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This article describes an approach to Lexical-Functional Grammar (LFG) generation that is
based on the fact that the set of strings that an LFG grammar relates to a particular acyclic
f-structure is a context-free language. We present an algorithm that produces for an arbitrary
LFG grammar and an arbitrary acyclic input f-structure a context-free grammar describing
exactly the set of strings that the given LFG grammar associates with that f-structure. The
individual sentences are then available through a standard context-free generator operating
on that grammar. The context-free grammar is constructed by specializing the context-free
backbone of the LFG grammar for the given f-structure and serves as a compact representation
of all generation results that the LFG grammar assigns to the input. This approach extends
to other grammatical formalisms with explicit context-free backbones, such as PATR, and also
to formalisms that permit a context-free skeleton to be extracted from richer specifications. It
provides a general mathematical framework for understanding and improving the operation of a
family of chart-based generation algorithms.

1. Introduction

Algorithms providing compact representations of alternative syntactic analyses have
been the state-of-the-art in parsing for many years. For context-free grammars, for
example, the well-known chart parsing algorithms have been used for more than
four decades. These assign to a sentence not just one possible analysis but a chart
that compactly represents all possible syntactic analyses. Algorithms have also been
developed that extend packing to the functional specifications of unification grammars
by producing compact representations of feature-structure ambiguities as well. One
that is pertinent to (but not restricted to) Lexical-Functional Grammar (LFG) is the con-
texted constraint satisfaction method developed by Maxwell and Kaplan (1991). These
algorithms lead to better average time performance because they carefully manage the
ambiguities that are rampant in natural language. They work by dividing the parsing
problem into two phases, a recognition or satisfiability phase that creates the compact
representation and determines whether there is at least one parse, and an enumeration
phase in which the alternative parses are produced one by one. Parsing performance
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is typically identified with the complexity of the first phase (e.g., the cubic bound for
context-free parsing), because the collection of all parses can be delivered to a client ap-
plication merely by presenting the compact representation. A client may be able to select
a limited number of particularly desirable parses, perhaps the smallest or the most prob-
able, without doing a full enumeration (Johnson and Riezler 2002; Kaplan et al. 2004).

Lang (1994) gives a clear formal characterization of the first phase of context-
free chart parsing.1 He observes that the recognition problem consists of finding the
intersection of the language of the grammar with the input string, and then testing to see
whether that intersection is empty. Many language classes are closed under intersection
with a regular set, and the result of the intersection of a language L(G) with a regular
language α is describable as a specialization Gα of G that assigns to all and only the
strings in α effectively the same parse trees as G would assign. Lang argues that a chart
for an input string s (a trivial regular language) and a context-free grammar G can be
regarded as a specialization Gs of G that derives either the empty language (if s does
not belong to L(G)) or a language consisting of just that input. In this view a parsing
chart/grammar is a representation that makes it possible to enumerate all the derivation
trees of the string, guaranteeing that each tree can be produced in a backtrack-free way
in time proportional to its size. This guarantee holds even for an infinitely ambiguous
string: It would take forever to enumerate all valid derivations, but any particular one
can be read out in linear time. The procedure for tree enumeration follows directly
from the standard context-free generation algorithm applied to the grammar Gs.

The generation problem for LFG and other description-based grammatical for-
malisms can also be viewed from this perspective. Several algorithms have been pro-
posed for generation that avoid redundant recomputation by storing intermediate
processing results in a chart-like auxiliary data structure (e.g., Shieber 1988; Kay 1996;
Shemtov 1997; Neumann 1998; Carroll et al. 1999; Moore 2002; Carroll and Oepen 2005;
Cahill and van Genabith 2006; White 2006; de Kok and van Noord 2010). Most of them
can be construed as having a first phase that provides a compact representation for
alternative results, in this case for the strings that the grammar provides for a given
functional or semantic input. The individual generated strings are then produced by an
enumeration procedure operating on this compact representation.

In this article we observe that the edges of a generation chart can be interpreted as
rules of a specialized context-free grammar, just as in Lang’s (1994) characterization of
parsing. We present a generation algorithm that specializes the context-free backbone of
a given LFG grammar to a grammar that describes exactly the strings that the LFG gram-
mar relates to a given acyclic f-structure. Derivations of the resulting grammar simulate
all and only those derivations of the LFG grammar whose derived strings are assigned
to that input.2 Thus the generated string set is a context-free language compactly repre-
sented by the specialized grammar, and the individual members of that language can be
enumerated, just as for parsing, by using standard context-free generation algorithms.

Our approach can be seen as a generalization and formalization of other chart-based
generation algorithms, producing all and only correct outputs for larger combinations
of grammars and inputs. It extends to unification grammars with explicit context-free
backbones, such as PATR (Shieber et al. 1983), and also to formalisms that permit a
context-free skeleton to be extracted from richer specifications. But it does not extend

1 Dymetman (1997) extends this characterization to unification grammars.
2 The word “derivation” here and in the following is used only to characterize the notion of

well-formedness in LFG and is not meant to undermine the contrast between LFG and
conventional transformational approaches to syntax.
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Figure 1
The components of an LFG representation: string, constituent structure, functional structure.

to cyclic input structures because, as we will show by example, an LFG grammar
might relate to a cyclic structure a set of strings that is not context-free. Because acyclic
structures are normally assumed to be the only f-structures that are motivated for
linguistic analysis (Kaplan and Bresnan 1982), this restriction does not seem to limit
the applicability of our algorithm for natural language generation.

We begin with some background so that we can make the problem and its solution
more explicit. Along with many other description-based grammar formalisms, an LFG
grammar G assigns to every string s in its language at least one f-structure. This situation
can be characterized in terms of a derivation relation ∆G, defined as follows:

(1) ∆G(s,F) iff G assigns to the string s the f-structure F

In the LFG approach a sentence s and its f-structure F are not directly related. Their
relation is mediated by a valid c-structure for s (Kaplan 1995). The arrangement of the
three components of an LFG representation is illustrated in Figure 1. This representation
is derivable by a grammar that includes the annotated (nonterminal) rules in (2a–c)
and lexical expansions in (2d–f). Annotated lexical c-structure rules are just notational
variants of traditional LFG lexical entries.

(2) a. S → NP VP
(↑ SUBJ) = ↓ ↑ = ↓

b. NP → DET N
↑ = ↓ ↑ = ↓

c. VP → V
↑ = ↓

d. DET → a
(↑ SPEC) = INDEF

(↑ NUM) = SG

e. N → student
(↑ PRED) = 'STUDENT'

(↑ NUM) = SG

f. V → fell
(↑ PRED) = 'FALL〈(SUBJ)〉'

(↑ TENSE) = PAST

In accordance with the basic architecture of LFG, an LFG grammar provides a set of
licensing conditions that determine grammatical representations by descriptive, model-
based rather than procedural methods. The well-formedness of the representation in
Figure 1 with respect to the grammar in (2) is thus characterized as follows.

The c-structure is valid or well-formed because we can assign to each nonterminal
node a grammar rule that licenses or justifies the local mother–daughters configuration
constituted by the node and its immediate daughters. If we assume that the c-structure
of Figure 1 consists of the nodes root,n1, ..,n8 and these nodes are related and labeled
as depicted in Figure 2, then the rule-mapping ρ that justifies the c-structure is given
by (3).

(3) ρroot = (2a), ρn1
= (2b), ρn2

= (2c), ρn3
= (2d), ρn4

= (2e), ρn5
= (2f )
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Sroot

NPn1
VPn2

DETn3 Nn4
Vn5

an6 studentn7 felln8

Figure 2
The c-structure of Figure 1 with explicitly specified nodes.

A description of the f-structure (called the f-description) for this tree and rule-
mapping is constructed by instantiating the annotations of all justifying rules in the
following way. For each rule justifying a local mother–daughters configuration, all
occurrences of the ↑ symbol (called a metavariable) in the functional annotations of
the daughters are replaced by the mother node, and for each of the daughter cat-
egories, all occurrences of the ↓ metavariable in its annotations are replaced by the
corresponding daughter node.3 Thus, the ↓ of the annotations on a daughter category
of a rule and the ↑ of the annotations of the rule that further expands that category
are always instantiated with the same node. The complete f-description is the union
of the instantiated descriptions of all the justifying rules. The f-description obtained
from the c-structure in Figure 1 and the rules of the justifying mapping in (3) is given
in (4).

(4) 


(root SUBJ) = n1, root = n2,
n1 = n3,n1 = n4,

n2 = n5,
(n3 SPEC) = INDEF, (n3 NUM) = SG,

(n4 PRED) = 'STUDENT', (n4 NUM) = SG,
(n5 PRED) = 'FALL〈(SUBJ)〉', (n5 TENSE) = PAST




The f-structure in Figure 1 is associated with the given c-structure because it satisfies
the f-description in (4), and furthermore, it is the unique minimal solution for this
description. In general, LFG requires the f-description of a grammatical sentence to be
satisfiable and thus to have at least one model. Each such satisfying model consists of
a universe and an interpretation function that assigns unary (partial) functions to the
attributes (SUBJ, NUM, SPEC, etc.) and elements of the universe to the atomic feature
values (SG, INDEF, etc.), as well as to the nodes in the description. Among the models
satisfying a given f-description there is an (up to isomorphism unique) minimal model,
one that is not properly subsumed by other satisfying models.4 This minimal model
represents the f-description’s minimal solution, the one from which the f-structure
for the sentence is obtained. Conventional attribute–value matrices where the nodes
(or node numbers) are attached to the left brackets are LFG-typical representations of

3 Our instantiation procedure uses the nodes themselves instead of the related f-structure variables of
Kaplan and Bresnan (1982) or the more complex φ-terms of Kaplan (1995). This is mathematically
equivalent to the other representations but simplifies our illustrations.

4 For some sentences and some grammars (e.g., those involving functional uncertainty) there are
f-descriptions with several non-isomorphic minimal models. As we discuss in a subsequent article
(Wedekind and Kaplan forthcoming), these also lie within the bounds of our context-free construction.
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exactly such minimal models. The attribute–value matrix representation of the minimal
model of the f-description (4) is given in (5).

(5) root
n2
n5




SUBJ

n1
n3
n4


PRED 'STUDENT'

NUM SG
SPEC INDEF




PRED 'FALL〈(SUBJ)〉'
TENSE PAST




The solution in (5) is converted to the f-structure representation in Figure 1 by
removing the node labels that record the relation of the f-structure to the c-structure.
From a formal point of view, an f-structure is obtained from the minimal model of an
f-description by restricting its interpretation function to the attributes and atomic fea-
ture values of the grammar, thus disregarding the nodes and their interpretation.5

We now turn to the generation problem. A generator for G provides for any given
f-structure F the set of strings that are related to it by the grammar:

(6) GenG(F) = {s | ∆G(s,F)}

The algorithm presented in this article accomplishes the generation task by pro-
ducing a context-free grammar for GenG(F), for a given LFG grammar G and any acyclic
input f-structure F.

The abstract generator characterization in (6) is of course dual to the one for a parser
for G, since a parser produces for any given terminal string s the set of f-structures that
are assigned to it by G:

(7) ParG(s) = {F | ∆G(s,F)}

For parsing, the Kaplan and Bresnan (1982) proscription of nonbranching dominance
chains guarantees that ParG(s) will contain only a finite number of f-structures, but this
condition does not ensure the finiteness of the set of strings GenG(F) that are related to
an f-structure F. This is illustrated by the simple grammar in (8):

(8) S → a S b
↑ = ↓

S → c
(↑ H′) = V′

S → a b
(↑ H) = V

This generates for the input (9)

(9) [H V]

the infinite context-free language {an bn | 1 ≤ n}.
From a cognitive point of view it seems unrealistic that the number of sentences

that a natural language grammar relates to an f-structure is infinite. As a minimum,
there should be some relationship that bounds the size of the c-structure of a sentence

5 Note that the interpretation of the node constants that we restrict out of the minimal models can be seen
to represent the structural correspondence function that maps individual nodes of the c-structure tree
into elements of the f-structure (cf. Kaplan 1995).
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by the size of the f-structures associated with it. Such a structural relationship would
then force the related sentences to form a finite set. Studies to determine intuitively
plausible restrictions are rather scarce, however, and proposals for such restrictions are
not yet generally accepted. It is thus still an open question whether grammars of actual
natural languages satisfy the particular resource-boundedness restrictions on which
termination of some existing chart-based generators depends.

Even if only finite sets of sentences are related to the f-structures, these sets might
still be very large. Experiments with a broad-coverage German LFG grammar (Dipper
2003; Rohrer and Forst 2006) have shown that, because of the scrambling that German
allows, a given f-structure might be related to a huge set of long sentences.6 This has
consequences at least for those approaches that assume the output of generation to be
a word lattice (Langkilde and Knight 1998) or a finite-state machine representing the
(finite) set of all generated sentences. A lattice can represent a large collection of strings
compactly only if they are characterized by independent sets of alternative substrings.
Scrambling languages, however, have alternative substrings that reappear in different
positions with complex cooccurrence dependencies and therefore cannot be shared in a
lattice representation (see Langkilde [2000] for discussion). Our context-free grammars
(and also Langkilde’s [2000] and Knight and Langkilde’s [2000] forest representations)
offer a much more compact encoding under these circumstances, and their structure
and formal properties are as well understood as lattices and finite-state machines.

Our approach might also be more appropriate than existing chart-based approaches
for optimality-theoretic generation (Kuhn 2001, 2002, 2003). An optimality-theoretic
LFG system consists of two components: a universal LFG grammar and a language-
specifically ordered set of violable constraints (Bresnan 2000). The universal LFG gram-
mar is used to produce the candidate space of possible analyses (consisting of the
c-structure/f-structure pairs that are derivable by the grammar). The optimal and thus
grammatical analyses are those candidates that violate the fewest constraints. A tech-
nical problem comes from the fact that the universal grammar by design may assign
an infinite number of c-structures and string realizations to a given f-structure, and the
optimal outputs can be identified only by evaluating all of these against the collection
of constraints. Our context-free characterization provides a finite evaluation procedure
even for an infinite candidate space. By virtue of the pumping lemma for context-free
languages (Bar-Hillel, Perles, and Shamir 1961; see also Hopcroft and Ullman 1979) we
can enumerate the c-structure trees assigned to an input f-structure one by one in order
of increasing depth. Because the number of constraint violations increases beyond a
certain number of recursive category expansions, the optimal results from the infinite
space can be chosen after examining only a finite number of relatively small structures
(see Kuhn [2003] for details).

Similar to Lang’s approach to parsing (see also Billot and Lang 1989), we provide
a general framework encompassing all forms of chart generation in a single formalism.
This is because existing chart-based generators can be understood as concrete but some-
how restricted algorithm/datastructure implementations of our context-free grammar
construction. These restrictions may lead them to produce incorrect outputs in some
situations. Because we show the correctness of the output grammar for unrestricted

6 The German grammar was developed as part of the Parallel Grammar project (ParGram), a research
and development consortium that has produced large-scale LFG grammars for several languages (Butt
et al. 1996, 2002). These grammars are developed on the XLE system, a high-performance platform for
LFG parsing and generation. More information on the ParGram project and XLE can be found at:
http://pargram.b.uib.no/.
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LFG grammars, our framework allows us to examine, compare, and improve on existing
chart-based generation techniques.

