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Our results reveal the domain and genre dependence of the problem; nevertheless, we
also show that even a distant source domain data set can contribute to the recognition
and disambiguation of uncertainty cues, efficiently reducing the annotation costs needed to
cover a new domain. Thus, the unified subcategorization and domain adaptation for training
the models offer an efficient solution for cross-domain and cross-genre semantic uncertainty
recognition.

1. Introduction

In computational linguistics, especially in information extraction and retrieval, it is
of the utmost importance to distinguish between uncertain statements and factual
information. In most cases, what the user needs is factual information, hence uncertain
propositions should be treated in a special way: Depending on the exact task, the
system should either ignore such texts or separate them from factual information. In
machine translation, it is also necessary to identify linguistic cues of uncertainty because
the source and the target language may differ in their toolkit to express uncertainty
(one language uses an auxiliary, the other uses just a morpheme). To cite another
example, in clinical document classification, medical reports can be grouped according
to whether the patient definitely suffers, probably suffers, or does not suffer from an
illness.
There are several linguistic phenomena that are referred to as uncertainty in the

literature. We consider propositions to which no truth value can be attributed, given
the speaker’s mental state, as instances of semantic uncertainty. In contrast, uncertainty
may also arise at the discourse level, when the speaker intentionally omits some infor-
mation from the statement, making it vague, ambiguous, or misleading. Determining
whether a given proposition is uncertain or not may involve using a finite dictionary of
linguistic devices (i.e., cues). Lexical cues (such as modal verbs or adverbs) are respon-
sible for semantic uncertainty whereas discourse-level uncertainty may be expressed by
lexical cues and syntactic cues (such as passive constructions) as well. We focus on four
types of semantic uncertainty in this study and henceforth the term cuewill be taken to
mean lexical cue.
The key steps of recognizing semantically uncertain propositions in a natural

language processing (NLP) application include the steps of locating lexical cues for
uncertainty, disambiguating them (as not all occurrences of the cues indicate uncer-
tainty), and finally linking them with the textual representation of the propositions
in question. The linking of a cue to the textual representation of the proposition can
be performed on the basis of syntactic rules that depend on the word class of the
lexical cue, but they are independent of the actual application domain or text type
where the cue is observed. The set of cues used and the frequency of their certain
and uncertain usages are domain and genre dependent, however, and this has to be
addressed if we seek to craft automatic uncertainty detectors. Here we interpret genre
as the basic style and formal characteristics of the writing that is independent of its topic
(e.g., scientific papers, newswire texts, or business letters), and domain as a particular
field of knowledge and is related to the topic of the text (e.g., medicine, archeology, or
politics).
Uncertainty cue candidates do not display uncertainty in all of their occurrences.

For instance, the mathematical sense of probable is dominant in mathematical texts
whereas its ratio can be relatively low in papers in the humanities. The frequency of
the two distinct meanings of the verb evaluate (which can be a synonym of judge [an
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uncertain meaning] and calculate) is also different in the bioinformatics and cell biology
domains. Compare:

(1) To evaluateCUE the PML/RARalpha role in myelopoiesis, transgenic mice
expressing PML/RARalpha were engineered.

(2) Our method was evaluated on the Lindahl benchmark for fold recognition.

In this article we focus on the domain-dependent aspects of uncertainty detection
and we examine the recognition of uncertainty cues in context. We do not address the
problem of linking cues to propositions in detail (see, e.g., Chapman, Chu, and Dowling
[2007] and Kilicoglu and Bergler [2009] for the information extraction case).
For the empirical investigation of the domain dependent aspects, data sets are

