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Word ordering is a fundamental problem in text generation. In this article, we study word
ordering using a syntax-based approach and a discriminative model. Two grammar formalisms
are considered: Combinatory Categorial Grammar (CCG) and dependency grammar. Given the
search for a likely string and syntactic analysis, the search space is massive, making discrimi-
native training challenging. We develop a learning-guided search framework, based on best-first
search, and investigate several alternative training algorithms.

The framework we present is flexible in that it allows constraints to be imposed on output
word orders. To demonstrate this flexibility, a variety of input conditions are considered. First, we
investigate a “pure” word-ordering task in which the input is a multi-set of words, and the task is
to order them into a grammatical and fluent sentence. This task has been tackled previously, and
we report improved performance over existing systems on a standard Wall Street Journal test set.
Second, we tackle the same reordering problem, but with a variety of input conditions, from the
bare case with no dependencies or POS tags specified, to the extreme case where all POS tags and
unordered, unlabeled dependencies are provided as input (and various conditions in between).
When applied to the NLG 2011 shared task, our system gives competitive results compared with
the best-performing systems, which provide a further demonstration of the practical utility of our
system.

1. Introduction

Word ordering is a fundamental problem in natural language generation (NLG, Reiter
and Dale 1997). In this article we focus on text generation: Starting with a bag of words,
or lemmas, as input, the task is to generate a fluent and grammatical sentence using
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those words. Additional annotation may also be provided with the input—for example,
part-of-speech (POS) tags or syntactic dependencies. Applications that can benefit from
better text generation algorithms include machine translation (Koehn 2010), abstractive
text summarization (Barzilay and McKeown 2005), and grammar correction (Lee and
Seneff 2006). Typically, statistical machine translation (SMT) systems (Chiang 2007;
Koehn 2010) perform generation into the target language as part of an integrated
system, which avoids the high computational complexity of independent word order-
ing. On the other hand, performing word ordering separately in a pipeline has many
potential advantages. For SMT, it offers better modularity between adequacy (transla-
tion) and fluency (linearization), and can potentially improve target grammaticality for
syntactically different languages (e.g., Chinese and English). More importantly, a stand-
alone word ordering component can in principle be applied to a wide range of text
generation tasks, including transfer-based machine translation (Chang and Toutanova
2007).

Most word ordering systems use an n-gram language model, which is effective
at controling local fluency. Syntax-based language models, in particular dependency
language models (Xu, Chelba, and Jelinek 2002), are sometimes used in an attempt
to improve global fluency through the capturing of long-range dependencies. In this
article, we take a syntax-based approach and consider two grammar formalisms: Com-
binatory Categorial Grammar (CCG) and dependency grammar. Our system also em-
ploys a discriminative model. Coupled with heuristic search, a strength of the model
is that arbitrary features can be defined to capture complex syntactic patterns in
output hypotheses. The discriminative model is trained using syntactically annotated
data.

From the perspective of search, word ordering is a computationally difficult prob-
lem. Finding the best permutation for a set of words according to a bigram language
model, for example, is NP-hard, which can be proved by linear reduction from the trav-
eling salesman problem. In practice, exploring the whole search space of permutations
is often prevented by adding constraints. In phrase-based machine translation (Koehn,
Och, and Marcu 2003; Koehn et al. 2007), a distortion limit is used to constrain the posi-
tion of output phrases. In syntax-based machine translation systems such as Wu (1997)
and Chiang (2007), synchronous grammars limit the search space so that polynomial-
time inference is feasible. In fluency improvement (Blackwood, de Gispert, and Byrne
2010), parts of translation hypotheses identified as having high local confidence are held
fixed, so that word ordering elsewhere is strictly local.

In this article we begin by proposing a general system to solve the word ordering
problem, which does not rely on constraints (which are typically task-specific). In partic-
ular, we treat syntax-based word ordering as a structured prediction problem, for which
the input is a multi-set (bag) of words and the output is an ordered sentence, together
with its syntactic analysis (either CCG derivation or dependency tree, depending on the
grammar formalism being used). Given an input, our system searches for the highest-
scored output, according to a syntax-based discriminative model. One advantage of this
formulation of the reordering problem, which can perhaps be thought of as a “pure”
text realization task, is that systems for solving it are easily evaluated, because all
that is required is a set of sentences for reordering and a standard evaluation metric
such as BLEU (Papineni et al. 2002). However, one potential criticism of the “pure”
problem is that it is unclear how it relates to real realization tasks, since in practice
(e.g., in statistical machine translation systems) the input does provide constraints
on the possible output orderings. Our general formulation still allows task-specific
contraints to be added if appropriate. Hence as a test of the flexibility of our system,
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and a demonstration of the applicability of the system to more realistic text gener-
ation scenarios, we consider two further tasks for the dependency-based realization
system.

The first task considers a variety of input conditions for the dependency-based sys-
tem, determined by two parameters. The first is whether POS information is provided
for each word in the input multi-set. The second is whether syntactic dependencies be-
tween the words are provided. The extreme case is when all dependencies are provided,
in which case the problem reduces to the tree linearization problem (Filippova and
Strube 2009; He et al. 2009). However, the input can also lie between the two extremes
of no- and full-dependency information.

The second task is the NLG 2011 shared task, which provides a further demonstra-
tion of the practical utility of our system. The shared task is closer to a real realization
scenario, in that lemmas, rather than inflected words, are provided as input. Hence
some modifications are required to our system in order that it can perform some word
inflection, as well as deciding on the ordering. The shared task data also uses labeled,
rather than unlabeled, syntactic dependencies, and so the system was modified to
incorporate labels. The final result is that our system gives competitive BLEU scores,
compared to the best-performing systems on the shared task.

The structured prediction problem we solve is a very hard problem. Due to the
use of syntax, and the search for a sentence together with a single CCG derivation
or dependency tree, the search space is exponentially larger than the n-gram word
permutation problem. No efficient algorithm exists for finding the optimal solution.
Kay (1996) recognized the computational difficulty of chart-based generation, which
has many similarities to the problem we address in his seminal paper. We tackle the
high complexity by using learning-guided best-first search, exploring a small path in
the whole search space, which contains the most likely structures according to the dis-
criminative model. One of the contributions of this article is to introduce, and provide
a discriminative solution to, this difficult structured prediction problem, which is an
interesting machine learning problem in its own right.

This article is based on, and significantly extends, three conference papers (Zhang
and Clark 2011; Zhang, Blackwood, and Clark 2012; Zhang 2013). It includes a more
detailed description and discussion of our guided-search approach to syntax-based
word ordering, bringing together the CCG- and dependency-based systems under one
unified framework. In addition, we discuss the limitations of our previous work, and
show that a better model can be developed through scaling of the feature vectors. The
resulting model allows fair comparison of constituents of different sizes, and enables
the learning algorithms to expand negative examples during training, which leads to
significantly improved results over our previous work. The competitive results on the
NLG 2011 shared task data are new for this article, and demonstrate the applicability of
our system to more realistic text realization scenarios.

The contributions of this article can be summarized as follows:

r We address the problem of syntax-based word ordering, drawing
attention to this challenging language modeling task and offering
a general solution that does not rely on constraints to limit the search
space.r We present a novel method for solving the word ordering problem
that gives the best reported accuracies to date on the standard Wall Street
Journal data.
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r We show how our system can be used with two different grammar
formalisms: Combinatory Categorial Grammar and dependency
grammar.r We show how syntactic constraints can be easily incorporated into the
system, presenting results for the dependency-based system with a range
of input conditions.r We demonstrate the applicability of the system to more realistic text
realization scenarios by obtaining competitive results on the NLG 2011
shared task data, including performing some word inflection as part of a
joint system that also performs word reordering.r More generally, we propose a learning-guided, best-first search algorithm
for application of discriminative models to extremely large search spaces
containing structures of varying sizes. This method could be applied to
other complex structured prediction tasks in NLP and machine
learning.

2. Overview of the Search and Training Algorithms

In this section, the CCG-based system is used to describe the search and training
algorithms. However, the same approach can be used for the dependency-based system,
as described in Section 4: Instead of building hypotheses by applying CCG rules in a
bottom-up manner, the dependency-based system creates dependency links between
words.

Given a bag of words, the goal is to put them into an ordered sentence that has
a plausible CCG derivation. The search space of the decoding problem consists of all
possible CCG derivations for all possible word permutations, and the search goal is to
find the highest-scored derivation in the search space. This is an NP-hard problem, as
mentioned in the Introduction. We apply learning-guided search to address the high
complexity. The intuition is that, because the whole search space cannot be exhausted
in order to find the optimal solution, we choose to explore a small area in the search
space. A statistical model is used to guide the search, so that only a small portion of the
search space containing the most plausible hypotheses is explored.

One natural choice for the decoding algorithm is best-first search, which uses an
agenda to order hypotheses, and expands the highest-scored hypothesis on the agenda
at each step. The resulting hypotheses after each hypothesis expansion are put back
on the agenda, and the process repeats until a goal hypothesis (a full sentence) is
found. This search process is guided by the current scores of the hypotheses, and the
search path will contain the most plausible hypotheses if they are scored higher than
implausible ones. An alternative to best-first search is A∗ search, which makes use
of a heuristic function to estimate future scores. A∗ can potentially be more efficient
given an effective heuristic function; however, it is not straightforward to define an
admissible and accurate estimate of future scores for our problem, and we leave this
research question to future work.

In our formulation of the word ordering problem, a hypothesis is a phrase or
sentence together with its CCG derivation. Hypotheses are constructed bottom–up:
starting from single words, smaller phrases are combined into larger ones according
to CCG rules. To allow the combination of hypotheses, we use an additional struc-
ture to store a set of hypotheses that have been expanded, which we call accepted
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hypotheses. When a hypothesis from the agenda is expanded, it is combined with
all accepted hypotheses in all possible ways to produce new hypotheses. The data
structure for accepted hypotheses is similar to that used for best-first parsing (Caraballo
and Charniak 1998), and we adopt the term chart for this structure. However, note
there are important differences to the parsing problem. First, the parsing problem has a
fixed word order and is considerably simpler than the word ordering problem we are
tackling. Second, although we use the term chart, the structure for accepted hypotheses
is not a dynamic programming chart in the same way as for the parsing problem. In
our previous papers (Zhang and Clark 2011; Zhang, Blackwood, and Clark 2012), we
applied a set of beams to this structure, which makes it similar to the data structure
used for phrase-based MT decoding (Koehn 2010). However, we will show later that
this structure is unnecessary when the model has more discriminative power, and a
conceptually simpler single beam can be used. We will also investigate the possibility
of applying dynamic-programming-style pruning to the chart.