The organization of this article is as follows. In the next section we define the
fundamental formal objects of LFG theory and the relevant relationships among them.
Section 3 is the technical core of the article. There we present and prove the correctness
of the context-free grammar-construction algorithm for LFG grammars with arbitrary
equational constraints and acyclic input f-structures. The grammar construction ab-
stracts away from specific details of data structure and computational strategy not es-
sential to the mathematical argument. Performance and computational strategy are then
briefly considered in Section 4, and Section 5 compares our approach to other generation
algorithms. In Section 6 we identify a fundamental limitation of our approach, demon-
strating that the context-free property does not hold for elementary equational con-
straints if the input f-structure contains cycles. On the other hand, if the input is acyclic,
the basic context-free construction can be extended beyond simple equations to the
additional descriptive devices proposed by Kaplan and Bresnan (1982) and still in
common use. This is shown in Section 7. The last section highlights some additional
consequences of this approach.

The present article elaborates on ideas that we first presented in Kaplan and
Wedekind (2000). In that paper we outlined a context-free grammar construction for
a subclass of LFG grammars with restricted functional annotations and single-rooted
input structures. Here we consider a more general class of grammars and inputs that
requires a more rigorous mathematical analysis.

2. Preliminaries

We start with a formal characterization of LFG grammars with equational statements.
Let V∗ denote the set of all finite strings over V. An LFG grammar G over a set Σ of
attribute and value symbols is defined as follows:

Definition 1
An LFG grammar G (over attribute–value set Σ) is a 4-tuple (N,T, S,R) where N is a
finite set of nonterminal categories, T is a finite set of terminal symbols, S ∈ N is the
root category, and R is a finite set of annotated productions of the form

A → X1 .. Xm
D1 Dm

with A ∈ N and X1..Xm ∈ (N ∪ T)∗. (Note that R might contain ε-productions, al-
though these do not appear in most current linguistic descriptions.) Each annotated
description Dj (j = 1, ..,m) is a (possibly empty) finite set of equalities between expres-
sions of the form (↑ σ), (↓ σ), or v where v is a value of Σ and σ is a possibly empty
sequence of attributes of Σ. When σ is empty, (↑ σ), (↓ σ) are equivalent to ↑ and ↓,
respectively.7

7 Note that this definition permits equations containing terms of the form (↓ σ), with σ nonempty, and that
it does not require ↑ and ↓ to occur in the annotation of each category. It thus allows for grammars that
assign to sentences multiply rooted f-structures or f-structures consisting of totally unconnected parts.
We take the “f-structure of a sentence” to be the collection of all elements that correspond to c-structure
nodes, even those that are not accessible from the root node’s f-structure.
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We next define how instantiated descriptions are obtained from the rules by sub-
stituting for the ↑ and ↓ metavariables elements drawn from a collection of terms.
C-structure nodes are included among the terms, but later on we also make use of addi-
tional elements. We define a function Inst that assigns to each m-ary rule r, term t, and
term sequence t1..tm the instantiated description that is obtained from the annotations
of r and the terms by substituting t for ↑ and tj for ↓ in the annotations of all j = 1, ..,m
daughters. In the following definition we use the (more compact) linear rule notation
A → (X1,D1)..(Xm,Dm) that we prefer in more formal specifications.

Definition 2
Let r be an m-ary LFG rule A → (X1,D1)..(Xm,Dm) (m ≥ 0) and τ = (t, t1..tm) be a pair
of a term and a sequence of terms of length m. Then the instantiated description that
results from r and τ is given by

Inst(r, τ) =
m⋃

j=1

Inst(Dj, t, tj)

where Inst(Dj, t, tj) is the instantiated description produced by substituting t for all
occurrences of ↑ in Dj and substituting tj for all occurrences of ↓ in Dj.

The derivation relation for LFG grammars (∆G) is defined as already described
informally in the previous section. This is based on context-free derivation trees. Let
us assume that root is the root node of any c-structure c, and that dts is a function that
assigns to each nonterminal node n of c the sequence of its immediate daughters (dts(n)).
Context-free derivations are then defined as follows:

Definition 3
A labeled tree c and a rule-mapping ρ from the nonterminal nodes of c into the rules of
context-free grammar G is a context-free derivation of string s from nonterminal B in
G iff

(i) the label (category) of root is B,

(ii) the yield is s,

(iii) for each nonterminal node n with label A and dts(n) = n1..nm with
labels X1, ..,Xm, respectively, ρn = A → X1..Xm.

When we informally described LFG derivations, we pointed out that we obtain the
f-structure from the (up to isomorphism) unique minimal model of the f-description
by restricting it to the attribute–value set Σ. This is formalized in the following def-
inition by requiring the f-structure to be isomorphic (∼=) to M|Σ, the restriction to Σ
of a minimal model M of the derived f-description. The effect of the isomorphism
is to abstract away from the particular properties of different f-structure models that
have no linguistic significance. Moreover, because we operate on an arbitrary mem-
ber of the class of isomorphic structures without regard to any of its accidental or
nonsignificant properties, we know that our analysis applies to all members of the
class.
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Definition 4
A labeled tree c and a mapping ρ from the nonterminal nodes of c into R is an LFG deri-
vation of string s with functional description FD and f-structure F in LFG grammar G iff

(i) the label of root is S,

(ii) the yield is s,

(iii) for each nonterminal node n with label A and dts(n) = n1..nm with
labels X1, ..,Xm, respectively, ρn = A → (X1,D1)..(Xm,Dm),

(iv) FD =
⋃

n∈Dom(ρ)

Inst(ρn, (n, dts(n))),

(v) FD is satisfiable,

(vi) FD �� a = v if v is an atomic feature value and a is any other constant
(atomic feature value or node) occurring in FD,

(vii) FD �� (v σ) = (v σ) if v is an atomic feature value and σ is a nonempty
sequence of attributes,

(viii) M|Σ ∼= F where M is a minimal model of FD.

Conditions (vi) and (vii) are syntactic versions of the constant/constant and con-
stant/complex clash conditions that together capture LFG’s functional uniqueness
condition (the denotations of an atomic feature value and any other distinct atomic
feature value or node constant have to be distinct (vi); atomic feature values have no
attributes (vii)).8 A model of an f-description, like the restricted one in (viii), is a pair
(U , I) consisting of a universe U and an interpretation function I. The interpretation
function assigns to each constant occurring in the f-description an element of U and
to each attribute a unary partial function on U .

Note that we create the f-description by instantiating the ↑’s and ↓’s by the nodes of
a given c-structure. Thus, we conceive of these terms as constants and will refer to them
on the f-description level sometimes as node constants rather than nodes. Because the
instantiating nodes are uniquely determined if we have a mapping ρ licensing a given
c-structure, in the following we abbreviate Inst(ρn, (n, dts(n))) by Inst(ρn).

In general, two descriptions D and D′ are said to be equivalent (D ≡ D′) iff the
restrictions of their minimal models to Σ are isomorphic.

Definition 5
Let D and D′ be two descriptions with minimal models M and M′. Then D ≡ D′ iff
M|Σ ∼= M′|Σ.

From Definition 4 we obtain the derivability relation ∆ as follows.

Definition 6
A terminal string s is derivable with f-structure F in G (∆G(s,F)) iff there is a derivation
of s with F (with some f-description FD) in G.

8 Usually, conditions (vi) and (vii) are taken to be additional nonlogical axiom schemata of some traditional
equational logic expressive enough to axiomatize LFG’s underlying feature logic. Because we are not
primarily interested in completely axiomatizing LFG’s formal devices within some appropriate
meta-theory, we enforce the special properties of LFG’s atomic feature values by definition and assume
that standard first-order logic with equality is used to determine satisfiability.
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In this context we repeat the definition of the set of stringsGenG(F) that an LFG grammar
G relates to a given f-structure F:

Definition 7
For any LFG grammar G and any f-structure F

GenG(F) = {s ∈ T∗ | ∆G(s,F)}.

In the next section we establish the basic result of this article: We present an al-
gorithm to construct for an arbitrary LFG grammar G and any acyclic f-structure F a
particular context-free grammar that provides a formal representation for the language
GenG(F).

3. Constructing the Specialized Grammar for GenGGG(FFF)

In the process of generation, the c-structures and the f-descriptions for an input
f-structure F are the unknowns that must be discovered to confirm that a given string
belongs to the set GenG(F). The set of valid c-structures that G provides for F is clearly
a subset of the trees that are generated by the context-free backbone of G. But this
subset might be infinite, as we have already seen with the input (9) and the grammar
in (8), because there is in general no fixed finite upper bound on the length of the
strings related to F or the size of their c-structures. Whether or not a given tree is a
valid c-structure for F then depends on the properties of the f-description that arises
by instantiating with the proper node constants the annotations on the individual rules
that license the derivation of that tree. The valid c-structures are just those trees for
which F is the f-structure of the resulting f-description.

Because of the possibly unbounded size of the c-structures, there is also no fixed
upper bound on the number of node constants that may occur in an f-description for
F. However, because the number of f-structure elements to which the node constants
actually refer is bounded by the size of F, it must be possible to obtain for any derived
f-description FD an equivalent description whose constants are drawn from a fixed
finite set. For instance, if we introduce a distinct canonical constant for each element
of F, we can create an equivalent description by substituting for each node constant
in FD the canonical constant associated with the functional element corresponding to
that node. This substitution typically reduces the number of distinct terms needed for
instantiation, and its usual effect is to replace several different node constants with a
single canonical term. But these replacements will provide an equivalent description
because we substitute a given term for two node constants if and only if it logically
follows from FD that those two nodes map to the same element of F. Thus, if FD
discriminates between two elements of F, so will the description that results from such
a reducing substitution.

Our context-free grammar construction crucially depends on the ability to find
for every f-description of F (from every possible c-structure) an equivalent descrip-
tion that involves only a finite number of distinct instantiation terms. This is what
enables us to simulate all the conditions for correct LFG generation with a finite set of
context-free category labels and a finite set of context-free productions, and thus to
rely on the finite control of the rule-by-rule category matching process of context-free
generation to produce the strings in GenG(F).
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The set of terms that correspond directly to the elements of F is large enough
to enforce all functional discriminations for an f-description associated with a com-
plete c-structure, as we have suggested. But unfortunately that set may not be large
enough to keep track of all necessary distinctions as an f-description is created in an
incremental context-free derivation process. For some f-structures and some grammars
it may not follow from the description associated with one portion of a derivation
tree that two nodes map to the same functional element, even though that identity
does follow when equations in the f-description for the entire tree are taken into
account.

Suppose that a three-daughter LFG start rule provides the instantiated annotations
(root F) = n1, (root G) = n2, and root = n3. Based only on this information we cannot
tell whether n1 and n2 can map to the same element of the f-structure and therefore
whether it is correct to substitute the same canonical constant for both of them. It
depends on whether the larger description that incorporates the expansion of the third
daughter implies the identity of the n1 and n2 structures. The same-constant substitution
would preserve equivalence only if the larger description implies that (n3 F) = (n3 G).
We must have two distinct constants available until that implication is deduced in the
course of the derivation, even if the input f-structure does not contain separate ele-
ments for those constants to correspond to.

Thus the set of constants needed to correctly reduce an arbitrary description as a
derivation proceeds incrementally may be larger than the number of elements in the
input f-structure and larger than what is required for an equivalent description for a
complete derivation. However, for each acyclic F we show that there is always a finite
set of canonical terms that can maintain all necessary functional discriminations as a
derivation unfolds. We use this set to construct a reducing substitution that permits
generation to be carried out under finite control. In contrast, we observe in Section 6
that the partial descriptions of cyclic structures cannot safely be reduced without an
unbounded number of canonical terms.

For the derivations that the simple LFG grammar in (8) provides for the input
[H V], we can accomplish the reduction of the f-description space with only two terms,
the canonical constant root and a separate canonical constant⊥ that serves as a value for
all nodes that do not occur in an f-description. Let us start with the shortest derivation
for the given input. This consists of the c-structure in (10), which is licensed by the
rule-mapping ρroot = S→ a b

(↑ H) = V .

(10) Sroot

an1
bn2

If we pair the licensing rule with its instantiating nodes (root,n1 n2), we arrive at the
instantiated rule

(
S→ a b

(↑ H) = V , (root,n1 n2 )
)
. The reduction can be accomplished by apply-

ing to the instantiating nodes a substitution that replaces root by root and both n1 and
n2 by ⊥. This produces the instantiation

(
S→ a b

(↑ H) = V , (root,⊥⊥)
)

from which we obtain
the description {(root H) = V}. This is identical to the description that arises from the
original node-instantiated rule, because the ↓ does not occur in the annotations. The
reduction for all other derivations of [H V] is illustrated in Figure 3. The substitutions
of the node constants of the schematically represented derivations by canonical terms
are indicated by assigning the canonical term values to the nodes. If we consider the
resulting instantiation of the applied rules at the bottom of column (b), we observe that
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Figure 3
Schematic representation of the derivations of length > 1 with f-structure [H V] admitted
by the grammar in (8). The right-hand side shows the instantiated descriptions produced by
appropriately instantiating metavariables by node constants in column (a) and by particular
canonical canonical terms in column (b).

the f-description of each derivation of the input in G reduces to the description (11a)
and that this is the description that results for any derivation with the set of instantiated
rules depicted in (11b).

(11) a.
{ root = root,

(root H) = V

}
b. 


(

S→a S b
↑ = ↓ , (root,⊥ root⊥)

)
,(

S→ a b
(↑ H) = V , (root,⊥⊥)

)



The reducibility of the f-description space for F provides the key insight for our
context-free grammar construction. The construction is accomplished in three steps. In
the first step we identify (as illustrated earlier) a finite set of canonical terms that can
serve in reducing the f-description space that G provides for F.

In the second step we use these terms to construct a set of instantiated rules
of G. These instantiations are “appropriate” in the sense (to be made precise later)
that they maintain all necessary distinctions. They are formed by associating with
the metavariables canonical terms that can legitimately be used to reduce the corre-
sponding nodes of a local tree of a potential derivation of F. For the grammar (8)
and the terms root and ⊥, for example, there are only three appropriately instantiated
rules, the two rules contained in (11b) and

(
S→ c

(↑ H′ ) = V′ , (root,⊥)
)
. We then determine

all collections of appropriately instantiated rules that together provide descriptions
of F without mistakenly collapsing a functional discrimination. For our particular ex-
ample there are just two collections of instantiated rules that provide a description of
[H V], namely,

{(
S→ a b

(↑ H) = V , (root,⊥⊥)
)}

and the set in (11b). These collections are drawn
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from the power set of the appropriately instantiated rules, so there is only a finite
number of them and each contains a finite number of instantiated rules. This ensures
that we can determine the f-description space that G provides for F without knowing
the details of the derivations for F and their reductions.

In the third and final step we create the context-free grammar that simulates exactly
those derivations in G whose strings are assigned the f-structure F. The categories of
this new grammar consist of refinements of the categories of the context-free backbone
of G together with a distinct root category SF. The original categories are augmented
with two additional components, a canonical instantiation term as used in the first step,
and a subset of one of the instantiated-rule collections determined in the second step.
The term component is used to encode the reducing substitution for the f-description
of a simulated derivation, and the rule component is used to record the reduced in-
stantiations of the licensing LFG rules whose application must still be simulated in
order to complete that derivation. The productions of the new grammar are created
from the rules contained in the instantiated-rule collections by replacing the original
categories by a certain number of their refinements, and then adding a particular set of
start rules. The start rules expand the root category of the new grammar to the original
start symbol augmented by root and one of the instantiated-rule collections determined
in the second step.

