 norm of the gradient to 5 before applying the weight update rule
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(Graves 2013; Sutskever, Vinyals, and Le 2014). An `2 penalty of 1× 10−6 was applied
to all weights.

Matrix and vector parameters were initialized with uniform samples in
±
√

6/(r + c), where r and c were the number of rows and columns in the structure
(Glorot and Bengio 2010). We use mini-batches of 1,000 sentences each and update every
25 iterations.

Dimensionality. The full version of our parsing model sets dimensionalities as follows.
LSTM hidden states (dout) are of size 100, and we use two layers of LSTMs for each
stack. Embeddings of the parser actions used in the composition functions (dstate) have
16 dimensions, and the output embedding (dout) size is 20 dimensions. Pretrained word
embeddings (ddlm) have 100 dimensions (English) and 80 dimensions (Chinese), and the
learned word embeddings (dword) have 32 dimensions. Part of speech and morphological
tag embeddings (dpos and dmorph) have 12 dimensions, when included. The character-
based embeddings are of size 100, when included. The combined representations of the
inputs have 100 dimensions.

These dimensions were chosen based on intuitively reasonable values (words
should have higher dimensionality than parsing actions, POS tags, and relations; LSTM
states should be relatively large), and it was confirmed on development data that they
performed well.12 Future work might more carefully optimize the parser’s hyperparam-
eters. A variety of automated techniques have been developed for hyperparameter op-
timization, including ones that enable evidence-sharing across related tasks (Yogatama
and Mann 2014; Yogatama, Kong, and Smith 2015). Our architecture strikes a balance
between minimizing computational expense and finding solutions that work.

Pretrained Word Vectors. The hyperparameters of the structured skip n-gram model are
the same as in the skip n-gram model defined in the widely used word2vec implemen-
tation (Mikolov et al. 2013). We set the window size to 5, used a negative sampling rate
to 10, and ran 5 epochs through unannotated corpora described in Section 6.2.

6.2 Data

We use different data depending on the targeted experiment; in this section we describe
the data sets that we used to test the basic model, the character-based representations
that are geared towards morphology, and the dynamic oracles. Finally, we also report
results with the CoNLL 2009 data sets (Hajič et al. 2009) to make a complete comparison
with similar systems.

6.2.1 Data for the Simplest Model that Uses Word Representations and Static Oracle for
Training. We used the same data set-up as Chen and Manning (2014), namely, an English
task and a Chinese task. This baseline configuration was chosen because they likewise
used a neural parameterization to predict actions in an arc-standard transition-based
parser.r For English, we used the Stanford Dependency (SD) treebank (Marneffe,

MacCartney, and Manning 2006) used in Chen and Manning (2014), which

12 We did perform preliminary experiments with LSTM states of 32, 50, and 80, but the other dimensions
were our initial guesses.
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is the closest model published, with the same splits.13 The part-of-speech
tags are predicted by using the Stanford POS tagger (Toutanova et al. 2003)
with an accuracy of 97.3%. This treebank contains a negligible number of
nonprojective arcs (Chen and Manning 2014).r For Chinese, we use the Penn Chinese Treebank 5.1 (CTB5) following
Zhang and Clark (2008),14 with gold part-of-speech tags, which is also the
same as in Chen and Manning (2014).

Language model word embeddings were generated from the AFE portion of the English
Gigaword corpus (version 5), and from the complete Chinese Gigaword corpus
(version 2), as segmented by the Stanford Chinese Segmenter (Tseng et al. 2005).

6.2.2 Data to Test the Character-Based Representations and Static Oracle for Training. For the
character-based representations we applied our model to the treebanks of the SPMRL
Shared Task (Seddah et al. 2013; Seddah, Kübler, and Tsarfaty 2014): Arabic (Maamouri
et al. 2004), Basque (Aduriz et al. 2003), French (Abeillé, Clément, and Toussenel 2003),
German (Seeker and Kuhn 2012), Hebrew (Sima’an et al. 2001), Hungarian (Vincze
et al. 2010), Korean (Choi 2013), Polish (Świdziński and Woliński 2010), and Swedish
(Nivre, Nilsson, and Hall 2006). For all the corpora of the SPMRL Shared Task, we
used predicted POS tags as provided by the shared task organizers.15 We also ran the
experiment with the Turkish dependency treebank16 (Oflazer et al. 2003) of the CoNLL-
X Shared Task (Buchholz and Marsi 2006) and we use gold POS tags when used as it is
common with the CoNLL-X data sets. In addition to these, we include the English and
Chinese data sets described in Section 6.2.1.

6.2.3 Data for the Dynamic Oracle. Because the arc-hybrid transition-based parsing algo-
rithm is limited to fully projective trees, we use the same data as in Section 6.2.1, which
makes it comparable with the basic model that uses standard word representations and
a static oracle arc-standard algorithm.

