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Denys Duchier∗∗
LIFO - Université d’Orléans
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Yannick Parmentier§

LIFO - Université d’Orléans

In this article, we introduce eXtensible MetaGrammar (XMG), a framework for specifying
tree-based grammars such as Feature-Based Lexicalized Tree-Adjoining Grammars (FB-LTAG)
and Interaction Grammars (IG). We argue that XMG displays three features that facilitate
both grammar writing and a fast prototyping of tree-based grammars. Firstly, XMG is fully
declarative. For instance, it permits a declarative treatment of diathesis that markedly departs
from the procedural lexical rules often used to specify tree-based grammars. Secondly, the XMG
language has a high notational expressivity in that it supports multiple linguistic dimensions,
inheritance, and a sophisticated treatment of identifiers. Thirdly, XMG is extensible in that its
computational architecture facilitates the extension to other linguistic formalisms. We explain
how this architecture naturally supports the design of three linguistic formalisms, namely,
FB-LTAG, IG, and Multi-Component Tree-Adjoining Grammar (MC-TAG). We further show
how it permits a straightforward integration of additional mechanisms such as linguistic and
formal principles. To further illustrate the declarativity, notational expressivity, and extensibility
of XMG, we describe the methodology used to specify an FB-LTAG for French augmented with a
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unification-based compositional semantics. This illustrates both how XMG facilitates the
modeling of the tree fragment hierarchies required to specify tree-based grammars and of a
syntax/semantics interface between semantic representations and syntactic trees. Finally, we
briefly report on several grammars for French, English, and German that were implemented
using XMG and compare XMG with other existing grammar specification frameworks for
tree-based grammars.

1. Introduction

In the late 1980s and early 1990s, many grammar engineering environments were
developed to support the specification of large computational grammars for natural
language. One may, for instance, cite XLE (Kaplan and Newman 1997) for specifying
Lexical-Functional Grammars (LFG), LKB (Copestake and Flickinger 2000) for speci-
fying Head-driven Phrase Structure Grammars (HPSG), and DOTCCG (Baldridge
et al. 2007) for specifying Combinatory Categorial Grammars (CCG). Concretely, such
environments usually rely on (i) a formal language used to describe a target com-
putational grammar, and (ii) a processor for this language, which aims at generating
the actual described grammar (and potentially at checking it, e.g., by feeding it to
a parser).

Although these environments were tailored for specific grammar formalisms, they
share a number of features. Firstly, they are expressive enough to characterize subsets
of natural language. Following Shieber (1984), we call this feature weak completeness.
Secondly, they are notationally expressive enough to relatively easily formalize important
theoretical notions. Thirdly, they are rigorous, that is, the semantics of their underlying
language is well defined and understood. Additionally, for an environment to be useful
in practice, it should be simple to use (by a linguist), and make it possible to detect errors
in the described target grammar.

If we consider a particular type of computational grammar, namely, tree-based
grammars—that is, grammars where the basic units are trees (or tree descriptions) of
arbitrary depth, such as Tree-Adjoining Grammar (TAG; Joshi, Levy, and Takahashi
1975), D-Tree Grammar (DTG; Rambow, Vijay-Shanker, and Weir 1995), Tree Description
Grammars (TDG; Kallmeyer 1999) or Interaction Grammars (IG; Perrier 2000)—
environments sharing all of the listed features are lacking. As we shall see in Section 7
of this article, there have been some proposals for grammar engineering environments
for tree-based grammar (e.g., Candito 1996; Xia, Palmer, and Vijay-Shanker 1999,
but these lack notational expressivity. This is partly due to the fact that tree-based
formalisms offer an extended domain of locality where one can encode constraints
between remote syntactic constituents. If one wants to define such constraints while
giving a modular and incremental specification of the grammar, one needs a high level
of notational expressivity, as we shall see throughout the article (and especially in
Section 4).

In this article, we present XMG (eXtensible MetaGrammar), a framework for
specifying tree-based grammars. Focusing mostly on Feature-Based Lexicalized Tree-
Adjoining Grammars (FB-LTAG) (but using Interaction Grammars [IG] and Multi-
Component Tree-Adjoining Grammars [MC-TAG] to illustrate flexibility), we argue that
XMG departs from other existing computational frameworks for designing tree-based
grammars in three main ways:

� First, XMG is a declarative language. In other words, grammaticality is
defined in an order-independent fashion by a set of well-formedness
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constraints rather than by procedures. In particular, XMG permits a
fully declarative treatment of diathesis that markedly departs from the
procedural rules (called meta-rules or lexical rules) previously used to
specify tree-based grammars.

� Second, XMG is notationally expressive. The XMG language supports full
disjunction and conjunction of grammatical units, a modular treatment
of multiple linguistic dimensions, multiple inheritance of units, and a
sophisticated treatment of identifiers. We illustrate XMG’s notational
expressivity by showing (i) how it facilitates the modeling of the tree
fragment hierarchies required to specify tree-based grammars and (ii) how
it permits a natural modeling of the syntax/semantics interface between
semantic representations and syntactic trees as can be used in FB-LTAG.

� Third, XMG is extensible in that its computational architecture facilitates
(i) the integration of an arbitrary number of linguistic dimensions (syntax,
semantics, etc.), (ii) the modeling of different grammar formalisms
(FB-LTAG, MC-TAG, IG), and (iii) the specification of general linguistic
principles (e.g., clitic ordering in French).

The article is structured as follows. Section 2 starts by giving a brief introduction
to FB-LTAG, the grammar formalism we used to illustrate most of XMG’s features. The
next three sections then go on to discuss and illustrate XMG’s three main features—
namely, declarativity, notational expressivity, and flexibility. In Section 3, we focus
on declarativity and show how XMG’s generalized disjunction permits a declarative
encoding of diathesis. We then contrast the XMG approach with the procedural methods
previously resorted to for specifying FB-LTAG. Section 4 addresses notational expressiv-
ity. We present the syntax of XMG and show how the sophisticated identifier handling
it supports or permits a natural treatment (i) of identifiers in tree based hierarchies
and (ii) of the unification-based syntax/semantics interface often used in FB-LTAG. In
Section 5, we concentrate on extensibility. We first describe the operational semantics
of XMG and the architecture of the XMG compiler. We then show how these facilitate
the adaptation of the basic XMG language to (i) different grammar formalisms (IG,
MC-TAG, FB-LTAG), (ii) the integration of specific linguistic principles such as clitic
ordering constraints, and (iii) the specification of an arbitrary number of linguistic
dimensions. In Section 6, we illustrate the usage of XMG by presenting an XMG
specification for the verbal fragment of a large scale FB-LTAG for French augmented
with a unification-based semantics. We also briefly describe the various other tree-
based grammars implemented using XMG. Section 7 discusses the limitations of other
approaches to the formal specification of tree-based grammars, and Section 8 concludes
with pointers for further research.

2. Tree-Adjoining Grammar

A Tree-Adjoining Grammar (TAG) consists of a set of auxiliary or initial elementary
trees and of two tree composition operations, namely, substitution and adjunction.
Initial trees are trees whose leaves are either substitution nodes (marked with ↓) or
terminal symbols (words). Auxiliary trees are distinguished by a foot node (marked
with �) whose category must be the same as that of the root node. Substitution inserts a
tree onto a substitution node of some other tree and adjunction inserts an auxiliary tree
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Figure 1
Sample derivation of Marie a vu Jean ‘Mary has seen John’ in a TAG.

into a tree. Figure 1 shows a toy TAG generating the sentence Marie a vu Jean ‘Mary has
seen John’ and sketches its derivation.1

Among existing variants of TAG, one commonly used in practice is Lexical-
ized FB-LTAG (Vijay-Shanker and Joshi 1988). A lexicalized TAG is such that each
elementary tree has at least one leaf labeled with a lexical item (word), whereas in
an FB-LTAG, tree nodes are additionally decorated with two feature structures (called
top and bottom). These feature structures are unified during derivation as follows. On
substitution, the top features of the substitution node are unified with the top features of
the root node of the tree being substituted in. On adjunction, the top features of the root
of the auxiliary tree are unified with the top features of the node where adjunction takes
place; and the bottom features of the foot node of the auxiliary tree are unified with the
bottom features of the node where adjunction takes place. At the end of a derivation,
the top and bottom feature structures of all nodes in the derived tree are unified.

Implementation of Tree-Adjoining Grammars. Most existing implementations of TAGs fol-
low the three-layer architecture adopted for the XTAG grammar (XTAG Research Group
2001), a feature-based lexicalized TAG for English. Thus the grammar consists of (i) a
set of so-called tree schemas (i.e., elementary trees having a leaf node labeled with a
� referring to where to anchor lexical items2), (ii) a morphological lexicon associating
words with lemmas, and (iii) a syntactic lexicon associating lemmas with tree schemas
(these are gathered into families according to syntactic properties, such as the sub-
categorization frame for verbs). Figure 2 shows some of the tree schemas associated
with transitive verbs in the XTAG grammar. The tree corresponds (a) to a declarative
sentence, (b) to a WH-question on the subject, (c) to a passive clause with a BY-agent,
and (d) to a passive clause with a WH-object. As can be seen, each tree schema contains
an anchor node (marked with �). During parsing this anchor node can be replaced by
any word morphologically related to a lemma listed in the syntactic lexicon as anchor-
ing the transitive tree family.

This concept of tree family allows us to share structural information (tree schemas)
between words having common syntactic properties (e.g., sub-categorization frames).
There still remains a large redundancy within the grammar because many elementary
tree schemas share common subtrees (large coverage TAGs usually consist of hun-
dreds, sometimes thousands, of tree schemas). An important issue when specifying

1 The elementary trees displayed in this article conform to Abeillé (2002), that is, we reject the use of a VP
constituent in French.

2 As mentioned earlier, we describe lexicalized TAG, thus every tree schema has to contain at least one
anchor (node labeled �).
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Crabbé et al. XMG: eXtensible MetaGrammar

(a) (b)
Sr

NP0 ↓ VP

V� NP1 ↓

Sq

NP0 ↓

[
wh +

]
[]

Sr

NPNA

ε

VP

V� NP1 ↓

(c) (d)
Sr [][

mode 3

]

NP1 ↓ VP

[
mode 3

]
⎡
⎣passive 1

mode 2

⎤
⎦

V�

⎡
⎣passive 1 +

mode 2 ppart

⎤
⎦

[]
PP

P

by

NP0 ↓

Sq

NP1 ↓
[

wh +
]

[]
Sr [][

mode 3

]

NPNA

ε

VP

[
mode 3

]
⎡
⎣passive 1

mode 2

⎤
⎦

V�

⎡
⎣passive 1 +

mode 2 ppart

⎤
⎦

[]
PP

P

by

NP0 ↓

Figure 2
Some tree schemas for English transitive verbs.

such grammars is thus structure sharing. Being able to share structural information is
necessary not only for a faster grammar development, but also for an easier grammar
maintenance (modifications to be applied to the tree schemas would be restricted to
shared structures). In the next section, we will see how XMG declarativity can be
efficiently used to factorize TAGs. In addition, Section 4 will show how XMG notational
expressivity facilitates the specification of another commonly used tree sharing device,
namely, inheritance hierarchies of tree fragments.