We now give an overview of the training algorithm, which is crucial to both the
speed and accuracy of the resulting decoder. CCGBank (Hockenmaier and Steedman
2007) is used to train the model. For each training sentence, the corresponding CCGBank
derivation together with all its sub-derivations are treated as gold-standard hypotheses.
All other hypotheses that can be constructed from the same bag of words are non-gold
hypotheses. From the generation perspective this assumption is too strong, because
sentences can have multiple orderings (with multiple derivations) that are both gram-
matical and fluent. Nevertheless, it is the most feasible choice given the training data
available.

The efficiency of the decoding algorithm is dependent on the training algorithm
because the agenda is ordered according to the hypothesis scores. Hence, a better model
will lead to a goal hypothesis being found more quickly. In the ideal situation, all gold-
standard hypotheses are scored higher than all non-gold hypotheses, and therefore only
gold-standard hypotheses are expanded before the gold-standard goal hypothesis is
found. In this case, the minimum number of hypotheses is expanded and the output is
correct. The best-first search decoder is optimal not only with respect to accuracy but
also speed. This ideal situation can hardly be met in practice, but it determines the goal
of the training algorithm: to find a model that scores gold-standard hypotheses higher
than non-gold ones.

Learning-guided search places more challenges on the training of a discriminative
model than standard structured prediction problems, for example, CKY parsing for
CCG (Clark and Curran 2007b). If we take gold-standard hypotheses as positive training
examples, and non-gold hypotheses as negative examples, then the training goal is
to find a large separating margin between the scores of all positive examples and all
negative examples. For CKY parsing, the highest-scored negative example can be found
via optimal Viterbi decoding, according to the current model, and this negative example
can be used in place of all negative examples during the updating of parameters. In
contrast, our best-first search algorithm cannot find an output in reasonable time unless
a good model has already been trained, and therefore we cannot run the decoding
algorithm in the standard way during training. In our previous papers (Zhang and
Clark 2011; Zhang, Blackwood, and Clark 2012), we proposed an approximate online
training algorithm, which forces positive examples to be kept in the hypothesis space
without being discarded, and prevents the expansion of negative examples during the
training process (so that the hypothesis space does not get too large). This algorithm
ensures training efficiency, but greatly limits the space of negative examples that is
explored during training (and hence fails to replicate the conditions experienced at test
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time). In this article, we will show that, with an improved scoring model, it is possible
to expand negative examples, which leads to improved performance.

A second and more subtle challenge for our training problem is that we need
a stronger model for learning-guided search than for dynamic programming (DP)–
based search, such as CKY decoding. For CKY decoding, the model is used to compare
hypotheses within each chart cell, which cover the same input words. In contrast, for
the best-first search decoder, the model is used to order hypotheses on the agenda,
which can cover different numbers of words. It needs much stronger discriminating
power, so that it can determine whether a single-word phrase is better than, say, a
40-word sentence. In this article we use scaling of the hypothesis scores by size, so
that hypotheses of different sizes can be fairly compared. We also find that, with this
new approach, negative examples can be expanded during training and a single beam
applied to the chart, resulting in a conceptually simpler and more effective training
algorithm and decoder.

3. CCG-Based Word Ordering

3.1 The CCG Grammar

We were motivated to use CCG as one of the grammar formalisms for our syntax-based
realization system because of its successful application to a number of related tasks,
such as wide-coverage parsing (Hockenmaier 2003; Clark and Curran 2007b; Auli and
Lopez 2011), semantic parsing (Zettlemoyer and Collins 2005), wide-coverage semantic
analysis (Bos et al. 2004), and generation itself (Espinosa, White, and Mehay 2008).
The grammar formalism has been described in detail in those papers, and so here we
provide only a short description.

CCG (Steedman 2000) is a lexicalized grammar formalism that associates words
with lexical categories. Lexical categories are detailed grammatical labels, typically
expressing subcategorization information. During CCG parsing, and during our search
procedure, categories are combined using CCG’s combinatory rules. For example, a
verb phrase in English (S\NP) can combine with an NP to its left, in this case using
the combinatory rule of (backward) function application:

NP S\NP⇒ S

In addition to binary rule instances, such as this one, there are also unary rules that
operate on a single category in order to change its type. For example, forward type-
raising can change a subject NP into a complex category looking to the right for a verb
phrase:

NP⇒ S/(S\NP)

Such a type-raised category can then combine with a transitive verb type using the rule
of forward composition:

S/(S\NP) (S\NP)/NP⇒ S/NP

Following Fowler and Penn (2010), we extract the grammar by reading rule in-
stances directly from the derivations in CCGbank (Hockenmaier and Steedman 2007),
rather than defining the combinatory rule schema manually as in Clark and Curran
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(2007b). Hence the grammar we use can be thought of as a context-free approximation
to the mildly content sensitive grammar arising from the use of generalized composition
rules (Weir 1988). Hockenmaier (2003) contains a detailed description of the grammar
that is obtained in this way, including the various unary type-changing rules, as well as
additional rules needed to deal with naturally occurring text, such as punctuation rules.

3.2 The Edge Data Structure

For the rest of this article, the term edge is used to refer to a hypothesis in the decoding
algorithm. An edge corresponds to a sentence or phrase with a CCG derivation. Edges
are built bottom–up, starting from leaf edges, which are constructed by assigning
possible lexical categories to input words. Each leaf edge corresponds to an input word
with a particular lexical category. Two existing edges can be combined if there exists a
CCG rule (extracted from CCGbank, as described earlier) that combines their category
labels, and if they do not contain the same input word more times than its total count
in the input. The resulting edge is assigned a category label according to the CCG
rule, and covers the concatenated surface strings of the two sub-edges in their order of
combination. New edges can also be built by applying unary rules to a single existing
edge. We define a goal edge as an edge that covers all input words.

Two edges are equivalent if they have the same surface string and identical CCG
derivations. Edge equivalence is used for comparison with gold-standard edges. Two
edges are DP-equivalent when they have the same DP-signature. Based on the feature
templates in Table 1, we define the DP-signature of an edge as the CCG category at the

Table 1
Feature template definitions, with example instances based on Figure 2.

condition feature instance

category + size (S, 3)
all edges category + head word (S\NP, bought)

category + size + head word (NP, 1, Lotus)
category + head POS (S\NP, VBD)

category + leftmost word (S, IBM)
category + rightmost word (S\NP, Lotus)

#words > 1 category + leftmost POS bigram (S, (NNP, VBD))
category + rightmost POS bigram (S, (VBD, NNP))
category + lmost POS + rmost POS (S, (NNP, NNP))

the binary rule NP (S\NP)⇒ S
the binary rule + head word (NP (S\NP)⇒ S, bought)
rule + head word + non-head word (NP (S\NP) ⇒ S, bought, IBM)
bigrams resulting from combination (IBM, bought)

binary POS bigrams resulting from combination (NNP, VBD)
edges word trigrams resulting from combination (IBM, bought, Lotus)

POS trigrams resulting from combination (NNP, VBD, NNP)
resulting lexical category trigrams (NP, (S\NP)/NP, NP)
resulting word + POS bigrams (IBM, VBD)
resulting POS + word bigrams (VBD, Lotus)
resulting POS + word + POS trigrams (NNP, bought, NNP)

unary unary rule
edges unary rule + head word
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root of its derivation, the head word associated with the root category, and the multi-
set of words it contains, together with the word and POS bigrams on either side of its
surface string.

3.3 The Scoring of Edges

Edges are built bottom–up from input words or existing edges. If we treat the assign-
ment of lexical categories to input words and the application of unary and binary CCG
rules to existing edges as edge-building actions, the structure of an edge can be defined
recursively as the sub-structure resulting from its top action plus the structure of its
sub-edges (if any), as shown in Figure 1. Here the top action of an edge refers to the
most recent action that has been applied to build the edge.

In our previous papers we used a global linear model to score edges, where the
score of an edge e is defined as:

f (e) = Φ(e) · θ⃗

Φ(e) represents the feature vector of e and θ⃗ is the parameter vector of the model.
Similar to the structure of e, the feature vector Φ(e) can be defined recursively:

Φ(e) =
(∑

es∈e

Φ(es)
)
+ϕ(e)

=
( ∑

er
s∈re

ϕ(er
s)
)
+ϕ(e)

In this equation, es ∈ e represents a sub-edge of e. Leaf edges do not have any sub-
edges. Unary-branching edges have one sub-edge, and binary-branching edges have
two sub-edges. er

s ∈r e represents a (strictly) recursive sub-edge of e. The feature vector
ϕ(e) represents the structure of the top action of e; it is extracted according to the
feature templates in Table 1. Example instances of the feature templates are given
according to the example string and CCG derivation in Figure 2. For leaf edges, ϕ(e)
includes information about the lexical category label; for unary-branching edges, ϕ(e)
includes information from the unary rule; for binary-branching edges, ϕ(e) includes
information from the binary rule, and additionally the token, POS, and lexical cat-
egory bigrams and trigrams that result from the surface string concatenation of its
sub-edges.

Figure 1
The structure of edges shown recursively.

510



Zhang and Clark Discriminative Syntax-Based Word Ordering

Figure 2
Example string with its CCG derivation, used to give example features in Table 1.

By the given definition of Φ(e), f (e), the score of edge e, can be computed recursively
as e is built during the decoding process:

f (e) = Φ(e) · θ⃗

=
((∑

es∈e

Φ(es)
)
+ϕ(e)

)
· θ⃗

=
(∑

es∈e

Φ(es) · θ⃗
)
+ϕ(e) · θ⃗

=
(∑

es∈e

f (es)
)
+ϕ(e) · θ⃗

When the top action is applied, the score of f (e) is computed as the sum of
f (es) (for all es ∈ e) plus ϕ(e) · θ⃗.

An important aspect of the scoring model is that it is used to compare edges with
different sizes during decoding. The size of an edge can be measured in terms of the
number of words it contains, or the number of syntax rules in its structure. We define
the size of an edge as the number of recursive sub-edges in the edge plus one (e.g., the
size of a leaf edge is 1), which is equivalent to the number of actions (i.e., lexical category
assignment for leaf edges, and rule application for unary/binary edges) that have been
applied to construct the edge. Edges with different sizes can have significantly different
numbers of features, which can make the training of a discriminative linear model more
difficult. Note that it is common in structured prediction problems for feature vectors
to have slightly different sizes because of variant feature instantiation conditions. In
CKY parsing, for example, constituents with different numbers of unary rules can be
kept in the same chart cell and compared with each other, provided that they cover
the same span in the input. In our case, however, the sizes of two feature vectors
under comparison can be very different indeed, since a leaf edge with one word can
be compared with an edge over the entire input sentence.