required from various domains. To date, several corpora annotated for uncertainty have
been constructed for different genres and domains (BioScope, FactBank, WikiWeasel,
and MPQA, to name but a few). These corpora cover different aspects of uncertainty,
however, being grounded on different linguistic models, which makes it hard to exploit
cross-domain knowledge in applications. These differences in part stem from the varied
application needs across application domains. Different types of uncertainty and classes
of linguistic expressions are relevant for different domains. Although hypotheses and
investigations form a crucial part of the relevant cases in scientific applications, they
are less prominent in newswire texts, where beliefs and rumors play a major role. This
finding motivates a more fine-grained treatment of uncertainty. In order to bridge the
existing gaps between application goals, these typical cases need to be differentiated. A
fine-grained categorization enables the individual treatment of each subclass, which
is less dependent on domain differences than using one coarse-grained uncertainty
class. Moreover, this approach enables each particular application to identify and select
from a pool of models only those aspects of uncertainty that are relevant in the specific
domain.
As one of the main contributions of this study, we propose a uniform subcategoriza-

tion of semantic uncertainty in which all the previous corpus annotation works can be
placed, and which reveals the fundamental differences between the currently existing
resources. In addition, we manually harmonized the annotations of three corpora and
performed the fine-grained labeling according to the suggested subcategorization so as
to be able to perform cross-domain experiments.
An important factor in training robust cross-domain models is to focus on shallow

features that can be reliably obtained for many different domains and text types, and
to craft models that exploit the shared knowledge from different sources as much
as possible, making the adaptation to new domains efficient. The study of learning
efficient models across different domains is the subject of transfer learning and domain
adaptation research (cf. Daumé III and Marcu 2006; Pan and Yang 2010). The domain
adaptation setting assumes a target domain (for which an accurate model should be
learned with a limited amount of labeled training data), a source domain (with charac-
teristics different from the target and for which a substantial amount of labeled data is
available), and an arbitrary supervised learning model that exploits both the target and
source domain data in order to learn an improved target domain model.
The success of domain adaptation mainly depends on two factors: (i) the similarity

of the target and source domains (the two domains should be sufficiently similar to
allow knowledge transfer); and (ii) the application of an efficient domain adaptation
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method (which permits the learning algorithm to exploit the commonalities of the
domains while preserving the special characteristics of the target domain).
As our second main contribution, we study the impact of domain differences on

uncertainty detection, how this impact depends on the distance between target and
source domains concerning their domains and genres, and how these differences can
be reduced to produce accurate target domain models with limited annotation effort.
Because previously existing resources exhibited fundamental differences that made

domain adaptation difficult,1 to our knowledge this is the first study to analyze domain
differences and adaptability in the context of uncertainty detection in depth, and also
the first study to report consistently positive results in cross-training.
The main contributions of the current paper can be summarized as follows:

� We provide a uniform subcategorization of semantic uncertainty (with
definitions, examples, and test batteries for annotation) and classify all
major previous studies on uncertainty corpus annotation into the proposed
categorization system, in order to reveal and analyze the differences.

� We provide a harmonized, fine-grained reannotation of three corpora,
according to the suggested subcategorization, to allow an in-depth
analysis of the domain dependent aspects of uncertainty detection.

� We compare the two state-of-the-art approaches to uncertainty cue
detection (i.e., the one based on token classification and the one on
sequence labeling models), using a shared feature set, in the context of the
CoNLL-2010 shared task, to understand their strengths and weaknesses.2

� We train an accurate semantic uncertainty detector that distinguishes four
fine-grained categories of semantic uncertainty (epistemic, doxastic,
investigation, and condition types) and thus is better for future
applications in various domains than previous models. Our experiments
reveal that, similar to the best model of the CoNLL-2010 shared task for
biological texts but in a fine-grained context, shallow features provide
good results in recognizing semantic uncertainty. We also show that this
representation is less suited to detecting discourse-level uncertainty
(which was part of the CoNLL task for Wikipedia texts).

� We examine in detail the differences between domains and genres as
regards the language used to express semantic uncertainty, and learn how
the domain or genre distance affects uncertainty recognition in texts with
unseen characteristics.

� We apply domain adaptation techniques to fully exploit out-of-domain
data and minimize annotation costs to adapt to a new domain, and we
report successful results for various text domains and genres.