Extending TAG with a Unification-Based Semantics. To extend FB-LTAG with a compo-
sitional semantics, Gardent and Kallmeyer (2003) propose to associate each elementary
tree with a flat semantic representation. For instance, in Figure 3, the trees3 for John, runs,
and often are associated with the semantics l0:name(j,john), l1:run(e,s), and l2:often(x),
respectively. Importantly, the arguments of semantic functors are represented by uni-
fication variables which occur both in the semantic representation of this functor and
on some nodes of the associated syntactic tree. Thus in Figure 3, the semantic index s

occurring in the semantic representation of runs also occurs on the subject substitution
node of the associated elementary tree. The value of semantic arguments is then deter-
mined by the unifications resulting from adjunction and substitution. For instance, the
semantic index s in the tree for runs is unified during substitution with the semantic
index j labeling the root node of the tree for John. As a result, the semantics of John often
runs is {l0:name(j,john), l1:run(e,j), l2:often(e)}.

Gardent and Kallmeyer’s (2003) proposal was applied to various semantic phe-
nomena (Kallmeyer and Romero 2004a, 2004b, 2008). Its implementation, however,

3 Cx/Cx abbreviate a node with category C and a top/bottom feature structure including the feature-value
pair { index : x}.
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Figure 3
A toy lexicalized FTAG with unification-based semantics (l0, l1, l2, e, and j are constants and
s, f, g, x are unification variables).

relies on having a computational framework that associates syntactic trees with flat
semantic formulae while allowing for shared variables between trees and formulae. In
the following sections, we will show how XMG notational expressivity makes it pos-
sible to specify an FB-LTAG equipped with a unification-based semantics.

3. Declarativity

In this section, we show how a phenomenon which is often handled in a procedural
way by existing approaches can be provided with a declarative specification in XMG.
Concretely, we show how XMG supports a declarative account of diathesis that avoids
the drawbacks of lexical rules (e.g., information erasing). We start by presenting the
lexical rule approach. We then contrast it with the XMG account.

3.1 Capturing Diathesis Using Lexical Rules

Following Flickinger (1987), redundancy among grammatical descriptions is often han-
dled using two devices: an inheritance hierarchy and a set of lexical rules. Whereas
the inheritance hierarchy permits us to encode the sharing of common substructures,
lexical rules (sometimes called meta-rules) permit us to capture relationships between
trees by deriving new trees from already specified ones. For instance, passive trees will
be derived from active ones.

Although Flickinger’s (1987) approach was developed for HPSGs, several similar
approaches have been put forward for FB-LTAG (Vijay-Shanker and Schabes 1992;
Becker 1993; Evans, Gazdar, and Weir 1995; XTAG Research Group 2001). One important
drawback of these approaches, however, is that they are procedural in that the order in
which lexical rules apply matters. For instance, consider again the set of trees given
in Figure 2. In the meta-rule representation scheme adopted by Becker (1993), the base
tree (a) would be specified in the inheritance hierarchy grouping all base trees, and
the derived trees (b, c, d) would be generated by applying one or more meta-rules on
this base tree. Figure 4 sketches these meta-rules. The left-hand side of the meta-rule
is a matching pattern replaced with the right-hand side of the meta-rule in the newly
generated tree. Symbol “?” denotes a meta-variable whose matching subtree in the input
is substituted in place of the variable in the output tree. Given these, the tree family in
Figure 2 is generated as follows: (b) and (c) are generated by application to the base
tree (a) of the Wh-Subject and Passive meta-rules, respectively. Further, (d) is generated
by applying first, the Wh-Subject meta-rule and second, the Passive meta-rule to the
base tree.
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Simplified meta-rules for passive and wh-subject extraction.

More generally a meta-rule is a procedural device that, given a tree instance,
generates a new tree instance by adding, suppressing (hence possibly substituting)
information in grammatical units. Prolo (2002) defines a set of meta-rules that can
be used to specify a large FB-LTAG for English. Given an ordered set of meta-rules,
however, there is no guarantee that the trees they derive are linguistically appropriate
and that the derivation process terminates. Thus, to ensure termination and consistency,
Prolo needs to additionally provide rule ordering schemes (expressed as automata).

3.2 XMG: Capturing Diathesis Using Disjunction

XMG provides an alternative account for describing tree sets such as that of Figure 2
without lexical rules and without the related ordering constraints. In essence, the
approach consists of enumerating trees by combining tree fragments using conjunction
and disjunction.

More specifically, the tree set given in Figure 2 can be generated by combining
some of the tree fragments sketched in Figure 5 using the following conjunctions and
disjunctions:4

Subject → CanonicalSubject ∨ Wh-NP-Subject (1)

ActiveTransitiveVerb → Subject ∧ ActiveVerb ∧ CanonicalObject (2)

PassiveTransitiveVerb → Subject ∧ PassiveVerb ∧ CanonicalByObject (3)

TransitiveVerb → ActiveTransitiveVerb ∨ PassiveTransitiveVerb (4)

The first clause (Subject) groups together two subtrees representing the possi-
ble realizations of a subject (canonical and wh). The next two clauses define a tree
set for active and passive transitive verbs, respectively. The last clause defines the
TransitiveVerb family as a disjunction of the two verb forms (passive or active). In sum,
the TransitiveVerb clause defines the tree set sketched in Figure 2 as a disjunction of
conjunctions of tree fragments.

One of the issues of meta-rules reported by Prolo (2002) is the handling of feature
equations. For a number of cases (including subject relativization in passive trees),

4 For now, let us consider that the tree fragments are combined in order to produce minimal trees by
merging nodes whose categories (and features) unify. In the next section, we will see how to precisely
control node identification using either node variables or node constraints.
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Tree fragments.

ad hoc meta-rules are needed, for a unified tree transformation cannot be defined. In
a declarative approach such as the one here, dealing with feature equations can be
done relatively easily. Let us imagine that we now want to extend the trees of Figure 2
with feature equations for subject–number agreement. We can for instance do so by
defining the following tree fragment (the dashed line indicates that the VP node can be
a descendant, not only a daughter, of the S node):5

SubjAgreement → S

NP↓
[

num 1

]
[

num 1

] VP

[
num 1

]
[

num 1

]

Then we extend the definition of Subject as follows:

Subject → SubjAgreement ∧ ( CanonicalSubject ∨ Wh-NP-Subject ) (5)

If we want to get further with the description of transitive verbs, for instance by
taking into account wh-objects and by-objects, this can be done as follows. We first
define the elementary fragments Wh-NP-Object and Wh-By-Object (see Figure 5), and
then define the following additional combinations:6

ActiveTransitiveVerb → CanonicalSubject ∧ ActiveVerb ∧ Wh-Np-Object (6)

PassiveTransitiveVerb → CanonicalSubject ∧ PassiveVerb ∧ Wh-By-Object (7)

5 Note that in XMG, it is not mandatory to define any tree structure inside SubjAgreement. We could define
independent NP and VP nodes, and associate them with variables, say n1 and n2. n1 and n2 would then
be exported and reused directly in the classes CanonicalSubject and Wh-NP-Subject, respectively.

6 Note that these clauses only consider canonical subjects to avoid having both a Wh-subject and a
Wh-object. This is not entirely satisfactory, as we would prefer to define a single abstraction over objects
(as was done for subjects) and use it wherever possible. There would then be another mechanism to
capture this exception and cause the invalid combination to fail (that is, the resulting tree description not
to have any model). Such a mechanism exists in XMG, and is called linguistic principle (see Section 5).
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Evans, Gazdar, and Weir (1995) argue for the necessity of using lexical rules for
grammatical description based on two arguments: (i) morphology is irregular and has
to be handled by a non-monotonic device and (ii) erasing rules such as the agentless
passive (John eats an apple / An apple is eaten ) are needed to erase an argument from
the canonical base tree. Neither of these arguments holds here, however: The first
argument because we describe tree schema hence lexical and morphological issues are
ruled out; the second because agentless passive and, more generally, argument erasing
constructions can simply be defined by an additional clause such as:

AgentlessPassiveTransitiveVerb → Subject ∧ PassiveVerb (8)

To summarize, using a declarative language to specify a tree-based grammar offers
an adequate level of control on the structures being described while avoiding having
to deal with ordering and termination issues. It facilitates grammar design and mainte-
nance, by providing an abstract view on grammar trees, uniquely made of monotonic
(no information removal) combinations of tree fragments.

4. Notational Expressivity

We now focus on notational expressivity and show how XMG supports a direct
encoding of (i) distinct linguistic dimensions (here syntax, semantics and the syntax/
semantics interface) and (ii) the various types of coreferences7 that arise in the devel-
opment of tree-based grammars.

The syntax of the XMG language can be formally defined as follows.

Class ::= NameC1,...,Ck
x1,...,xn → Content (9)

Content ::= 〈SYN, SEM, DYN〉 | Name | Content ∧ Content | Content ∨ Content
(10)

SYN ::=

n1 → n2 | n1 →+ n2 | n1 →∗ n2 | n1 ≺ n2 | n1 ≺+ n2 | n1 ≺∗ n2 |
n1[f1 : v1,..., fk : vk] | n1(c1 : cv1,..., cl : cvl) | n1 = n2 | x = Ci.y |
n1 (c1 : cv1,..., cl : cvl) [f1 : v1,..., fk : vk] | SYN ∧ SYN

(11)

SEM ::= li : p(E1,...,En) | li ≤ hj | SEM ∧ SEM (12)

DYN ::= 〈 f1 : v1,...,fn : vn 〉 (13)

Here and in what follows, we use the following notational conventions. Ci denote
variables over class names; xi, x, and y are variables ranging over tree nodes or feature
values; ni refer to node variables; f, fi are features and v, vi and feature values (constants
or variables); li, hj, p, and Ei are variables over semantic labels, semantic holes, predi-
cates, and predicate arguments in flat semantic formulae, respectively.8 [ ] are used to
associate a node variable with some feature constraint. ( ) are used to associate a node
variable with some property constraint (e.g., node colors, see Section 5). ci and cvi denote

7 By coreference, we mean the sharing of information between distinct elementary fragments of the
grammar specification.

8 See Gardent and Kallmeyer (2003) for a detailed introduction to flat semantics.
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a property constraint and a property constraint value, respectively. Ci.y denotes the y
variable declared in class Ci and = is unification; ≺ and → denote linear precedence and
immediate dominance relations between nodes. Finally, +, ∗ represent the transitive and
transitive-reflexive closure of a relation, respectively.

The first two clauses of the formal definition here specify XMG classes and how they
combine. The next three clauses define the languages supported for describing three lin-
guistic dimensions, namely, syntax (SYN), semantics (SEM), and the syntax/semantics
interface (called DYN for dynamic interface). We now discuss each of these in more
detail starting bottom–up with the three linguistic dimensions and ending with the
control language that permits us to combine basic linguistic units into bigger ones.

SYN. The XMG formalism for syntax (copied here for convenience) is a tree description
logic similar to that proposed by Vijay-Shanker and Schabes (1992) and Rogers and
Vijay-Shanker (1994) to describe tree-based grammars.