In our previous papers we observed empirical convergence of online learning using
this linear model, and obtained competitive results. However, as explained in Section 2,
only positive examples were expanded during training, and the expansion of negative
examples led to non-convergence and made online training infeasible. In this article, in
order to increase the discriminating power of the model and to make use of negative
examples during training, we apply length normalization to the scoring function, so
that the score of an edge is independent of its size. To achieve this, we scale the original
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linear model score by the number of recursive sub-edges in the edge plus one. For a
given edge e, the new score f̂ (e) is defined as:

f̂ (e) =
f (e)
|e|

=
Φ(e) · θ⃗
|e|

=

∑
er

s∈re ϕ(er
s) · θ⃗+ϕ(e) · θ⃗

|{er
s ∈r e}+ 1|

In the equation, |e| represents the size of e, which is equal to the number of actions
that have been applied when e is constructed. By dividing the score f (e) by the size of e,
the score f̂ (e) represents an averaged value of ϕ(er

s) · θ⃗ (er
s ∈r e) and ϕ(e) · θ⃗, averaged by

the number of recursive sub-edges plus one (i.e., the total actions), and is independent
of the size of e. Given normalized feature vectors, the training of the parameter vector θ⃗
needs to be adjusted correspondingly, which will be discussed subsequently.

3.4 The Decoding Algorithm

The decoding algorithm takes a multi-set of input words, turns them into a set of leaf
edges, and searches for a goal edge by repeated expansion of existing edges. For best-
first decoding, an agenda and a chart are used. The agenda is a priority queue on which
edges to be expanded are ordered according to their current scores. The chart is a fixed-
size beam used to record a limited number of accepted edges. During initialization,
leaf edges are generated by assigning all possible lexical categories to each input word,
before they are put on the agenda. During each step in the decoding process, the highest-
scored edge on the agenda is popped off and expanded. If it is a goal edge, it is returned
as the output, and the decoding finishes. Otherwise it is extended with unary rules, and
combined with existing edges in the chart, using binary rules to produce new edges.
The resulting edges are scored and put on the agenda, and the original edge is put into
the chart. The process repeats until a goal edge is found, or a timeout limit is reached.

For the timeout case, a default output is produced by greedily combining existing
edges in the chart in descending order of size. In particular, edges in the chart are sorted
by size, and the largest is taken as the current default output. Then the sorted list is
traversed, with an attempt to greedily concatenate the current edges in the list to the
right of the current default output. If the combination is not allowed (i.e., the two edges
contain some input words more times than its count in the input), the current edge is
discarded. Otherwise, the current default output is updated.

In our previous papers we used a set of beams for the chart, each storing a certain
number of highest-scored edges that cover a particular number of words. This structure
is similar to the chart used for phrase-based SMT decoding. The main reason for the
multiple beams is the non-comparability of edges in different beams, which can have
feature vectors of significantly different sizes. In this article, however, our chart is a sin-
gle beam structure containing the top-scored accepted edges. This simple data structure
is enabled by the use of the scaled linear model, and leads to comparable accuracies
to the multiple-beam chart. In addition to its simplicity, it also fits well with the use of
agenda-based search, because edges of different sizes will ultimately be compared with
each other on the agenda.
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We apply DP-style pruning to the chart, keeping only the highest-scored edge
among those that have the same DP-signature. During decoding, before a newly con-
structued edge e is put into the chart, the chart is examined to check whether it contains
an existing edge e0 with the same DP-signature as e. If such an edge exists, it is popped
off the chart and compared with the newly constructed edge e, with the higher scored
edge ẽ being put into the chart and the lower scored edge e′ being discarded. If the
newly constructed edge e is not discarded, then we expand e to generate new edges.

It is worth noting that, in this case, a new edge that results from the expansion of
e can have DP-equivalent edges in the agenda or the chart, which had been generated
by expansion of its DP-equivalent predecessor e′ = e0. Putting such new edges on the
agenda will result in the system keeping multiple edges with the same signature. How-
ever, because applying DP-style pruning to the agenda requires updating the whole
agenda, and is computationally expensive, we choose to tolerate such DP-equivalent
duplications in the agenda.

Pseudocode for the decoder is shown as Algorithm 1. INITAGENDA returns an
initialized agenda with all leaf edges. INITCHART returns a cleared chart. TIMEOUT

Algorithm 1 The decoding algorithm.
a← INITAGENDA( )
c← INITCHART( )
while not TIMEOUT( ) do

new← []
e← POPBEST(a)
if GOALTEST(e) then

return e
end if
(e′, ẽ)← DPCHARTPRUNE(c, e)
if e′ is e then

continue
end if
for e′ ∈ UNARY(e, grammar) do

APPEND(new, e′)
end for
for ẽ ∈ c do

if CANCOMBINE(e, ẽ, grammar) then
e′← BINARY(e, ẽ, grammar)
APPEND(new, e′)

end if
if CANCOMBINE(ẽ, e, grammar) then

e′← BINARY(ẽ, e, grammar)
APPEND(new, e′)

end if
end for
for e′ ∈ new do

ADD(a, e′)
end for
ADD(c, e)

end while
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returns true if the timeout limit has been reached, and false otherwise. POPBEST pops
the top edge from the agenda and returns the edge. GOALTEST takes an edge and
returns true if and only if the edge is a goal edge. DPCHARTPRUNE takes an edge e
and checks whether there exists in the chart an edge e0 that is DP-equivalent to e. In case
e0 exists, it is popped off the chart and compared with e, with the lower scored edge
e′ being discarded, and the higher scored edge ẽ being put into the chart. The function
returns the pair e′ and ẽ. CANCOMBINE checks whether two edges can be combined
in a given order. Two edges can be combined if they do not contain an overlapping
word (i.e., they do not contain a word more times than its count in the input), and their
categories can be combined according to the CCG grammar. ADD inserts an edge into
the agenda or the chart. In the former case, it is placed into the priority queue according
to its score, and, in the latter case, the lowest scored edge in the beam is pruned when
the chart is full.

3.5 The Learning Algorithm

We begin by introducing the training algorithm of our previous papers, shown in
Algorithm 2, which has the same fundamental structure as the training algorithm of
this article but is simpler. The algorithm is based on the decoder, where an agenda is
used as a priority queue of edges to be expanded, and a set of accepted edges is kept
in a fixed-size chart. The functions INITAGENDA, INITCHART, TIMEOUT, POPBEST,
GOALTEST, DPCHARTPRUNE, UNARY, CANCOMBINE, and BINARY are identical to
those used in the decoding algorithm. GOLDSTANDARD takes an edge and returns true
if and only if it is a gold-standard edge. MINGOLD returns the lowest scored gold-
standard edge in the agenda. UPDATEPARAMETERS represents the parameter update
algorithm. RECOMPUTESCORES updates the scores of edges in the agenda and chart
after the model is updated.

Similar to the decoding algorithm, the agenda is intialized using all possible leaf
edges. During each step, the edge e on top of the agenda is popped off. If it is a gold-
standard edge, it is expanded in exactly the same way as in the decoder, with the newly
generated edges being put on the agenda, and e being inserted into the chart. If e is not
a gold-standard edge, we take it as a negative example e−, and take the lowest scored
gold-standard edge on the agenda e+ as a positive example, in order to make an update
to the parameter vector θ⃗. Note that there must exist a gold-standard edge in the agenda,
which can be proved by contradiction.1

The two edges e+ and e− used to perform a model update can be radically different.
For example, they may not cover the same words, or even the same number of words.
This is different from online training for CKY parsing, for which both positive and
negative examples used to adjust parameter vectors reside in the same chart cell, and
cover the same sequence of words. The training goal of a typical CKY parser (Clark
and Curran 2007a, 2007b) is to find a large separation margin between feature vectors
of different derivations of the same sentence, which have comparable sizes. Our goal
is to score all gold-standard edges higher than all non-gold edges regardless of their
size, which is a more challenging goal. After updating the parameters, the scores of the
agenda edges above and including e−, together with all chart edges, are updated, and
e− is discarded before the start of the next processing step.

1 An example proof can be based on induction, where the basis is that the agenda contains all gold leaf
edges at first, and the induction step is based on edge combination.
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Algorithm 2 The training algorithm of our previous papers.
1: a← INITAGENDA( )
2: c← INITCHART( )
3: while not TIMEOUT( ) do
4: new← []
5: e← POPBEST(a)
6: if GOLDSTANDARD(e) and GOALTEST(e) then
7: return e
8: end if
9: if not GOLDSTANDARD(e) then

10: e−← e
11: e+←MINGOLD(a)
12: UPDATEPARAMETERS(e+, e−)
13: RECOMPUTESCORES(a, c)
14: continue
15: end if
16: (e′, ẽ)← DPCHARTPRUNE(c, e)
17: if e′ is e then
18: continue
19: end if
20: for e′ ∈ UNARY(e, grammar) do
21: APPEND(new, e′)
22: end for
23: for ẽ ∈ c do
24: if CANCOMBINE(e, ẽ, grammar) then
25: e′← BINARY(e, ẽ, grammar)
26: APPEND(new, e′)
27: end if
28: if CANCOMBINE(ẽ, e, grammar) then
29: e′← BINARY(ẽ, e, grammar)
30: APPEND(new, e′)
31: end if
32: end for
33: for e′ ∈ new do
34: ADD(a, e′)
35: end for
36: ADD(c, e)
37: end while

One way of viewing the training process is that it pushes gold-standard edges to-
wards the top of the agenda, and, crucially, pushes them above non-gold edges (Zhang
and Clark 2011). Given a positive example e+ and a negative example e−, a perceptron-
style update is used to penalize the score for ϕ(e−) and reward the score of ϕ(e+):

θ⃗← θ⃗0 +ϕ(e+)−ϕ(e−)

Here θ⃗0 and θ⃗ denote the parameter vectors before and after the update, respectively.
This method proved effective empirically (Zhang and Clark 2011), but it did not
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converge well when an n-gram language model was integrated into the system (Zhang,
Blackwood, and Clark 2012).