The context-free grammar thus constructed has a much larger set of categories and
many more rules than G. It is organized so that the normal matching of categories in a
context-free derivation globally ensures that the refined rules simulate all derivations
of F in G whose f-description is reducible to a description provided by one of the
instantiated-rule collections determined in the second step. Because we have already
indicated that every f-description of F must be reducible to a description provided by
one of these instantiated-rule collections, the constructed grammar simulates exactly
the set of derivations that G provides for F. The strings of GenG(F) are obtained by
removing the additional components from the categories of the terminal strings. With
r1 abbreviating

(
S→a S b

↑ = ↓ , (root,⊥ root⊥)
)

and r2 abbreviating
(

S→ a b
(↑ H) = V , (root,⊥⊥)

)
our

construction produces for the LFG grammar in (8) and the input [H V] a context-free
grammar that contains the rules in (12).

(12) a. SF → S:root:{r1, r2} b. SF → S:root:{r2}

c. S:root:{r1, r2} → a:⊥:∅ S:root:{r1, r2} b:⊥:∅

d. S:root:{r1, r2} → a:⊥:∅ S:root:{r2} b:⊥:∅ e. S:root:{r2} → a:⊥:∅ b:⊥:∅

These derive the set of terminal strings {a:⊥:∅n b:⊥:∅n | 1 ≤ n}. By removing the terminal
refinements we obtain {an bn | 1 ≤ n} and thus exactly the set of strings that the gram-
mar in (8) relates to [H V]. The rules (12b,e) simulate the derivation with the c-structure
in (10) and the rules (12a,c–e) simulate the derivations of length> 1. Rule (12c) simulates
recursions of the S rule of (8) and an application of rule (12d) terminates a recursion
because it consumes r1. An application of rule (12e) consumes r2 and terminates the
derivations.

In the remainder of this section we first identify the finite set of canonical terms
that can be used to reduce the f-description space for a given f-structure F derivable
with an LFG grammar G. We then investigate in Section 3.2 the problem of reducing the
f-description space for F and G. In Section 3.3 we give a precise recipe for constructing
the context-free grammar for F and G, and in Section 3.4 we illustrate this with a few
examples.
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3.1 Identifying the Reducing Terms

Our reduction of the f-description space makes use of the fact that we can eliminate cer-
tain node constants from an f-description FDwithout risk of producing a description not
equivalent to the original. This is because some node constants can be defined in terms
of others. We proceed rule-wise top–down based on the following definability relation.

Definition 8
Let r be an m-ary LFG rule, t be a term, and a1..am be a sequence of constants of length m,
each of them not occurring in t. A constant aj is m(other)-definable in Inst(r, (t, a1..am))
iff there is a (possibly empty) σ such that Inst(r, (t, a1..am)) � aj = (t σ).

If the constant aj that instantiates the ↓ for a particular daughter is m-definable in terms
of (t σ) in Inst(r, (t, a1..am)), then all functional discriminations will be preserved if aj is
eliminated in favor of the term (t σ) from any description containing this instantiated
description of r.

To illustrate the elimination process, let us assume that our grammar includes
among its rules the ones in (13).

(13) a. S → NP VP
(↑ SUBJ) = ↓ ↑ = ↓

b. VP → V ADVP
↑ = ↓ ↑ = ↓

c. ADVP → ADV ADVP
(↑ ADJ) = (↓ ELE) ↑ = ↓

d. ADVP → ADV
(↑ ADJ) = (↓ ELE)

e. NP → John
(↑ PRED) = 'JOHN'

f. V → fell
(↑ PRED) = 'FALL〈(SUBJ)〉'

(↑ TENSE) = PAST

g. ADV → today
(↑ PRED) = 'TODAY'

h. ADV → quickly
(↑ PRED) = 'QUICKLY'

In this grammar fragment we use equational annotations in the adverbial phrase
rules (13c) and (13d) instead of the more traditional set-membership statements (Kaplan
and Bresnan 1982). This is another way of allowing for multi-valued attributes that
was the original motivation for introducing set representations into LFG theory. We
use the equational treatment here to illustrate the fact that undefinable and hence
ineliminable constants can arise even when equality is the only formal device in an
f-description. The adverbial rules also illustrate that undefinable constants can figure in
the description of multiply rooted f-structures. The rules in (13) provide, for example,
the derivation depicted in Figure 4. The figure shows the f-structure on the left-hand
side and the instantiated descriptions of the licensing rules associated with the nodes
of the c-structure on the right-hand side. This more conventional way of depicting
derivations (Kaplan and Bresnan 1982) makes it easy to see the mother-definability
relation and at the same time permits the licensing rule-mapping to be read from the
annotated c-structure. The complete f-description is shown as a set in (14).

(14)



(root SUBJ) = n1, (n1 PRED) = 'JOHN',
root = n2, n2 = n4,n2 = n5,n5 = n8,

(n4 PRED) = 'FALL〈(SUBJ)〉', (n4 TENSE) = PAST,
(n5 ADJ) = (n7 ELE), (n7 PRED) = 'TODAY',

(n8 ADJ) = (n10 ELE), (n10 PRED) = 'QUICKLY'



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Sroot

NPn1
(root SUBJ) = n1

VPn2
root = n2

Johnn3
(n1 PRED) = 'JOHN'

Vn4
n2 = n4

ADVPn5
n2 = n5

felln6
(n4 PRED) = 'FALL〈(SUBJ)〉'

(n4 TENSE) = PAST

ADVn7
(n5 ADJ) = (n7 ELE)

ADVPn8
n5 = n8

todayn9
(n7 PRED) = 'TODAY'

ADVn10
(n8 ADJ) = (n10 ELE)

quicklyn11
(n10 PRED) = 'QUICKLY'




SUBJ
[
PRED 'JOHN'

]
PRED 'FALL〈(SUBJ)〉'
TENSE PAST
ADJ




[
ELE
PRED 'TODAY'

]
[

ELE
PRED 'QUICKLY'

]

Figure 4
The derivation of John fell today quickly with the rules in (13).

In this derivation, the node constants n1,n2,n4,n5, and n8 are m-definable whereas
root, the adverbial nodes n7 and n10, and the terminal nodes are not. For all m-definable
constants, we can construct definitions rule-wise top–down in the following way. We
begin with the start rule and derive from its instantiated description {(root SUBJ)= n1,
root= n2} the definitions n1 = (root SUBJ) and n2 = root for the m-definable daughters n1
and n2. We then continue with the rules that expand n1 and n2. Let us consider the VP
rule that expands n2. For the m-definable n2 we use the already constructed definition
to replace n2 by its defining term root in the instantiated description of the VP rule.
From Inst(VP→ (V,{↑ = ↓})(ADVP, {↑ = ↓}), (root,n4 n5)) we then derive the definitions
n4 = root and n5 = root for its m-definable daughters, and so forth. If we run like this
through the whole derivation, for all m-definable daughters we obtain defining terms
that do not contain mother-definable node constants. For our example these are the
ones in (15).

(15) n1 = (root SUBJ)
n2 = root
n4 = root
n5 = root
n8 = root

By substituting all mother-definable node constants by their defining terms we can
then produce from the original f-description the equivalent description in (16).

(16)



(root SUBJ) = (root SUBJ), (root SUBJ PRED) = 'JOHN',
root = root,

(root PRED) = 'FALL〈(SUBJ)〉', (root TENSE) = PAST,
(root ADJ) = (n7 ELE), (n7 PRED) = 'TODAY',

(root ADJ) = (n10 ELE), (n10 PRED) = 'QUICKLY'




Notice that for each acyclic f-structure F the maximal length of the σ in the defining
terms is bounded by the depth of F.

Thus we see that a mother-definable constant can be eliminated in favor of a
constant corresponding to a higher node and a sequence of attributes leading down
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through the f-structure. The constants that are not eliminable are the root constant root (if
it occurs in FD) and all daughter constants that occur in FD but are not mother-definable.
At least for acyclic f-structures, however, we can show that there is an upper bound
on the number of these remaining constants. This is because the remaining constants
must each denote one of the elements of the given f-structure, but no two of them can
denote the same element. This is a consequence of LFG’s instantiation procedure and
functional uniqueness condition, and the acyclicity of the f-structure.

Given LFG’s instantiation procedure, as formalized in Definition 2, two distinct
node constants can be related in a single equation only if the nodes stand in a mother–
daughter relationship. Thus a daughter and a node external to the mother cannot be
related directly by instantiation but only as a consequence of a deduction involving
at least one instantiated annotation of some other licensing rule. Because of LFG’s
functional uniqueness condition the equations involved in such a deduction cannot
contain atomic feature values. The constant/complex clash condition (vii) of Defini-
tion 4 prevents atomic values from being substituted for proper subterms and the
constant/constant clash condition (vi) prevents them from being equated to nodes. Thus
such a deduction can only involve equations relating a daughter to its mother (or a node
to itself).

If an undefinable daughter corefers with a node external to the mother, then the
deduction that relates them must involve an instantiated annotation of that daugh-
ter that is (up to symmetric permutation) of the form (↑ σ) = (↓ σ′) with |σ′| > 0
(such as the adverbial annotations previously mentioned), and there must be deduc-
tions from other equations that induce a cycle. This is demonstrated in the following
lemma.

Lemma 1
Let c and ρ be a derivation with f-description FD for an acyclic f-structure in G. If nj is a daughter
of n and nj is not m-definable in Inst(ρn) then FD �� nj = (n′ χ) for all n′ not dominated by nj
and all (possibly empty) sequences of attributes χ.

Proof
Let nj be a daughter of n that is not m-definable in Inst(ρn) and suppose that nj = (n′ χ)
would follow from FD for node n′ not dominated by nj. Assume further that FD and
the instantiated descriptions of the licensing rules are closed under symmetry. Now
recall that the rule of substituting equals for equals has the form

e t = t′

e′

where e is an equation containing subterm t and e′ is obtained from e by replacing one
occurrence of t in e by t′. Then we know that there is an equation t = t′ that is either
in FD (or follows from FD by partial reflexivity9) such that nj = (n′ χ) is derivable from
t = t′ by a left-branching substitution proof of the form

9 It may be the case that such a left-branching proof must start with a reflexive equation t = t that is not in
FD but can be inferred by partial reflexivity from an equation (t σ) = t′′ in FD. Partial reflexivity is the
restriction of reflexivity to well-defined (object denoting) terms. It is a sound inference rule for the theory
of partial functions for which full reflexivity does not hold.
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•

•
•

•

t= t′

(nσζ)
(n′χ)

(njσ
′ζ)

•

•
•

•

(nσζ)
(n′χ)

(njσ
′ζ) t= t′

(i) (ii)

Figure 5
Possible dominance relations between nj and the node occurring in t′. (i) The node occurring in
t′ is dominated by nj. Note that n might occur in t. (ii) The node occurring in t′ is not dominated
by nj. As a special case, t might be (nj σ

′). The dashed and dotted arrows indicate the tree
traversal performed in the rewriting proofs of nj = (n′ χ) from t = t′, that is, the sequences of
nodes that must appear in the equations used to rewrite t to nj and t′ to (n′ χ), respectively.

t = t′ t1 = t′1
e1 . . .

em−1 tm = t′m
nj = (n′ χ)

where t is rewritten to nj and t′ to (n′ χ) by a sequence of substitutions all justified by
equations ti = t′i ∈ FD, i = 1, ..,m (cf. Statman 1977; Wedekind 1994, Section 4). Because
of LFG’s instantiation procedure and the constant/constant and constant/complex
clash conditions, each premise of this proof must have the form (n̄ σ̄) = (ň σ̌) where
either n̄ and ň are in a mother–daughter relation or n̄ = ň. Depending on the dominance
relation between nj and the node occurring in t′ there are two possible cases. These
are illustrated in Figure 5. (i) If the node occurring in t′ is dominated by nj then there
must be a premise (nj σ

′) = (n σ) from Inst(ρn) such that t′ is rewritten to (nj σ
′ζ) and

(nj σ
′ζ) to (n σζ). Because FD � t = nj and hence FD � nj = (nj σ

′ζ), |σ′| = 0 due to
acyclicity. Thus nj = (n σ) ∈ Inst(ρn), contradicting the undefinability assumption. (ii) If
the node occurring in t′ is not dominated by nj there must be a premise (n σ) = (nj σ

′)
from Inst(ρn) such that either t is rewritten to (n σζ) and then to (nj σ

′ζ), or t = (nj σ
′).

Since FD � t = nj, we get in both cases |σ′| = 0 because of acyclicity and thus the same
contradiction as in (i).

The following corollary follows directly from Lemma 1.

Corollary 1
Let c and ρ be a derivation with f-description FD for an acyclic f-structure in G. If nj is a daughter
of n and nj is not m-definable in Inst(ρn) then

(i) FD �� nj = root, and

(ii) FD �� nj = n′i for any distinct node n′i that is not definable in terms of its
mother n′ in Inst(ρn′ ).
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From Corollary 1 it immediately follows that the denotations of FD’s undefinable
node constants are biunique. So, their number must be less than or equal to the size of
the universe of a minimal model M of FD. Suppose F is the f-structure for a derivation
with f-description FD. Because F is isomorphic to M|Σ for any minimal model M of
FD, and M|Σ and M share the same universe, we can use F’s (finite) universe to define
the constants that we require. Thus for each element a of the universe of F that is not
denoted by an atomic value we introduce a constant aa.

10

Definition 9
Let F be an f-structure with F = (U , I). We define the set of constants CF by

CF = {aa | a ∈ U and there is no atomic feature value v with I(v) = a}.

The set CF provides a sufficient number of constants to produce an equivalent reduced
description by a biunique renaming of the node constants that remain after the m-
definable ones are eliminated.

The renaming of the remaining undefinable constants can be accomplished, for
example, if we map in the natural way each mother-undefinable daughter n correspond-
ing to a in the isomorphic image F of M|Σ to the constant aa. Because of Corollary 1,
such a mapping must be biunique. Hence it can be used to rename all undefinable
daughters occurring in FD and will thus produce an equivalent description where all
nodes except root are replaced by constants drawn from F.

As an illustration we pick for the f-structure depicted in Figure 4 the structure
with the universe in (17a) and the interpretation function whose directed acyclic graph
representation is given in (17b).11

(17) a. {a, b, c, d, e, f, g, h, i, j}

b. a
PRED

TENSE ADJ

SUBJ

b c d e
'FALL〈(SUBJ)〉' PAST

PREDELE ELE

f g h

PRED PRED

'JOHN'

i j
'TODAY' 'QUICKLY'

The constants we obtain from the structure (17) by Definition 9 are the ones in (18).

(18) {aa, ad, ae, af, ag}

10 From a computational point of view a constant aa can be regarded as the address of a or a pointer to a.
11 According to our formalization, attribute symbols are interpreted by unary partial functions over the

universe and atomic value symbols by elements of the universe. Thus the graph indicates, for example,
that the interpretation function assigns to the attribute symbol PRED the (unary) partial function
{(a, b), (e, h), (f, i), (g, j)} and to the attribute symbol ELE the partial function {(f, d), (g, d)}. Furthermore,
it interprets the atomic value symbol 'FALL〈(SUBJ)〉' as denoting b and PAST as denoting c.
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Now, let M be a minimal model of our original f-description. Because an isomor-
phism between M|Σ and our structure (17) must map the denotation of n7 in M to f and
the denotation of n10 to g, we can rename n7 by af and n10 by ag and obtain from (16) the
equivalent description (19).