SYN ::= n1 → n2 | n1 →+ n2 | n1 →∗ n2 | n1 ≺ n2 | n1 ≺+ n2 | n1 ≺∗ n2 |
n1[f1 : v1,..., fk : vk] | n1(c1 : cv1,..., cl : cvl) | n1 = n2 | x = Ci.y |
n1 (c1 : cv1,..., cl : cvl) [f1 : v1,..., fk : vk] | SYN ∧ SYN

It includes tree node variables, feature names, feature values, and feature variables.
Tree node variables can be related by equality (node identification), precedence (imme-
diate or non-immediate), and dominance (immediate or non-immediate). Tree nodes
can also be labeled with feature structures of depth 2, that is, sets of feature/value
pairs where feature values are either variables, constants (e.g., syntactic category), or
non-recursive feature structure (e.g., top and bottom feature structures).

Here is a graphical illustration of how tree logic formulae can be used to describe
tree fragments: The depicted tree fragment is a model satisfying the given formula.

n1 → n2 ∧ n1 → n3 ∧ n2 ≺ n3
∧ n1[cat : S] ∧ n2(mark : subst) [cat : NP] ∧ n3[cat : VP] S

NP↓ VP

One distinguishing feature of the XMG tree language is the introduction of node
constraints (n1(c : cv)) that generalize Muskens and Krahmer’s (1998) use of positive
and negative node markings. Concretely, node constraints are attribute-value matri-
ces, which contain information to be used when solving tree descriptions to produce
grammar trees. In other words, node constraints are used to further restrict the set
of models satisfying a tree description. As an example of node constraint, consider
node annotations in FB-LTAG (foot node, substitution node, null-adjunction, etc.). Such
annotations can be used as node constraints to allow the description solver to apply
well-formedness constraints (e.g., there is at most one foot node).

Another interesting feature of XMG concerns the inclusion of the dot operator,
which permits us to identify variables across classes in cases where name sharing cannot
be resorted to. When a variable y is declared in a class C, the latter being instantiated
within a class D, y can be accessed from D by C.y (the identifier y still being available
in D’s namespace).
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SEM. The semantic dimension supports a direct encoding of the flat semantic formulae
used by Gardent and Kallmeyer (2003):

SEM ::= li : p(E1,...,En) | li ≤ hj | SEM ∧ SEM

where li : p(E1,..., En) represents a predicate p with label li and arguments E1,..., En and
li ≤ hj is a scope constraint between label li and scope hj. Expressions (predicate argu-
ments Ei) can refer to semantic holes, constants (atomic values), or unification variables
(written x, y hereafter).

For instance, the following flat semantic formula can be used to underspecify the
meaning of the sentence “Every dog chases a cat”:

l0 : ∀(x, h1, h2) ∧ l1 ≤ h1 ∧ l1 : Dog(x) ∧ l2 ≤ h2 ∧ l2 : Chase(x, y)

∧ l3 : ∃(y, h3, h4) ∧ l4 ≤ h3 ∧ l4 : Cat(y) ∧ l2 ≤ h4
(14)

This formula denotes the following two first-order logic formulae, thereby describing
the two possibles readings of this sentence.9

l0 : ∀(x, l1, l3) ∧ l1 : Dog(x) ∧ l2 : Chase(x, y) ∧ l3 : ∃(y, l4, l2) ∧ l4 : Cat(y) (15)

l0 : ∀(x, l1, l2) ∧ l1 : Dog(x) ∧ l2 : Chase(x, y) ∧ l3 : ∃(y, l4, l0) ∧ l4 : Cat(y) (16)

DYN. The DYN dimension generalizes Kinyon’s hypertag (Kinyon 2000) which is
unified whenever two tree fragments are combined. Similarly, in XMG the DYN
dimension is a feature structure that is unified whenever two XMG classes are com-
bined through inheritance or through conjunction (see the discussion on XMG control
language, subsequently).

For instance, the following constraints ensure a coreference between the index I
occurring in the syntactic dimension and the argument X occurring in the semantic
dimension (indexsubject and arg1 are feature names, and E, I, X, and V local unification
variables).

C1 → Node [idx : I] ∧ 〈indexsubject : I〉 (17)

C2 → L : P(E) ∧ L : Theta1(E, X) ∧ 〈arg1 : X〉 (18)

SubjectArg1 → C1 ∧ C2 ∧ 〈indexsubject : V, arg1 : V〉 (19)

More generally, the DYN dimension permits us to unify nodes and feature values
that belong to distinct classes and dimensions, and are thus often not related within
the inheritance hierarchy. As we shall see in Section 6, the DYN dimension permits
a modular account of the syntax/semantics interface in which linking constraints can
be stipulated separately and reused to specify the various diatheses.

In other words, the DYN feature structure allows us to extend the scope of some
specific variables so that they can be unified with variables (or values) introduced
in some other classes of the metagrammar. This concept of scope extension can be
compared with that of hook in Copestake, Lascarides, and Flickinger (2001).

9 For more details on the interpretation of flat semantics and on its association with a grammar of natural
language, see Gardent (2008).
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Control language. The linguistic units (named Content here) defined by the linguist can
be abstracted and combined as follows:

Class ::= NameC1,...,Ck
x1,...,xn → Content

Content ::= 〈SYN, SEM, DYN〉 | Name | Content ∧ Content | Content ∨ Content

The first clause states that the linguistic information encoded in Content is abstracted in
a class named Name and that this class inherits classes C1,..., Ck and exports variables
x1,..., xn. That is, XMG allows for abstraction, inheritance, and variable exports. By
default, variables (referring to nodes and feature values) are local to a class. Export
statements extend the scope of a variable to all sub-classes, however. An exported
variable can also be accessed from outside its class in case of class instantiation (using
the dot operator introduced earlier in this section). The second clause states that an
XMG class consists of a syntactic, a semantic, and a dynamic description (each of them
possibly empty), and that XMG classes can be combined by conjunction and disjunc-
tion and reused through class instantiation. The notation 〈SYN, SEM, DYN〉 represents
simultaneous contributions (possibly empty) to all three dimensions.10

The XMG control language differs from other frameworks used to specify tree-
based grammars (Vijay-Shanker and Schabes 1992; Xia et al. 1998; Candito 1999)
in two main ways. First, it supports generalized conjunctions and disjunctions of
classes. As shown in Section 3, this permits us, inter alia, a declarative treatment of
diathesis.

Second, it allows for both local and exported variables. As mentioned in Section 3, a
common way to share structure within a tree-based grammar is to define an inheritance
hierarchy of either tree fragments (Evans, Gazdar, and Weir 1995) or tree descriptions
(Vijay-Shanker and Schabes 1992; Candito 1996; Xia 2001). When considering an FB-
LTAG augmented with unification semantics, the hierarchy will additionally contain
semantic representations and/or tuples made of tree fragments and semantic represen-
tations. In all cases, the question arises of how to handle identifiers across classes and,
more specifically, how to share them.

In Candito’s (1996) approach, tree nodes are referred to using constants so that
multiple occurrences of the same node constant refer to the same node. As pointed out
in Gardent and Parmentier (2006), global names have several non-trivial shortcomings.
First, they complicate grammar writing in that the grammar writer must remember the
names used and their intended interpretation. Second, they fail to support multiple uses
of the same class within one class. For instance, in French, some verbs sub-categorize
for two prepositional phrases (PP). A natural way of deriving the tree for such verbs
would be to combine a verbal tree fragment with two instances of a PP fragment. If,
however, the nodes in the PP fragment are labeled with global names, then the two
occurrences of these nodes will be identified thereby blocking the production of the
appropriate tree.11

A less restrictive treatment of identifiers is proposed by Vijay-Shanker and Schabes
(1992), where each tree description can be associated with a set of declared node
variables and subsets of these node variables can be referred to by descriptions in the

10 Although formally precise, this notation can be cumbersome. In the interest of legibility we adopt
throughout the convention that SYN stands for 〈SYN, , 〉, SEM for 〈 , SEM, 〉, and DYN for 〈 , , DYN〉.

11 An analogous situation may arise in English with ditransitive verbs requiring two direct objects.
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hierarchy that inherit from the description in which these node variables were declared.
For instance, if entity A in the hierarchy declares such a special node variable X and B
inherits from A, then X can be referred to in B using the notation A.X.12

XMG generalizes Vijay-Shanker and Schabes’s (1992) approach by integrating an
export mechanism that can be used to extend the scope of a given identifier (node
or feature value variable) to classes that inherit from the exporting class. Thus if
class B inherits from class A and class A exports variable X, then X is visible in B
and its reuse forces identity. If B inherits from several classes and two (or more) of
these inherited classes export the same variable name X, then X is not directly visible
from B. It can be accessed though using the dot operator. First A is identified with a
local variable (e.g., T = A), then T.X can be used to refer to the variable X exported
by A.

To summarize, XMG allows for local variables to be exported to sub-classes as well
as for prefixed variables—that is, variables that are prefixed (using the dot operator)
with a reference to the class in which they are declared. In this way, the pitfalls in-
troduced by global names are avoided while providing enough expressivity to handle
variable coreference (via the definition of variable namespaces). Section 6 will further
illustrate the use of the various coreference devices made available by XMG showing
how they concretely facilitate grammar writing.

Let us finally illustrate variable handling with XMG in the example of Figure 2.
Recall that we define the trees of Figure 2 as the conjunctions and disjunctions of some
tree fragments of Figure 5, such as:

Subject → SubjAgreement ∧ ( CanonicalSubject ∨ Wh-NP-Subject ) (20)

CanonicalSubject can be defined as a tree description formula as follows (only variables
n2 and n3 are exported):

CanonicalSubjectn2,n3
→

n1 → n2 ∧ n1[cat : S] ∧ n2(mark : subst) [cat : NP]∧
n1 → n3 ∧ n3[cat : VP] ∧ n2 ≺ n3

(21)

The class Wh-NP-Subject is defined accordingly (i.e., by means of a slightly more
complex tree description formula using the n2 and n3 variable identifiers to refer to
the nodes involved in subject agreement). The class SubjAgreement is defined slightly
differently (we do not impose any tree relation between the node concerned with
number agreement):

SubjAgreementn1,n2
→

n1 [[top : [num : x]] [bot : [num : x]]]∧
n2 [[top : [num : x]] [bot : [num : x]]]

(22)

12 In fact, the notation used by Vijay-Shanker and Schabes (1992) is attr:X with attr an attribute variable
ranging over a finite set of attributes, to indicate special node variables that scope outside their class; and
attr(A) to refer to such variables from outside the entity in which they were declared. We use a different
notation here to enforce consistency with the XMG notation.
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We can then explicitly control the way the fragments combine as follows:

Subject →
C1 = SubjAgreementn1,n2 ∧
C2 = ( CanonicalSubjectn2,n3 ∨ Wh-NP-Subjectn2,n3 ) ∧
C1.n1 = C2.n2 ∧ C1.n2 = C2.n3

(23)

In this example, we see how to constrain, via variable export and unification, some
given syntactic nodes to be labeled with feature structures defined somewhere else in
the metagrammar. We use XMG’s flexible management of variable scope to deal with
node coreference. Compared with previous approaches on metagrammars such as those
of Candito (1996), Xia (2001), having the possibility of handling neither only global nor
only local variables, offers a high level of expressivity along with a precise control on
the structures being described.