Hence we applied an alternative method for score updates that proved more effec-
tive than the perceptron update and enabled the incorporation of a large-scale language
model (Zhang, Blackwood, and Clark 2012). This method treats parameter update
as finding a separation between gold-standard and non-gold edges. Given a positive
example e+ and a negative example e−, we make a minimum update to the parameters
so that the score of e+ is higher than that of e− by a margin of 1:

θ⃗← arg min
θ⃗′

∥ θ⃗′ − θ⃗0 ∥, such that Φ(e+)θ⃗′ − Φ(e−)θ⃗′ ≥ 1

The update is similar to the parameter update of online large-margin learning algo-
rithms, such as 1-best MIRA (Crammer et al. 2006), and has a closed-form solution:

θ⃗← θ⃗0 +
f (e−)− f (e+) + 1
∥ Φ(e+)− Φ(e−) ∥2

(
Φ(e+)− Φ(e−)

)
This online learning method proved more effective than the perceptron algorithm

empirically, but still has an important shortcoming in that it did not provide competitive
results when allowing the expansion of negative examples during training, which can
potentially improve the discriminative model (since expanding negative examples can
result in a more representative sample of the search space). We address this issue
by introducing a scaled linear model in this article, which, when combined with the
expansion of negative examples, significantly improves performance. We apply the
same online large-margin training principle; however, the parameter update has to be
adjusted for the scaled linear model. In particular, the new goal is to find a separation
between f̂ (e+) and f̂ (e−) instead of f (e+) and f (e−), for which the optimization corre-
sponding to the parameter update becomes:

θ⃗← arg min
θ⃗′

∥ θ⃗′ − θ⃗0 ∥, such that
Φ(e+)θ⃗′

|e+|
− Φ(e−)θ⃗′

|e−|
≥ 1

where θ⃗0 and θ⃗ represent the parameter vectors before and after the update, respec-
tively. The equation has a closed-form solution:

θ⃗← θ⃗0 +
f̂ (e−)− f̂ (e+) + 1

∥ Φ(e+ )
|e+| −

Φ(e− )
|e−| ∥2

(Φ(e+)
|e+|

− Φ(e−)
|e−|

)
Pseudocode for the new training algorithm of this article is shown in Algorithm 3,

where MAXNONGOLD returns the highest-scored non-gold edge in the chart. In ad-
dition to the aforementioned difference in parameter updates, new code is added to
perform additional updates when gold-standard edges are removed from the chart.
In our previous work, parameter updates happen only when the top edge from the
agenda is not a gold-standard edge. In this article, the expansion of negative training
examples will lead to negative examples being put into the chart during training, and
hence the possibility of gold-standard edges being removed from the chart. There are
two situations when this can happen. First, if a non-gold edge is inserted into the chart,
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Algorithm 3 The training algorithm of this article.
1: a← INITAGENDA( )
2: c← INITCHART( )
3: while not TIMEOUT( ) do
4: new← []
5: e← POPBEST(a)
6: if GOLDSTANDARD(e) and GOALTEST(e) then
7: return e
8: end if
9: if not GOLDSTANDARD(e) then

10: e−← e
11: e+←MINGOLD(a)
12: UPDATEPARAMETERS(e+, e−)
13: RECOMPUTESCORES(a, c)
14: end if
15: (e′, ẽ)← DPCHARTPRUNE(c, e)
16: if GOLDSTANDARD(e′) then
17: UPDATEPARAMETERS(e′, ẽ)
18: REMOVE(c, ẽ)
19: ADD(c, e′)
20: else
21: if e′ is e then
22: continue
23: end if
24: end if
25: for e′ ∈ UNARY(e, grammar) do
26: APPEND(new, e′)
27: end for
28: for ẽ ∈ c do
29: if CANCOMBINE(e, ẽ, grammar) then
30: e′← BINARY(e, ẽ, grammar)
31: APPEND(new, e′)
32: end if
33: if CANCOMBINE(ẽ, e, grammar) then
34: e′← BINARY(ẽ, e, grammar)
35: APPEND(new, e′)
36: end if
37: end for
38: for e′ ∈ new do
39: ADD(a, e′)
40: end for
41: e′← ADD(c, e)
42: if GOLDSTANDARD(e′) then
43: ẽ←MAXNONGOLD(c)
44: UPDATEPARAMETERS(e′, ẽ)
45: ADD(c, e′)
46: end if
47: end while
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and there exists a gold-standard edge in the chart with the same DP-signature but a
lower score, the gold-standard edge will be removed from the chart because of DP-style
pruning (since only the highest-scored edge with the same DP-signature is kept in the
chart).

Second, if the chart is full when a non-gold edge is put into the chart (recall that the
chart is a fixed-size beam), then the lowest scored edge on the chart will be removed.
This edge can be a gold-standard edge. In both the first and second case, a gold-standard
edge is pruned as the result of the expansion of a negative example. On the other hand,
in order for the gold-standard goal edge to be constructed, all gold-standard edges
that have been expanded must remain in the chart. As a result, our training algorithm
triggers a parameter update whenever a gold-standard edge is removed from the chart,
the scores of all chart edges are updated, and the original pruned gold edge is returned
to the chart. The original pruned gold-standard edge is treated as the positive example
for the update. For the first situation, the newly inserted non-gold edge with the same
DP-signature is taken as the negative example, and will be discarded after the parameter
update (with a new score that is lower than the new score of the corresponding gold-
standard). In the second situation, the highest-scored non-gold edge in the chart is taken
as the negative example, and removed from the chart after the update.

In summary, there are two main differences between Algorithms 2 and 3. First,
line 14 in Algorithm 2, which skips the expansion of negative examples, is removed in
Algorithm 3. Second, lines 16–20 and 42–46 are added in Algorithm 3, which correspond
to the updating of parameters when a gold-standard edge is removed from the chart.
In addition, the definitions of UPDATEPARAMETERS are different for the perceptron
training algorithm (Zhang and Clark 2011), the large-margin training algorithm (Zhang,
Blackwood, and Clark 2012), and the large-margin algorithm of this article, as explained
earlier.

4. Dependency-Based Word Ordering and Tree Linearization

As well as CCG, the same approach can be applied to the word ordering problem
using other grammar formalisms. In this section, we present a dependency-based word
ordering system, where the input is again a multi-set of words with gold-standard POS,
and the output is an ordered sentence together with its dependency parse. Except for
necessary changes to the edge data structure and edge expansion, the same algorithm
can be applied to this task.

In addition to abstract word ordering, our framework can be used to solve a
more informed, dependency-based word ordering task: tree linearization (Filippova
and Strube 2009; He et al. 2009), a task that is very similar to abstract word ordering
from a computational perspective. Both tasks involve the permutation of a set of input
words, and are NP-hard. The only difference is that, for tree linearization, full unordered
dependency trees are given as input. As a result, the output word permutations are more
constrained (under the projectivity assumption), and more information is available for
search disambiguation.

Tree linearization can be treated as a special case of word ordering, where a gram-
mar constraint is applied such that the output sentence has to be consistent with the
input tree. There is a spectrum of grammar constraints between abstract word ordering
(no constraints) and tree linearization (full tree constraints). For example, one constraint
might consist of a set of dependency relations between input words, but which do
not form a complete unordered spanning tree. We call this word ordering task the
partial-tree linearization problem, a task that is perhaps closer to NLP applications
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than both the abstract word ordering task and the full tree linearization problem, in the
sense that NLG pipelines might provide some syntactic relations between words for the
linearization step, but not the full spanning tree.

The main content of this section is based on a conference paper (Zhang 2013), which
we extend by using the technique of expanding negative training examples (one of the
overall contributions of this article).

4.1 Full- and Partial-Tree Linearization

Given a multi-set of input words W and a set of head-dependent relations H between
the words in W, the task is to find an ordered sentence consisting of all the words in W
and a dependency tree that contains all the relations in H. If each word in W is given
a POS tag and H covers all words in W, then the task is (full-)tree linearization; if not
then the task is partial-tree linearization. For partial-tree linearization, a subset of W is
given fixed POS tags. In all cases, a word either has exactly one (gold) POS tag, or no
POS tags.

4.2 The Edge Data Structure

Similar to the CCG case, edge refers to the data structure for a hypothesis in the
decoding algorithm. Here a leaf edge refers to an input word with a POS tag, and a
non-leaf edge refers to a phrase or sentence with its dependency tree. Edges are con-
structed bottom–up, by recursively joining two existing edges and adding an unlabeled
dependency link between their head words.

As for the CCG system, edges are scored by a global linear model:

f (e) = Φ(e) · θ⃗
|e|

where Φ(e) represents the feature vector of e and θ⃗ is the parameter vector of the model.
Table 2 shows the feature templates we use, which are inspired by the rich feature
templates used for dependency parsing (Koo and Collins 2010; Zhang and Nivre 2011).
In the table, h, m, s, hl, hr, ml, and mr are the indices of words in the newly constructed
edge, where h and m refer to the head and dependent of the newly constructed arc, s
refers to the nearest sibling of m (on the same side of h), and hl, hr, ml, and mr refer
to the left and rightmost dependents of h and m, respectively. WORD, POS, LVAL, and
RVAL are maps from indices to word forms, POS, left valencies, and right valencies of
words, respectively. Example feature instances extracted from the sentence in Figure 3
are shown in the example column. Because of the non-local nature of some of the feature
templates we define, we do not apply DP-style pruning for dependency-based tree-
linearization.

4.3 The Decoding Algorithm

The decoding algorithm is similar to that of the CCG system, where an agenda is a
priority queue for edges to expand, and chart is a fixed-size beam for a list of accepted
edges. During initialization, input words are assigned possible POS tags, resulting in
a set of leaf edges that are put onto the agenda. For words with POS constraints, only

519



Computational Linguistics Volume 41, Number 3

Table 2
Feature templates. Indices on the surface string: h = head on newly added arc; m = dependent on
arc; s = nearest sibling of m; b = any index between h and m; hl, hr = left/rightmost dependent of
h; ml, mr = left/rightmost dependent of m; s2 = nearest sibling of s towards h; B = boundary
between the conjoined phrases (index of the first word of the right phrase). Variables: dir =
direction of the arc, normalized by NORM; dist = distance (h-m), normalized; size = number of
words in the dependency tree. Functions: WORD = word at index; POS = POS at index; NORM =
normalize absolute value into 1, 2, 3, 4, 5, (5, 10], (10, 20], (20, 40], 40+.

dependency syntax example

WORD(h) · POS(h) · NORM(size) , (bought, VBD, 4)
WORD(h) · NORM(size), POS(h) · NORM(size) ,
WORD(h) · POS(h) · dir, WORD(h) · dir, POS(h) · dir ,
WORD(m) · POS(m) · dir, WORD(m) · dir, POS(m) · dir ,
WORD(h) · POS(h) · dist, WORD(h) · dist, POS(h) · dist ,
WORD(m) · POS(m) · dist, WORD(m) · dist, POS(m) · dist ,
WORD(h) · POS(h) · WORD(m) · POS(m) · dir,
WORD(h) · POS(h) · WORD(m) · POS(m) · dist ,
WORD(h) · POS(h) · POS(m) · dir,
WORD(h) · POS(h) · POS(m) · dist ,
POS(h) · WORD(m) · POS(m) · dir,
POS(h) · WORD(m) · POS(m) · dist,
POS(h) · POS(m) · dir, POS(h) · POS(m) · dist,

POS(h) · POS(m) · POS(b) · dir, (VBD, NN, NNP, right)

POS(h) · POS(h− 1) · POS(m) · POS(m + 1) · dir (h > m), (VBD, NNP, NN, – END –
POS(h) · POS(h + 1) · POS(m) · POS(m− 1) · dir (h < m), , right)

WORD(h) · POS(m) · POS(ml ) · dir,
WORD(h) · POS(m) · POS(mr ) · dir,
POS(h) · POS(m) · POS(ml ) · dir,
POS(h) · POS(m) · POS(mr ) · dir,