6.2.4 CoNLL-2009 Data. We also report results with all the CoNLL 2009 data sets (Hajič
et al. 2009) to make a complete comparison with similar systems both for static and
dynamic oracles.

6.3 Experiments with Static Oracle and Standard Word Representations

We report results on five experimental configurations per language, as well as the
Chen and Manning (2014) baseline. These are: the full stack LSTM parsing model
(S-LSTM), the stack LSTM parsing model without POS tags (−POS), the stack LSTM
parsing model without pretrained language model embeddings (−pretraining), the

13 Training: 02-21. Development: 22. Test: 23.
14 Training: 001–815, 1001–1136. Development: 886–931, 1148–1151. Test: 816–885, 1137–1147.
15 The POS tags were calculated with MarMot tagger (Mueller, Schmid, and Schütze 2013) by the best

performing system of the SPMRL Shared Task (Björkelund et al. 2013). Arabic: 97.38. Basque: 97.02.
French: 97.61. German: 98.10. Hebrew: 97.09. Hungarian: 98.72. Korean: 94.03. Polish: 98.12. Swedish:
97.27.

16 Because the Turkish dependency treebank does not have a development set, we extracted the last 150
sentences from the 4,996 sentences of the training set as a development set.
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Table 1
Unlabeled attachment scores and labeled attachment scores on the development sets (top) and
the final test sets (bottom) for Chinese and English (SD). The columns marked with S-LSTM
show the results of the parser with the whole S-LSTM model. The columns marked with −POS
show the results of the parser without POS tags. The columns marked with −pretraining show
the results of the parser without pretraining. The columns marked with S-RNN show the results
of the parser in which the S-LSTM is replaced by a recurrent neural network. The columns
marked with C&M (2014) show the results of Chen and Manning (2014).

Development
S-LSTM −POS −pretraining −composition S-RNN C&M (2014)

Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Chinese 87.23 85.87 82.65 79.84 85.96 84.37 86.32 84.59 86.30 84.70 84.0 82.4
English 93.11 90.80 92.58 89.96 92.58 90.24 92.50 89.79 92.80 90.40 92.2 89.7

Test
S-LSTM −POS −pretraining −composition S-RNN C&M (2014)

Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Chinese 86.85 85.36 82.15 79.04 85.48 83.94 86.20 84.49 86.10 84.60 83.9 82.4
English 93.04 90.87 92.57 90.21 92.40 90.04 92.10 89.61 92.30 90.10 91.8 89.6

stack LSTM parsing model that uses just head words on the stack instead of com-
posed representations (−composition), and the full parsing model where rather
than an LSTM, a simple recurrent neural network in which normal sigmoidal hid-
den units are used instead of the LSTM, but augmented with a stack pointer
(S-RNN).

6.3.1 Results. Following Chen and Manning (2014), we exclude punctuation symbols for
evaluation. Table 1 shows parsing scores comparable to Chen and Manning (2014),17

and we show that our model is better than their model on both the development set
and the test set.

Overall, our parser substantially outperforms the baseline neural network parser
of Chen and Manning (2014), both in the full configuration and in the various ablated
conditions we report. The one exception to this is the −POS condition for the Chinese
parsing task, in which we underperform their baseline (which used gold POS tags),
although we do still obtain reasonable parsing performance in this limited case. We note
that predicted POS tags in English add very little value—suggesting that we can think of
parsing sentences directly without first tagging them. We also find that using composed
representations of dependency tree fragments outperforms using representations of
head words alone. Finally, we find that whereas LSTMs outperform classical RNNs,
the latter are still quite capable of learning good representations.

Training and Testing Times. Training is performed with mini-batches and requires around
20 hours to achieve convergence in the English data set although it depends on the effect
of initialization; the parser achieves an end-to-end runtime of 40,539.8 milliseconds to
parse the entire English test data (2.4k sentences) on a single CPU core. Other data sets
require similar runtime per sentence.

17 The results reported by Dyer et al. (2015) were obtained with an earlier version of the neural network
machinery and are similar, though not exactly the same, as those reported in this article.
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Figure 9
Histogram with the results obtained with 100 different initializations. The x-axis plots the
unlabeled attachment score on the test set, and the y-axis plots the number of times a result
occurred.

Effect of Initialization. The parser uses random seeds to create the mini-batches that it uses
to train the model, which has an effect on the parsing results. In order to see the effect of
initialization, we trained the whole S-LSTM parser with POS tags, pretrained word em-
beddings, and composition functions on the English SD data set, for the same amount
of time (around 20 hours) using different random seeds. Figure 9 shows the variation
due to initialization for 100 different random seeds and their results on the English test
set. We observe that even though the results are very similar with a minimum of 92.3
and a maximum of 93.1, there are differences. The modal result is 92.8.18

Effect of Beam Size. Beam search was determined to have minimal impact on scores
(absolute improvements of ≤ 0.3% were observed with small beams). Therefore, all
results we report used greedy decoding—Chen and Manning (2014) likewise only
report results with greedy decoding. This finding is in line with previous work that
generates sequences from recurrent networks (Grefenstette et al. 2014), although Vinyals
et al. (2015),19 Zhou et al. (2015), and Weiss et al. (2015) did report much more
substantial improvements with beam search on their parsers.