The rest of the paper is structured as follows. In Section 2, our classification of
uncertainty phenomena is presented in detail and it is compared with the concept of

1 Only 3 out of the more than 20 participants of the related CoNLL-2010 shared task (Farkas et al. 2010)
managed to exploit out-of-domain data to improve their results, and only by a negligible margin.
2 The most successful CoNLL systems were based on these approaches, but different feature
representations make direct comparisons difficult.
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uncertainty used in existing corpora. A framework for detecting semantic uncertainty
is then presented in Section 3. Relatedwork on cue detection is summarized in Section 4,
which is followed by a description of our cue recognition system and a presentation of
our experimental set-up using various source and target genre and domain pairs for
cross-domain learning and domain adaptation in Section 5. Our results are elaborated
on in Section 6 with a focus on the effect of domain similarities and on the annotation
effort needed to cover a new domain. We then conclude with a summary of our results
and make some suggestions for future research.

2. The Phenomenon Uncertainty

In order to be able to introduce and discuss our data sets, experiments, and findings,
we have to clarify our understanding of the term uncertainty. Uncertainty—in its most
general sense—can be interpreted as lack of information: The receiver of the information
(i.e., the hearer or the reader) cannot be certain about some pieces of information. In this
respect, uncertainty differs from both factuality and negation; as regards the former,
the hearer/reader is sure that the information is true and as for the latter, he is sure
that the information is not true. From the viewpoint of computer science, uncertainty
emerges due to partial observability, nondeterminism, or both (Russell and Norvig
2010). Linguistic theories usually associate the notion of modality with uncertainty:
Epistemic modality encodes how much certainty or evidence a speaker has for the
proposition expressed by his utterance (Palmer 1986) or it refers to a possible state of
the world in which the given proposition holds (Kiefer 2005). The common point in
these approaches is that in the case of uncertainty, the truth value/reliability of the
proposition cannot be decided because some other piece of information is missing.
Thus, uncertain propositions are those in our understanding whose truth value or
reliability cannot be determined due to lack of information.
In the following, we focus on semantic uncertainty and we suggest a tentative

classification of several types of semantic uncertainty. Our classification is grounded on
the knowledge of existing corpora and uncertainty recognition tools and our chief goal
here is to provide a computational linguistics-oriented classification. With this in mind,
our subclasses are intended to be well-defined and easily identifiable by automatic
tools. Moreover, this classification allows different applications to choose the subset of
phenomena to be recognized in accordance with their main task (i.e., we tried to avoid
an overly coarse or fine-grained categorization).

2.1 Classification of Uncertainty Types

Several corpora annotated for uncertainty have been published in different domains
such as biology (Medlock and Briscoe 2007; Kim, Ohta, and Tsujii 2008; Settles, Craven,
and Friedland 2008; Shatkay et al. 2008; Vincze et al. 2008; Nawaz, Thompson, and
Ananiadou 2010), medicine (Uzuner, Zhang, and Sibanda 2009), news media (Rubin,
Liddy, and Kando 2005; Wilson 2008; Saurı́ and Pustejovsky 2009; Rubin 2010), and
encyclopedia (Farkas et al. 2010). As can be seen from publicly available annotation
guidelines, there are many overlaps but differences as well in the understanding of
uncertainty, which is sometimes connected to domain- and genre-specific features of
the texts. Here we introduce a domain- and genre-independent classification of several
types of semantic uncertainty, which was inspired by both theoretical and computa-
tional linguistic considerations.

339



Computational Linguistics Volume 38, Number 2

Figure 1
Types of uncertainty. FB = FactBank; Genia = Genia Event; Rubin = the data set described
in Rubin, Liddy and Noriko (2005); META = the data set described in Nawaz, Thompson
and Ananiadou (2010); Medlock = the data set described in Medlock and Briscoe (2007);
Shatkay = the data set described in Shatkay et al. (2008); Settles = the data set described in
Settles et al. (2008).