5. Extensibility

A third distinguishing feature of XMG is extensibility. XMG is extensible in that
(i) dimensions can be added and (ii) each dimension can be associated with its own
interpreter. In order to support an arbitrary number of dimensions, XMG relies on a
device permitting the accumulation of an arbitrary number of types of literals, namely,
Extensible Definite Clause Grammar (EDCG) (Van Roy 1990). Once literals are accumu-
lated according to their type (i.e., each type of literals is accumulated separately), they
can be fed to dedicated interpreters. Because each of these sets of literals represents
formulas of a description language, these interpreters are solvers whose role is to
compute models satisfying the accumulated formulas.

Via this concept of separated dimensions, XMG allows us (i) to describe different
levels of language (not only syntax, but also semantics and potentially morphology,13

etc.), and (ii) to define linguistic principles (well-formedness constraints to be applied on
the structures being described). These principles depend either on the dimension (e.g.,
scope constraints in flat semantics), the target formalism (e.g. cooccurrence predicate-
arguments in FB-LTAG), or the natural language (e.g., clitic ordering in Romance lan-
guages) being described.

In what follows, we start by showing how XMG handles dimensions independently
from each other introducing EDCG (Section 5.1). We then summarize the architecture
of the XMG system (Section 5.2). We finally show how different solvers can be used
to implement various constraints on each of these dimensions (Section 5.3). In partic-
ular, we discuss three kinds of extensions implemented in XMG: extension to several
grammar formalisms, integration of explicit linguistic generalizations, and inclusion of
color-based node marking to facilitate grammar writing.

5.1 XMG: Accumulating and Interpreting an Arbitrary Number of Descriptions

Accumulating (tree) descriptions. First, let us notice that XMG is nothing other than a logic
language à la Prolog (Duchier, Parmentier, and Petitjean 2012). More precisely, an XMG

13 Recently, XMG has been used to describe the morphology of verbs in Ikota, a Bantu language spoken in
Gabon (Duchier, Parmentier, and Petitjean 2012).
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specification is a collection of Horn clauses, which contribute a declarative description
of what a computational tree grammar is.

Logic Program XMG Metagrammar
Clause ::= Head → Body
Body ::= Fact | Head |

Body ∨ Body |
Body ∧ Body

Query ::= Head

Class ::= Name → Content
Content ::= Description | Name |

Content ∨ Content |
Content ∧ Content

Axiom ::= Name

Recall that the descriptions handled by XMG are in fact tuples of the form
〈SYN, SEM, DYN〉. An XMG class can thus describe, in a non-exclusive way, any of these
three levels of description. If one wants to add another level of description (i.e., another
dimension), one needs to extend the arity of this tuple. Before discussing this, let us first
see how such tuples are processed by XMG.

As mentioned earlier, XMG’s control language is comparable to Horn clauses.
A common way to represent Horn clauses is by using Definite Clause Grammar
(DCG) (Pereira and Warren 1980). Concretely, a DCG is a rewriting system (namely, a
context-free grammar), where the symbols of the rewriting rules are equipped with
pairs of unification variables (these are usually called difference list or accumulator)
(Blackburn, Bos, and Striegnitz 2006, page 100). As an illustration, consider the follow-
ing toy example.

s --> np,vp. np --> det,n.
vp --> v,np. vp --> v.
det --> [the]. det --> [a].
n --> [cat]. n --> [mouse].
v --> [eats].

The string language described by this DCG can be obtained by submitting the query
s(X,[]) where X is a unification variable to be bound with lists of facts (these being the
sentences belonging to the string language). As we can easily see, this language contains
the sentences “a cat eats,” “the cat eats,” “a mouse eats,” “the mouse eats,” “a cat eats a
mouse,” “a mouse eats a cat,” and so on.

Similarly, we can represent XMG classes as DCG clauses. For instance, the combina-
tions of syntactic fragments given in relations (1)–(4) can be rewritten as DCG clauses
as follows:

subject --> canonicalSubject.
subject --> whNpSubject.
activeTransitiveVerb --> subject, activeVerb, canonicalObject.
passiveTransitiveVerb --> subject, passiveVerb, canonicalByObject.
transitiveVerb --> activeTransitiveVerb.
transitiveVerb --> passiveTransitiveVerb.

Disjunctions (e.g., the subject specification) translate to multiple clauses with iden-
tical heads and conjunctions (e.g., activeTransitiveVerb) to a clause body.

In our case, the terminal symbols of the underlying DCG are not just facts, but
tuples of descriptions. In other words, the DCG clause whose head is canonicalSubject

is associated with a tuple of the following form (the dots have to be replaced with
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adequate descriptions, these can contain unification variables, whose scope is by default
local to the clause):

canonicalSubject --> [desc(syn(...),sem(...),dyn(...))].

In order to allow for an extension of XMG to an arbitrary number of dimensions,
instead of compiling XMG classes into a DCG whose accumulator stores tuples with
a fixed arity, these classes are compiled into an EDCG (Van Roy 1990). EDCG are DCG
with multiple accumulators. In XMG, each dimension is thus allocated a dedicated
accumulator in the underlying EDCG.

Note that although the content of the various dimensions is accumulated separately,
dimensions may nevertheless share information either via local unification variables
(if the XMG class defines several dimensions locally), via exported unification vari-
ables (in case of class instantiation or inheritance), or via the shared unification variables
supported by the DYN dimension.

At the end of the EDCG execution, we obtain, for each axiom of the metagrammar
(i.e., for each class name to be valuated), a list of description formulas per accumulator.
These lists are grouped together into a tuple of lists of the following form (N is the
number of dimensions, and consequently of accumulators):

desc(accu1(L1),accu2(L2), ... ,accuN(LN))

Each element (i.e., list Li) of such a tuple is a complete description of a given dimension,
where shared variables have been unified (via unification with backtracking).

Solving (tree) descriptions. As illustrated earlier, interpreting XMG’s control language in
terms of an EDCG yields tuples whose arity is the number of dimensions defined by
the linguist, that is, triples of the form 〈SYN, SEM, DYN〉 if syntax, semantics, and the
dynamic interface are described.

For each dimension D, XMG includes a constraint solver SD that computes the set of
minimal models MD = SD(dD) satisfying the description (dD) of that dimension. In other
words, each dimension is interpreted separately by a specific solver. For instance, the
syntactic dimension is handled by a tree description solver that produces, for a given
tree description, the set of trees satisfying that description, whereas the solver for the
semantic dimension simply outputs the flat semantic representation (list of semantic
literals) built by the EDCG through accumulation.

Note that, although solvers are distinct, the models computed in each dimension
may nonetheless be coupled through shared variables. In that case, these variables can
constrain the models computed by the respective solvers. For instance, shared variables
can be used for the syntactic tree description solver to be parametrized by some value
coming from the semantic input description. Note that the output of the solving process
is a Cartesian product of the sets of minimal models of each solver. As a consequence,
the worst case complexity of metagrammar compilation is that of the various solvers
associated with relevant dimensions.

In addition to having separate solvers for each dimension, the constraint-solving
approach used in XMG permits us to modularize a given solver by combining different
principles. Each such principle enforces specific constraints on the models satisfying
the description of a given dimension. For instance, for the syntactic dimension of an
FB-LTAG, a set of principles is used to enforce that the structures produced by the
compiler are trees, and that these conform to the FB-LTAG formalism (e.g., there is no
tree having two foot nodes).
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5.2 Architecture

The XMG compiler14 consists of the following three modules:

� A compiler that parses XMG’s concrete syntax and compiles XMG classes
into clauses of an EDCG.

� A virtual machine (VM), which interprets EDCG. This VM performs
the accumulation of dimensions along with scope management and
identifiers resolution. This VM is basically a unification engine equipped
with backtracking, and which is extended to support EDCG. Although its
architecture is inspired by the Warren Abstract Machine (Aı̈t-Kaci 1991),
it uses structure-sharing to represent and unify prolog terms, and, given
a query on a class, processes the conjunctions, disjunctions, inheritance,
and export statements related to that class to produce its full definition,
namely, a tree description for the SYN dimension, a flat semantic formula
for the SEM dimension, and a feature structure for the DYN dimension.

� A constraint-solving phase that produces for each dimension the minimal
models satisfying the input description as unfolded by the preceding
two steps.

As already mentioned, the first part is extensible in that new linguistic dimensions
can be added by specifying additional dedicated accumulators to the underlying EDCG.
The second part is a unification engine that interprets EDCG while performing both term
unification and polarized unification (i.e., unification of polarized feature structures, as
defined by Perrier [2000], and discussed in Section 5.3.1). This extended unification is
the reason why XMG does not merely recourse to an existing Prolog engine to process
EDCG, but relies on a specific VM instead.

The third part is completely modular in that various constraint solvers can be
plugged in depending on the requirements set by the dimensions used, and the chosen
grammatical framework. For instance, the SYN dimension is solved in terms of tree
models, and the SEM dimension is solved in terms of underspecified flat semantic
formulae (i.e., the input semantics remains untouched modulo the unification of its
shared variables).

Importantly, these additional solvers can be “turned on/off” (via a primitive of the
XMG language) so that, for instance, the same processor can be used to compile an
XMG specification for an FB-LTAG using linguistic principles such as those defined in
the next section (i.e., clitic ordering principle) or not.

5.3 Three Extensions of XMG

We now show (i) how the modular architecture of the XMG compiler permits us
to specify grammars for several tree-based linguistic formalisms; (ii) how it can be
extended to enforce language specific constraints on the syntactic trees; and (iii) how
additional formal constraints (namely node marking) can be integrated to simplify node
identifications (and consequently grammar writing).

14 The XMG compiler is open source software released under the terms of the CeCILL GPL-compliant
licence. See http://sourcesup.renater.fr/xmg.
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Figure 6
Partition of the nodes of tree models.

5.3.1 TAG, MC-TAG, and IG: Producing Trees, Tree Sets, or Tree Descriptions. XMG in-
tegrates a generic tree solver that computes minimal tree models from tree descrip-
tion logic formulae built on the language SYN introduced in Section 4. This solver
integrates the dominance solving technique proposed by Duchier and Niehren (2000)
and can be summarized as follows. A minimal tree model is described in terms of
the relative positions of its nodes. For each node n in a minimal tree model T, the
set of all the nodes of T can be partitioned in five subsets, depending on their po-
sition relative to n. Hence, for each node variable n appearing in a tree description,
it is first associated with an integer (called node id). We then define the five sets
of node ids (i.e., sets of integers) Downn, Upn, Leftn, Rightn, and Eqn referring to the
ids of the nodes located below, above, on the left, on the right, or identified with n,
respectively (see Figure 6). Note that we require that these sets are a partition of all
node ids.