6.4 Experiments with Character-Based Word Representations

In order to isolate the improvements provided by the LSTM encodings of characters
described in Section 4.2, we run the stack LSTM parser in the following configurations:r Words: words only, as in Section 4.1 (but without POS tags)r Chars: character-based representations of words with bidirectional LSTMs,

as in Section 4.2 (but without POS tags)r Words + POS: words and POS tags (Section 4.1)

18 The results shown in Table 1 for the whole S-LSTM parser and English-SD are the best results for the
development set, even though the histogram in Figure 9 shows a couple of models with better results on
the test set.

19 Although superficially similar to ours, Vinyals et al. (2015) is a phrase-structure parser and adaptation to
the dependency parsing scenario would have been nontrivial. We discuss their work in Section 7.
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r Chars + POS: character-based representations of words with bidirectional
LSTMs plus POS tags (Section 4.2)r Words + POS + Morph: words, POS tags and morphological tags
(Section 4.1)r Chars + POS + Morph: character-based representations of words with
bidirectional LSTMs plus POS tags and morphological tags (Section 4.2)

None of the experimental configurations include pretrained word-embeddings or
any additional data resources. All experiments include SWAP transition, meaning that
nonprojective trees could be produced in any language. Finally, in addition to the
dimensionality described in Section 6.1, the character-based representations of words
have 100 dimensions.

6.4.1 Results and Discussion. Tables 2 and 3 show the results of the parsers for the
development sets and the final test sets, respectively. Most notable are improvements for
agglutinative languages—Basque, Hungarian, Korean, and Turkish—both when POS
tags are included and when they are not. Consistently, across all languages, Chars
outperforms Words, suggesting that the character-level LSTMs are learning represen-
tations that capture similar information to parts of speech. On average, Chars is on par
with Words + POS, and the best average of labeled attachment scores is achieved with
Chars + POS.

Even if our character-based representations are capable of encoding the same kind
of information, existing POS tags suffice for high accuracy. However, the POS tags
in treebanks for morphologically rich languages do not seem to be enough. This is
evidenced by the results including explicit morphological features, which outperforms
the ones without them in most cases, and outperforms the results using character-
based representations. It is interesting to see that for some languages, such as German,
Hungarian, Korean, and Swedish, the character-based representations seem to be
enough to approach or even surpass the results of the parser by using rich morphologi-
cal features. In Korean, Chars is the best model, which suggests that the character-based
word representations encode as much useful information for parsing for that particular
language as is currently available.

Swedish, English, and French use suffixes for the verb tenses and number,20 and
Hebrew uses a root-and-pattern system. Even for Chinese, which is not morphologically
rich, Chars shows a benefit over Words, perhaps by capturing regularities in syllable
structure within words.

6.4.2 Out-of-Vocabulary Words. The character-based representation for words is notably
beneficial for OOV words. We tested this specifically by comparing Chars to a model
in which all OOVs are replaced by the string “UNK” during parsing. This always has a
negative effect on LAS (average−4.5 points,−2.8 UAS). Figure 10 shows how this drop
varies with the development OOV rate across treebanks; the most extreme is Korean,
which drops 15.5 LAS. A similar, but less pronounced, pattern was observed for models
that include POS.

20 Tense and number features provide little improvement in a transition-based parser, compared with other
features such as case, when the POS tags are included (Ballesteros 2013).
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Table 2
Unlabeled attachment scores (top) and labeled attachment scores (bottom) on the development
sets (not a standard development set for Turkish). In each table, the first two columns show the
results of the parser with word lookup (Words) vs. character-based (Chars) representations.
Boldface shows the better result comparing Words vs. Chars, comparing Words + POS vs. Chars
+ POS, and comparing Words + POS + Morph vs. Chars + POS + Morph.

UAS:

Language Words Chars Words Chars Words Chars
+ POS + POS + POS + POS

+ Morph + Morph

Arabic 86.14 87.20 87.44 87.07 87.35 86.78
Basque 78.42 84.97 83.49 85.58 87.20 86.90
French 84.84 86.21 87.00 86.33 87.19 86.57
German 88.14 90.94 91.16 91.23 91.44 91.45
Hebrew 79.73 79.92 81.99 80.76 82.10 80.69
Hungarian 72.38 80.16 78.47 80.85 80.29 80.55
Korean 78.98 88.98 87.36 89.14 87.48 89.04
Polish 73.29 85.69 89.32 88.54 90.34 89.36
Swedish 73.44 75.03 80.02 78.85 80.14 79.79
Turkish 71.10 74.91 77.13 77.96 79.28 79.18
Chinese 79.43 80.36 85.98 85.81 – –
English 91.64 91.98 92.94 92.49 – –