POS(h) · POS(m) · POS(s) · dir, (VBD, NN, NNP, right)
POS(h) · POS(s) · dir, POS(m) · POS(s) · dir,
WORD(h) · WORD(s) · dir, WORD(m) · WORD(s) · dir,
POS(h) · WORD(s) · dir, POS(m) · WORD(s) · dir,
WORD(h) · POS(s) · dir, WORD(m) · POS(s) · dir,

WORD(h) · POS(m) · POS(s) · POS(s2 ) · dir,
POS(h) · POS(m) · POS(s) · POS(s2 ) · dir,

dependency syntax for completed words
WORD(h) · POS(h) · WORD(hl ) · POS(hl ), POS(h) · POS(hl ),
WORD(h) · POS(h) · POS(hl ), POS(h) · WORD(hl ) · POS(hl ),
WORD(h) · POS(h) · WORD(hr ) · POS(hr ), POS(h) · POS(hr ),
WORD(h) · POS(h) · POS(hr ), POS(h) · WORD(hr ) · POS(hr ),
WORD(h) · POS(h) · LVAL(h), WORD(h) · POS(h) · RVAL(h),
WORD(h) · POS(h) · LVAL(h) · RVAL(h),
POS(h) · LVAL(h), POS(h) · RVAL(h),
POS(h) · LVAL(h) · RVAL(h), (VBD, 1, 2)

surface string patterns
WORD(B− 1) · WORD(B), POS(B− 1) · POS(B),
WORD(B− 1) · POS(B), POS(B− 1) · WORD(B),
WORD(B− 1) · WORD(B) · WORD(B + 1),
WORD(B− 2) · WORD(B− 1) · WORD(B),
POS(B− 1) · POS(B) · POS(B + 1),
POS(B− 2) · POS(B− 1) · POS(B),
POS(B− 1) · WORD(B) · POS(B + 1),
POS(B− 2) · WORD(B− 1) · POS(B), (NNP, bought, NNP)
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Table 2
(continued)

dependency syntax example

surface string patterns for complete sentences
WORD(0), WORD(0) · WORD(1),
WORD(size− 1), WORD(size− 1) · WORD(size− 2),
POS(0), POS(0) · POS(1), POS(0) · POS(1) · POS(2),
POS(size− 1), POS(size− 1) · POS(size− 2),
POS(size− 1) · POS(size− 2) · POS(size− 3), (VBD, NNP, NN)

the allowed POS tag is assigned. For unconstrained words, we assign all possible POS
tags according to a tag dictionary compiled from the training data, following standard
practice for POS-tagging (Ratnaparkhi 1996).

When an edge is expanded, it is combined with all edges in the chart in all possible
ways to generate new edges. Two edges can be combined by concatenation of the
surface strings in both orders and, in each case, constructing a dependency link between
their heads in two ways (corresponding to the two options for the head of the new
link). When there is a head constraint on the dependent word, a dependency link can
be constructed only if it is consistent with the constraint. This algorithm implements
abstract word ordering, partial-tree linearization, and full tree linearization—all gener-
alized word ordering tasks—in a unified method.

Pseudocode for the decoder is shown as Algorithm 4. Many of the functions
have the same definition as for Algorithm 1: INITAGENDA, INITCHART, TIMEOUT,
POPBEST, GOALTEST, ADD. CANCOMBINE checks whether two edges do not contain
an overlapping word (i.e., they do not contain a word more times than its count in the
input); unlike the CCG case, all pairs of words are allowed to combine according to
the dependency model. COMBINE creates a dependency link between two words, with
the word order determined by the order in which the arguments are supplied to the
function, and the head coming from either the first (HeadLeft) or second (HeadRight)
argument (so there are four combinations considered and COMBINE is called four times
in Algorithm 4).

4.4 The Learning Algorithm

As for the CCG system, an online large-margin learning algorithm based on the decod-
ing process is used to train the model. At each step, the expanded edge e is compared
with the gold standard. If it is a gold edge, decoding continues; otherwise e is taken
as a negative example e− and the lowest-scored gold edge in the agenda is taken

Figure 3
Feature template example.
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Algorithm 4 The decoding algorithm for partial-tree linearization.
a← INITAGENDA( )
c← INITCHART( )
while not TIMEOUT( ) do

new← []
e← POPBEST(a)
if GOALTEST(e) then

return e
end if
for ẽ ∈ c do

if CANCOMBINE(e, ẽ) then
e′← COMBINE(e, ẽ, HeadLeft)
APPEND(new, e′)
e′← COMBINE(e, ẽ, HeadRight)
APPEND(new, e′)

end if
if CANCOMBINE(ẽ, e) then

e′← COMBINE(ẽ, e, HeadLeft)
APPEND(new, e′)
e′← COMBINE(ẽ, e, HeadRight)
APPEND(new, e′)

end if
end for
for e′ ∈ new do

ADD(a, e′)
end for
ADD(c, e)

end while

as a positive example e+, and a parameter update is executed (repeated here from
Section 3.4):

θ⃗← θ⃗0 +
f̂ (e−)− f̂ (e+) + 1

∥ Φ(e+ )
|e+| −

Φ(e− )
|e−| ∥2

(Φ(e+)
|e+|

− Φ(e−)
|e−|

)

The training process is essentially the same as in Algorithm 3, but with the CCG
grammar and model replaced with the dependency-based grammar and model.

In our conference paper describing the earlier version of the dependency-based
system (Zhang 2013), the decoding step is finished immediately after the parameter
update; in this article we expand the negative example, as in Algorithm3, putting it
onto the chart and thereby exploring a larger part of the search space (in particular that
part containing negative examples). Our later experiments show that this method yields
improved results, consistent with the CCG system.
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Table 3
Training, development, and test data from the Penn Treebank.

Sections Sentences Words

Training 2–21 39,832 950,028
Development 22 1,700 40,117
Test 23 2,416 56,684

5. Experiments

We use CCGBank (Hockenmaier and Steedman 2007) and the Penn Treebank (Marcus,
Santorini, and Marcinkiewicz 1993) for CCG and dependency data, respectively.
CCGbank is the CCG version of the Penn Treebank. Standard splits were used for both:
Sections 02–21 for training, Section 00 for development, and Section 23 for the final test.
Table 3 gives statistics for the Penn Treebank.

For the CCG experiments, original sentences from CCGBank are transformed into
bags of words, with sequence information removed, and passed to our system as
input data. The system outputs are compared to the original sentences for evaluation.
Following Wan et al. (2009), we use the BLEU metric (Papineni et al. 2002) for string
comparison. Although BLEU is not the perfect measure of fluency or grammaticality,
being based on n-gram precision, it is currently widely used for automatic evaluation
and allows us to compare directly with existing work (Wan et al. 2009). Note also that
one criticism of BLEU for evaluating machine translation systems (i.e., that it can only
register exact matches between the same words in the system and reference translation),
does not apply here, because the system output always contains the same words as
the original reference sentence. For the dependency-based experiments, gold-standard
dependency trees were derived from bracketed sentences in the treebank using the
Penn2Malt tool.2

For fair comparison with Wan et al. (2009), we keep base NPs as atomic units when
preparing the input. Wan et al. used base NPs from the Penn Treebank annotation, and
we follow this practice for the dependency-based experiments. For the CCG experi-
ments we extract base NPs from CCGBbank by taking as base NPs those NPs that do not
recursively contain other NPs. These base NPs mostly correspond to the base NPs from
the Penn Treebank: In the training data, there are 242,813 Penn Treebank base NPs with
an average size of 1.09, and 216,670 CCGBank base NPs with an average size of 1.19.

5.1 Convergence of Training

The plots in Figure 4 show the development test scores of three CCG models by the
number of training iterations. The three curves represent the scaled model of this
article, the online large-margin model from Zhang, Blackwood, and Clark (2012), and
the perceptron model from Zhang and Clark (2011), respectively. For each curve, the
BLEU score generally increases as the number of training iterations increases, until it
reaches its maximum at a particular iteration. We use the number of training iterations

2 http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html.
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Figure 4
BLEU scores of the perceptron, large-margin, and scaled large-margin CCG models by the
number of training iterations.

that gives the best development test scores for the training of our model when testing
on the test data.

Another way to observe the convergence of training is to measure the training times
for each iteration at different numbers of iterations. The per-iteration training times for
the large-margin and the scaled CCG models are shown in Figure 5. For each model, the
training time for each iteration decreases as the number of training iterations increases,
reflecting the convergence of learning-guided search. When the model gets better, fewer
non-gold hypotheses are expanded before gold hypotheses, and hence it takes less time
for the decoder to find the gold goal edge. Figure 6 shows the corresponding curve for
dependency-based word ordering, with similar observations.

Because of the expanding of negative examples, the systems of this article took more
time to train than those of our previous conference papers. However, the convergence

Figure 5
Training times of the large-margin model and the scaled CCG models by the number of training
iterations.
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Figure 6
Training times of the large-margin and scaled dependency models by the number of training
iterations.

rate is also faster when negative training examples are expanded, as demonstrated by
the rate of speed improvement as the number of training iterations increases. The train-
ing times of the perceptron algorithm are close to those of the large-margin algorithm,
and hence are omitted from Figures 5 and 6. The new model gives the best development
test scores, as shown in Figure 4. The next section investigates the effects of two of the
innovations of this article: use of negative examples during training and the scaling of
the model by hypothesis size.

5.2 The Effect of the Scaled Model and Negative Examples

Table 4 shows a set of CCG development experiments to measure the effect of the scaled
model and the expansion of negative examples during training. With the standard linear
model (Zhang, Blackwood, and Clark 2012) and no expansions of negative examples,
our system obtained a BLEU score of 39.04. The scaled model improved the BLEU score
by 1.41 BLEU points to 40.45, and the expansion of negative examples gave a further
improvement of 3.02 BLEU points.

These CCG development experiments show that the expansion of negative exam-
ples during training is an important factor in achieving good performance. When no
negative examples are expanded, the higher score of the scaled linear model demon-
strates the effectiveness of fair comparison between edges with different sizes. However,

Table 4
The effect of the scaled model and expansion of negative examples during training for the CCG
system.

standard linear model scaled linear model

no expansion of negative examples 39.04 40.45
expansion of negative examples no convergence 43.47
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Figure 7
The effect of search time for the CCG system on the development test data.

it is a more important advantage of the scaled linear model that it allows the expansion
of negative examples during training, which was not possible with the standard linear
model. In the latter case, training failed to converge when negative examples were
expanded, reflecting the limitations of the standard linear model in separating the
training data. Similar results were found for dependency-based word ordering, where
the best development BLEU score improved from 44.71 (Zhang 2013) to 46.44 with
the expansion of negative training examples.