2.1.1 A Tentative Classification. Based on corpus data and annotation principles, the
expression uncertainty can be used as an umbrella term for covering phenomena at the
semantic and discourse levels.3 Our classification of semantic uncertainty is assumed
to be language-independent, but our examples presented here come from the English
language, to keep matters simple.
Semantically uncertain propositions can be defined in terms of truth conditional

semantics. They cannot be assigned a truth value (i.e., it cannot be stated for sure
whether they are true or false) given the speaker’s current mental state.
Semantic level uncertainty can be subcategorized into epistemic and hypothetical

(see Figure 1). The main difference between epistemic and hypothetical uncertainty is
that whereas instances of hypothetical uncertainty can be true, false or uncertain, epis-
temically uncertain propositions are definitely uncertain—in terms of possible worlds,
hypothetical propositions allow that the proposition can be false in the actual world,
but in the case of epistemic uncertainty the factuality of the proposition is not known.
In the case of epistemic uncertainty, it is known that the proposition is neither true

nor false: It describes a possible world where the proposition holds but this possible
world does not coincide with the speaker’s actual world. In other words, it is certain
that the proposition is uncertain. Epistemic uncertainty is related to epistemic modality:
a sentence is epistemically uncertain if on the basis of our world knowledge we cannot
decide at the moment whether it is true or false (hence the name) (Kiefer 2005). The
source of an epistemically uncertain proposition cannot claim the uncertain proposition
and be sure about its opposite at the same time.

(3) EPISTEMIC: Itmay be raining.

3 The entire typology of semantic uncertainty phenomena and a test battery for their classification are
described in a supplementary file. Together with the corpora and the experimental software, they are
available at http://www.inf.u-szeged.hu/rgai/uncertainty.
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As for hypothetical uncertainty, the truth value of the propositions cannot be
determined either and nothing can be said about the probability of their happening.
Propositions under investigation are an example of such statements: Until further anal-
ysis, the truth value of the proposition under question cannot be stated. Conditionals
can also be classified as instances of hypotheses. It is also common in these two types of
uncertain propositions that the speaker can utter them while it is certain (for others or
even for him) that its opposite holds hence they can be called instances of paradoxical
uncertainty.
Hypothetical uncertainty is connectedwith non-epistemic types ofmodality aswell.

Doxastic modality expresses the speaker’s beliefs—which may be known to be true or
false by others in the current state of the world. Necessity (duties, obligation, orders)
is the main objective of deontic modality; dispositional modality is determined by the
dispositions (i.e., physical abilities) of the person involved; and circumstantial modality
is defined by external circumstances. Buletic modality is related to wishes, intentions,
plans, and desires. An umbrella term for deontic, dispositional, circumstantial, and
buletic modality is dynamic modality (Kiefer 2005).

HYPOTHETICAL:

(4) DYNAMIC: I have to go.

(5) DOXASTIC: He believes that the Earth is flat.

(6) INVESTIGATION: We examined the role of NF-kappa B in protein activation.

(7) CONDITION: If it rains, we’ll stay in.

Conditions and instances of dynamic modality are related to the future: In the
future, they may happen but at the moment it is not clear whether they will take place
or not / whether they are true, false, or uncertain.

2.1.2 Comparison with other Classifications. The feasibility of the classification proposed in
this study can be justified by mapping the annotation schemes used in other existing
corpora to our subcategorizations of uncertainty. This systematic comparison also high-
lights the major differences between existing works and partly explains why examples
for successful cross-domain application of existing resources and models are hard to
find in the literature.
Most of the annotations found in biomedical corpora (Medlock and Briscoe 2007;