(19)



(root SUBJ) = (root SUBJ), (root SUBJ PRED) = 'JOHN',
root = root,

(root PRED) = 'FALL〈(SUBJ)〉', (root TENSE) = PAST,
(root ADJ) = (af ELE), (af PRED) = 'TODAY',

(root ADJ) = (ag ELE), (ag PRED) = 'QUICKLY'




We next compose the substitution that is induced by the definitions of the definable
daughters and the substitution that we used to rename the undefinable daughters.
This provides a substitution that allows us to produce from the original f-description
an equivalent description in a single transformation. If we compose the two sub-
stitutions of our example, that is, the one induced by the definitions in (15) and
the renaming substitution {(n7, af), (n10, ag)}, we arrive at the reducing substitution
in (20).

(20) {(n1, (root SUBJ)), (n2, root), (n4, root), (n5, root), (n7, af), (n8, root), (n10, ag)}

We now give a precise specification of a (finite) set of terms that can serve as the
range of the reducing substitutions for all derivations of an f-structure F. This set is
obtained from the constants in CF and the attributes of F in the following way. We
first provide the constants CF with their intended interpretation by expanding F in the
natural way to the canonical structure F̂ for Σ ∪ CF.

Definition 10
Let F be an f-structure with F = (U , I). We define the canonical expansion F̂ of F to
Σ ∪ CF by

F̂ = (U , Î) with Î = I ∪ {(aa, a) | aa ∈ CF}.

In the canonical expansion F̂, each element of the universe is denoted by exactly one
constant. Each new constant aa is interpreted by a and each atomic feature value by its
original denotation.

A set TF of canonical terms that includes the ranges of the reducing substitutions
for all possible derivations of F is a set that contains all terms of the form (aa σ) that
are defined in F̂ but do not denote an element already designated by an atomic feature
value. It also contains all terms that we obtain from those by substituting root for their
constant symbols. This set includes all constants of CF (because σ can be empty) and thus
all possible constant values for the mother-undefinable daughters of a derivation for F.
Because each element in the universe of F̂ is denoted by a constant, TF also contains
all possible defining terms for the mother-definable nodes of that derivation. Terms
referring to the denotation of an atomic feature value are not required, since there are
(because of the constant/constant clash condition) no node constants with the same
denotation as any atomic feature value.

The node constant root is substituted for the CF constants in every term to account
for the fact that different derivations may associate different functional elements with
the root of the c-structure. That would be the case, for example, if our grammar contains
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in addition the S and VP rules (21a,b) and alternatively derives the adverbials with the
rules (21c,d).

(21) a. S → S ADVP
↑ = (↓ ADJ) ↑ = ↓

b. VP → V
↑ = ↓

c. ADVP → ADV ADVP
↑ = (↓ ELE) ↑ = ↓

d. ADVP → ADV
↑ = (↓ ELE)

With such a grammar we can derive the f-structure of Figure 4 also with an f-description
where root denotes the ADJ value and where the top of the f-structure is denoted by the
mother-undefinable S node that is expanded by the original start rule. As this example
indicates, a grammar might produce several f-descriptions for the same f-structure
by anchoring the description at different f-structure elements and then moving along
different paths through the structure. This is why the term set must contain the entire set
of constants CF (and the terms containing them) and not just the ones for the f-structure
roots.

Thus TF contains sufficiently many constant symbols and defining terms for the
reducing substitutions to make all the distinctions that could arise from any c-structure
and f-description for the given F. It is defined formally in the following way.

Definition 11
Let F = (U , I) be an f-structure. On the basis of the canonical expansion F̂ = (U , Î) of F to
Σ ∪ CF we first define the set of terms TF

TF = {(aa σ) ∈ Dom(Î) | aa ∈ CF and there is no value v ∈ Σ s.t. Î(v) = Î(aa σ)}.

The set of terms TF that we will use for the grammar construction is then defined by

TF = TF ∪ {(root σ) | there is a term (aa σ) ∈ TF} ∪ {⊥}.

For mathematical convenience we add the dummy constant⊥ as a value for those nodes
of the c-structure that are not interpreted in a minimal model of the f-description. These
are just the ones that do not occur in the f-description. The complete set of terms for the
structure in (17) is given in (22).

(22) {
aa, ad, ae, af, ag,

(aa ADJ), (aa SUBJ),
(af ELE), (ag ELE)

}
∪

{
root,

(root ADJ), (root SUBJ),
(root ELE)

}
∪ {⊥}

We have illustrated that we can reduce the f-description of every derivation of an acyclic
f-structure F to an equivalent description if we replace the node constants by terms
of TF. But this assumes that the c-structure and the f-description are already known.
Our grammar construction requires us to simulate this reduction without knowing
in advance the details of either the c-structure or a particular f-description. And that
means only on the basis of the possible values of the reducing substitutions, namely
TF, and the rules of G.

3.2 Reducing the f-Description Space

We now shift our attention to the rules of G and their instantiating terms, that is, to the
arguments of the Inst function. These are pairs consisting of an m-ary rule r of G and its
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instantiating terms (t, t1..tm). Let us call such a pair an instantiation of r, or sometimes
simply an instantiated rule. Let us further extend the reducing substitutions that we
constructed for the derivations of F to total functions by assigning root to root and ⊥
to each non-denoting node constant. Now recall that the f-description of a particular
derivation for F consists of the union of the instantiated descriptions of the rules that
together license that derivation. If we consider these licensing rules together with
their node instantiation, that is, pairs of the form (r, (n,n1..nm)), and use a reducing
substitution for that derivation to replace the node constants in the instantiations by
canonical terms, then we obtain a collection of instantiated rules of the form (r, (t, t1..tm))
all of which are instantiated by terms of TF. The union of the instantiated descriptions of
these rules is identical to the description that the reducing substitution produces from
the original f-description. Because R and TF are finite, the set of all instantiated-rule
collections that we obtain from the (possibly infinite) set of derivations of F by reducing
their node-instantiated licensing rules must be finite too. This fact is crucial for our
grammar construction.

We further observe that the instantiated rules that result from this substitution are
also appropriate in the following sense.

Definition 12
Let r be an m-ary LFG rule in R of G (m ≥ 0), F be an f-structure, (t, t1..tm) ∈ TF × T m

F ,
and a1..am be a sequence of length m of pair-wise distinct constants not in TF. Then
the instantiated rule (r, (t, t1..tm)) is appropriately instantiated (by terms of TF) iff the
following conditions are satisfied:

(i) if tj = ⊥ then aj is not interpreted in a minimal model of Inst(r, (t, a1..am)),

(ii) if aj is m-definable in Inst(r, (t, a1..am)) then Inst(r, (t, a1..am)) � aj = tj,

(iii) otherwise tj ∈ CF, tj �= t and tj �= ti for all i = 1, ..,m with i �= j.

In the following the set of all appropriately instantiated rules is denoted by IRF (IRF =
{(r, τ) ∈ R× (TF × T ∗

F ) | (r, τ) is appropriately instantiated}).

The constants a1..am in this definition provide the same discriminations as the daughter
nodes of any local tree licensed by the rule. This definition is satisfied by rules that result
from eliminating node constants in favor of terms in the way that we have described.
Such term-instantiated rules satisfy condition (ii), because whenever the mother is
instantiated by t and an m-definable daughter nj is reduced to a term (t σ) ∈ TF then
also Inst(r, (t, a1..am)) � aj = tj (= (t σ)). Condition (iii) is satisfied, because of the pair-
wise distinctness of the values for the mother-undefinable nodes, due to Corollary 1.
And condition (i) holds, because non-denoting node constants are mapped to ⊥.12 The
set IRF of all possible appropriately instantiated rules is large but finite, because R and
TF are finite.

For our start rule (13a) S → (NP, {(↑ SUBJ) = ↓})(VP, {↑ = ↓}), only the two instan-
tiations in (23) are appropriate.

12 Note that we cannot establish the converse of (i). This is because a daughter node constant that is not
interpreted in a minimal model of the instantiated description of a rule might occur in a statement
introduced by a rule expanding that daughter. In a minimal model corresponding to a larger
derivational context such a daughter constant might thus belong to the interpreted symbols.
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(23) a.
(

S→ NP VP
(↑ SUBJ) = ↓↑ = ↓, (root, (root SUBJ) root)

)
b.

(
S→ NP VP

(↑ SUBJ) = ↓↑ = ↓, (aa, (aa SUBJ) aa )
)

The rule ADVP → (ADV, {(↑ ADJ) = (↓ ELE)})(ADVP, {↑ = ↓}), on the other hand, has
many appropriate instantiations, among them the ones in (24).

(24) a.
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)

b.
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, ag root)
)

c.
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (aa, ag aa )
)

d.
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, ((aa ADJ), ag (aa ADJ))
)

Instantiations that are not appropriate for this rule are, for example, the ones in (25).

(25) a.
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, root root)
)

b.
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (aa, aa aa )
)

They are not properly discriminating, because the ADV node of any derived f-
description must denote an entity distinct from the denotation of the mother and the
other daughter node.

The instantiations in (23a) and (24a) are the ones obtained from the derivation in
Figure 4 and the reducing substitution (20). Note that the appropriately instantiated
rule (23b) that does not associate the S node with the root constant might result from
derivations where the top of the f-structure is not denoted by the root node of the
c-structure, as illustrated with the rules in (21).

So far we have considered only the individual instantiated rules that we obtain from
the licensing rules of a derivation for F by replacing the node constants as described
by terms of TF. As a consequence of Corollary 1, we also observe that our reducing
substitutions never replace undefinable daughters of two distinct node-instantiated
licensing rules by one and the same constant. That is, the term-instantiated rules that
result from two distinct node-instantiated licensing rules always satisfy the following
compatibility relation.

Definition 13
Two appropriately instantiated rules (r, (t, t1..tm)) and (r′, (t′, t′1..t

′
l )) of IRF are compati-

ble iff

ti �= t′j for all ti, t
′
j ∈ CF with ti �= t and t′j �= t′ (1 ≤ i ≤ m, 1 ≤ j ≤ l).

Given appropriateness, the conditions ti ∈ CF and ti �= t imply that ti is not definable
in terms of t in the instantiated description of r. In essence, two instantiated rules are
compatible only if there are no repetitions of daughter constants instantiating mother-
undefinable daughters: All shared daughter constants instantiate mother-definable
daughters. Incompatible instantiations do not respect the biuniqueness property given
by Corollary 1 and therefore cannot appear together in the set of TF-instantiated rules
for any derivation of F. Note that this compatibility relation is symmetric, but reflexive
only for those instantiated rules (r, (t, t1..tm)) where each daughter that is instantiated
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by a constant from CF is mother-definable. As a consequence of Corollary 1, only an in-
stantiated rule that is compatible with itself can emerge from two separate applications
of r in a derivation of F.

The instantiated rules in (26a–c), for example, are compatible while the ones in (26d)
are not. The latter rules mistakenly introduce an identity that, because of Corollary 1,
can never be derived by the grammar. The rules in (26a) result from reducing the
licensing rules of the derivation in Figure 4 with the reducing substitution (20).

(26) a.
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
) (

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, ag )

)
b.

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, ag root)
) (

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, af )

)
c.

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, aa root)
) (

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, af )

)
d.

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
) (

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, af )

)

Our observations lead to a definition that characterizes reducing substitutions en-
tirely in terms of the identified properties of the TF-instantiated rules and thus in a
way that will permit us to simulate their construction by a refinement of the context-
free backbone of G. In the following definition we use Nc to denote the nodes of a c-
structure c and γ[ψ] to indicate the expression that is obtained from an expression γ
(term, sequence of terms, formula, set of formulas, etc.) and a substitution ψ (mapping
from constants to terms) by replacing all occurrences of constants a in γ simultaneously
by ψ(a).

Definition 14
Let c and ρ be a derivation of f-structure F in G and ψ be a mapping from Nc into TF.
Then ψ is a reducing substitution for the given derivation iff ψ(root) = root, and for all
n,n′ ∈ Dom(ρ) with n �= n′

(i) (ρn, (n, dts(n))[ψ]) is appropriately instantiated, and

(ii) (ρn, (n, dts(n))[ψ]) is compatible with (ρn′ , (n
′, dts(n′))[ψ]).

That reducing substitutions in fact preserve equivalence is then established by the
following lemma.

Lemma 2
Let c and ρ be a derivation with f-description FD and f-structure F in G. If ψ is a reducing
substitution for c and ρ, then FD ≡ FD[ψ].

Proof
We prove the lemma by induction on the number of nodes, according to a left-to-right,
top–down traversal of the c-structure. Let c and ρ be a derivation with f-description FD
and f-structure F in G, M = (U , I) a minimal model of FD, andψ a reducing substitution
for c and ρ. We first define for each node n of c the set Nn consisting of all nodes higher
than n, all nodes of the same depth as n but preceding (on the left), and n. Now for
each Nn with |Nn| = i let the function ψi be the restriction of ψ to Nn (ψ|Nn). Then we
can show by induction for each i = 1, .., |Nc| that FD ≡ FD[ψi], that is, left-to-right, top–
down. The equivalence is established by constructing a minimal model Mi also on the
universe U of M. Thus the isomorphism between M|Σ and Mi|Σ is the identity function.
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The basis, i = 1, is trivial, because ψ1 = {(root, root)} by definition. Thus FD[ψ1] = FD
and M1 = M is a minimal model of FD[ψ1]. Hence FD ≡ FD[ψ1]. For the induction step,
let i > 1. Then FD ≡ FD[ψi−1] by hypothesis. Let Mi−1 = (U , Ii−1) be a minimal model
of FD[ψi−1], and suppose that node nj with mother n is the next node in the sequence
(i.e., |Nnj

| = i).
If nj is not interpreted in M, it does not occur in FD and hence not in FD[ψi−1]. Thus
FD[ψi] = FD[ψi−1], Mi = Mi−1 is a minimal model of FD[ψi], and FD ≡ FD[ψi].
If nj is interpreted in M, there are two cases to consider.
(a) If nj is m-definable in Inst(ρn, (ψi−1(n), dts(n))) and ψ(nj)= tj then FD[ψi−1] � nj = tj.
Because nj does not occur in tj and hence not in FD[ψi], FD[ψi−1] is logically equivalent
to the definitional extension FD[ψi] ∪ {nj = tj} of FD[ψi]. Because tj occurs in FD[ψi],
Mi = Mi−1|(Dom(Ii−1)\{nj}) is a minimal model of FD[ψi]. Hence Mi−1|Σ ∼= Mi|Σ and
FD ≡ FD[ψi].
(b) If nj is not m-definable in Inst(ρn, (ψi−1(n), dts(n))) then ψ(nj) ∈ CF. Let ψ(nj) = aa.
Then aa cannot occur in FD[ψi−1], because the instantiation is appropriate and pair-
wise compatible and aa �= root (= ψ(root)).13 So the model Mi that results from Mi−1
by renaming nj by aa must be a minimal model of FD[ψi]. Thus Mi−1|Σ ∼= Mi|Σ and
FD ≡ FD[ψi].
Hence, FD ≡ FD[ψ|Nc|] = FD[ψ].

Appropriateness and compatibility do not ensure that undefinable daughter con-
stants are distinct from the root. This case is covered, however, because we kept root
for the root.

We indicated earlier that for an arbitrary derivation of an acyclic f-structure F we
can—dependent on a minimal model of its f-description—construct a substitution with
range TF that satisfies the conditions of Definition 14. We now provide a rigorous proof
of this assertion.

Lemma 3
For every derivation of an acyclic f-structure F in G there exists a reducing substitution.