Average 79.79 83.86 85.19 85.38 – –

LAS:

Language Words Chars Words Chars Words Chars
+ POS + POS + POS + POS

+ Morph + Morph

Arabic 82.73 84.34 84.81 84.36 84.71 83.95
Basque 67.08 78.22 74.31 79.52 81.50 80.85
French 80.32 81.70 82.71 81.51 82.68 82.12
German 85.36 88.68 89.04 88.83 89.42 89.31
Hebrew 69.42 70.58 74.11 72.18 73.98 72.37
Hungarian 62.14 75.61 69.50 76.16 75.55 75.85
Korean 67.48 86.80 83.80 86.88 83.78 86.92
Polish 65.13 78.23 81.84 80.97 84.62 82.89
Swedish 64.77 66.74 72.09 69.88 73.13 70.87
Turkish 53.98 62.91 62.30 62.87 71.42 71.05
Chinese 75.64 77.06 84.36 84.10 – –
English 88.60 89.58 90.63 90.08 – –

Average 71.89 78.37 79.13 79.78 – –

Interestingly, this artificially impoverished model is still consistently better than
Words for all languages (e.g., for Korean, by 4 LAS). This implies that not all of the
improvement is due to OOV words; statistical sharing across orthographically close
words is beneficial as well.

Finally, Table 4 shows the results obtained when combining the pretrained word
embeddings of Section 6.3 with the character-based representations of this section for
the English and Chinese Treebanks. We also run the experiments by including and
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Table 3
Unlabeled attachment scores (top) and labeled attachment scores (bottom) on the test sets.
In each table, the first two columns show the results of the parser with word lookup
(Words) vs. character-based (Chars) representations. Boldface shows the better result
comparing Words vs. Chars, comparing Words + POS vs. Chars + POS, and comparing
Words + POS + Morph vs. Chars + POS + Morph.

UAS:

Language Words Chars Words Chars Words Chars
+ POS + POS + POS + POS

+ Morph + Morph

Arabic 85.21 86.08 86.05 86.07 86.35 85.79
Basque 77.06 85.19 82.92 85.22 86.87 86.02
French 83.74 85.34 86.15 85.78 86.81 86.21
German 82.75 86.80 87.33 87.26 87.40 87.48
Hebrew 77.62 79.93 80.68 80.17 81.36 79.83
Hungarian 72.78 80.35 78.64 80.92 81.07 81.06
Korean 78.70 88.39 86.85 88.30 86.84 88.24
Polish 72.01 83.44 87.06 85.97 88.93 88.44
Swedish 76.39 79.18 83.43 83.24 83.18 82.04
Turkish 71.70 76.32 75.32 76.34 79.52 78.28
Chinese 79.01 79.94 85.96 85.30 – –
English 91.16 91.47 92.57 91.63 – –

Average 79.01 85.36 84.41 84.68 – –

LAS:

Language Words Chars Words Chars Words Chars
+ POS + POS + POS + POS

+ Morph + Morph

Arabic 82.05 83.41 83.46 83.40 83.83 83.11
Basque 66.61 79.09 73.56 78.61 80.83 79.92
French 79.22 80.92 82.03 81.08 82.65 81.97
German 79.15 84.04 84.62 84.49 84.79 84.86
Hebrew 68.71 71.26 72.70 72.26 73.67 72.06
Hungarian 61.93 75.19 69.31 76.34 76.66 76.45
Korean 67.50 86.27 83.37 86.21 83.41 86.25
Polish 63.96 76.84 79.83 78.24 82.67 82.21
Swedish 67.69 71.19 76.40 74.47 76.42 74.41
Turkish 54.55 64.34 61.22 62.28 70.93 68.28
Chinese 74.79 76.29 84.40 83.72 – –
English 88.42 88.94 90.31 89.44 – –

Average 71.22 78.15 78.43 79.21 – –

excluding part-of-speech tags to see the effect of the character-based representations
when they are combined with pretrained word embeddings. The main conclusion is that
when we combine character-based representations with pretrained word embeddings
and part-of-speech tags, they do not have the same effect as when we only apply
character-based embeddings; however, the model learns better when the part-of-speech
tags or the pretrained word embeddings are not included. And finally, the model that
incorporates character-based embeddings and pretraining is a bit better than the model
that uses pretrained embeddings and part-of-speech tags.
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Figure 10
On the x-axis is the OOV rate in development data, by treebank; on the y-axis is the difference in
development-set LAS between Chars model as described in Section 4.2 and one in which all
OOV words are given a single representation.