Settles, Craven, and Friedland 2008; Shatkay et al. 2008; Thompson et al. 2008; Nawaz,
Thompson, and Ananiadou 2010) fall into the epistemic uncertainty class. BioScope
(Vincze et al. 2008) annotations mostly belong to the epistemic uncertainty category,
with the exception of clausal hypotheses (i.e., hypotheses that are expressed by a clause
headed by if or whether), which are instances of the investigation class. The probable
class of Genia Event (Kim, Ohta, and Tsujii 2008) is of the epistemically uncertain type
and the doubtful class belongs to the investigation class. Rubin, Liddy, and Kando (2005)
consider uncertainty as a phenomenon belonging to epistemicmodality: The high, mod-
erate, and low levels of certainty coincide with our epistemic uncertainty category. The
speculation annotations of the MPQA corpus also belong to the epistemic uncertainty
class, with four levels (Wilson 2008). The probable and possible classes found in FactBank
(Saurı́ and Pustejovsky 2009) are of the epistemically uncertain type, events with a
generic source belong to discourse-level uncertainty, whereas underspecified events are
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classified as hypothetical uncertainty in our system as, by definition, their truth value
cannot be determined. WikiWeasel (Farkas et al. 2010) contains annotation for epistemic
uncertainty, but discourse-level uncertainty is also annotated in the corpus (see Figure 1
for an overview). The categories used for themachine reading task described inMorante
and Daelemans (2011) also overlap with our fine-grained classes: Uncertain events in
their system fall into our epistemic uncertainty class. Their modal events expressing
purpose, need, obligation, or desire are instances of dynamic modality, whereas their
conditions are understood in a similar way to our condition class. The modality types
listed in Baker et al. (2010) can be classified as types of dynamic modality, except for
their belief category. Instances of the latter category are either certain (It is certain that he
met the president) or epistemic or doxastic modality in our system.

2.2 Types of Semantic Uncertainty Cues

We assume that the nature of the lexical unit determines the type of uncertainty it
represents, that is, semantic uncertainty is highly lexical in nature. The part of speech of
the uncertainty cue candidates serves as the basis for categorization, similar to the ones
found in Hyland (1994, 1996, 1998) and Rizomilioti (2006). In English, modality is often
associated with modal auxiliaries (Palmer 1979), but, as Table 1 shows, there are many
other parts of speech that can express uncertainty. It should be added that there are
cues where it depends on the context, rather than the given lexical item, what subclass
of uncertainty the cue refers to, for example, may can denote epistemic modality (It may
rain. . . ) or dynamic modality (Now you may open the door). These categories are listed in
Table 1.

3. A Framework for Detecting Semantic Uncertainty

In our model, uncertainty detection is a standalone task that is largely independent of
the underlying application. In this section, we briefly discuss how uncertainty detection

Table 1
Uncertainty cues.

Adjectives / adverbs
probable, likely, possible, unsure, possibly, perhaps, etc. epistemic

Auxiliaries
may, might, can, would, should, could, etc. semantic

Verbs
speculative: suggest, question, seem, appear, favor, etc. epistemic
psych: think, believe, etc. doxastic
analytic: investigate, analyze, examine, etc. investigation
prospective: plan, want, order, allow, etc. dynamic

Conjunctions
if, whether, etc. investigation

Nouns
nouns derived speculation, proposal, consideration, etc. same as the verb
from uncertain verb:
other rumor, idea, etc. doxastic
uncertain nouns:
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can be incorporated into an information extraction task, which is probably the most
relevant application area (see Kim et al. [2009] for more details). In the information
extraction context, the key steps of recognizing uncertain propositions are locating the
cues, disambiguating them (as not all occurrences of the cues indicate uncertainty; recall
the example of evaluate), and finally linking them with the textual representation of
the propositions in question. We note here that marking the textual representations of
important propositions (often referred to as events in information extraction) is actually
the main goal of an information extraction system, hence we will not focus on their
identification and just assume that they are already marked in texts.
The following is an example that demonstrates the process of uncertainty detection:

(8) In this study we hypothesizedCUE that the phosphorylation of TRAF2
inhibitsEVENT binding to the CD40 cytoplasmic domain.