Proof
Suppose there is a derivation c and ρ with f-description FD and f-structure F in G, that
FD has minimal model M = (U , I), and that h is an isomorphism between M|Σ and F.
Suppose furthermore that c has depth k. For each i = 0, .., k we define by induction a
function ψi : Nc �→ TF as follows. For the root (i = 0) we set ψ0(root) = root. Suppose we
have defined ψi−1, 0 < i ≤ k. We then set ψi(n) = ψi−1(n) for all n ∈ Dom(ψi−1). Now,
let nj be a node of depth i with mother n. If nj is not interpreted in M we set ψi(nj) = ⊥.
If nj is interpreted in M we set

ψi(nj) =

{
(ψi−1(n) σ) s.t. Inst(ρn)� (n σ) = nj if nj is m-definable in Inst(ρn)

ah(I(nj )) otherwise.

13 Of course, the constant aa cannot occur as a proper subterm of any other ψi−1 value. If ψi−1 were to
map a node n′ to (aa σ) then n′ must be m-definable and there must be a node dominating n′ that is
not m-definable and mapped to aa. Because aa �= root, aa must instantiate a daughter of another rule,
contradicting compatibility.
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Now, let ψ = ψk. Then ψ trivially satisfies the appropriateness conditions (i) and (ii)
by definition. Appropriateness condition (iii) and compatibility follow by Corollary 1.
Thus ψ is a reducing substitution for c and ρ.

Lemma 3 ensures that there exists a reducing substitution for every derivation of
an acyclic f-structure F in G. By Lemma 2 we know that such a substitution preserves
equivalence.14 Thus, the collections of instantiated rules that result from the derivations
for F and their reducing substitutions must belong to the set consisting of all possible
collections of appropriately instantiated and pair-wise compatible rules that together
provide descriptions of F. If we extend the Inst function in the obvious way to sets of
instantiated rules IR

Inst(IR) =
⋃

(r,τ)∈IR

Inst(r, τ)

then this set is defined as follows.

Definition 15
Let F be an f-structure. Then IRDF is the set of all sets IR ⊆ IRF such that

(i) for all (r, τ), (r′, τ′) ∈ IR with (r, τ) �= (r′, τ′), (r, τ) is compatible with (r′, τ′),

(ii) M|Σ ∼= F, for a minimal model M of Inst(IR).

This is a finite set whose size is bounded by a function of the sizes of R and TF.
Lemma 2 also shows that we can produce an equivalent description for any derived

f-description of F, not only with the model-dependent substitutions used in the proof
of Lemma 3, but in general with any mapping that satisfies the definition of a reducing
substitution. This is important for our grammar construction, because it provides the
conditions that we have to control to make sure that we simulate the derivations of
f-descriptions for F together with equivalence-preserving substitutions. Under these
conditions we can reduce the sets of node-instantiated licensing rules of the simulated
derivations to collections that are also included in IRDF. IRDF can be determined with-
out knowing the details of the valid derivations for F, just on the basis of F and the LFG
grammar G alone.

3.3 Producing the Context-free GrammarGFGFGF

The context-free grammar GF that simulates all valid derivations for F in G is specified
in the following definition. From this we can produce all strings in GenG(F) by conven-
tional context-free generation algorithms.

Definition 16
Let G = (N,T, S,R) be an LFG grammar and F be an acyclic f-structure. For G and F
we construct a context-free grammar GF = (NF,TF, SF,RF) in the following way. The
collection of nonterminals NF is the (finite) set

{SF} ∪ (N × TF ×
⋃
{Pow(IR) | IR ∈ IRDF})

14 Note that the particular substitution that we construct in the proof of Lemma 3 reduces FD to an
equivalent description that is satisfied in an expansion of F̂ by an interpretation for root in U .
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where SF is a new root category. Categories in NF other than SF are written A:t:IR, where
A is a category in N, t is a term in TF, and IR is a subset of a set of instantiated rules in
IRDF. TF is the set T × TF × {∅}.15 The rules RF are constructed from the annotated rules
R of G. We include all and only rules of the form:

(i) SF → S:root:IRroot, where IRroot is any element of IRDF,

(ii) A:t:IR → X1:t1:IR1..Xm:tm:IRm such that

(a) there is an r ∈ R expanding A to X1..Xm,

(b) IR = {(r, (t, t1..tm))} ∪
m⋃

j=1

IRj,

(c) if (r, (t, t1..tm)) ∈ IRj (j = 1, ..,m), or (r′, τ′) ∈ IRi ∩ IRj and i �= j
(i, j = 1, ..,m), then (r, (t, t1..tm)), respectively (r′, τ′), is compatible
with itself.

We define the projection Cat(X:t:IR) = X for every category in NF ∪ TF except SF and
extend this function in the natural way to strings of categories and sets of strings of
categories. Note that the set

Cat(L(GF)) = {s | ∃s′ ∈ L(GF) such that Cat(s′) = s}

is context-free, because the set of context-free languages is closed under homomor-
phisms such as Cat.16

Before presenting our main theorem and its proof let us sketch how the derivations
for F in G are simulated by the context-free grammar GF.

The grammar GF expands the root symbol SF to complex categories of the form
S:root:IRroot containing the root category S of G as their first component. A derivation
from S:root:IRroot in GF then consists of a phrase structure tree whose nodes are labeled
with refinements of the categories of the original LFG grammar. By taking the Cat
projection of every category, we obtain the c-structure of at least one derivation for F in
G that is simulated by the derivation from S:root:IRroot in GF. The term component of the
augmented categories encodes a reducing substitution ψ for the simulated derivation
with the given c-structure. That is, if a node n in the GF derivation is labeled by X:t:IR,
then ψ(n) = t for the corresponding LFG c-structure tree.

The component IR contains all instantiated rules of G that are required to license
the subderivation in G that corresponds (under the Cat projection) to the subderivation
from n in GF, except that the licensed nodes are replaced in the instantiated rules by
their ψ values.17 Thus, the additional components of the root label S:root:IRroot record

15 The set of terminals TF is constructed from the full term set TF instead of just ⊥ to allow for the possibility
of ↓ appearing in lexical entries (e.g., Zaenen and Kaplan 1995).

16 Cf. Hopcroft and Ullman (1979).
17 The rule component IR is a refinement of the third component of the categories defined in Kaplan and

Wedekind (2000). The categories there were distinguished by Inst(IR), the descriptions produced by
collecting the instantiated annotations from our third-component rules, and thus give a more compact
representation whenever different subderivations provide the same instantiated description. As we
demonstrated, such a simpler representation is sufficient to control the generation process for grammars
with a conventional set of descriptive devices. Instantiated descriptions, however, do not provide
enough information for grammars with devices whose evaluation requires the c-structure to be taken
into account, as, for example, functional precedence (Bresnan 1995; Zaenen and Kaplan 1995). We show
in Wedekind and Kaplan (forthcoming) that these devices can be modeled with our more elaborate rule
representation.
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that ψ(root) is set to root (the initial condition for reducing substitutions) and that the
node-instantiated licensing rules of the simulated derivation are reduced to IRroot by ψ.
Each application of a rule A:t:IR → X1:t1:IR1..Xm:tm:IRm that expands a nonterminal node
n of the derivation in GF simulates the application of an LFG rule with context-free back-
boneA → X1..Xm whose instantiation with (t, t1..tm) combines with the instantiated-rule
components of all daughters to form the rule component IR of the mother.18 Now, ψ
must be a reducing substitution for the simulated derivation, because all instantiated
rules in IRroot are appropriately instantiated and pair-wise compatible and because
condition (iic) of Definition 16 ensures that rules that are not self-compatible can only
be used once for licensing the Cat projection. Thus, because of Lemma 2, the derivation
in GF simulates a derivation of an f-description in G that ψ reduces to the equivalent
description provided by IRroot.

We can also see that every derivation for F in G is simulated by a derivation in
GF. We know from Lemmas 2 and 3 that we can construct for every derivation of an
f-description for F in G a reducing substitution ψ that produces a description equiv-
alent to the original one. Based on ψ we can then augment the category labels of the
c-structure of a derivation for F in G by term and rule components that record ψ and
the licensing rules (with the node constants replaced by their ψ values). We thus obtain
a derivation from S:root:IRroot where the instantiated description provided by IRroot is
equivalent to the original f-description. Because GF contains a start rule for every set
of appropriately instantiated and pair-wise compatible rules that provides a description
of F, there must also be a rule that expands SF to S:root:IRroot and the terminal string of
the derivation for F in G must be the Cat projection of a derivable string in GF.

We are now prepared to prove our main theorem.

Theorem
For any LFG grammar G and any acyclic f-structure F, GenG(F) = Cat(L(GF)).

Proof
We prove first that GenG(F) ⊆ Cat(L(GF)). Suppose there is a derivation c and ρ of a
terminal string s with f-description FD and f-structure F in G. By Lemma 3, there exists a
reducing substitutionψ for c and ρ. Thus FD ≡ FD[ψ] by Lemma 2. We construct a deri-
vation c′ and ρ′ of s′ from S:root:IRroot with Cat(s′) = s. We obtain c′ by relabeling each
node n with label X by X:ψ(n):{(ρn̄, (n̄, dts(n̄))[ψ]) | n dominates nonterminal node n̄}.
That means that the c-structures of both derivations share the same tree skeleton. We de-
fine ρ′ for each nonterminal node n with label A:ψ(n):IR and dts(n) = n1..nm with labels
X1:ψ(n1):IR1, ..,Xm:ψ(nm):IRm by ρ′n = A:ψ(n):IR → X1:ψ(n1):IR1..Xm:ψ(nm):IRm. Because
FD[ψ] = Inst(IRroot) by construction of IRroot and because IRroot ⊆ IRF and condition (i)
of Definition 15 hold by the properties of ψ, IRroot must be an element of IRDF. Thus
SF → S:root:IRroot is in RF. Moreover, Ran(ρ′) ⊆ RF, because by construction the rule
components are subsets of IRroot, the rule components of the terminals are empty, and
the rules satisfy (iia,b) of Definition 16 by construction and (iic) because ψ is a reducing
substitution. Thus s ∈ Cat(L(GF)).

We now prove that Cat(L(GF)) ⊆ GenG(F). Suppose there is a GF derivation c′ and
ρ′ of s′ from S:root:IRroot with Cat(s′) = s and IRroot ∈ IRDF. We first construct a new
c-structure c with the same tree skeleton as c′ by relabeling each node n with label X:t:IR

18 Note that the licensing LFG rule might not be uniquely determined if the derivation in GF simulates
recursions.
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by X. We define a substitution ψ by setting ψ(n) = t for each node n with label X:t:IR.
We then show that there is a mapping ρ into R licensing c with FD ≡ Inst(IRroot). By
induction on the depth of the subtrees we first define for each nonterminal n a function
ρn from all nonterminal nodes dominated by n into R such that

(a) ρn licenses the subtree of c with root n,

(b) IR = {(ρnn̄, (n̄, dts(n̄))[ψ]) | n dominates nonterminal node n̄} if n has label
A:t:IR in c′,

and, for all n̄, ň ∈ Dom(ρn) with n̄ �= ň

(c) (ρnn̄, (n̄, dts(n̄))[ψ]) is appropriately instantiated and

(d) (ρnn̄, (n̄, dts(n̄))[ψ]) is compatible with (ρnň, (ň, dts(ň))[ψ]).

Suppose n with dts(n) = n1..nm is expanded by ρ′n = A:t:IR → X1:t1:IR1..Xm:tm:IRm in
c′, then there is a rule r ∈ R satisfying the conditions of Definition 16(ii). Thus, r ex-

pands A to X1..Xm, IR = {(r, (t, t1..tm))} ∪
m⋃

j=1
IRj, and (r, (n, dts(n))[ψ]) = (r, (t, t1..tm)) by

definition of ψ. If n is a preterminal node then IRj = ∅ (for each j = 1, ..,m). We then
set ρn = {(n, r)} and (a)–(d) hold trivially. If ρnj has been defined for all nonterminal
daughters nj we set ρn = {(n, r)} ∪

⋃
{ρnj | nj is a nonterminal daughter of n}. Then (a)–

(c) by construction of ρ′n and by the inductive hypothesis, and (d) by Definition 16(iic)
and because IR ⊆ IRroot by Definition 15(i). So, ρ = ρroot licenses c, ψ is a reducing
substitution for c and ρ, and FD ≡ FD[ψ] by Lemma 2. Then FD[ψ] = Inst(IRroot) by (b)
and thus s is derivable in G with F.

The following corollary is an immediate consequence of this theorem.

Corollary 2
For any LFG grammar G and any acyclic f-structure F, GenG(F) is a context-free language.

3.4 A Few Examples

In the preceding sections we have shown how to construct a context-free grammar
that generates exactly the set of strings that an LFG grammar assigns to a given
f-structure. Those strings can be produced by running a context-free generator with
that grammar. In this section we provide examples to illustrate the derivation space of
the constructed context-free grammar and the correspondence between the derivations
of the constructed grammar and the derivations of the original LFG grammar.

As one illustration of the correspondences between the derivations, let us consider
the f-structure F in (27) and the LFG grammar with the rules (13) and the VP rule in (2).

(27)

SUBJ

[
PRED 'JOHN'

]
PRED 'FALL〈(SUBJ)〉'
TENSE PAST




For this grammar there is only one derivation of a string with the given f-structure,
the one that is depicted in the upper part of Figure 6. The figure shows the derivation
with all its components, that is, the c-structure, the rule-mapping ρ together with the
node instantiation of the licensing rules, and the f-description. This LFG derivation is
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LFG derivation
Sroot

ρ

�−→− S→ NP VP
(↑ SUBJ) = ↓↑ = ↓ (root,n1n2 )

NPn1

ρ

�−→− NP→ John
(↑ PRED) = 'JOHN' (n1,n3 )

VPn2

ρ

�−→− VP→ V
↑ = ↓ (n2,n4 )

Johnn3 Vn4

ρ

�−→− V→ fell
(↑ PRED) = 'FALL〈(SUBJ)〉'

(↑ TENSE) = PAST
(n4,n5 )

felln5

f-description


(root SUBJ) = n1,
root = n2,

(n1 PRED) = 'JOHN',
n2 = n4,

(n4 PRED) = 'FALL〈(SUBJ)〉',
(n4 TENSE) = PAST




reducing substitution

ψ(root) = root
ψ(n1) = (root SUBJ)
ψ(n2) = root
ψ(n3) = ⊥
ψ(n4) = root
ψ(n5) = ⊥

context-free derivation

SF

S:root:




(
S→ NP VP

(↑ SUBJ) = ↓↑ = ↓, (root, (root SUBJ) root)
)
,(

NP→ John
(↑ PRED) = 'JOHN', ((root SUBJ),⊥)

)
,(

VP→ V
↑ = ↓, (root, root)

)
,(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)



root

NP:(root SUBJ):
{(

NP→ John
(↑ PRED) = 'JOHN', ((root SUBJ),⊥)

)}
n1

VP:root:




(
VP→ V

↑ = ↓, (root, root)
)
,(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)


n2

John:⊥:∅n3

V:root:
{(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)}
n4

fell:⊥:∅n5

instantiated description of the
start rule’s rule component


(root SUBJ) = (root SUBJ),

root = root,
(root SUBJ PRED) = 'JOHN',

(root PRED) = 'FALL〈(SUBJ)〉',
(root TENSE) = PAST




Figure 6
The LFG derivation for (27) and the rules in (2) and (13) with the corresponding context-free derivation of the
constructed grammar.
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simulated in the constructed context-free grammar by the derivation that is shown in
the lower part of the figure.