5.3 The Effect of Search Time

Figure 7 shows the BLEU scores for the CCG system on the development data when
the timeout limit for decoding a single sentence is set to 5 sec, 10 sec, 15 sec, 20 sec,
30 sec, 40 sec, 50 sec, and 60 sec, respectively. The timeout was applied during decoding
at test time. The scaled model with negative training examples was used for this set
of experiments, and the same model was used for all timeout settings. The results
demonstrate that better outputs can be recovered given more search time, which is
expected for a time-constrained best-first search framework. Recall that output is
created greedily by combining the largest available edges, when the system times out.
Similar results were obtained with the dependency-based system of Zhang (2013),
where the development BLEU scores improved from 42.89 to 43.42, 43.58, and 43.72
when the timeout limit increased from 5 sec to 10 sec, 30 sec, and 60 sec, respectively.
The scaled dependency-based model without expansion of negative examples was
used in this set of experiments.

5.4 Example Outputs

Example output for sentences in the development set is shown in Tables 5 and 6,
grouped by sentence length. The CCG systems of our previous conference papers and
this article are compared, all with the timeout value set to 5 sec. All three systems
perform relatively better with smaller sentences. For longer sentences, the fluency of
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Table 5
Example development output for the CCG-based systems and sentences with fewer than
20 words.

Zhang and Clark (2011) Zhang, Blackwood, and
Clark (2012)

this article reference

. A Lorillard spokewoman
said This is an old story,

A Lorillard spokewoman
said, This is an old story.

A Lorillard spokewoman
said, This is an old story.

A Lorillard spokewoman
said, “ This is an old story.

It today has no bearing on
our work force.

It today has no bearing on
our work force.

It has no bearing on our
work force today.

It has no bearing on our
work force today.

No price for the new
shares has been set.

No price for the new
shares has been set.

No price has been set for
the new shares.

No price for the new shares
has been set.

Previously he was vice
president of Eastern
Edison.

Previously he was vice
president of Eastern
Edison.

Previously the was vice
president of Eastern
Edison.

Previously he was vice
president of Eastern
Edison.

Big mainframe computers
for had for years been
around business.

had been Big mainframe
computers for business for
years around.

Big mainframe computers
had for years been around
for business.

Big mainframe computers
for business had been
around for years.

The field of reserves has
21 million barrels.

The field has 21 million
barrels of reserves.

The field has 21 million
barrels of reserves.

The field has reserves of
21 million barrels.

is some heavy-duty
competition Behind all
the hoopla.

all the hoopla Behind is
some heavy-duty
competition.

some heavy-duty
competition is Behind all
the hoopla.

Behind all the hoopla is
some heavy-duty
competition.

Pamela Sebastian
contributed to New York
in this article.

Pamela Sebastian in
New York contributed to
this article.

Pamela Sebastian in New
York contributed to this
article.

Pamela Sebastian in New
York contributed to this
article.

painted oils in by
Lighthouse II was the
playwright in 1901 ...

Lighthouse II was the
playwright in 1901 ... in
oils

oils in Lighthouse II was
painted by the playwright
in 1901 ...

Lighthouse II was painted
in oils by the playwright in
1901 ...

Example output for the CCG-based systems and sentences with fewer than ten words.

Zhang and Clark (2011) Zhang, Blackwood, and
Clark (2012)

this article reference

Mr. Vinken is Elsevier N.V.,
chairman of the Dutch
publishing group.

Mr. Vinken is chairman of
Elsevier N.V., the Dutch
publishing group.

Mr. Vinken is chairman of
Elsevier N.V., the Dutch
publishing group.

Mr. Vinken is chairman of
Elsevier N.V., the Dutch
publishing group.

asbestos-related diseases
have Four, including three
of the five surviving
workers with recently
diagnosed cancer.

have Four of
asbestos-related diseases
with the five surviving
workers, including
recently diagnosed cancer.
three

Four with the five
surviving workers,
including three of
asbestos-related diseases
have recently diagnosed
cancer.

Four of the five surviving
workers have
asbestos-related diseases,
including three with
recently diagnosed cancer.

, interest rates expect to
slide amid further declines
in Yields on money-market
mutual funds that portfolio
managers continued. signs

further declines expect
signs that Yields continued
to slide in interest rates on
money-market mutual
funds, amid portfolio
managers.

Yields expect further
declines in interest rates on
money-market mutual
funds, amid signs that
portfolio managers
continued to slide.

Yields on money-market
mutual funds continued to
slide, amid signs that
portfolio managers expect
further declines in interest
rates.

The thrift holding
company expects it said
obtain regulatory approval
by year-end and to
complete the transaction.

The thrift holding
company said it expects
regulatory approval by to
complete the transaction
and obtain year-end.

The thrift holding
company said it expects
the transaction to complete
by year-end and obtain
regulatory approval.

The thrift holding
company said it expects to
obtain regulatory approval
and complete the
transaction by year-end.

Finmeccanica is an Italian
state-owned holding
company with interests in
the mechanical
engineering industry.

Finmeccanica is an Italian
state-owned holding
company with interests in
the mechanical
engineering industry.

Finmeccanica is an Italian
state-owned holding
company with interests
in the mechanical
engineering industry.

Finmeccanica is an Italian
state-owned holding
company with interests in
the mechanical
engineering industry.

Example output for the CCG-based systems and sentences between 11 and 20 words.
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Table 6
Example development output for the CCG-based systems and sentences with more than
20 words.

Zhang and Clark (2011) Zhang, Blackwood, and
Clark (2012)

this article reference

Dr. Talcott from Boston
University and a team led
researchers and of the
National Cancer Institute
of the medical schools
Harvard University

the medical schools from
Dr. Talcott and Harvard
University of the National
Cancer Institute and a
team of led Boston
University

researchers led Dr. Talcott
of Harvard University and
the National Cancer
Institute and a team of the
medical schools from
Boston University.

Dr. Talcott led a team of
researchers from the
National Cancer Institute
and the medical schools of
Harvard University and
Boston University.

because they indicate
portfolio managers
declining interest rates
permit to retain a longer
period for Longer
maturities are. to relatively
higher rates thought

because declining interest
rates thought Longer
maturities permit
relatively higher rates for
to retain to indicate
portfolio managers are a
longer period. they

declining interest rates
permit portfolio managers
to retain relatively higher
rates for Longer maturities
because they are thought
to indicate a longer period.

Longer maturities are
thought to indicate
declining interest rates
because they permit
portfolio managers to
retain relatively higher
rates for a longer period.

Royal Trustco Ltd. said
Pacific First Financial
Corp. approved $ 27 or a
share, for its acquisition of
shareholders by Toronto.
$ 212 million

by Toronto shareholders
said Pacific First Financial
Corp. approved its
acquisition of Royal
Trustco Ltd. for $ 212
million, or $ 27 a share.

Toronto said Pacific First
Financial Corp. approved
its acquisition of Royal
Trustco Ltd. for
shareholders by $ 212
million, or $ 27 a share.

Pacific First Financial
Corp. said shareholders
approved its acquisition by
Royal Trustco Ltd. of
Toronto for $ 27 a share, or
$ 212 million.

Example output for the CCG-based systems and sentences between 21 and 40 words.

Zhang and Clark (2011) Zhang, Blackwood, and
Clark (2012)

this article reference

European history, an
educational research
organization, the test and
only French history
questions, Education, a
European history class,
John Cannell, an
Albuquerque, N.M.,
psychiatrist and founder
their kids standardized
testing

European history, only
French history questions,
an educational research
organization, John Cannell,
Education, France and a
European history class
when they decided,
standardized testing has
studied an Albuquerque,
N.M., psychiatrist of their
kids and founder. says the
test

when an Albuquerque,
N.M., psychiatrist, say an
educational research
organization decided to
give students and a
European history class,
which has studied Friends
for their kids and founder
of only French history
questions, European
history the test
standardized testing John
Cannell

It’s as if France decided to
give only French history
questions to students in a
European history class,
and when everybody aces
the test, they say their kids
are good in European
history, says John Cannell,
an Albuquerque, N.M.,
psychiatrist and founder of
an educational research
organization, Friends for
Education, which has
studied standardized
testing.

which than at about # 15
billion over United
Kingdom institutional
funds (Still, Richard
Barfield, said, Much less
{index-arbitrage activity}
manages $ 23.72 billion.)
Standard Life Assurance
Co. chief investment
manager the U.S.

Standard Life Assurance
Co. in United Kingdom
institutional funds, chief
investment manager here
is done at about # 15
billion than (, Still, Richard
Barfield said Much less
{index-arbitrage activity}
manages $ 23.72 billion in
the U.S..) over which

done in Much less
{index-arbitrage activity}
in the U.S., Richard
Barfield (United Kingdom
institutional funds, which
manages $ 23.72 billion),
chief investment manager
at Standard Life Assurance
Co. about # 15 billion

Still, Much less
{index-arbitrage activity}
is done over here than in
the U.S. said Richard
Barfield, chief investment
manager at Standard Life
Assurance Co., which
manages about # 15 billion
($ 23.72 billion) in United
Kingdom institutional
funds.

Example output for the CCG-based systems and sentences with more than 40 words.

the output is significantly reduced. One source of errors is confusion between differ-
ent noun phrases, and where they should be positioned, which becomes more severe
with increased sentence length and adds to the difficulty in reading the outputs. The
system of this article gave observably improved outputs compared with the two other
systems.
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Table 7
Development BLEU scores for partial-tree linearization, with different proportions of input POS
and dependency information randomly selected from full gold-standard trees.

no POS 50% POS all POS no POS 50% POS all POS no POS 50% POS all POS
no dep no dep no dep 50% dep 50% dep 50% dep all dep all dep all dep

42.89 43.41 44.71 50.46 51.40 52.18 73.34 74.68 76.28

5.5 Partial-Tree Linearization

In the previous section, the same input settings were used for both training and testing,
and the assumption was made that the input to the system would be a bag of words,
with no constraints on the output structure. This somewhat artificial assumption allows
a standardized evaluation but, as discussed previously, text generation applications are
unlikely to satisfy this assumption and, in practice, the realization problem is likely
to be easier compared with our previous set-up. In this section, we simulate practical
situations in dependency-based pipelines by measuring the performance of our sys-
tem using randomly chosen input POS tags and dependency relations. For maximum
flexibility, so that the same system can be applied to different input scenarios, our
system is trained without input POS tags or dependencies. However, if POS tags and
dependencies are made available during testing, they will be used to provide hard
constraints on the output (i.e., the output sentence with POS tags and dependencies
must contain those in the input). From the perspective of search, input POS tags and
dependencies greatly constrain the search space and lead to an easier search problem,
with correspondingly improved outputs.