Table 4
Unlabeled attachment scores and labeled attachment scores on the development sets (top) and
the final test sets (bottom) for Chinese and English (SD). The columns marked with Words show
the results of the parser with the whole S-LSTM model presented in Section 6.3, and the column
marked with Words + POS also includes part-of-speech tags. The columns marked with Words +
Chars show the results of the parser when combining the pretrained word embeddings of
Section 6.3 with the character-based representations of this section and the columns marked with
Words + Chars + POS also includes part-of-speech tags.

Development:
Words Words + POS Words + Chars Words + Chars + POS

Language UAS LAS UAS LAS UAS LAS UAS LAS
Chinese 82.65 79.84 87.23 85.87 82.20 79.26 86.93 85.51
English 92.58 89.96 93.11 90.80 92.74 90.35 92.87 90.49

Test:
Words Words + POS Words + Chars Words + Chars + POS

Language UAS LAS UAS LAS UAS LAS UAS LAS
Chinese 82.15 79.04 86.85 85.36 81.90 78.81 86.92 85.49
English 92.57 90.21 93.04 90.87 92.56 90.38 92.75 90.62

6.4.3 Comparison with State-of-the-Art Parsers. Table 5 shows a comparison with state-of-
the-art parsers. We include greedy transition-based parsers that, like ours, do not apply
beam search. For all the SPMRL languages we show the results of Ballesteros (2013),
who reported results after carrying out a careful automatic morphological feature
selection experiment. For Turkish, we show the results of Nivre et al. (2006), who also
carried out a careful manual morphological feature selection. Our parser outperforms
these in most cases. For English and Chinese, we report our results of the best parser
on the develpment set in Section 6.3—which is Words + POS but with pretrained word
embeddings.

We also show the best reported results on these data sets. For the SPMRL data
sets, the best performing system of the shared task is either Björeklund et al. (2013) or
Björkelund et al. (2014), which are better than our system. Note that the comparison is
harsh to our system, which does not use unlabeled data nor any combination of different
parsers. For Turkish, our system provides the best results ever reported in this data

334



Ballesteros et al. Greedy Transition-Based Dependency Parsing with Stack LSTMs

Table 5
Test-set performance of our best results (according to UAS or LAS, whichever has the larger
difference), compared with state-of-the-art greedy transition-based parsers (“Best Greedy
Result”) and best results reported (“Best Published Result”). Note that B+’13 and B+’14 are a
combination of parsers and use unlabeled data; our models do not. We only use unlabeled data
for the pretrained word embeddings of DWPP. W refers to Words; C refers to Chars; WP refers
to Words + Pos; WPM refers to Words + Pos + Morph; CP refers to Chars + Pos; CPM refers to
Chars + Pos + Morph; B’13 is (Ballesteros 2013); N+’06a is (Nivre et al. 2006); DWPP is our
model Word + Pos with pretrained embeddings and dynamic oracles as in Section 6.5; WPM is
our model Word + Pos + Morph; B+’13 is (Björkelund et al. 2013); B+’14 is (Björkelund et al.
2014); W+’15 is (Weiss et al. 2015).

This Work Best Greedy Result Best Published Result
Language UAS LAS System UAS LAS System UAS LAS System
Arabic 86.35 83.83 WPM 84.57 81.90 B’13 88.32 86.21 B+’13
Basque 86.87 80.63 WPM 84.33 78.58 B’13 89.96 85.70 B+’14
French 86.81 82.65 WPM 83.35 77.98 B’13 89.02 85.66 B+’14
German 87.48 84.86 CPM 85.38 82.75 B’13 91.64 89.65 B+’13
Hebrew 81.36 73.57 WPM 79.89 73.01 B’13 87.41 81.65 B+’14
Hungarian 81.07 76.66 WPM 83.71 79.63 B’13 89.81 86.13 B+’13
Korean 88.39 86.27 C 85.72 82.06 B’13 89.10 87.27 B+’14
Polish 88.93 79.83 WPM 85.80 79.89 B’13 91.75 87.07 B+’13
Swedish 83.43 76.40 WP 83.20 75.82 B’13 88.48 82.75 B+’14
Turkish 79.52 70.93 WPM 75.82 65.68 N+’06a 79.52 70.93 WPM
Chinese 85.96 84.40 WP 87.65 86.21 DWPP 87.65 86.21 DWPP
English 92.57 90.31 WP 93.56 91.42 DWPP 94.08 92.19 W+’15

set. For English, we report Weiss et al. (2015), and for Chinese, we report our results in
Section 6.3—which is Words + POS but with pretrained word embeddings and dynamic
oracles (see next section).

6.5 Experiments with Dynamic Oracles

Table 6 shows the results of the parser with arc-hybrid and dynamic oracles for the
English data set (with Stanford dependencies) and the Chinese CTB data sets with and
without pretrained word embeddings, respectively. The table also shows the best result
reported in Section 6.3 for the sake of comparison between static and dynamic training
strategies.