Using this set-based representation of a model, we translate each node relation
from the input formula (built on the tree description language introduced in Section 4)
into constraints on the sets of node ids that must hold in a valid model. For instance,
the sub-formula n1 ≺+ n2, which states that node n1 strictly precedes node n2, is
translated into:

n1 ≺+ n2 ≡ EqDownn1
⊆ Leftn2

∧ EqDownn2
⊆ Rightn1

∧

Rightn2
⊆ Rightn1

∧ Leftn1
⊆ Leftn2

(24)

where15 EqDownx = Eqx � Downx for x ∈ {n1, n2}. In other words, in a valid minimal
tree model, the set of nodes below or equal to n1 is included in the set of nodes (strictly)
on the left of n2, the set of nodes below or equal to n2 is included in the set of nodes
(strictly) on the right of n1, the set of nodes on the right of n2 is included in the set of
nodes on the right of n1, and finally the set of nodes on the left of n1 is included in the
set of nodes on the left of n2.

Once all input relations are translated into set constraints, the solver uses standard
Constraint Satisfaction techniques (e.g., a first-fail exploration of the search tree) to find a
set of consistent partitions. Finally, the nodes of the models are obtained by considering
nodes with distinct Eqn.

15 � represents disjoint union.
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FB-LTAG trees. To support the specification of FB-LTAG trees, the XMG compiler extends
the generic tree solver described here with a set of constraints ensuring that the trees are
well-formed TAG trees. In effect, these constraints require the trees to be linear ordered
trees with appropriate decorations. Each node must be labeled with a syntactic category.
Leaf nodes are either terminal, foot, or substitution nodes. There is at most one foot
node per tree and the category of the foot node must be identical to that of the root
node. Finally, each tree must have at least one leaf node that is an anchor.

MCTAG tree sets. Where FB-LTAG consists of trees, MC-TAG (Weir 1988) consists of sets
of trees. To support the specification of MC-TAG, the sole extension needed concerns
node variables that are not dominated by any other node variable in the tree description.
Whereas for FB-LTAG, these are taken to denote either the same root node or nodes that
are connected to some other node (i.e., uniqueness of the root), for MC-TAG they can
be treated as distinct nodes, thereby allowing for models that are sets of trees rather
than trees (Parmentier et al. 2007). In other words, the only modification brought to the
tree description solver is that, in MC-TAG mode, it does not enforce the uniqueness of
a root node in a model.

IG polarized tree descriptions. IG (Perrier 2000) consist of tree descriptions whose node
variables are labeled with polarized feature structures. A polarized feature structure is
a set of polarized feature triples (f, p, v) where f and v are standard features and feature
values, respectively, and p is a polarity value in {→,←,=,≈}. Polarities are used to
guide parsing in that a valid derivation structure must neutralize polarities.

To support an XMG encoding of IG, two extensions are introduced, namely, (i) the
ability to output tree descriptions rather than trees, and (ii) the ability to write polarized
feature structures. The first extension is trivially realized by specifying a description
solver that ensures that any output description has at least one tree model. For the
second point, the SYN language is extended to define polarized feature structures and
the unification engine to support unification of polarized features (for instance, a →
feature will unify with a neutral (=) feature to yield a → polarized feature value triple).

5.3.2 Adding Specific Linguistic Constraints: The Case of Clitics. XMG can be extended
to support specific constraints on tree descriptions (e.g., constraints on node linear
order), which make it possible to describe linguistic-dependent phenomena, such as,
for instance, clitic ordering in French, at a meta-level (i.e., within the metagrammar).

According to Perlmutter (1970), clitics are subject to two hard constraints. First,
they appear in front of the verb in a fixed order according to their rank (Exam-
ples 25a and 25b).16 Second, two different clitics in front of the verb cannot have the
same rank (Example 25c).

(25) a. Jean le3 lui4 donne.
‘John gives it to him.’

b. *Jean lui4 le3 donne.
*‘John gives to him it.’

c. *Jean le3 la3 donne.
*‘John gives it it.’

16 In (Examples 25a–c), the numbers on the clitics indicate their rank.
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Figure 7
Clitic ordering in French.

To support a direct encoding of Perlmutter’s observation, XMG includes both a
node uniqueness principle and a node ordering principle. The latter allows us to label
nodes with some property (let us call it rank) whose value is an integer (for instance,
one can define a node as n1(rank : 2)[cat : Cl]). When solving tree descriptions, XMG
further requires that in a valid tree model, (i) there are no two nodes with the same
rank and (ii) sibling nodes labeled with a rank are linearly ordered according to their
rank.

Accordingly, in the French grammar of Crabbé (2005), each node labeled with a clitic
category is also labeled with a numerical node property representing its rank.17 XMG
ordering principle then ensures that the ill-formed tree crossed out in Figure 7 is not
produced. Note that in Figure 7, every type of clitic is defined locally (i.e., in a separate
class), and that the interactions between these local definitions are handled by XMG
using this rank principle, to produce only one valid description (pictured to the right of
the arrow).

That is, XMG ordering constraints permit a simple, declarative encoding of the
interaction between clitics. This again contrasts with systems based on lexical rules. As
noted by Perlmutter (1970), if clitics are assumed to be moved by transformations, then
the order in which lexical rules apply this movement must be specified.

To implement the uniqueness principle, one needs to express the fact that in a valid
model φ, there is only one node having a given property p (i.e., a parameter of the
constraint, here the value of the rank node property). This can be done by introducing,
for each node n of the description, a Boolean variable pn indicating whether the node
denoting n in the model has this property or not (i.e., are there two nodes of identical
rank?). Then, if we call Vφ

p the set of integers referring to nodes having the property p in
a model, we have: pn ≡ (Eqn ∩ Vφ

p ) �= ∅. Finally, if we represent pn being true with 1 and
pn being false with 0,18 and we sum pn for each n in the model, we have that in a valid
model this sum is strictly lower than 2:

∑
n∈φ pn < 2.

To implement the ordering principle, one needs to express the fact that in a valid
model φ, two sibling nodes n1 and n2 having a given property p of type integer and
of values p1 and p2, respectively, are such that the linear precedence between these
nodes conform to the natural order between p1 and p2. This can be done by first
introducing, for each pair of nodes n, m of the description, a Boolean variable bn,m
indicating whether they have the same ancestors: bn,m ≡ (Upn ∩ Upm) = (Upn ∪ Upm).
For each pair of nodes that do so, we check whether they both have the property p,

17 Recall that node properties are features whose values are used by the tree description solver in order to
restrict the set of valid models. These properties may not appear in the trees produced from the input
metagrammar. For instance, the rank property is not part of the FB-LTAG formalism, and thus does not
appear in the FB-LTAG elementary trees produced by XMG.

18 These integer representations are usually called reified constraints.
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and if this is the case, we add to the input description a strict precedence constraint on
these nodes according to their respective values of the property p:19

bn,m ∧ (pn < pm) ⇒ n ≺+ m (26)

bn,m ∧ (pm < pn) ⇒ m ≺+ n (27)

5.3.3 Adding Color Constraints to Facilitate Grammar Writing. To further ease grammar
development, XMG supports a node coloring mechanism that permits nameless node
identification (Crabbé and Duchier 2004), reminiscent of the polarity-based node iden-
tification first proposed by Muskens and Krahmer (1998) and later used by Duchier
and Thater (1999) and Perrier (2000). Such a mechanism offers an alternative to explicit
node identification using equations between node variables. The idea is to label node
variables with a color property, whose value (either red, black, or white) can trigger
node identifications.

This mechanism is another parameter of the tree solver. When in use, the valid
tree models must satisfy some color constraints, namely, they must only have red or
black nodes (no remaining white nodes; these have to be identified with some black
nodes). As shown in the following table, node identification must observe the following
constraints: A white node must be identified with a black node; a red node cannot be
identified with any other node; and a black node may be identified with one or more
white nodes.20

•B •R ◦W ⊥
•B ⊥ ⊥ •B ⊥
•R ⊥ ⊥ ⊥ ⊥
◦W •B ⊥ ◦W ⊥
⊥ ⊥ ⊥ ⊥ ⊥

We now briefly describe how the constraint solver sketched in Section 5.3.1 was
extended to support colors. As mentioned previously, in valid models all white nodes
are identified with a black node (at most one black node per white node). Consequently,
there is a bijection from the red and black nodes of the tree description to the nodes of
the model. In order to take this bijection into account, we add a node variable RBn to
the five sets already associated with a node variable n from Section 5.1. RBn denotes
either n if n is a black or red node, or the black node identified with n if n is a white
node. Note that all the node variables must be colored: the set of node variables in a
tree description can then be partitioned into three sets: Red, Black, and White. Basically,
we know that, for all nodes n, RBn ∈ Eqn (this is what the bijection is about). Again
we translate color information into constraints on node sets (these constraints help the
generic tree solver by reducing the ambiguity for the Eqn sets):

n ∈ Red ⇒ (n = RBn) ∧ (Eqn = {n}) (28)

n ∈ Black ⇒ (n = RBn) ∧ (Eqn\{n} ⊆ White) (29)

n ∈ White ⇒ (RBn ∈ Black) ∧ (Eqn ∩ Black = {RBn}) (30)

19 In fact, rather than adding strict precedence constraints to the tree description, we directly add to the
solver their equivalent set constraints on Eq, Up, Left, Right, Down, introduced earlier.

20 In other words, node colors can be seen as information on node saturation.
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Node coloring offers an alternative to complex namespace management. The main
advantage of this particular identification mechanism is its economy: Not only is there
no longer any need to remember node identifiers, there is in fact no need to choose a
name for node variables.

It is worth stressing that the XMG node identification process is reduced to a
constraint-solving problem and so it is not a sequential process. Thus the criticisms
leveled by Cohen-Sygal and Wintner (2007, 2009) against non-associative constraints
on node unification do not apply.

Briefly, in their work, Cohen-Sygal and Wintner (2007, 2009) showed that any
polarity-based tree description formalism is not associative. In other words, when
describing trees in terms of combinations of polarized structures, the order in which
the structures are combined matters (i.e., the output structures depend on the combi-
nation order). This feature makes such formalisms not appropriate for a modular and
collaborative grammar engineering, such as that of Cohen-Sygal and Wintner (2011) for
Unification Grammar.

In the XMG case, when using node colors, the tree description solver does not
rely on any specific fragment combination order. It computes all possible combination
orders. In this context, the grammar designer cannot think in terms of sequences of node
identifications. This would lead to tree overgeneration.

Again, it is important to remember that tree solving computes any valid tree model,
independently of any specific sequence of node identifications (all valid node identifica-
tions are computed). In this context, non-associativity of color-based node identification
is not an issue, but rather a feature, as it allows for a compact description of a large
number of node identifications (and thus of tree structures).

6. Writing Grammars with XMG

In this section, we first provide a detailed example showing how XMG can be used to
specify the verbal trees of a large FB-LTAG for French extended with unification-based
semantics. We then give a brief description of several large- and middle-scale grammars
that were implemented using XMG.

6.1 SEMTAG: A large FB-LTAG for French Covering Syntax and Semantics

We now outline the XMG specification for the verbal trees of SEMTAG, a large FB-LTAG
for French. This specification further illustrates how the various features of XMG (e.g.,
combined use of disjunction and conjunction, node colors) permit us to specify compact
and declarative grammar descriptions. We first discuss the syntactic dimension (SYN).
We then go on to show how the semantic dimension (SEM) and the syntax/semantic
interface (DYN) are specified.