Table 7 shows a set of development results with varying amounts of POS and
dependency information in the input. For each test, we randomly sampled a percentage
of words for which the gold-standard POS tags or dependencies are given in the input.
As can be seen from the table, increased amounts of POS and dependency information
in the input lead to higher BLEU scores, and dependencies were more effective than POS
tags in determining the word order in the output. When all POS tags and dependencies
are given, our constraint-enabled system gave a BLEU score of 76.28.3

Table 8 shows the output of our system for the first nine development test sentences
with different input settings. These examples illustrate the positive effect of input
dependencies in specifying the outputs. Consider the second sentence as an example.
When only input words are given, the output of the system is largely grammatical but
nonsensical. With increasing amounts of dependency relations, the output begins to
look more fluent, sometimes with the system reproducing the original sentence when
all dependencies are given.

5.6 Final Results

Table 9 shows the test results of various systems. For the system of this article, we
take the optimal setting from the development tests, using the scaled linear model and

3 When all POS tags and dependencies are also provided during training, the BLEU score is reduced to
74.79, showing the value in the system, which can adapt to varying amounts of POS and dependency
information in the input at test time.
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Table 8
Partial-tree linearization outputs for the first nine development test sentences with various input
information.

no POS, no dep 50% unlabeled dep, no
POS

gold unlabeled dep, 50%
POS

reference

the board as a
nonexecutive director will
join Pierre Vinken, 61 years
old, Nov. 29.

Pierre Vinken, 61 years old,
will join the board Nov. 29
as a nonexecutive director.

Pierre Vinken, 61 years old,
will join the board Nov. 29
as a nonexecutive director.

Pierre Vinken, 61 years old,
will join the board as a
nonexecutive director Nov.
29.

Mr. Vinken, the Dutch
publishing group of
Elsevier N.V. is chairman.

chairman of Elsevier N.V.,
the Dutch publishing
group is Mr. Vinken.

Mr. Vinken is chairman of
Elsevier N.V., the Dutch
publishing group.

Mr. Vinken is chairman of
Elsevier N.V., the Dutch
publishing group.

and Consolidated Gold
Fields PLC, former
chairman of Rudolph
Agnew, 55 years old was
named a nonexecutive
director of this British
industrial conglomerate.

, Rudolph Agnew, was 55
years old and former
chairman of Consolidated
Gold Fields PLC named a
nonexecutive director of
this British industrial
conglomerate.

Rudolph Agnew, 55 years
old and former chairman
of Consolidated Gold
Fields PLC, was named a
nonexecutive director of
this British industrial
conglomerate.

Rudolph Agnew, 55 years
old and former chairman
of Consolidated Gold
Fields PLC, was named a
nonexecutive director of
this British industrial
conglomerate.

it reported A form of
asbestos, a high percentage
of Kent cigarette filters
used to make once
exposed to researchers
among workers a group of
cancer deaths has caused
more than 30 years ago.

, reported has A form
asbestos once used to
make Kent cigarette filters
caused a high percentage
of cancer deaths among a
group of workers exposed
to researchers more than 30
years ago.

, researchers reported A
form of asbestos once used
to make Kent cigarette
filters has caused a high
percentage of cancer
deaths among a group of
workers exposed to it more
than 30 years ago.

A form of asbestos once
used to make Kent
cigarette filters has caused
a high percentage of cancer
deaths among a group of
workers exposed to it more
than 30 years ago,
researchers reported.

The asbestos fiber with the
lungs once it is causing
even brief exposures to
show researchers that
enters up decades later.

it enters The asbestos fiber
causing it later show up
with the lungs that is
unusually resilient to
researchers even brief
exposures.

once it enters the lungs
crocidolite, is unusually
resilient, with symptoms
that show up decades later
causing even brief
exposures to it, researchers
said.

The asbestos fiber,
crocidolite, is unusually
resilient once it enters the
lungs, with even brief
exposures to it causing
symptoms that show up
decades later, researchers
said.

crocidolite stopped its
Micronite cigarette filters
in Kent cigarettes that
makes Lorillard Inc. in
1956, the unit of New
York-based Loews Corp.,
using.

Lorillard Inc. stopped
using the unit of New
York-based Loews Corp.,
that makes Kent cigarettes,
in 1956.

Lorillard Inc. the unit of
New York-based Loews
Corp., that makes Kent
cigarettes, stopped using
crocidolite in its Micronite
cigarette filters in 1956.

Lorillard Inc., the unit of
New York-based Loews
Corp. that makes Kent
cigarettes, stopped using
crocidolite in its Micronite
cigarette filters in 1956.

new attention Although a
forum more than a year
ago, the problem were
likely to appear to bring
preliminary findings of
Medicine in today’s New
England Journal, the latest
results.

of Medicine the problem
bring new attention to
preliminary findings in a
forum, more than a year
the latest results were
reported to today’s New
England Journal.

Although preliminary
findings were reported
more than a year ago, the
latest results appear in
today’s New England
Journal of Medicine, a
forum likely to bring new
attention to the problem.

Although preliminary
findings were reported
more than a year ago, the
latest results appear in
today’s New England
Journal of Medicine, a
forum likely to bring new
attention to the problem.

A Lorillard spokewoman
said, “This is an old story.

A Lorillard spokewoman
said, “This is an old story.

A Lorillard spokewoman
said, “This is an old story.

A Lorillard spokewoman
said, “This is an old story.

We’re anyone before
talking about asbestos of
having any questionable
properties heard years ago.

We’re talking about
anyone having heard
before any questionable
properties of asbestos
years ago.

We’re talking about years
ago before anyone heard of
having asbestos any
questionable properties.

We’re talking about years
ago before anyone heard of
asbestos having any
questionable properties.
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Table 9
Final test results on the standard word ordering task.

System BLEU

Wan et al. (2009) (dependency) 33.7
Zhang and Clark (2011) (CCG) 40.1
Zhang, Blackwood, and Clark (2012) (CCG) 42.5
Zhang, Blackwood, and Clark (2012) +LM (CCG) 43.8
Zhang (2013) (dependency) 46.8
This article (CCG) 46.5
This article (dependency) 48.7

expansion of negative examples during training. For direct comparison with previous
work, the timeout threshold was set to 5 sec. Our new system of this article significantly
outperforms all previous systems and achieves the best published BLEU score on this
task. It is worth noting that our systems without a language model outperform the
system of our 2012 paper using a large-scale language model.

Interestingly, the dependency-based systems performed better than the CCG
systems of this article. One of the main reasons is that the CCG systems generated
shorter outputs by not finding full spanning derivations for a larger proportion of
inputs. Because of the rigidity in combinatory rules, not all hypotheses in the chart can
be combined with the hypothesis being expanded, leading to an increased likelihood
of full spanning derivations being unreachable. Overall, the CCG system recovered
93.98% of the input words in the test set, and the dependency system recovered
97.71%.

5.7 Shared Task Evaluation

The previous sections report evaluations on the task of word ordering, an abstract yet
fundamental problem in text generation. One question that is not addressed by these
experiments is how the abstract task can be utilized to benefit full text generation, for
which more considerations need to be taken into account in addition to word ordering.
We investigate this question using the 2011 Generation Challenge shared task data,
which provide a common-ground for the evaluation of text generation systems (Belz
et al. 2011).

The data are based on the CoNLL 2008 shared task data (Surdeanu et al. 2008),
which consist of selected sections of the Penn WSJ Treebank, converted to syntactic
dependencies via the LTH tool (Johansson and Nugues 2007). Sections 2–21 are used
for training, Section 24 for development, and Section 23 for testing. A small number
of sentences from the original WSJ sections are not included in this set. The input
format of the shared task is an unordered syntactic dependency tree, with nodes being
lemmas, and dependency relations on the arcs. Named entities and hyphenated words
are broken into individual nodes, and special dependency links are used to mark them.
Information on coarse-grained POS, number, tense, and participle features is given to
each node where applicable. The output is a fully ordered and inflected sentence.

We developed a full-text generation system according to this task specification, with
the core component being the dependency-based word ordering system of Section 4. In
addition to minor engineering details that were required to adapt the system to this new
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task, one additional task that the generation system needs to carry out is morphological
generation—finding the appropriate inflected form for each input lemma. Our approach
is to perform joint word ordering and inflection using the learning-guided search
framework, letting one statistical model decide the best order as well as the inflections
of ambiguous lemmas. For a lemma, we generate one or more candidate inflections by
using a lexicon and a set of inflection rules. Candidate inflections for an input lemma are
generated according to the lemma itself and its input attributes, such as the number and
tense. Some lemmas are unambiguous, which are inflected before being passed to the
word ordering system. For the other lemmas, more than one candidate’s inflections are
passed as input words to the word ordering system. To ensure that each lemma occurs
only once in the output, a unique ID is given to all the inflections of the same lemma,
making them mutually exclusive.

Four types of lemmas need morphological generation, including nouns, verbs,
adjectives, and miscellaneous cases. The last category includes a (a or an) and not (not
or n‘t), for which the best inflection can be decided only when n-gram information is
available. For these lemmas, we pass all possible inflections to the search module. For
nouns and adjectives, the inflection is relatively straightforward, since the number (e.g.,
singular, plural) of a lemma is given as an attribute of the input node, and comparative
and superlative adjectives have specific parts of speech. For those cases where the
necessary information is not available from the input, all possible inflections are handed
over to the search module for further disambiguation. The most ambiguous lemma
types are verbs, which can be further divided into be and other verbs. The uniqueness
of be is that the inflections for the first and second person can be different. All verb in-
flections are disambiguated according to the tense and participle attributes of the input
node. In addition, for verbs in the present tense, the subject needs to be determined
in order to differentiate between third-person singular verbs and others. This can be
straightforward when the subject is a noun or pronoun, but can be ambiguous when the
subject is a wh-pronoun, in which case the real subject might not be directly identifiable
from the dependency tree. We leave all possible inflections of be and other verbs to the
word ordering system whenever the ambiguity is not directly solvable from the subject
dependency link. Overall, the pre-processing step generates 1.15 inflections for each
lemma on average.

For word ordering, the search procedure of Algorithm 4 is applied directly, and
the feature templates of Table 2 are used with additional labeled dependency features
described subsequently. The main reason that the dependency-based word ordering
algorithm can perform joint morphological disambiguation is that it uses rich syntac-
tic and n-gram features to score candidate hypotheses, which can also differentiate
between correct and incorrect inflections under particular contexts. For example, an
honest person and a honest person can be differentiated by n-gram features, while Tom
and Sally is and Tom and Sally are can be differentiated by higher-order dependency
features.

In addition to lemma-formed inputs, one other difference between the shared task
and the word ordering problem solved by Algorithm 4 is that the former uses labeled
dependencies whereas Algorithm 4 constructs unlabeled dependency trees. We address
this issue by assigning dependency labels in the construction of dependency links, and
applying an extra set of features. The new features are defined by making a duplicate of
all the features from Table 2 that contain dir information, and associating each feature in
the new copy with a dependency label.