The results achieved by the dynamic oracle for English are actually one of the
best results ever reported in this data set, achieving 93.56 unlabeled attachment score.
This is remarkable given that the parser uses a completely greedy inference procedure.
Moreover, the Chinese numbers establish the state-of-the-art by using the same settings
as in Chen and Manning (2014).

The error-exploring dynamic-oracle training always improves above static oracle
training using the same transition system, but the arc-hybrid system slightly under-
performs the arc-standard system when trained with static oracle. Transforming the
sampling distribution towards preferring less probable events (α = 0.75) is especially
beneficial when training with pretrained word embeddings.
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Table 6
Unlabeled attachment scores and labeled attachment scores on the development sets (top) and
the final test sets (bottom) for Chinese and English (SD). The columns marked with “Arc-std.”
show the results of the parser arc-standard oracle, which are the same numbers as in Table 1. The
columns marked with “Arc-hybrid” show the results of the parser with the arc-hybrid oracle.
The columns marked with “static” (“dynamic”) show the results of the parser with static
(dynamic) oracles.

Development
Arc-std. Arc-hybrid Arc-hybrid Arc-hybrid
(static) (static) (dynamic) (dynamic, α = 0.75)

Language UAS LAS UAS LAS UAS LAS UAS LAS
Chinese (–pretraining) 85.96 84.37 82.65 79.84 85.96 84.37 86.32 84.59
Chinese (+pretraining) 87.23 85.87 87.11 85.64 87.41 85.99 87.41 85.87

English (–pretraining) 92.58 90.24 92.64 90.26 93.01 90.68 93.04 90.64
English (+pretraining) 93.11 90.80 93.16 90.88 93.38 91.03 93.51 91.29

Test
Arc-std. Arc-hybrid Arc-hybrid Arc-hybrid
(static) (static) (dynamic) (dynamic, α = 0.75)

Language UAS LAS UAS LAS UAS LAS UAS LAS
Chinese (–pretraining) 85.48 83.94 85.66 84.03 86.07 84.46 86.13 84.53
Chinese (+pretraining) 86.85 85.36 86.94 85.46 87.05 85.63 87.65 86.21

English (–pretraining) 92.40 90.04 92.08 89.80 92.66 90.43 92.73 90.60
English (+pretraining) 93.04 90.87 92.78 90.67 93.15 91.05 93.56 91.42

6.6 Experiments with CoNLL 2009 Data Sets

In order to be able to compare with similar greedy parsers (Yazdani and Henderson
2015; Andor et al. 2016)21 we report the performance of the parser on the multilingual
treebanks of the CoNLL 2009 Shared Task (Hajič et al. 2009). Because some of the
treebanks contain nonprojective sentences and arc-hybrid does not allow nonprojective
trees, we use the pseudo-projective approach (Nivre and Nilsson 2005). For all the
experiments presented in this section we used the predicted part-of-speech tags pro-
vided by the CoNLL 2009 shared task organizers. In order to see if the pretrained word
embeddings are useful for other languages we also include results with pretrained word
embeddings for English, Chinese, German, and Spanish following the same training
set-up as in Section 4; for English and Chinese we used the same pretrained word
embeddings as in previous experiments, for German we pretrained embeddings using
the monolingual training data from the WMT 2015 data set22, and for Spanish we used
the Spanish Gigaword version 3.

The results for the parser with character-based representations on these data sets
(last line of the table) were published by Andor et al. (2016). In Zhang and Weiss (2016),
it is also possible to find results of the same version of the parser on the Universal
Dependency treebanks (Nivre et al. 2015).

21 We report the performance of these parsers in the most comparable set-up, that is, with beam = 1 or
greedy.

22 http://www.statmt.org/wmt15/translation-task.html.
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Table 7
Results of the parser in its different versions including comparison with other systems. St.
refers to static oracle with the arc-standard parser and Dyn. refers to dynamic oracle with the
arc-hybrid parser with α = 0.75 because it is the top scoring system in Section 6.5. PP refers to
pseudo-projective parsing, SW refers to the arc-standard algorithm including the SWAP action
as described in Section 3.3.2. +pre refers to the models that incorporate pretrained word
embeddings. The Chinese treebank is fully projective and this is why we do not report results
with SWAP since they are equivalent to the ones with pseudo-projective parsing. Y’15 is the
parser by Yazdani and Henderson (2015). A’16 is the parser with beam = 1 by Andor et al. (2016).
A’16-b is the parser with beam larger than 1 by Andor et al. (2016). Bold numbers indicate the
best results among the greedy parsers.