6.1.1 The Syntactic Dimension. The methodology used to implement the verbal fragment
of SEMTAG can be summarized as follows. First, tree fragments are defined that rep-
resent either a possible realization of a verb argument or a possible realization of the
verb. The verbal elementary TAG trees of SEMTAG are then defined by appropriately
combining these tree fragments.

To maximize structure sharing, we work with four levels of abstraction. First, basic
tree fragments describing verb or verb argument realizations are defined. Second, gram-
matical functions are defined as disjunctions of argument realizations. Third, verbal
diathesis alternatives are defined as conjunctions of verb realizations and grammatical
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CanonSubj →

S◦W

N↓•R V◦W
CanonObj →

S◦W

V◦W N↓•R

CanonIndirObj →

S◦W

V◦W PP•R

P•R

à•R

N↓•R

CanonByObj →

S◦W

V◦W PP•R

P•R

par•R

N↓•R

RelatSubj →

N•R

N�•R S◦W

N↓•R V◦W
WhObj →

S•R

N↓•R S◦W

V◦W

WhByObj →

S•R

PP•R

P•R

par•R

N↓•R

S◦W

WhIndirObj →

S•R

PP•R

P•R

à•R

N↓•R

S◦W

ActiveVerbForm→

S•B

V�•B
PassiveVerbForm→

S•B

V•B

V↓•B V�•B

Figure 8
Elementary tree fragments used as building blocks of the grammar (nodes are colored to control
their identification when blocks are combined).

functions. Fourth, diathesis alternatives are gathered into tree families. In the next
paragraphs, we explain each of these levels in more detail.

Tree fragments. Tree fragments are the basic building blocks used to define SEMTAG.
These are the units that are shared and reused in the definition of many elementary
trees. For instance, the fragment for a canonical subject will be used by all FB-LTAG
elementary trees involving a canonical subject.

As mentioned earlier, to specify the verbal elementary trees of SEMTAG, we begin
by defining tree fragments which describe the possible syntactic realizations of the verb
arguments and of the verb itself. Figure 8 provides some illustrative examples of these
fragments. Here and in the following, we omit the feature structures decorating the trees
to facilitate reading.21

To further factorize information and facilitate grammar maintenance, the basic tree
fragments are organized in an inheritance hierarchy.22 Figure 9 shows a partial view of

21 See Crabbé (2005) for a complete description of SEMTAG tree fragments, including feature structures.
22 Recall from Section 4 that inheritance is used to share namespaces. Thus, (node or feature) variables

introduced in a given class C can be directly reused in the sub-classes of C.
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VerbalArgument

CanonSubj CanonCompl

CanonObj CanPP

CanonIndirObj CanonByObj

Wh

WhObj WhPP

WhIndirObj WhByObj

RelatSubj

Figure 9
Organization of elementary fragments in an inheritance hierarchy.

this hierarchy illustrating how the tree fragments for argument realization depicted in
Figure 8 are organized to maximize the sharing of common information. The hierarchy
classifies the verbal arguments depicted in Figure 8 into four categories:

1. The canonical subject is a noun realized in front of the verb.

2. Canonical complements occur after the verb. The canonical object is a
noun phrase whereas prepositional complements are introduced by
specific prepositions, namely, à for the canonical indirect object and
par for the canonical by object.

3. Wh-arguments (or questioned arguments) occur in front of a sentence
headed by a verb. A Wh-object is an extracted noun whereas questioned
prepositional objects are extracted prepositional phrases that are
introduced by a specific preposition.

4. Finally, the relativized subject is a relative pronoun realized in front
of the sentence. Extracted subjects in French cannot be realized at an
unbounded distance from the predicate.

Syntactic functions. The second level of abstraction uses syntactic function names such
as Subject and Object to group together alternative ways in which a given syntactic
function can be realized. For instance, if we make the simplifying assumption that the
possible argument realizations are limited to those given in Figure 8, the Subject, Object,
ByObject, and IndirectObject classes would be defined as follows.23

Subject → CanonSubj ∨ RelatSubj (31)

Object → CanonObj ∨ WhObj (32)

ByObject → CanonByObj ∨ WhByObj (33)

IndirectObject → CanonIndirObj ∨ WhIndirObj (34)

That is, we define the Subject class as an abstraction for talking about the set of tree
fragments that represent the possible realizations of a subject argument—namely, in

23 Note that, when these abstractions will be combined to describe for instance transitive verbs, the
combination of WhObj with WhByObj will be ruled out by using a uniqueness principle such as
introduced in Section 5.
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our restricted example, canonical and relativized subject. Thus, the simplified Subject
class defined in Equation (31) characterizes contexts such as the following:

(35) a. Jean mange. (canonical subject)
‘John eats.’

b. Le garçon qui mange (relativized subject)
‘The boy who eats’

Similarly, the IndirectObject class abstracts over the realization of an argument intro-
duced by the preposition à to the right of the verb (CanonIndirObj) or realized in
extracted position (possibly realized at an unbounded distance from the predicate) as
illustrated by the following examples:

(36) a. Jean parle à Marie. (canonical indirect object)
‘John talks to Mary.’

b. À qui Jean parle-t-il ? (wh indirect object)
‘To whom is John talking ?’

c. À qui Pierre croit-il que Jean parle ? (wh indirect object)
‘To whom Peter thinks that John talks ?’

This way of grouping tree fragments is reminiscent of the informal classification of
French syntactic functions presented by Iordanskaja and Mel’čuk (2009) whereby each
syntactic function is associated with a set of possible syntactic constructions.

Diathesis alternations. In this third level, we take advantage of the abstractions defined
in the previous level to represent diathesis alternations. Again, we are interested here
in describing alternatives. Diathesis alternations are those alternations of mapping
between arguments and syntactic functions such as for instance the active/passive
alternation. In a diathesis alternation, the actual form of the verb constrains the way
predicate arguments are realized in syntax. Thus, in the following example, it is con-
sidered that both Examples (37a) and (37b) are alternative realizations of a predicate
argument structure such as send(John, a letter).

(37) a. Jean envoie une lettre.
’John sends a letter.’

b. Une lettre est envoyée par Jean.
’A letter is sent by John.’

The active/passive diathesis alternation captures the fact that if the verb is in the
active form, its two arguments are realized by a subject and an object whereas if the
verb is in the passive form, then the arguments consist of a subject and a by-object.

TransitiveDiathesis → (Subject ∧ ActiveVerbForm ∧ Object)

∨ (Subject ∧ PassiveVerbForm ∧ ByObject)
(38)

Finally a traditional case of “erasing,”24 such as the agentless passive (or passive
without agent) can be expressed in our language by adding an additional alternative

24 It is often argued that a language of grammatical representation must be equipped with an “erasing
device” like lexical rules because of phenomena such as the passive without agent. In this framework it
turns out that this kind of device is not needed because we do not grant any special status to base trees.
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where the by-object or agentive complement is not expressed. Thus Equation (39) is an
augmentation of (38) where we have added the agentless passive alternative (indicated
in boldface).

TransitiveDiathesis → (Subject ∧ ActiveVerbForm ∧ Object)

∨ (Subject ∧ PassiveVerbForm ∧ ByObject)

∨ (Subject ∧ PassiveVerbForm)

(39)

This methodology can be further augmented to implement an actual linking in the
manner of Bresnan and Zaenen (1990). For the so-called erasing cases, one can map the
“erased” predicative argument to an empty realization in syntax. We refer the reader to
Crabbé (2005) for further details.

Tree families. Finally, tree families are defined—that is, sets of trees capturing alternative
realizations of a given verb type (i.e., sub-categorization frame). Continuing with the
simplified example presented so far, we can for instance define the tree family for
verbs taking a nominal subject, a nominal object, and an indirect nominal object (i.e.,
ditransitive verbs) as follows:

DitransitiveFamily → TransitiveDiathesis ∧ IndirectObject (40)

The trees generated for such a family will, among others, handle the following
contexts:25

(41) a. Jean offre des fleurs à Marie.
‘John offers flowers to Mary.’

b. À quelle fille Jean offre-t-il des fleurs ?
‘To which girl does John offer flowers ?’

c. Le garçon qui offre des fleurs à Marie.
‘The boy who offers flowers to Mary.’

d. Quelles fleurs le garçon offre-t-il à Marie ?
‘Which flowers does the boy offer to Mary ?’

e. Les fleurs sont offertes par Jean à Marie.
‘The flowers are offered by John to Mary.’

f. Par quel garçon les fleurs sont-elles offertes à Marie ?
‘By which boy are the flowers offered to Mary ?’

It is straightforward to extend the grammar with new families. Thus, for instance,
Equation (42) shows how to define the transitive family (for verbs taking a nominal
subject and a nominal object) and Equation (43), the intransitive one (alternatives of a
verb sub-categorizing for a nominal subject).

TransitiveFamily → TransitiveDiathesis (42)

IntransitiveFamily → Subject ∧ ActiveVerbForm (43)

25 Note that number and gender agreements are dealt with using coreferences between features labeling
syntactic nodes, see Crabbé (2005).
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Similarly, tree families for non-verbal predicates (adjectives, nouns) can be defined
using the abstraction over grammatical functions defined for verbs. For instance, the ex-
amples in (44a–44b) can be captured using the adjectival trees defined in Equations (46)
and (47), respectively, where Subject extends the definition of subject given above with a
Wh-subject, PredAdj combines a subject tree fragment with a tree fragment describing a
predicative adjective, and PredAdjAObj extends a PredAdj tree fragment with a canonical
à-object.

(44) a. Jean est attentif. Qui est attentif ? L’homme qui est attentif
‘John is mindful. Who is mindful ? The man who is mindful’

b. Jean est attentif à Marie. Qui est attentif à Marie ? L’homme qui est attentif à
Marie
‘John is mindful of Mary. Who is mindful of Mary ? The man who is mindful
of Mary’

Subject → CanonSubj ∨ RelatSubj ∨ WhSubj (45)

PredAdj → Subject ∧ AdjectivalForm (46)

PredAdjAObj → PredAdj ∧ CanonAObj (47)

6.1.2 The Semantic Dimension and the Syntax/Semantic Interface. We now show how to
extend the XMG specification presented in the previous section to integrate a
unification-based compositional semantics. Three main changes need to be carried out:

1. Each elementary tree must be associated with a semantic formula. This is
done using the SEM dimension.

2. The nodes of elementary trees must be labeled with the appropriate
semantic indices. This involves introducing the correct attribute-value pair
in the correct feature structure (top or bottom) on the appropriate node.

3. Syntax and semantics need to be synchronized—that is, variable sharing
between semantic formulae and tree indices need to be enforced. To this
end we use the DYN dimension.