The training of the word ordering system requires fully ordered dependency trees,
while references in the shared task data are raw sentences. We perform a pre-processing
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Table 10
Results and comparison with the top-performing systems on the shared task data

System BLEU

STUMABA 89.1
DCU 85.8
this article 89.6

step to obtain gold-standard training data by matching the input lemmas to the ref-
erence sentence in order to obtain their gold-standard order. More specifically, given
a training instance, we generate all candidate inflections for each lemma, resulting
in an exponential set of possible mappings between the input tree and the reference
sentence. We then prune these mappings bottom–up, assuming that the dependency
tree is projective, and therefore that each word dominates a continuous span in the
reference. After such pruning, only one correct mapping is found for the majority of the
cases. For the cases where more than one mapping is found, we randomly choose one as
the gold-standard. There are also instances for which no correct ordering can be found,
and these are mostly due to non-projectivity in the shared task data, with a few cases
being due to conflicts between our morphological generation system and the shared
task data, or inconsistency in the data itself. Out of the 39K training instances, 2.8K con-
flicting instances are discarded, resulting in 36.2K gold-standard ordered dependency
trees.

Table 10 shows the results of our system and the top two participating systems of
the shared task. Our system outperforms the STUMABA system by 0.5 BLEU points,
and the DCU system by 3.8 BLEU points. More evaluation of the system was published
in Song et al. (2014).

6. Related Work

There is a recent line of research on text-to-text generation, which studies the lineariza-
tion of dependency structures (Barzilay and McKeown 2005; Filippova and Strube 2007,
2009; He et al. 2009; Bohnet et al. 2010; Guo, Hogan, and van Genabith 2011). On the
other hand, Wan et al. (2009) study the ordering of a bag of words without any depen-
dency information given. We generalize the word ordering problem, and formulate it
as a task of ordering a multi-set of words, regardless of input syntactic constraints.

Our bottom–up, chart-based generation algorithm is inspired by the line of work
on chart-based realization (Kay 1996; Carroll et al. 1999; White 2004, 2006; Carroll and
Oepen 2005). Kay (1996) first proposed the concept of chart realization, drawing analo-
gies between realization and parsing of free order languages. He discussed efficiency
issues and provided solutions to specific problems. For the task of realization, efficiency
improvement has been further investigated (Carroll et al. 1999; Carroll and Oepen 2005).
The inputs to these systems are logical forms, which form natural constraints on the
interaction between edges. In our case, one constraint that has been leveraged in the
dependency system is a projectivity assumption—we assume that the dependents of a
word must all have been attached before the word is attached to its head word, and
that spans do not cross during combination. In addition, we assume that the right
dependents of a word must have been attached before a left dependent of the word
is attached. This constraint avoids spurious ambiguities. The projectivity assumption
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is an important basis for the feasibility of the dependency system; it is similar to the
chunking constraints of White (2006) for CCG-based realization.

White (2004) describes a system that performs CCG realization using best-first
search. The search process of our algorithm is similar to that work, but the input is
different: logical forms in the case of White (2004) and bags of words in our case.
Further along this line, Espinosa, White, and Mehay (2008) also describe a CCG-based
realization system, applying “hypertagging”—a form of supertagging—to logical
forms in order to make use of CCG lexical categories in the realization process. White
and Rajkumar (2009) further use perceptron reranking on n-best realization output to
improve the quality.

The use of perceptron learning to improve search has been proposed in guided
learning for easy-first search (Shen, Satta, and Joshi 2007) and LaSO (Daumé and Marcu
2005). LaSO is a general framework for various search strategies. Our learning algorithm
is similar to LaSO with best-first inference, but the parameter updates are different.
In particular, LaSO updates parameters when all correct hypotheses are lost, but our
algorithm makes an update as soon as the top item from the agenda is incorrect.
Our algorithm updates the parameters using a stronger precondition, because of the
large search space. Given an incorrect hypothesis, LaSO finds the corresponding gold
hypothesis for a perceptron update by constructing its correct sibling. In contrast, our
algorithm takes the lowest scored gold hypothesis currently in the agenda to avoid
updating parameters for hypotheses that may have not been constructed.

Our parameter update strategy is closer to the guided learning mechanism for
the easy-first algorithm of Shen, Satta, and Joshi (2007), which maintains a queue of
hypotheses during search, and performs learning to ensure that the highest-scored
hypothesis in the queue is correct. However, in easy-first search, hypotheses from the
queue are ranked by the score of their next action, rather than the hypothesis score.
Moreover, Shen, Satta, and Joshi use aggressive learning and regenerate the queue after
each update, but we perform non-aggressive learning, which is faster and is more fea-
sible for our large and complex search space. Similar methods to Shen, Satta, and Joshi
(2007) have also been used in Shen and Joshi (2008) and Goldberg and Elhadad (2010).

Another framework that closely integrates learning and search is SEARN (Daumé,
Langford, and Marcu 2009), which addresses structured prediction problems that can
be transformed into a series of simple classification tasks. The transformation is akin
to greedy search in the sense that the complex structure is constructed by sequential
classification decisions. The key problem that SEARN addresses is how to learn the tth
decision based on the previous t− 1 decisions, so that the overall loss in the resulting
structure is minimized. Similar to our framework, SEARN allows arbitrary features.
However, SEARN is more oriented to greedy search, optimizing local decisions. In
contrast, our framework is oriented to best-first search, optimizing global structures.

Learning and search also interact with each other in a global discriminative learning
and beam-search framework for incremental structured prediction (Zhang and Clark
2011). In this framework, an output is constructed incrementally by a sequence of tran-
sitions, while a beam is used to record the highest scored structures at each step. Online
training is performed based on the search process, with the objective function being
the margin between correct and incorrect structures. The method involves an early-
update strategy, which stops search and updates parameters immediately when the
gold structure falls out of the beam during training. It was first proposed by Collins and
Roark (2004) for incremental parsing, and later gained popularity in the investigations
of many NLP tasks, including POS-tagging (Zhang and Clark 2010), transition-based
dependency parsing (Zhang and Clark 2008; Huang and Sagae 2010), and machine
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translation (Liu 2013). Huang, Fayong, and Guo (2012) propose a theoretical analysis
to the early-update training strategy, pointing out that it is a type of training method
that fixes score violations in inexact search. When the score of a gold-standard structure
is lower than that of a non-gold structure, a violation exists. Our parameter udpate
strategy in this article can also be treated as a mechanism for violation fixing.

7. Conclusion

We investigated the general task of syntax-based word ordering, which is a fundamental
problem for text generation, and a computationally very expensive search task. We
provide a principled solution to this problem using learning-guided search, a frame-
work that is applicable to other NLP problems with complex search spaces. We com-
pared different methods for parameter updates, and showed that a scaled linear model
gave the best results by allowing better comparisons between phrases of different
sizes, increasing the separability of hypotheses and enabling the expansion of negative
examples during training.

We formulate abstract word ordering as a spectrum of tasks with varying input
specificity, from “pure” word ordering without any syntactic information to fully-
informed word ordering with a complete unordered dependency tree given. Experi-
ments show that our proposed method can effectively use available input constraints in
generating output sentences.

Evaluation on the NLG 2011 shared task data shows that our system can be suc-
cessfully applied to a more realistic application scenario, in particular one where some
dependency constraints are provided in the input and word inflection is required as well
as word ordering. Additional tasks that may be required in a practical text generation
scenario include word selection, including the determination of content words and
generation of function words. The joint modeling solution that we have proposed for
word ordering and inflection could also be adopted for word selection, although the
search space is greatly increased when the words themselves need deciding, particularly
content words.
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Meyers, Lluı́s Màrquez, and Joakim Nivre.
2008. The CONLL-2008 shared task on
joint parsing of syntactic and semantic
dependencies. In Proceedings of the Twelfth
Conference on Computational Natural
Language Learning, pages 159–177,
Manchester.

Wan, Stephen, Mark Dras, Robert Dale, and
Cécile Paris. 2009. Improving
grammaticality in statistical sentence
generation: Introducing a dependency
spanning tree algorithm with an argument
satisfaction model. In Proceedings of the
12th Conference of the European Chapter of the
ACL (EACL 2009), pages 852–860, Athens.

537

http://www.mitpressjournals.org/action/showLinks?crossref=10.1017%2FS1351324997001502
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2007.33.3.355


Computational Linguistics Volume 41, Number 3

Weir, David. 1988. Characterizing Mildly
Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylviania.

White, Michael. 2004. Reining in CCG chart
realization. In Proceedings of INLG-04,
pages 182–191, Brockenhurst.

White, Michael. 2006. Efficient Realization of
Coordinate Structures in Combinatory
Categorial Grammar. Research on Language
& Computation, 4(1):39–75.

White, Michael and Rajakrishnan Rajkumar.
2009. Perceptron reranking for CCG
realization. In Proceedings of the 2009
Conference on Empirical Methods in Natural
Language Processing, pages 410–419,
Singapore.

Wu, Dekai. 1997. Stochastic inversion
transduction grammars and bilingual
parsing of parallel corpora. Computational
Linguistics, 23(3):377–403.

Xu, Peng, Ciprian Chelba, and Frederick
Jelinek. 2002. A study on richer syntactic
dependencies for structured language
modeling. In Proceedings of the 40th
Annual Meeting of the Association for
Computational Linguistics, pages 191–198,
Philadelphia, PA.

Zettlemoyer, Luke S. and Michael Collins.
2005. Learning to map sentences to logical
form: Structured classification with
probabilistic categorial grammars. In
Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence,
pages 658–666, Edinburgh.

Zhang, Yue. 2013. Partial-tree linearization:
Generalized word ordering for text
synthesis. In Proceedings of IJCAI,
pages 2232–2238, Beijing.

Zhang, Yue, Graeme Blackwood, and
Stephen Clark. 2012. Syntax-based word
ordering incorporating a large-scale
language model. In Proceedings of the 13th
Conference of the European Chapter of the
Association for Computational Linguistics,
pages 736–746, Avignon.

Zhang, Yue and Stephen Clark. 2008. Joint
word segmentation and POS tagging using
a single perceptron. In Proceedings of
ACL/HLT, pages 888–896, Columbus, OH.

Zhang, Yue and Stephen Clark. 2010.
A fast decoder for joint word
segmentation and POS-tagging using a
single discriminative model. In
Proceedings of the 2010 Conference
on Empirical Methods in Natural Language
Processing, pages 843–852,
Cambridge, MA.

Zhang, Yue and Stephen Clark. 2011.
Syntactic processing using the generalized
perceptron and beam search. Computational
Linguistics, 37(1):105–151.

Zhang, Yue and Joakim Nivre. 2011.
Transition-based dependency parsing
with rich non-local features. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human
Language Technologies, pages 188–193,
Portland, OR.

538

http://www.mitpressjournals.org/action/showLinks?crossref=10.1007%2Fs11168-006-9010-2
http://www.mitpressjournals.org/action/showLinks?crossref=10.1007%2Fs11168-006-9010-2
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli_a_00037
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli_a_00037