Catalan Chinese Czech English German Japanese Spanish
Method UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
St + PP 89.60 85.45 79.68 75.08 77.96 71.06 91.12 88.69 88.09 85.24 93.10 92.28 89.08 85.03
+ pre – – 82.45 78.55 – – 91.59 89.15 88.56 86.15 – – 90.76 87.48
St + SW 89.55 85.35 – – 78.66 71.99 91.12 88.50 88.11 85.48 93.29 92.46 89.02 84.96
+ pre – – – – – – 91.53 89.14 89.21 86.96 – – 90.43 86.99
Dyn + PP 90.45 86.38 80.74 76.52 85.68 79.38 91.62 89.23 89.80 87.29 93.47 92.70 89.53 85.69
+ pre – – 83.54 79.66 – – 92.22 89.87 90.34 88.17 – – 91.09 87.95

Y’15 – – – – 85.2 77.5 90.13 87.26 89.6 86.0 – – 88.3 85.4
A’16 91.24 88.21 81.29 77.29 85.78 80.63 91.44 89.29 89.12 86.95 93.71 92.85 91.01 88.14

A’16-b 92.67 89.83 84.72 80.85 88.94 84.56 93.22 91.23 90.91 89.15 93.65 92.84 92.62 89.95

Our parsers outperform the model by Yazdani and Henderson (2015). When com-
paring with Andor et al. (2016), it is worth noting that they use pretrained word
embeddings, plus predicted morphological features, and the top-K POS tags from a CRF
tagger instead of a simple predicted tags, so the results that are actually comparable are
the ones in which we include pretrained word embeddings; our model is better than
Andor et al. (2016), especially in the case of the dynamic oracles.

The results with Czech and the dynamic oracle model suggest that it is a much
better strategy when the number of nonprojective trees is high; this result suggests that
the training with exploration allows the parser to handle more complicated syntactic
structures. Finally, the arc-standard parser enriched with the SWAP action performs
similarly to the pseudo-projective approach for all languages, which demonstrates the
effectiveness of both approaches when parsing nonprojective structures.

7. Related Work

Our approach ties together several strands of previous work. First, several kinds of stack
memories have been proposed to augment neural architectures. Das, Giles, and Sun
(1992) proposed a neural network with an external stack memory based on recurrent
neural networks. In contrast to our model, in which the entire contents of the stack are
summarized in a single value, in their model the network could only see the contents of
the top of the stack. Mikkulainen (1996) proposed an architecture with a stack that had
a summary feature, although the stack control was learned as a latent variable.

Several authors have used neural networks to predict parser actions in shift-reduce
parsers. The earliest attempt we are aware of is Mayberry and Miikkulainen (1999).
The recent resurgence of interest in neural networks has included several applications
to transition-based dependency parsers (Andor et al. 2016; Yazdani and Henderson
2015; Weiss et al. 2015; Zhou et al. 2015; Chen and Manning 2014; Stenetorp 2013;
Titov and Henderson 2007b). In most of these works, the conditioning structure is
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manually crafted and sensitive to only certain properties of the state, with the exception
of Titov and Henderson (2007b), whereas we are conditioning on the global state. Like
us, Stenetorp (2013) used recursively composed representations of the tree fragments
(a head and its dependents). Titov and Henderson (2007b) used a generative latent
variable based on incremental sigmoid belief networks to likewise condition on the
global state. Neural networks have also been used to learn representations for use in
phrase-structure parsing (Henderson 2003, 2004; Titov and Henderson 2007a; Socher
et al. 2013; Le and Zuidema 2014). The work by Watanabe et al. (2015) is also similar to
the work presented in this article but for phrase-structure parsing.

Our model’s position relative to existing neural network parsers can be understood
by analogy to neural language models. The context representation is either constructed
subject to an n-gram window (Bengio et al. 2003; Mnih and Hinton 2007), or it may
be constructed incrementally using recurrent neural networks to obtain potentially
unbounded dependencies (Mikolov et al. 2010). Likewise, during parsing, the particular
algorithm state (represented by the stack, buffer, and history of actions taken) is the
context used to predict the parsing action. This may be represented as a finite vector by
picking out certain features (Weiss et al. 2015; Chen and Manning 2014) or by recursively
composing the representation of simpler elements as parsing proceeds (Henderson
2003, 2004; Titov and Henderson 2007b; this work).

LSTMs have recently been demonstrated as a mechanism for generating phrase
structure parses. Vinyals et al. (2015) used a sequence-to-sequence architecture with
attention to predict a sequence of tree building actions, conditional on the sentence
being parsed. Other works have used LSTMs for better semantic representations (Tai,
Socher, and Manning 2015), and others to solve similar tasks such as phrase-structure
parsing (Dyer et al. 2016).

In terms of token representations, it is worth noting that character-based represen-
tations have been explored in other NLP tasks; for instance, dos Santos and Zadrozny
(2014) and dos Santos and Guimarães (2015) learned character level neural represen-
tations for POS tagging and named entity recognition, obtaining an error reduction in
both tasks. Their approach is similar to ours. Many approaches have used character-
based models as additional features to improve existing models. For instance, Chrupala
(2014) tried character-based recurrent neural networks to normalize tweets. Similarly,
Botha and Blunsom (2014) show that stems, prefixes, and suffixes can be used to learn
useful word representations. Our approach is learning similar representations by using
the bidirectional LSTMs. Chen et al. (2015) propose joint learning of character and
word embeddings for Chinese, claiming that characters contain rich internal informa-
tion. Constructing word representations from characters using convolutional neural
networks has also been proposed (Kim et al. 2016).