Informing the semantic dimension. To associate each elementary tree with a formula rep-
resenting the meaning of the words potentially anchoring that tree, we use the SEM
dimension to specify a semantic schema. For instance, the TransitiveFamily class defined
in Equation (42) for verbs taking two nominal arguments is extended as follows:

TransitiveFamily → TransitiveDiathesis ∧ BinaryRel (48)

where TransitiveDiathesis is the XMG class defined in Equation (39) to describe the set of
trees associated with transitive verbs and BinaryRel the class describing the following
semantic schema:

L : P(E) ∧ L : Theta1(E, X) ∧ L : Theta2(E, Y) (49)

In this semantic schema, P, Theta1, and Theta2 are unification variables that become
ground when the tree is anchored with a specific word. For instance, P, Theta1, and
Theta2 are instantiated to eat, agent, and patient, respectively, when the anchor is ate (these
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pieces of information—predicate, thematic roles—are associated with lemmas, located
in the syntactic lexicon, and unified with adequate semantic variables via anchoring
equations). Further, X, Y, E, L are unification variables representing semantic arguments.
As illustrated in Figure 3, these become ground during (or after) derivation as a side
effect of the substitutions and adjunctions taking place when trees are combined. It
is worth noting that by combining semantic schemas with diathesis classes, one such
specification assigns the specified semantic schema to many trees, namely, all the trees
described by the corresponding diathesis class. In this way, the assignment of semantic
formulae to trees is relatively economical. Indeed in SEMTAG, roughly 6,000 trees are
assigned a semantic schema using a total of 75 schema calls.

Co-indexing trees and formulae indices. Assuming that tree nodes are appropriately deco-
rated with semantic indices by the specification scheme described in the next paragraph,
we now show how to enforce the correct mapping between syntactic and semantic
arguments. This is done in two steps.

First, we define a set of interface constraints of the form 〈indexF : V, argi : V〉 which
are used to enforce the identification of the semantic index (indexF) labeling a given tree
node with grammatical function F (e.g., F := subject) with the index (argi) representing
the i-th argument in a semantic schema. For instance, the following constraints ensure
a subject/arg1 mapping, that is, a coreference between the index labeling a subject node
and the index representing the first argument of a semantic schema:

C1 → Node [idx : I] ∧ 〈indexsubject : I〉

C2 → L : P(E) ∧ L : Theta1(E, X) ∧ 〈arg1 : X〉
SubjectArg1 → C1 ∧ C2 ∧ 〈indexsubject : V, arg1 : V〉

(50)

Given such interface constraints, we refine the diathesis definitions so as to ensure the
correct bindings. For instance, the specification in Equation (38) is modified to:

TransitiveDiathesis → TransitiveActive ∨ TransitivePassive

TransitiveActive → (SubjectArg1 ∧ ObjectArg2∧
Subject ∧ ActiveVerbForm ∧ Object)

(51)

and the passive diathesis is specified as:

TransitivePassive → (SubjectArg2 ∧ ByObjectArg1∧
Subject ∧ PassiveVerbForm ∧ ByObject)

(52)

Labeling tree nodes with semantic indices. This scheme relies on the assumption that tree
nodes are appropriately labeled with semantic indices (e.g., the subject node must be
labeled with a semantic index) and that these indices are appropriately named (arg1
must denote the parameter representing the first argument of a binary relation and
indexsubject the value of the index feature on a subject node). As suggested by Gardent
(2007), a complete semantic labeling of a TAG with the semantic features necessary
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to enrich this TAG with the unification-based compositional semantics sketched in the
previous section can be obtained by applying the following labeling principles:26

Argument labeling: In trees associated with semantic functors, each argument node
is labeled with a semantic index27 named after the grammatical function of the
argument node (e.g., indexsubject for a subject node).

Controller/Controllee: In trees associated with control verbs, the semantic index of the
controller is identified with the value of the controlled index occurring on the
sentential argument node.

Anchor projection: The anchor node projects its index up to its maximal projection.

Foot projection: A foot node projects its index up to the root.28

As we shall now see, XMG permits a fairly direct encoding of these principles.
The Argument Labeling principle states that, in the tree associated with a syntactic

functor (e.g., a verb), each node representing a syntactic argument (e.g., the subject
node) should be labeled with a semantic index named after the grammatical function of
that node (e.g., indexsubject).29

To specify this labeling, we define for each grammatical function Function ∈
{Subject, Object, ByObject, IndirectObject, . . . }, a semantic class FunctionSem which as-
sociates with an (exported) node variable called FunctionNode the feature value pair
[index : I] and a DYN constraint of the form 〈indexFunction : I〉. For instance, the class
SubjectSem associates the node SubjectNode with the feature value pair [index : I] and
the DYN constraint 〈indexsubject : I〉.

SubjectSem → SubjectNode [index : I] ∧ 〈indexsubject : I〉 (53)

Additionally, in the tree fragments describing the possible realizations of the grammat-
ical functions, the (exported) variable denoting the argument node is systematically
named ArgNode.

Finally, we modify the specification of the realizations of the grammatical functions
to import the appropriate semantic class and identify ArgNode and FunctionNode. For
instance, the Subject specification given above is changed to:

Subject → SubjectSem ∧ ArgNode = SubjectNode ∧
(CanonSubj ∨ RelatSubj ∨ WhSubj)

(54)

26 The principles required to handle quantification are omitted. We refer the reader to Gardent (2007) for a
more extensive presentation of how semantics is implemented using XMG.

27 For simplicity, we only mention indices. To be complete, however, labels should also be used.
28 The foot projection principle only applies to foot nodes that are not argument nodes (i.e., to modifiee

nodes).
29 In other words, this argument labeling principle defines an explicit and normalized reference to any

realization of a semantic argument. Following FB-LTAG predicate–argument co-occurrence principle
(Abeillé, Candito, and Kinyon 1999), we know that any elementary tree includes a leaf node for each
realized semantic argument of its anchor. This principle thus holds in any FB-LTAG. Its implementation,
however, is closely related to the architecture of the metagrammar; here we benefit from the fact that
verbal arguments are described in dedicated classes to reach a high degree of factorization.
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Figure 10
Anchor/Foot projection.

As a result, all ArgNode nodes in the tree descriptions associated with a subject realiza-
tion are labeled with an index feature I whose global name is indexsubject.

Value sharing between the semantic index of the controller (e.g., the subject of
the control verb) and that of the controllee (e.g., the empty subject of the infinitival
complement) is enforced using linking constraints between the semantic index labeling
the controller node and that labeling the sentential argument node of the control verb.
Control verb definitions then import the appropriate (object or subject control) linking
constraint.

The anchor (respectively, foot) projection principle stipulates the projection of
semantic indices from the anchor (respectively, foot) node up to the maximal projection
(respectively, root). Concretely, this means that the top and bottom features of the nodes
located on this path between the anchor (respectively, foot) and the maximal projection
(respectively, root) all include an index feature whose value is shared between adjacent
nodes (see variables Ei in Figure 10).30 Once the top and bottom structures are unified,
so are the semantic indices along this path (modulo expected adjunctions realized on
the projection).

To implement these principles, we define a set of anchor projection classes
{Depth1, Depth2, Depth3} as illustrated in Figure 10. We then “glue” these projection
skeletons onto the relevant syntactic trees by importing the skeletons in the syntactic
tree description and explicitly identifying the anchor node of the semantic projection
classes with the anchor or foot node of these syntactic tree descriptions. Because the
models must be trees, the nodes dominating the anchor node of the projection class
will deterministically be identified with those dominating the anchor or foot node of
the trees being combined with. For instance, for verbs, the class specifying the verbal
spine (e.g., ActiveVerbForm, see Figure 10) equates the anchor node of the verbal spine
with that of the projection skeleton. As a result, the verb projects its index up to
the root.

6.1.3 Some Figures About SEMTAG. As mentioned previously, SEMTAG is a large FB-LTAG
for French equipped with semantics (Gardent 2008); it extends the purely syntactic
FTAG of Crabbé (2005) with a unification based compositional semantics as described
by Gardent and Kallmeyer (2003).31 The syntactic FTAG in essence implements Abeillé’s
(2002) proposal for an FB-LTAG-based modeling of French syntax. FTAG contains
around 6,000 elementary trees built from 293 XMG classes and covers some 40 basic

30 For sake of brevity, we write E2
E1

for [bot : [index : E1] top : [index : E2]]. 〈 〉 refers to the anchor / foot.
31 FTAG and SEMTAG are freely available under the terms of the GPL-compliant CeCILL license, the former

at https://sourcesup.renater.fr/scm/viewvc.php/trunk/METAGRAMMARS/FrenchTAG/?root=xmg, and
the latter on request.
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verbal sub-categorization frames. For each of these frames, FTAG defines a set of
argument alternations (active, passive, middle, neuter, reflexivization, impersonal,
passive impersonal) and of argument realizations (cliticization, extraction, omission,
permutations, etc.) possible for this frame. Predicative (adjectival, nominal, and
prepositional) and light verb constructions are also covered as well as some common
sub-categorizing noun and adjective constructions. Basic descriptions are provided for
the remaining constructions namely, adverbs, determiners, and prepositions.

FTAG and SEMTAG were both evaluated on the Test Suite for Natural Language Pro-
cessing (TSNLP) (Lehmann et al. 1996), using a lexicon designed specifically on the test
suite, hence reducing lexical ambiguity (Crabbé 2005; Parmentier 2007). This test suite
focuses on difficult syntactical phenomena, providing grammatical and ungrammatical
sentences. These competence grammars accept 76% of the grammatical items, reject 83%
of the ungrammatical items, and have an average ambiguity of 1.64 parses per sentence.
To give an idea of the compilation time, under architectures made of a 2-Ghz processor
with 1 Gb of RAM, it takes XMG 10 minutes to compile the whole SEMTAG (recall that
there is no semantic description solving, hence the compilation times between FTAG
and SEMTAG do not differ).32

Note that SEMTAG can be used for assigning semantic representations to sentences
when combined with an FB-LTAG parser and a semantic construction module as de-
scribed by Gardent and Parmentier (2005, 2007).33 Conversely, it can be used to verbalize
the meaning denoted by a given semantic representation when coupled with the GenI
surface realizer described by Gardent and Kow (2007).

6.2 Other Grammars Designed with XMG

XMG has been used mainly to design FB-LTAG and IG for French or English. More
recently, it has also been used to design a FB-LTAG for Vietnamese and a TreeTuple
MC-TAG for German. We now briefly describe each of these resources.

SemXTAG. The English grammar, SEMXTAG (Alahverdzhieva 2008), reimplements the
FB-LTAG developed for English at the University of Pennsylvania (XTAG Research
Group 2001) and extends it with a unification-based semantics. It contains 1,017 trees
and covers the syntactic fragment of XTAG, namely, auxiliaries, copula, raising and
small clause constructions, topicalization, relative clauses, infinitives, gerunds, pas-
sives, adjuncts, ditransitives (and datives), ergatives, it-clefts, wh-clefts, PRO con-
structions, noun–noun modification, extraposition, determiner sequences, genitives,
negation, noun–verb contractions, sentential adjuncts, imperatives, and resultatives.
The grammar was tested on a handbuilt test-suite of 998 sentences illustrating the
various syntactic constructions meant to be covered by the grammar. All sentences in
the test suite can be parsed using the grammar.