Both the depicted substitution ψ and the subtree to which SF expands are related
to the original LFG derivation by the construction of the first half of our proof. That
is, ψ is a reducing substitution and the context-free derivation specializes the category
label of each node n of the original c-structure. The term component is n’s ψ value.
The rule component is the set of all instantiated rules that result from the licensing
rules of the corresponding n-dominated LFG subderivation. These are instantiated by
replacing the instantiating nodes of the LFG derivation by their ψ values. Thus, the
instantiated description provided by the rule component of the start rule is equivalent
to the original f-description and hence the context-free derivation tree at the bottom of
Figure 6 is licensed completely by the rules of the constructed grammar. Note that the
Cat projection of the terminal string of the context-free derivation is the terminal string
of the c-structure, the sentence John fell.

On the other hand, the depicted LFG derivation and the context-free derivation
are also related by the construction of the second half of the proof. The c-structure is
the Cat projection of the constituent structure that SF’s daughter derives. The reducing
substitution maps each node of this c-structure to the term of its complex label in the
corresponding context-free derivation. And the LFG rule that the licensing mapping
maps to each node is the rule of the node label’s rule component that licenses the node
and its daughters in the Cat projection. This is instantiated by the term components of
the applied context-free rule and combines with the rule components of the daughters
to form the rule component of the mother. These licensing LFG rules for the immediate
daughters are shown in gray in the rule component of the node labels in the context-free
derivation.

As a more complicated illustration, we sketch the derivations of the context-free
grammar GF produced for the f-structure F given in (17) and the grammar compris-
ing the rules in (13). This LFG grammar produces two terminal strings for the given
input, John fell today quickly and John fell quickly today. A set of pair-wise compatible
appropriately instantiated rules that yields a description of the input f-structure is,
for example, the one contained in the start rule (28). This set arises from reducing
the node-instantiated licensing rules of the derivation in Figure 4 with the reducing
substitution (20) extended by mapping non-denoting nodes to ⊥.

(28)

SF → S:root:




(
S→ NP VP

(↑ SUBJ) = ↓↑ = ↓, (root, (root SUBJ) root)
)
,(

NP→ John
(↑ PRED) = 'JOHN', ((root SUBJ),⊥)

)
,(

VP→ V ADVP
↑ = ↓↑ = ↓, (root, root root)

)
,(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)

,

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)
,(

ADV→ today
(↑ PRED) = 'TODAY', (af,⊥)

)
,(

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, ag )

)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)




The only useful rule of GF for expanding the daughter of rule (28) is the rule (29).
All other admissible distributions of the members of the mother’s rule component
also result in rules of GF. But these other rules cannot be used to produce a terminal
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(29)

S:root:




(
S→ NP VP

(↑ SUBJ) = ↓↑ = ↓, (root, (root SUBJ) root)
)
,(

NP→ John
(↑ PRED) = 'JOHN', ((root SUBJ),⊥)

)
,(

VP→ V ADVP
↑ = ↓↑ = ↓, (root, root root)

)
,(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)

,

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)
,(

ADV→ today
(↑ PRED) = 'TODAY', (af,⊥)

)
,(

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, ag )

)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)




→

NP:(root SUBJ):
{(

NP→ John
(↑ PRED) = 'JOHN', ((root SUBJ),⊥)

)}
VP:root:




(
VP→ V ADVP

↑ = ↓↑ = ↓, (root, root root)
)
,(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)

,

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)
,(

ADV→ today
(↑ PRED) = 'TODAY', (af,⊥)

)
,(

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, ag )

)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)




(30)

VP:root:




(
VP→ V ADVP

↑ = ↓↑ = ↓, (root, root root)
)
,(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)

,

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)
,(

ADV→ today
(↑ PRED) = 'TODAY', (af,⊥)

)
,(

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, ag )

)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)




→

V:root:
{(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)}

ADVP:root:




(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)
,(

ADV→ today
(↑ PRED) = 'TODAY', (af,⊥)

)
,(

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, ag )

)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)


897



Computational Linguistics Volume 38, Number 4

string. For instance, when the instantiated S rule
(

S→ NP VP
(↑ SUBJ) = ↓↑ = ↓, (root, (root SUBJ) root)

)
is

distributed over the daughters, the derivation will not produce a terminal string because
S is not reachable from either NP or VP in the context-free skeleton of the grammar
in (13). Similarly, the verbal and adverbial categories are not reachable from NP and NP
is not reachable from VP.

We see then that the left daughter of (29) matches the mother of (31) that derives the
terminal symbol “John:⊥:∅”.

(31) NP:(root SUBJ):
{(

NP→ John
(↑ PRED) = 'JOHN', ((root SUBJ),⊥)

)}
→ John:⊥:∅

Now, for the right daughter of (29), only the expansion with (30) gives rise to a terminal
string. By applying (32) to the left daughter of (30) we first derive the terminal symbol
“fell:⊥:∅”.

(32) V:root:
{(V→ fell

(↑ PRED) = 'FALL〈(SUBJ)〉'
(↑ TENSE) = PAST

, (root,⊥)
)}
→ fell:⊥:∅

Rule (33) then is the only possible rule of GF whose application (to the right daughter
of (30)) will lead to a terminal string.

(33)

ADVP:root:




(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)
,(

ADV→ today
(↑ PRED) = 'TODAY', (af,⊥)

)
,(

ADVP→ ADV
(↑ ADJ) = (↓ ELE), (root, ag )

)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)



→

ADV:af:
{(

ADV→ today
(↑ PRED) = 'TODAY'

, (af,⊥)
)}

ADVP:root:



(
ADVP→ ADV

(↑ ADJ) = (↓ ELE), (root, ag )
)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)



All other legitimate distributions of the instantiated rules of the mother over the
daughters also produce categories that fail to derive terminal strings. Some of these
distributions will figure in derivations that fail, as we observed earlier, because the LFG
rules predicted in the rule component of our categories collectively do not derive a
terminal string (ADVP is not reachable from ADV in this particular case). This example
illustrates that derivations can also fail to produce any sentence because of mismatches
of the term component of an augmented daughter category and the terms instantiating
the left-hand categories of the rules in the rule component that expand that daughter
category. That is why the alternative rule in GF in which the adverbial daughter has
the triple category ADV:af:

{(
ADV→ quickly

(↑ PRED) = 'QUICKLY', (ag,⊥)
)}

does not produce a terminal
string. Note moreover that condition (iic) of Definition 16 blocks recursions of ADVP
producible by the context-free backbone of the original grammar, because the instan-
tiated recursive ADVP rule

(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, af root)
)

cannot be distributed
over the daughters.

For the same reasons, (34) is the only useful rule that matches the right daughter
of (33).

(34)
ADVP:root:



(
ADVP→ ADV

(↑ ADJ) = (↓ ELE), (root, ag )
)
,(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)

 → ADV:ag:

{(
ADV→ quickly

(↑ PRED) = 'QUICKLY', (ag,⊥)
)}
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With rules (35) and (36) then we obtain the terminal string “John:⊥:∅ fell:⊥:∅
today:⊥:∅ quickly:⊥:∅”.

(35) ADV:af:
{(

ADV→ today
(↑ PRED) = 'TODAY', (af,⊥)

)}
→ today:⊥:∅

(36) ADV:ag:
{(

ADV→ quickly
(↑ PRED) = 'QUICKLY', (ag,⊥)

)}
→ quickly:⊥:∅

The Cat projection of this string is John fell today quickly, the only sentence whose
derivation GF simulates by starting with rule (28).

The only other derivation of a string with f-structure F is simulated if we use a rule
like (28) except that the ADVP rules are instantiated as in (37), that is, exactly the other
way around.

(37)
(
ADVP→ ADV ADVP

(↑ ADJ) = (↓ ELE)↑ = ↓, (root, ag root)
)

(
ADVP→ ADV

(↑ ADJ) = (↓ ELE), (root, af )
)

If we begin with this alternative starting rule, we can derive the string “John:⊥:∅
fell:⊥:∅ quickly:⊥:∅ today:⊥:∅” with the corresponding sentence John fell quickly today.

There are alternative derivations in GF that also simulate these two LFG derivations,
and in that sense the grammar GF allows for spurious ambiguities. These derivations
differ from the given ones in that the instantiating constants of CF are biuniquely
renamed (e.g., af by aa and ag by ad) or some of the terminal daughters with no ↓ in
their annotation are biuniquely instantiated by otherwise unused constants of CF. In the
next section we consider some computational strategies for eliminating rules that fail
to produce terminal strings or give rise to spurious ambiguities.

4. Computational Considerations

So far we imposed only loose restrictions on the ingredients of the generation grammar
GF, and a faithful implementation of the grammar definition may create categories and
rules that are either useless or redundant. Useless rules cannot participate in the simu-
lation of any LFG derivation while redundant ones simulate only the same derivations
as other rules and categories in the grammar. There are a number of techniques for
avoiding the construction of these unnecessary and undesirable grammar elements.

If the equations in an LFG rule provide alternative definitions for one and the same
daughter, a naive implementation would produce distinct but equivalent daughter in-
stantiations. Rule and category instantiations that express only uninformative variation
can be eliminated by normalizing the rule annotations in advance of generation so that
there is exactly one canonical function-assigning equation for each mother-definable
daughter and by using that equation to construct its defining term. Normalization
can be accomplished by exploiting symmetry and substitutivity to reduce the anno-
tations of the rules to some normal form according to an appropriate complexity norm,
as suggested by Johnson (1988). Another off-line computation can identify terminal
daughters that are introduced with rules that do not contain ↓ and so will never be
interpreted. Without loss of generality we can disregard other instantiating constants
that might be drawn from CF and systematically instantiate all of those terminals with
the distinguished constant ⊥.

We can remove another major source of redundancy by ignoring derivations that
differ only by renaming of the instantiating constants of CF. This can arise if IRDF
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contains rule sets that are identical up to renaming of the instantiating canonical con-
stants, as indicated in Section 3.4. We observed in conjunction with Lemma 3 that the
f-description of every derivation for F can be reduced to an equivalent description that
is satisfied in the canonical model F̂ expanded by some interpretation of root. Thus the
generation grammar can be constructed by considering only the set IRDF̂ containing
those elements of IRDF whose instantiated descriptions are modeled by some root
expansion of F̂.

Even with these refinements, the last example in Section 3.4 illustrates the fact that
our recipe for constructing GF may produce other useless categories and expansion
rules. These cannot play a role in any derivation either because they are unreachable
from the root symbol SF or because they do not lead to a terminal string. We can borrow
strategies from conventional context-free grammar processing to control the production
of these useless items.

A top–down approach to grammar construction is the simplest way of avoid-
ing categories and rules that are unreachable from the root symbol. It corresponds
most directly to the specification of Definition 16. The algorithm maintains three data-
structures, an agendaA of categories whose expansion rules have yet to be constructed,
a set V of terminal categories and nonterminal categories that have already been consid-
ered for expansion, and a setR of constructed context-free rules. All three structures are
empty at the outset. The first step of the algorithm is to add the root category SF to A.
Then at each subsequent step a category α is selected from A and moved to V , all rules
α→ β1..βm satisfying conditions (i) (with IRDF̂ instead of IRDF) and (ii) of Definition 16
are added to the rule setR, and each of the nonterminals βj not already in V is added to
the agenda. Because Definition 16 provides for a finite number of categories, the agenda
eventually will become empty. At that point the algorithm terminates withR containing
a subset of RF sufficient to simulate all and only the LFG derivations for F. As indicated,
this algorithm has the desirable property of creating just those categories and rules of
GF that are accessible from the root symbol. It is guided incrementally by the c-structure
skeleton of the LFG grammar. It is also guided by properties of the input f-structure as
the rule component for each new category is a subset of some element IRroot of IRDF̂.
But this procedure has the disadvantage of typically producing many categories that
derive no terminal string.

An alternative strategy is to construct the categories and rules in bottom–up fashion.
The bottom–up algorithm uses the same three sets, all empty at the outset. Here the first
step is to add to the agenda A all of the elements in the set TF of terminal categories.
In each subsequent step a category is selected from A and moved to V , as in the top–
down approach. In this case, however, we add to R all rules α→ β1..βm that satisfy
conditions (i) and (ii) of Definition 16 and where the selected category is at least one of
the daughters βj and all other daughter categories already exist in V . If α is not SF, we
further require α’s rule component to be a subset of some IRroot so that this process is
also constrained at each step by the input f-structure. The category α is added to the
agenda if it is not already present in V . This algorithm also terminates when the agenda
is empty. It ensures that every category we construct can derive a terminal string, but it
does not guarantee that every bottom–up sequence will reach the root symbol.

A more serious shortcoming of both strategies is that they presuppose the prior
computation of all elements of IRDF̂, but neither specifies how to instantiate those rule
sets in an efficient manner. A straightforward modification of the bottom–up algorithm
can sidestep this difficulty. We can replace the subset test on the rule component of
each α with a check to see whether the instantiated description of that component is
satisfied in F̂ expanded by some interpretation of root. This test makes reference just
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to the canonical model of the input, examining only those features that are relevant
to each potential new category. We reject a category if it fails this test, knowing that
its rule component cannot be a subset of any element of IRDF̂. This is similar in spirit
to the step-by-step subsumption test of other bottom–up generation algorithms (e.g.,
Shieber 1988 and Kay 1996). A further restriction is needed to filter the creation of start
rules. Rules of the form SF → S:root:IR are included inR only when some root expansion
of F̂ is not only a model for Inst(IR) but a minimal one at that. We know in that case that
we have arrived at one of the elements of IRDF̂. The minimality condition is an ana-
logue of the completeness requirement of other algorithms.

The incremental satisfiability test of this modified algorithm depends on the
interpretation of the node constant root, and we saw in Section 3.2 that root may denote
different elements of the universe in different derivations of F. Although its eventual
denotation cannot be uniquely predicted at intermediate steps of the bottom–up
process, we can avoid reconsideration of root denotations already determined to
be unsatisfactory by carrying along the satisfying denotations in an auxiliary data
structure associated with each category in A and V . For an LFG rule r that expands
A with the c-structure categories X1..Xm, a rule A:t:IR → X1:t1:IR1..Xm:tm:IRm is only
added to R if there is at least one root expansion of F̂ that satisfies Inst(r, (t, t1..tm))
and whose root denotation is shared across all daughters. The root denotations of
all such F̂ expansions are then associated with A:t:IR. The complexity of this test is
proportional to the complexity of the instantiated description of the LFG rule and
not of the instantiated description of the entire rule component IR, because the rule
components of the daughter categories do not need to be reevaluated.

For further optimizations we can make use of context-free strategies that take top–
down and bottom–up information into account at the same time. For instance, we can
simulate a left-corner enumeration of the search space, considering categories that are
reachable from a current goal category and match the left corner of a possible rule. As
another option, we can precompute a reachability table for the context-free backbone
of G and use it as an additional filter on rule construction. In general, almost any of
the traditional algorithms for parsing context-free grammars can be reformulated as
a strategy for avoiding the creation of useless categories and rules. We can also use
enumeration strategies that focus on the characteristics of the input f-structure. A head-
driven strategy (cf., e.g., Shieber et al. 1990; van Noord 1993) identifies the lexical heads
first, finds the rules that expand to them, and then uses information associated with
those heads, such as their grammatical function assignments, to pick other categories
to expand.

5. Other Chart-based Approaches

A bottom–up strategy for grammar construction comes closest to the algorithms of
previous chart-based generation proposals. There is a correspondence between the
edges that are added incrementally to a generation chart and the context-free rules that
we add to the grammar. But chart edges in these proposals typically collapse some of
the distinctions that we have in our rules and categories, and therefore these algorithms
cannot faithfully interpret the full set of grammatical dependencies. For some grammars
and inputs they may produce strings that should not belong to the generated language.
In an attempt to guarantee termination these algorithms may also include grammar
restrictions or processing limits that unduly narrow the set of legitimate results. We
will illustrate some correspondences and differences with the modified (F̂-guided)
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algorithm sketched in the previous section by comparing its first few steps with the
operations of Kay’s (1996) chart-generation algorithm.