Here the EVENT mark-up is produced by the information extraction system, and
uncertainty detection consists of i) the recognition of the cue word hypothesized, and
determining whether it denotes uncertainty in this specific case (producing the CUE
mark-up) and ii) determining whether the cue hypothesizedmodifies the event triggered
by inhibits or not (positive example in this case).

3.1 Uncertainty Cue Detection and Disambiguation

The cue detection and disambiguation problem can be essentially regarded as a token
labeling problem. Here the task is to assign a label to each of the tokens of a sentence
in question according to whether it is the starting token of an uncertainty cue (B-
CUE TYPE), an inside token of a cue (I-CUE TYPE), or it is not part of any cue (O). Most
previous studies assume a binary classification task, namely, each token is either part of
an uncertainty cue, or it is not a cue. For fine-grained uncertainty detection, a different
label has to be used for each uncertainty type to be distinguished. This way, the label
sequence of a sentence naturally identifies all uncertainty cues (with their types) in the
sentence, and disambiguation is solved jointly with recognition.
Because the uncertainty cue vocabulary and the distribution of certain and uncer-

tain senses of cues vary in different domains and genres, uncertainty cue detection and
disambiguation are the main focus of the current study.

3.2 Linking Uncertainty Cues to Propositions

The task of linking the detected uncertainty cues to propositions can be formulated
as a binary classification task over uncertainty cue and event marker pairs. The relation
holds and is considered true if the cuemodifies the truth value (confidence) of the event;
it does not hold and is considered false if the cue does not have any impact on the
interpretation of the event. That is, the pair (hypothesized, inhibits) in Example (8) is an
instance of positive relation.
The linking of uncertainty cues and event markers can be established by using de-

pendency grammar rules (i.e., the problem is mainly syntax driven). As the grammatical
properties of the language are similar in various domains and genres, this task is largely
domain-independent, as opposed to the recognition and disambiguation task. Because
of this, we sketch the most important matching patterns, but do not address the linking
task in great detail here.
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The following are the characteristic rules that can be used to link uncertainty cues
to event markers. For practical implementations of heuristic cue/event matching, see
Chapman, Chu, and Dowling (2007) and Kilicoglu and Bergler (2009).

� If the event clue has an uncertain verb, noun, preposition, or auxiliary as a
(not necessarily direct) parent in the dependency graph of the sentence,
the event is regarded as uncertain.

� If the event clue has an uncertain adverb or adjective as its child, it is
treated as uncertain.

4. Related Work on Uncertainty Cue Detection

Herewe review the publishedworks related to uncertainty cue detection. Earlier studies
focused either on in-domain cue recognition for a single domain or on cue lexicon
extraction from large corpora. The latter approach is applicable tomultiple domains, but
does not address the disambiguation of uncertain and other meanings of the extracted
cue words. We are also aware of several studies that discussed the differences of cue
distributions in various domains, without developing a cue detector. To the best of
our knowledge, our study is the first to address the genre- and domain-adaptability of
uncertainty cue recognition systems and thus uncertainty detection in a general context.
We should add that there are plenty of studies on end-application oriented uncer-

tainty detection, that is, how to utilize the recognized cues (see, for instance, Kilicoglu
and Bergler [2008], Uzuner, Zhang, and Sibanda [2009] and Saurı́ [2008] for information
extraction or Farkas and Szarvas [2008] for document labeling applications), and a
recent pilot task sought to exploit negation and hedge cue detectors in machine reading
(Morante and Daelemans 2011). As the focus of our paper is cue recognition, however,
we omit their detailed description here.