Tsarfaty (2006), Cohen and Smith (2007), Goldberg and Tsarfaty (2008), and
Goldberg and Elhadad (2011) presented methods for joint segmentation and
phrase-structure parsing, by segmenting the words in useful morphologically oriented
units. Bohnet et al. (2013) presented an arc-standard transition-based parser that per-
forms competitively for joint morphological tagging and dependency parsing for richly
inflected languages, such as Czech, Finnish, German, Hungarian, and Russian.

Training greedy parsers on non-gold outcomes, facilitated by dynamic oracles,
has been explored by several researchers in different ways (Goldberg and Nivre
2012, 2013; Goldberg, Sartorio, and Satta 2014; Honnibal, Goldberg, and Johnson 2013;
Honnibal and Johnson 2014; Gómez-Rodrı́guez, Sartorio, and Satta 2014; Björkelund
and Nivre 2015; Tokgöz and Eryiğit 2015; Gómez-Rodrı́guez and Fernández-González
2015; Vaswani and Sagae 2016). More generally, training greedy inference systems by

338



Ballesteros et al. Greedy Transition-Based Dependency Parsing with Stack LSTMs

paying attention to the expected classifier behavior during test time has been explored
under the imitation learning and Learning to Search (SEARN) frameworks (Abbeel
and Ng 2004; Daumé III and Marcu 2005; Vlachos 2012; He, Eisner, and Daume 2012;
Daumé III, Langford, and Marcu 2009; Ross, Gordon, and Bagnell 2011). In the context
of recurrent neural networks, the discrepancy between training time and test time
prediction was recently explored by Bengio et al. (2015) for the task of language mod-
eling. However, to the best of our knowledge this is the first time that such a training
procedure is explored together with neural networks for parsing. The results show that
the consistent gains in accuracy due to dynamic oracle training that were observed
in previous work persist also for the very strong stack LSTM parser, although some
care had to be taken to adapt the training procedures to the probabilistic nature of the
objective, and to the high accuracy levels of the underlying model.

We conclude by remarking that stack memory offers intriguing possibilities for
learning to solve general information processing problems (Mikkulainen 1996). Here,
we learned from observable stack manipulation operations (i.e., supervision from a
treebank), and the computed embeddings of final parser states were not used for any
further prediction.

Such an extension of the work would make it an alternative to architectures that
have an explicit external memory such as neural Turing machines (Graves, Wayne,
and Danihelka 2014) and other memory networks (Weston, Chopra, and Bordes 2014;
Kumar et al. 2015). However, as with those models, without supervision of the stack
operations, formidable computational challenges must be solved (e.g., marginalizing
over all latent stack operations), but sampling techniques and techniques from rein-
forcement learning have promise here (Zaremba and Sutskever 2015), making this an
intriguing avenue for future work.

8. Conclusions

We presented stack LSTMs, recurrent neural networks for sequences, with push and pop
operations, and used them to implement a state-of-the-art transition-based dependency
parser. The parser uses a greedy learning strategy which potentially provides very high
parsing speed while still achieving state-of-the-art results.

We demonstrate that word representations “composed” from representations of
characters are sufficient for successful transition-based dependency parsing. The results
are stronger for agglutinative languages, such as Basque, Hungarian, Korean, and
Turkish. This outcome is important, because annotating morphological information is
expensive; our model suggests that only dependency annotations are necessary and
relevant morphological features can be learned from strings. Moreover, character-based
representations are also a way of overcoming the out-of-vocabulary problem even in
morphologically simpler languages, such as English. Additionally, inspired by Bohnet
et al. (2013), an orthogonal experiment to the one presented in this paper would be
to apply character-based representations to joint tagging and dependency parsing. We
expect the character-based representations to be powerful enough to catch morphosyn-
tactic information in a joint model. Similar improvements may be achieved in an out-
of-domain scenario.

Even though the parser is greedy, it provides very consistent results comparable
with the best parsers of the state-of-the-art. We even obtained further improvement as
demonstrated with the experiments with the dynamic oracles, that provide a push over
the baseline while still maintaining very fast (and greedy) parsing speed.
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Finally, it is worth noting that a modified version of the same parser has been
used to create a polyglot dependency parser (Ammar et al. 2016) with the universal
dependency treebanks (Nivre et al. 2015), and the stack LSTMs have also been applied
to solve other core natural language processing tasks, such as named entity recognition
(Lample et al. 2016), phrase-structure parsing and language modeling (Dyer et al. 2016),
and joint syntactic and semantic parsing (Swayamdipta et al. 2016).
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