To facilitate the comparison, we have adapted the grammar for one of Kay’s exam-
ples to an equivalent grammar in the LFG formalism. The LFG grammar is given in (38).

(38) a. S → NP VP
(↑ ARG1) = ↓ ↑ = ↓

b. NP → DET N
↑ = ↓ ↑ = ↓

c. VP → V NP
↑ = ↓ (↑ ARG2) = ↓

d. DET → the
(↑ SPEC) = DEF

e. N → cat
(↑ PRED) = 'CAT'

f. N → dog
(↑ PRED) = 'DOG'

g. V → saw
(↑ PRED) = 'SEE〈(ARG1)(ARG2)〉'

(↑ TENSE) = PAST

This grammar with its particular lexical rules has the sentence The dog saw the cat in its
language, and that sentence is assigned the f-structure in (39), a direct encoding of Kay’s
semantic specification.19 This shows the f-structure elements that are used to define the
constants in CF.

(39) s
PRED

TENSE ARG1
ARG2

'SEE〈(ARG1)(ARG2)〉' PAST d c

PRED SPEC SPEC PRED

'DOG' DEF 'CAT'

Taking this f-structure as input, the first step of our bottom–up algorithm is to
initialize the agenda with the terminal categories TF = {the:⊥:∅, dog:⊥:∅, ..}. Those cate-
gories are sufficient to complete the right sides of the given lexical rules, and so in the
next steps the terminal categories are moved to V and rules including those in (40) are
constructed. These are the ones that can potentially contribute to the generation of the
noun phrase the dog: The instantiated descriptions produced with these terms pass our
satisfiability test on F̂.

(40) a. DET:ad:
{(

DET→ the
(↑ SPEC) = DEF, (ad,⊥)

)}
→ the:⊥:∅

b. N:ad:
{(

N→ dog
(↑ PRED) = 'DOG', (ad,⊥)

)}
→ dog:⊥:∅

c. DET:(root ARG1):
{(

DET→ the
(↑ SPEC) = DEF, ((root ARG1),⊥)

)}
→ the:⊥:∅

d. N:(root ARG1):
{(

N→ dog
(↑ PRED) = 'DOG', ((root ARG1),⊥)

)}
→ dog:⊥:∅

19 Kay provides a flat, unordered collection of separate propositions as input to the generation process,
but the difference between a flat and hierarchical arrangement is not material to our discussion. We
have translated his constants s, d, c into the elements of our f-structure input, and we have mapped his
propositions (dog(d), arg1(s, d)..) into equivalent attribute–value relationships. By the same token,
because here we are focusing on the organization of data structures, we note without further comment
that his active-passive computational schema is but one way of specializing our general bottom–up
algorithm.

902



Wedekind and Kaplan LFG Generation by Grammar Specialization

Rules (40a,b) correspond directly to the lexical edges that are added to the chart in the
initialization step of Kay’s algorithm. A lexical edge includes the word (the Cat projec-
tion of our right-hand complex category), a syntactic category (a left-hand c-structure
category) paired with an instantiation term, and instantiated semantic propositions (an
instantiated description collected from our rule annotations).20 The chart edges that
parallel the first two rules are shown in (41).

(41) Words Category Semantics

the DET:ad (ad SPEC) = DEF

dog N:ad (ad PRED) = 'DOG'

Note that the instantiating term that corresponds to Kay’s semantic index d is the
canonical constant ad drawn from CF. It is a significant limitation that ground-level
terms like these are the only ones available for instantiation. We observed at the be-
ginning of Section 3 that the set CF is in general not large enough to equivalently
reproduce the discriminations that are required for grammars that allow for undefinable
daughters and path equations and for inputs that contain reentrancies. Thus, as origi-
nally presented, Kay’s algorithm is correct only for a very restricted set of unification
grammars.

In contrast, we draw from the larger term set TF that includes in addition the
collection of path-terms that combine constants with sequences of attributes. Rules
(40c,d) make use of the path-term (root ARG1), and it is not unreasonable to extend
Kay’s approach to create the corresponding edges shown in (42). This would allow his
algorithm to be applied to a broader set of grammars and inputs.

(42) the DET:(root ARG1) (root ARG1 SPEC) = DEF

dog N:(root ARG1) (root ARG1 PRED) = 'DOG'

Continuing with the bottom–up strategy, the categories above will be moved from
the agenda to V , the rule in (43) will be created from the right-side categories of (40c,d),
another NP rule will be created from the constant-instantiated rules in (40a,b), and both
new categories will be placed on the agenda.21

(43)

NP:(root ARG1):




(
NP→ DET N

↑ = ↓↑ = ↓, ((root ARG1), (root ARG1) (root ARG1))
)
,(

N→ dog
(↑ PRED) = 'DOG', ((root ARG1),⊥)

)
,(

DET→ the
(↑ SPEC) = THE, ((root ARG1),⊥)

)



→

DET:(root ARG1):
{(

DET→ the
(↑ SPEC) = THE, ((root ARG1),⊥)

)}
N:(root ARG1):

{(
N→ dog

(↑ PRED) = 'DOG', ((root ARG1),⊥)
)}

20 Kay’s instantiated semantics corresponds more directly to the third components of the categories of the
less sophisticated grammar construction of Kaplan and Wedekind (2000). These instantiated descriptions
collapse some of the distinctions of our third-component rules that are not needed for the limited range
of dependencies that Kay is considering.

21 The NP based on the rules (40a,b) will not survive into a larger derivation in our framework. This is
because all NP daughters are mother-definable in this grammar, and therefore the ad instantiation is not
appropriate for the ARG1 daughter of S.
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Our extended version of Kay’s algorithm also combines determiner and noun edges to
make up the NP edges in (44).

(44) the dog NP:(root ARG1) (root ARG1) = (root ARG1),
(root ARG1 SPEC) = DEF, (root ARG1 PRED) = 'DOG'

the dog NP:ad ad = ad,
(ad SPEC) = DEF, (ad PRED) = 'DOG'

These edges reveal another significant difference between Kay’s algorithm and our
approach. The Words fields now consist of sequences of words, the (Cat projections
of the) terminal strings for the full noun phrases. These strings are constructed by
concatenating the Words from the two component edges in the order specified by the
grammar rule that justifies the combination. That is, an edge does not incorporate the
justifying rule but instead records a single member of the yield of the subtree beneath
the category of the edge. The effect is that the incremental construction of the chart is
intermixed with the process of recursively assembling the terminal strings of longer and
longer phrases. The advantage of Kay’s strategy is that after termination the generated
strings can be read out as the Words of all the edges whose Category is the start category
paired with the top-level index and whose Semantics exactly matches the original input:
There is no need for a separate context-free generation phase.

The disadvantage is that an additional condition must be imposed to guarantee
that only a finite number of edges will be created so that the chart-construction process
does in fact terminate. Kay proposes a use-once restriction that bounds the size of the
derivable constituents by the number of predicates in the input. For some grammars
and inputs his algorithm will only produce a proper subset of the full set of generable
strings. Another disadvantage in comparison to our approach and other approaches in
the chart-based family is that Kay’s chart edges do not record intermediate generation
results in a compact form that allows operations on the generated string set to be carried
out in advance of enumerating the individual strings.22

Kay’s algorithm is one of a family of chart-based approaches that differ in detail
but have similar characteristics at an abstract level. A common thread is that each
edge contains a semantic or feature-structure representation aggregated from all of the
edges in the subtree that it dominates, and edge creation is filtered by testing whether
these representations subsume the generation input. Each algorithm in the family also
imposes one or more additional restrictions in an attempt to guarantee termination of
the string generation process. Kay appeals to a use-once processing condition, as noted
earlier, that ensures termination but may only produce a proper subset of the complete
output set.

Shieber’s (1988) algorithm and its refinements are closer to our approach in that
they do not associate individual terminal strings with the edges of the chart. Each edge
contains a semantic or feature-structure representation and a sequence of immediate
daughter edges from which that representation can be assembled. The individual sub-
strings consistent with that representation are obtained by a recursive traversal reaching
down to the terminal edges. The chart-construction phase of these algorithms (and our
grammar construction) will not terminate if the number of distinct edges is not bounded
by the size of the input. This may be the case for cyclic inputs, because they have

22 Maxwell (2006) describes a variant of Kay’s algorithm that provides a more compact representation for
the generated string sets and also deals efficiently with disjunctive input structures.
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infinitely many distinct unfoldings all of which subsume the input. A separate question,
even with a bounded chart, is whether the string-production traversal is guaranteed
to terminate with a finite set of strings. A grammar may give rise to infinitely many
strings if it has recursive or iterative rules whose feature structures subsume the same
portion of the input. Any finite set of output strings for such a grammar and input will
necessarily be incomplete.

Shieber suggests that the end-to-end generation process will terminate and produce
a finite but complete set of output strings for a restricted class of semantically mono-
tonic grammars. Shieber’s condition requires that the semantic representation of every
mother phrase is subsumed by the semantic structure of each of its daughter phrases.
In LFG terms this condition amounts to the requirement that each daughter is mother-
definable (with an annotation of the form (↑ σ) = ↓ for |σ| ≥ 0) and, as a consequence,
that strings can be generated only for single-rooted inputs. On deeper analysis, how-
ever, we see that this restriction is not sufficient to ensure that the generation process
will terminate with a finite output set. It does not by itself preclude grammars that
assign cyclic feature structures and therefore the chart-construction process may be
unbounded. And with an acyclic input and a finite chart the complete set of output
strings may still be unbounded since several daughters in a recursive rule may subsume
exactly the same portion of the mother’s semantic representation. A formal example
of this is the monotonic grammar in (8) that produces the string set {an bn | 1 ≤ n}. A
stronger restriction on the form of the annotations, namely, that σ is never empty, will
guarantee a finite chart and a finite and complete output set, but monotonic grammars
in this sense cannot naturally identify the functional or semantic head-daughters that
figure prominently in so many linguistic descriptions. It seems that monotonicity is not
a particularly helpful restriction and that some other constraint, either on grammars or
processing steps, is needed to guarantee an output set containing only a finite number
of syntactic variants (cf., e.g., Neumann 1994; Moore 2002).

If we translate Shieber’s and other similar algorithms to our framework, we see that
their instantiations need only terms involving root and none of the constants in CF or the
terms containing those constants.23 This is because these algorithms are not set up to
control subsumption accurately for multi-rooted inputs and grammars with mother-
undefinable daughters, and in fact their result set may be incorrect in those cases. As
we have demonstrated, maintaining all of the proper discriminations requires the larger
term set and a mechanism with the same effect as our appropriateness and compatibility
conditions.

Comparing other chart-based generation proposals to our bottom–up strategy for
creating a generation grammar has brought out some similarities but also highlighted
some important differences. Chart edges contain information that summarizes the syn-
tactic and semantic contribution of their subtrees and also allows for the correlated
terminal strings to be read out by a straightforward traversal. These algorithms cannot
attain correctness, completeness, and termination without imposing limits on the kinds
of grammatical dependencies that the generator can faithfully interpret, the range of
structures that can be provided as input, or the size and number of output strings that
can be produced. Our approach operates correctly on a larger class of grammars and
inputs because we have more instantiating terms and therefore are able to maintain

23 Moore (2002) observed that the basic properties of the algorithm do not change if semantically vacuous
constituents are allowed. In this case the translation would require the additional term ⊥ to reduce
nodes that are not interpreted in a model of the f-description.
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appropriate discriminations without special restrictions. The resulting grammar gives
a finite encoding of the complete set of generated outputs in a well-understood formal
system. These can be enumerated on demand in our separate context-free generation
phase.

6. Cycles

We have established the context-free result only for acyclic f-structures; the result does
not hold for cyclic inputs. This is because the f-structures that correspond to subderiva-
tions of a derivation of a cyclic structure are not necessarily bounded by the size of the
input. So we might need an infinite number of terms in order to reproduce correctly
any discrimination made in the f-description for some subderivation of a cyclic input
structure. The following example demonstrates that the set of strings that a grammar
relates to a particular cyclic input might not be context-free.24

Consider the LFG grammar G = ({S,A,C}, {a, b, c}, S,R) with the annotated rules
R given in (45).

(45) a. S → A C
(↑ F) = ↑ (↑ G) = ↓
(↑ G) = ↓

(↑ F) = (↓ F)

b. A → a A b
(↑ G) = ↓

(↑ F) = (↓ F)

c. C → c C
(↑ G) = ↓

d. A → a b
(↑ F) = (↑ H)

e. C → c
(↑ H F) = (↑ H G)

Now, let F be the following input f-structure.

(46) F H

G

The set of terminal strings that are derivable with F is {an bn cn | 1 ≤ n}, a language that
is not context-free. Each top–down derivation for a terminal string that gets assigned the
given input f-structure F starts with the S rule. Suppose ai bi C is derived from S by i− 1
(i > 0) applications of (45b) and one application of (45d). Such a string gets assigned a
c-structure and an f-structure of the form depicted in Figure 7 where the C node is
mapped to the leftmost G value. The f-structure corresponding to the subderivation

24 Wedekind (2006) provides another example of such a grammar. This runs counter to an assertion in
Kaplan and Wedekind (2000) that cyclic structures lie within the scope of our context-free analysis. This
was based on reasoning that we now understand to be incorrect.
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i times




S

A C

A

a a b b︸ ︷︷ ︸ ︸ ︷︷ ︸
ai bi

F
i times︷ ︸︸ ︷

G G

F
F

F

H

Figure 7
The derivation of ai bi C in grammar (45).

up to this point is arbitrarily larger than the original input, but the rest of the derivation
forces the distinguished F, G, and H attributes to collapse into the simple cycles. Because
the rightmost G value is the only position where this structure can be folded up to
F using the annotations of (45e), (45c) has to be applied exactly i− 1 times yielding
ai bi ci−1 C. With one application of (45e) we obtain F and the sentence ai bi ci. Thus
GenG(F) = {an bn cn | 1 ≤ n}.

In general our grammar construction will produce correct outputs for the term
set drawn from any finite unfolding of a cyclic input structure, but a complete char-
acterization of the output strings would require an infinite term set. We have not yet
investigated the formal properties of the languages that are related to cyclic structures.
It is an open research question whether a more expressive system (e.g., indexed gram-
mars or other forms of controlled grammars) can give a finite characterization of the
complete string set and whether our context-free grammar construction can be extended
to produce such a formal encoding.

7. Other Descriptive Devices

We have shown that the context-free grammar of Definition 16 produces the strings in
GenG(F) for an LFG grammar G that characterizes f-structures by means of equality and
function application, the most primitive descriptive devices of the LFG formalism. In
this section we extend the grammar-construction procedure so that it produces context-
free generation grammars that simulate the other formal devices that were originally
proposed by Kaplan and Bresnan (1982).25

Completeness and Coherence. The result holds trivially when we also take into
account LFG’s devices for enforcing the subcategorization requirements of individual
predicates, the completeness and coherence conditions. Both conditions are concerned
with the semantic-form PREDicate values that consist of a predicate and a list of gov-
ernable grammatical functions, as for example, 'FALL〈(SUBJ)〉' with the list 〈(SUBJ)〉 and
'JOHN' with the empty list. An f-structure is complete if each substructure (including the
entire structure) that contains a PRED also contains all governable grammatical functions
its semantic form subcategorizes for. And an f-structure is coherent if all its governable
functions are subcategorized by a local semantic form. If an input f-structure F is not
complete and coherent, the LFG derivation relation ∆G does not associate it with any

25 Because LFG theory has evolved away from the original c-structural encoding of long-distance
dependencies, we will not consider it here. In Wedekind and Kaplan (forthcoming) we describe the
construction for grammars that use functional uncertainty, the device that superseded the initial
mechanism for characterizing long-distance dependencies.
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strings, and the set GenG(F) is empty. Thus, when we determine by inspection that an
input f-structure fails to satisfy these conditions, we maintain the context-free result by
assigning it a trivial grammar that generates the empty context-free language.