FrenchIG. The extended XMG framework was used to design a core IG for French
consisting of 2,059 tree descriptions compiled out of 448 classes (Perrier 2007). The
resulting grammar is lexicalized, and its coverage was evaluated using the previously
mentioned TSNLP. The French IG accepts 88% of the grammatical sentences and rejects

32 As a comparison, about one hour was needed by Candito’s (1999) compiler to produce a French FB-LTAG
containing about 1,000 tree schemas.

33 As an alternative way to parse FB-LTAG grammars equipped with flat semantics such as those produced
by XMG, one can use the Tübingen Linguistic Parsing Architecture (TuLiPA) (Kallmeyer et al. 2010).
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85% of the ungrammatical sentences, although the current version of the French IG
does not yet cover all the syntactic phenomena presented in the test suite (for example,
causative and superlative constructions).

Vietnamese TAG. The XMG language was used by Le Hong, N’Guyen, and Roussanaly
(2008) to produce a core FB-LTAG for Vietnamese. Their work is rather a proof of con-
cept than a large-scale implementation. They focused on Vietnamese’s categorization
frames, and were able to produce a TAG covering the following frames: intransitive
(tree family N0V), transitive with a nominal complement (N0VN1), transitive with a
clausal complement (N0VS1), transitive with modal complement (N0V0V1), ditransi-
tive (N0VN1N2), ditransitive with a preposition (N0VN1ON2), ditransitive with a ver-
bal complement (N0V0N1V1), ditransitive with an adjectival complement (N0VN1A),
movement verbs with a nominal complement (N0V0V1N1), movement verbs with an
adjectival complement (N0V0AV1), and movement ditransitive (N0V0N1V1N2).

GerTT. Another XMG-based grammar corresponds to the German MC-TAG of
Kallmeyer et al. (2008). This grammar, called GerTT, is in fact an MC-TAG with
Tree Tuples (Lichte 2007). This variant of MCTAG has been designed to model free
word order phenomena. This is done by imposing node sharing constraints on MCTAG
derivations (Kallmeyer 2005). GerTT covers phenomena such as scrambling, coherent
constructions, relative clauses, embedded questions, copula verbs, complementized
sentences, verbs with various sub-categorization frames, nouns, prepositions, determin-
ers, adjectives, and partly includes semantics. It is made of 103 tree tuples, compiled
from 109 classes.

7. Related Work

We now compare XMG with existing environments for designing tree-based grammars
and briefly report on the grammars designed with these systems.

7.1 Environments for Designing Tree-Based Grammars

Candito’s Metagrammar Compiler. The concept of metagrammar was introduced by
Candito (1996). In her paper, Candito presented a compiler for abstract specifications
of FB-LTAG trees (the so-called metagrammars). Such specifications are based on three
dimensions, each of them being encoded in a separate inheritance hierarchy of linguistic
descriptions. Dimension 1 describes canonical sub-categorization frames (e.g., transitive),
the Dimension 2 describes redistributions of syntactic functions (e.g., active to passive),
and Dimension 3 the tree descriptions corresponding to the realizations of the syntactic
functions defined in Dimension 2. This three-dimensional metagrammatical description
is then processed by a compiler to compute FB-LTAG tree schemas. In essence, these
tree schemas are produced by associating a canonical sub-categorization frame (Dimen-
sion 1) with a compatible redistribution schema (Dimension 2), and with exactly one
function realization (Dimension 3) for each function required by the sub-categorization
frame.

Candito’s (1996, 1999) approach improves on previous proposals by Vijay-Shanker
and Schabes (1992) and Evans, Gazdar, and Weir (1995) in that it provides a linguistically
principled basis for structuring the inheritance hierarchy. As shown in Section 6.1,
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the XMG definition of SEMTAG uses similar principles. Candito’s approach differs,
however, from the XMG account in several important ways:

� Much of the linguistic knowledge used to determine which classes to
combine is hard-coded in the compiler (unlike in XMG, there is no explicit
control on class combinations). In other words, there is no clear separation
between the linguistic knowledge needed to specify a high-level FB-LTAG
description and the algorithm used to compile an actual FB-LTAG from
this description. This makes grammar extension and maintenance by
linguists extremely difficult.

� As in Vijay-Shanker and Schabes (1992) Evans, Gazdar, and Weir (1995),
the linguistic description is non-monotonic in that some erasing classes
are used to remove information introduced by other dimensions
(e.g., agentless passive).

� The approach fails to provide an easy means to state exceptions. These
are usually encoded in the compiling algorithm.

� The tree description language used to specify classes in Dimension 3
relies on global node variables. Thus, two variables with identical names
introduced in different classes are expected to refer to the same tree node.
As argued in Section 4, this makes it hard to design large-scale
metagrammars.

The LexOrg system. An approach similar to Candito’s was presented by Xia et al.
(1998), Xia (2001), and Xia, Palmer, and Vijay-Shanker (2005, 2010). As in Candito’s
approach, a TAG abstract specification relies on a three-dimensional description made
of, namely, sub-categorization frames, blocks, and lexical redistribution rules. To com-
pile this specification into a TAG, the system selects a canonical sub-categorization
frame, and applies some lexical redistribution rules to derive new frames and finally
select blocks corresponding to the resulting frames. These blocks contain tree descrip-
tions using the logic of Rogers and Vijay-Shanker (1994).

LexOrg suffers from similar limitations as Candito’s compiler. Much of the lin-
guistic knowledge is embedded in the compiling algorithm, making it difficult for
linguists to extend the grammar description and to handle exceptions. Unlike in Can-
dito’s framework, the tree description language uses local node variables and lets the
tree description solver determine node identifications. Although this avoids having to
memorize node names, this requires that the descriptions be constrained enough to
impose the required node identifications and prevent the unwanted ones. In practice,
this again complicates grammar writing. In contrast, XMG provides an intermediate
solution which, by combining local variables with export declarations, avoids having to
memorize too many node variable names (only those local to the relevant sub-hierarchy
need memorizing) while allowing for explicit node identification.

The Metagrammar Compiler of Gaiffe, Crabbé, and Roussanaly. Gaiffe, Crabbé, and
Roussanaly (2002) proposed a compiler for FB-LTAG that aims to remedy both the lack
of a clear separation between linguistic information and compilation algorithm, and
the lack of explicit control on the class combinations prevalent in Candito (1996), Xia
et al. (1998), and Xia (2001). In their approach, the linguistic specification consists of
a single inheritance hierarchy of classes, each class containing a tree description. The
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description logic used is similar to Candito’s. That is, global node names are used. To
trigger class combinations, classes are labeled with two types of information: needs and
resources. The compiler selects all final classes of the hierarchy, performs all possible
combinations, and only keeps those combinations that neutralize the stated needs
and resources. The tree descriptions contained in these neutral combinations are then
solved to produce the expected trees.

Although this approach implements a clear separation between linguistic informa-
tion and compilation algorithm, the fully automatic derivation of FB-LTAG trees from
the inheritance hierarchy makes it difficult in practice to control overgeneration. In
contrast, XMG’s explicit definitions of class combinations by conjunction, disjunction,
and inheritance makes it easier to control the tree set that will be generated by the
compiler from the grammar specification. Additionally, the issues raised by global
variables remain (no way to instantiate twice a given class, and cumbersome definition
of variables in large metagrammars).

The MGCOMP System. More recently, Villemonte de la Clergerie (2005, 2010) proposed a
compiler for FB-LTAG that aims at preserving a high degree of factorization in both the
abstract grammar specification and the grammar which is compiled from it. Thus, the
MGCOMP system does not compute FB-LTAG elementary trees, but factorized trees.

In MGCOMP, like in Gaiffe, Crabbé, and Roussanaly’s (2002) approach, a meta-
grammar consists of a single hierarchy of classes. The classes are labeled with needs and
resources, and final classes of the hierarchy are combined to compute tree descriptions.
The main differences with Gaiffe, Crabbé, and Roussanaly (2002), lies in the fact that
(i) a description can include new factorizing operators, such as repetition (Kleene-star
operator), shuffling (interleaving of nodes), optionality, and disjunctions; and (ii) it offers
namespaces to specify the scope of variables. MGCOMP’s extended tree descriptions
are not completely solved by the compiler. Rather, it compiles underspecified trees (also
called factorized trees). With this approach, a large grammar is much smaller in terms of
number of grammatical structures than a classical FB-LTAG. As a result, the grammars it
compiles are only compatible with the DyALog parsing environment (Villemonte de La
Clergerie 2005). And, because the linguist designs factorized trees and not actual TAG
trees, debugging the metagrammar becomes harder.

7.2 Resources Built Using Candito, Xia, and De La Clergerie’s Systems

Candito’s system has been used by Candito (1999) herself to design a core FB-LTAG
for French and Italian, and later by Barrier (2006) to design a FB-LTAG for adjectives
in French. Xia’s system (LexOrg) has been used to semi-automatically generate XTAG
(Xia 2001). De La Clergerie’s system (MGCOMP) has been used to design a grammar
for French named FRMG (FRench MetaGrammar) (Villemonte de la Clergerie 2010).
FRMG makes use of MGCOMP’s factorizing operators (e.g., shuffling operator), thus
producing not sensu stricto a FB-LTAG, but a factorized FB-LTAG. FRMG is freely
available, contains 207 factorized trees (having optional branches, etc.) built from 279
metagrammatical classes, and covers 95% of the TSNLP.

8. Conclusion

In this article, we presented the eXtensible MetaGrammar framework and argued that,
contrary to other existing grammar writing environments for tree-based grammar,
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XMG is declarative, extensible, and notationally expressive. We believe that these fea-
tures make XMG particularly appropriate for a fast prototyping of the kind of deep
tree-based grammars that are used in applications requiring high precision in gram-
mar modeling (e.g., language teaching, man/machine dialogue systems, data-to-text
generation).

The XMG language is documented on-line, and its compiler is open source soft-
ware, freely available under the terms of the GPL-compliant CeCILL license.34 Many
grammars designed with XMG (FB-LTAG and IG for French and English, TT-MCTAG
for German) are also open-source and available on-line.35

Future research will focus on extensibility. So far, XMG has been used to design tree-
based grammars for different languages. We plan to extend XMG to handle other types
of formalisms36 such as dependency grammars, and to support dimensions other than
syntax and semantics such as for instance, phonology or morphology. As mentioned
here, XMG offers a modular architecture, making it possible to extend it relatively easily.
Nonetheless, in its current state, such extensions imply modifying XMG’s code. We are
exploring new extensions of the formalism, which would allow the linguist to dynam-
ically define her/his metagrammar formalism (e.g., which principles or descriptions to
use) depending on the target formalism.

Another interesting question concerns cross-language grammar engineering. So far,
the metagrammar allows for dealing with structural redundancy. As pointed out by
Kinyon et al. (2006), a metagrammar can be used to capture generalizations across
languages and is surely worth further investigating.

Finally, we plan to extend XMG with features borrowed from Integrated De-
velopment Environments (IDE) for programming languages. Designing a grammar
is, in some respect, similar to programming an application. Grammar environments
should benefit from the same tools as those used for the development of applications
(incremental compilation, debugger, etc.).
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