C-Structure Regular Predicates and Disjunctive Functional Constraints. The con-
struction in Section 3.3 produces context-free generation grammars for LFG grammars
whose c-structure rules are of an elementary form: Their right-hand sides consist of
concatenated sequences of annotated categories, and the equations in the annotation
sets are interpreted as simple conjunctions of f-structure requirements. The full LFG
notation is more expressive, allowing functional requirements to be stated as arbi-
trary Boolean combinations of basic assertions. It also allows the right-hand sides of
c-structure rules to denote arbitrary regular languages over annotated categories. Rules
with the richer notation can be normalized to rules of the necessary elementary form
by simple transformations. First, in the regular right-side of each rule every category
X with a Boolean combination of primitive annotations is replaced by a disjunction
of X’s each associated with one of the alternatives of the disjunctive normal form of
the original annotation. Then the augmented regular right-sides are converted to a
collection of right-linear rewriting rules by systematically introducing new nontermi-
nals and their expansions, as described by Chomsky (1959) (see also Hopcroft and
Ullman 1979). The new nonterminals are annotated with ↑ = ↓ equations as needed
to ensure that f-structure requirements are properly maintained. The result of these
transformations is a set of productions all of which are in conventional context-free
format and have no internal disjunctions and which together define the same string/
f-structure mapping as a grammar encoded in the original, linguistically more expres-
sive, notation.

Constraining Statements and Negation. The statements in an LFG f-description
are divided into two classes: defining and constraining statements. The constraining
statements are evaluated once all defining statements have been processed and a mini-
mal model (of the defining statements) has been constructed. The constraining devices
introduced by Kaplan and Bresnan (1982) are constraining equations and inequali-
ties, and existential and negative existential constraints. If a constraining statement is
contained in an f-description FD, it is evaluated against a minimal model M of the
defining statements of FD in the obvious way: M |= t =c t

′ iff M |= t = t′ (constraining
equation), M |= t iff ∃t′(M |= t = t′) (existential constraint), M |= ¬γ iff M �|= γ (negation
of a constraining or defining statement).

We can extend our grammar construction to descriptions with constraining state-
ments by adjusting the definition of IRDF. We modify condition (ii) of Definition 15
so that M|Σ ∼= F for a minimal model M of just the defining statements of Inst(IR)
and additionally require M |= γ for all constraints γ of Inst(IR). Then a context-free
grammar based on this revised definition will properly reflect the defining/constraining
distinction.

The proof of this depends on one further technicality, however. Recall that the con-
structions that we used in the proof of our main theorem yield in both proof directions
FD[ψ] = Inst(IRroot). As a consequence, the constraining statements in Inst(IRroot) are
exactly the ones that result from those in FD by substitution with ψ. Suppose that M
and Mroot are minimal models of the defining part of FD and Inst(IRroot), respectively.
In order to establish also that M satisfies all constraints in FD iff Mroot satisfies the ones
contained in Inst(IRroot), it is sufficient to show that M |= t = t′ iff Mroot |= t[ψ] = t′[ψ]
holds for all denoting terms. This follows (with M′ as Mroot) from the isomorphic
mapping of term denotations provided by Lemma 2′, a slightly stronger version of
Lemma 2.
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Lemma 2′

Let c and ρ be a derivation with f-description FD and f-structure F in G. If ψ is a reducing
substitution for c and ρ and M = (U , I) and M′ = (U ′, I′) are minimal models of the defining
parts of FD and FD[ψ], respectively, then there is an isomorphism h between M|Σ and M′|Σ
such that h(I(t)) = I′(t[ψ]) for each interpreted term t or t[ψ].26

Membership Statements. Membership statements are formulas of the form t′ ∈ t.
Membership in LFG is interpreted just as a binary relation between functional ele-
ments, and a model satisfies a membership statement t′ ∈ t iff the membership relation
holds between the denotation of t′ and the denotation of t. Membership statements
may introduce daughters that are undefinable in terms of their mother and therefore
may be instantiated by CF constants as we illustrated earlier in our treatment of the
(↑ ADJ) = (↓ ELE) annotation. Then, if we expand the isomorphism-based determina-
tion of the equivalence of feature structures and feature descriptions in the usual way
to sets and set descriptions, membership statements can be handled by our original
construction without further modification.27

Semantic Form Instantiation. As described earlier, semantic forms are the single-
quoted values of PRED attributes in terms of which the completeness and coherence
conditions are defined. They are also instantiated, in the sense that for each occurrence
of a semantic form in a derivation a new and distinct indexed form is chosen. Because
of this special property, semantic forms occurring in annotated rules may be regarded
as metavariables that are substituted by the instantiation procedure similar to the
familiar ↑ and ↓ symbols. The distinguishing indices on semantic forms are usually
only displayed in a graphical representation of an f-structure if this is necessary for
clarity, but distinctively indexed semantic forms are always available for appropriately
instantiating the LFG rules, just like the other constants that we draw from the input
structure. We can extend the mechanism for controlling the correct instantiation of
undefinable daughters to ensure that the semantic forms of all simulated derivations
are correctly instantiated. As part of an appropriate instantiation of an LFG rule we also
substitute for the prototypical semantic forms in the rule distinct indexed forms, drawn
from F, and we expand the compatibility condition to this larger set of instantiations.

8. Consequences and Observations

We have shown that a given LFG grammar can be specialized to a context-free grammar
that characterizes all and only the strings that correspond to a given (acyclic) f-structure.
We can now understand different aspects of generation as pertaining either to the way
the specialized grammar GF is constructed or to well-known properties of context-free
grammars and context-free generation.

It follows as an immediate corollary, for example, that it is decidable whether the set
GenG(F) is empty, contains a finite number of strings, or contains an infinite number of
strings. This can be determined by inspecting GF with standard context-free tools, once

26 The proof requires an elaboration of the argument used in the proof of Lemma 2. Following the inductive
construction of that proof, it is easy to see that I(t) = Ii(t[ψi]) holds for all terms t and t[ψi] that are
interpreted in M = (U , I) or Mi = (U , Ii ). Because there must be an isomorphism h between M|Nc| and
any other minimal model M′ = (U ′, I′ ) of the defining part of FD[ψ], h(I|Nc|(t[ψ])) = I′(t[ψ]) and thus
h(I(t)) = I′(t[ψ]) for each interpreted term t or t[ψ].

27 Rounds (1988) proposes a bisimulation-based characterization of sets and set membership. This would
require a more sophisticated analysis, but it is more of mathematical than linguistic interest.
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it has been constructed. If the language is infinite, we can make use of the context-free
pumping lemma to identify a finite number of short strings from which all other strings
can be produced by repetition of subderivations. Wedekind (1995) first established the
decidability of LFG generation and proved a pumping lemma for the generated string
set; our theorem provides alternative and very direct proofs of these previously known
results.

We also have an explanation for another observation of Wedekind (1995). Kaplan
and Bresnan (1982) showed that the Nonbranching Dominance Condition (sometimes
called Off-line Parsability) is a sufficient condition to guarantee decidability of the
membership problem. Wedekind noted, however, that this condition is not necessary
to determine whether a given f-structure corresponds to any strings. We now see more
clearly why this is the case: If there is a context-free derivation for a given string that
involves a nonbranching dominance cycle, we know that there is another derivation
for that same string that has no such cycle. Thus, the generated language is the same
whether or not derivations with nonbranching dominance cycles are allowed.

There are practical consequences to the two phases of LFG generation. The grammar
GF can be provided to a client as a finite representation of the set of perhaps infinitely
many strings that correspond to the given f-structure, and the client can then control
the process of enumerating individual strings. The client may choose to produce the
shortest ones just by avoiding recursive category expansions. Or the client may apply
an n-gram model (Langkilde 2000), a stochastic context-free grammar model (Cahill
and van Genabith 2006) or a more sophisticated statistical language model trained
on a collection of derivations to identify the most probable derivation and thus the
presumably most fluent sentence from the set of possibilities (Velldal and Oepen 2006;
de Kok, Plank, and van Noord 2011; Zarrieß, Cahill, and Kuhn 2011).

We have assumed in our construction that terminals are morphologically un-
analyzed, full-form words. A more modular arrangement is to factor morphological
generalizations into a separate formal specification with less expressive power than
LFG rules can provide, namely, a regular relation (Karttunen, Kaplan, and Zaenen 1992;
Kaplan and Kay 1994). The analysis of a sentence then consists of mapping the string
of words into a string of morphemes to which the LFG grammar is then applied. The
full relation between strings of words and associated f-structures is then the compo-
sition of the regular morphology with an LFG language over morpheme strings. To
generate with such a combined system, we can produce the context-free morpheme
strings corresponding to the input f-structure, and then pass those results through the
morphology. Because the class of context-free languages is closed under composition
with regular relations and regular relations are closed under inversion, the resulting set
of word strings will remain context-free.

Our proof also depends on the assumption that the input F is fully specified so
that the set of possible instantiations is finite. Dymetman (1991), van Noord (1993),
and Wedekind (1999, 2006) have shown that it is in general undecidable whether or
not there are any strings associated with a structure that is an arbitrary extension of
the f-structure provided as the input. Indeed, our proof of context-freeness does not
go through if we allow new elements to be hypothesized arbitrarily, beyond the ones
that appear in F; if this is permitted, we cannot establish a finite bound on the number
of possible categories. This is unfortunate, because there may be interesting practical
situations in which it is convenient to leave unspecified the value of a particular feature.
If we know in advance that there can be only a finite number of possible values for
an underspecified feature, however, the context-free result can still be established. We
create from F a set of alternative structures {F1, ..,Fn} by filling in all possible values of
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the unspecified features, and for each of them we produce the corresponding context-
free grammar. Because a finite union of context-free languages is context-free, the set
of strings generated from any of these structures must again remain in that class.
Of course, this is not a particularly efficient technique: It introduces and propagates
features that the grammar may never actually interrogate, and it needlessly repeats the
construction of common subgrammars that do not make reference to the alternative fea-
ture specifications. The amount of computation may be reduced by adapting methods
from the parsing literature that operate on conjunctive equivalents of disjunctive feature
constraints (e.g., Karttunen 1984; Maxwell and Kaplan 1991).

Our theorem helps us to understand better the problem of ambiguity-preserving
generation. We showed previously that the problem is undecidable in the general case
(Wedekind and Kaplan 1996). But our generation result does enable us to make that
decision under certain recognizable circumstances, namely, if the intersection of the
sentence sets assigned to the different f-structures is computable. This is true if the
sentences belong to some formally restricted subsets of the context-free languages, for
example, finite sets or regular languages; this is the unstated presupposition of Knight
and Langkilde’s (2000) parse-forest technique. For a set of f-structures {F1, ..,Fn} we
construct the context-free grammars GFi

and inspect them with standard context-free
tools to determine whether L(GFi

) belongs to an intersectable subclass (i = 1, ..,n). If

each of them meets this condition, we can compute the intersection
n⋃

i=1
L(GFi

) to find any
sentences that are derived ambiguously with f-structures F1, ..,Fn.

We have shown in this article that the context-free property also holds for other
descriptive devices as originally proposed by Kaplan and Bresnan (1982). In Wedekind
and Kaplan (forthcoming) we broaden the grammar-construction procedure so that
it produces context-free generation grammars that simulate the more sophisticated
mechanisms that were introduced and adopted into later versions of the LFG formalism.
Among these are devices for the f-structure characterization of long-distance depen-
dencies and coordination: functional uncertainty (Kaplan and Maxwell 1988a; Kaplan
and Zaenen 1989), set distribution for coordination, and the interaction of uncertainty
and set distribution (Kaplan and Maxwell 1988b). We also extend to devices whose
evaluation depends on properties of the c-structure to f-structure correspondence,
namely, functional categories and extended heads (Zaenen and Kaplan 1995; Kaplan
and Maxwell 1996) and functional precedence (Bresnan 1995; Zaenen and Kaplan 1995).
Of course, the context-free result trivially holds for purely abbreviatory notations
such as templates, lexical rules, and complex categories (Butt et al. 1996; Kaplan and
Maxwell 1996; Dalrymple, Kaplan, and Holloway King 2004; Crouch et al. 2008); these
clearly help in expressing linguistic generalizations but can be formally treated in the
obvious way by translating their occurrences into the more basic descriptions that they
abbreviate. In contrast, the restriction operator (Kaplan and Wedekind 1993) requires
more careful consideration. Restriction can cause the functional information associated
with intermediate c-structure nodes not to be included in the f-structures of higher
nodes. This is formally quite tractable if the restricted information is provided to the
generator as a separately rooted f-structure. Otherwise, the f-structure input is essen-
tially underspecified, and thus, as discussed earlier, a context-free generation grammar
can be produced just in case restriction can eliminate only a finite amount of information
(see also Wedekind 2006).

A final comment concerns the generation problem for other high-order grammatical
formalisms. The PATR formalism also augments a context-free backbone with a set of
feature-structure constraints, but it differs from LFG in that its metavariables allow
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constraints on one daughter to refer directly to sister feature structures that may not
be mother-definable. It is relatively straightforward to extend our lemmas and theorem
so that they apply to a more general notion of definability that encompasses sisters
as well as mothers. We can thus establish the context-free result for a broader family
of formalisms that share the property of being endowed with a context-free base. On
the other hand, it is not clear whether the string set corresponding to an underlying
Head-driven Phrase Structure Grammar (HPSG) feature structure is context-free. HPSG
(Pollard and Sag 1994) does not make direct use of a context-free skeleton, and op-
erations other than concatenation may be used to assemble a collection of substrings
into an entire sentence. We cannot extend our proof to HPSG unless the effect of these
mechanisms can be reduced to an equivalent characterization with a context-free base.
Grammars written for the ALE system’s logic of typed feature structures (Carpenter and
Penn 1994), however, do have a context-free component and therefore are amenable to
the treatment we have outlined.

In sum, this article offers a new way to conceptualize the generation problem
for LFG and other higher-order grammatical formalisms with context-free backbones.
Distinguishing the grammar-specialization phase from a string-enumeration phase
provides a mathematical framework for understanding the formal properties of the
generated string sets. It also provides a framework for analyzing and understanding the
computational behavior of existing approaches to generation. Existing algorithms oper-
ate properly on restricted grammars and inputs and thus only approximate a complete
solution to the problem. They typically implement particular techniques for optimizing
the size of the search space and bounding the amount of computation required by the
generation process. Our formulation can allow a larger and perhaps more attractive set
of candidates to be safely considered, and it also makes available a collection of familiar
tools that may suggest new ways of improving algorithmic performance.

From a more general perspective, there has been no deep tradition for the formal
analysis of higher-order generation akin to the richness of our mathematical and com-
putational understanding of parsing. The approach outlined in this article, we hope,
will serve as a major step in redressing that imbalance.
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