4.1 In-Domain Cue Detection

In-domain uncertainty detectors have been developed since the mid 1990s. Most of
these systems use hand-crafted lexicons for cue recognition and they treat each oc-
currence of the lexicon items as a cue—that is, they do not address the problem of
disambiguating cues (Friedman et al. 1994; Light, Qiu, and Srinivasan 2004; Farkas and
Szarvas 2008; Saurı́ 2008; Conway, Doan, and Collier 2009; Van Landeghem et al. 2009).
ConText (Chapman, Chu, and Dowling 2007) uses regular expressions to define cues
and “pseudo-triggers”. A pseudo-trigger is a superstring of a cue and it is basically
used for recognizing contexts where a cue does not imply uncertainty (i.e., it can be
regarded as a hand-crafted cue disambiguation module). MacKinlay, Martinez, and
Baldwin (2009) introduced a system which also used non-consecutive tokens as cues
(like not+as+yet).
Utilizing manually labeled corpora, machine learning–based uncertainty cue de-

tectors have also been developed (to the best of our knowledge each of them uses an
in-domain training data set). They use token classification (Morante and Daelemans
2009; Clausen 2010; Fernandes, Crestana, and Milidiú 2010; Sánchez, Li, and Vogel
2010) or sequence labeling approaches (Li et al. 2010; Rei and Briscoe 2010; Tang et al.
2010; Zhang et al. 2010). In both cases the tokens are labeled according to whether
they are part of a cue. The latter assigns a label sequence to a sentence (a sequence of
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tokens) thus it naturally deals with the context of a particular word. On the other hand,
context information for a token is built into the feature space of the token classification
approaches. Özgür and Radev (2009) and Velldal (2010) match cues from a lexicon then
apply a binary classifier based on features describing the context of the cue candidate.
Each of these approaches uses a rich feature representation for tokens, which usu-

ally includes surface-level, part-of-speech, and chunk-level features. A few systems
have also used dependency relation types originating at the cue (Rei and Briscoe 2010;
Sánchez, Li, and Vogel 2010; Velldal, Øvrelid, and Oepen 2010; Zhang et al. 2010); the
CoNLL-2010 Shared Task final ranking suggests that it has only a limited impact on the
performance of an entire system (Farkas et al. 2010), however. Özgür and Radev (2009)
further extended the feature set with the other cues that occur in the same sentence as
the cue, and positional features such as the section header of the article in which the cue
occurs (the latter is only defined for scientific publications). Velldal (2010) argues that
the dimensionality of the uncertainty cue detection feature space is too high and reports
improvements by using the sparse random indexing technique.
Ganter and Strube (2009) proposed a rather different approach for (weasel) cue

detection—exploiting weasel tags4 in Wikipedia articles given by editors. They used
syntax-based patterns to recognize the internal structure of the cues, which has proved
useful as discourse-level uncertainty cues are usually long and have a complex internal
structure (as opposed to semantic uncertainty cues).
As can be seen, uncertainty cue detectors have mostly been developed in the bio-

logical and medical domains. All of these studies, however, focus on only one domain,
namely, in-domain cue detection is carried out, which assumes the availability of a
training data set of sufficient size. The only exceptionwe are aware of is the CoNLL-2010
Shared Task (Farkas et al. 2010), where participants had the chance to use Wikipedia
data on biomedical domain and vice versa. Probably due to the differences in the
annotated uncertainty types and the stylistic and topical characteristics of the texts,
very few participants performed cross-domain experiments and reported only limited
success (see Section 5.3.2 for more on this).
Overall, the findings of these studies indicate that disambiguating cue candidates is

an important aspect of uncertainty detection and that the domain specificity of disam-
biguation models and domain adaptation in general are largely unexplored problems
in uncertainty detection.

4.2 Weakly Supervised Extraction of Cue Lexicon

Similar to our approach, several studies have addressed the problem of developing
an uncertainty detector for a new domain using as little annotation effort as possible.
The aim of these studies is to identify uncertain sentences; this is carried out by semi-
automatic construction of cue lexicons. The weakly supervised approaches start with
very small seed sets of annotated certain and uncertain sentences, and use bootstrap-
ping to induce a suitable training corpus in an automatic way. Such approaches collect
potentially certain and uncertain sentences from a large unlabeled pool based on their
similarity to the instances in the seed sets (Medlock and Briscoe 2007), or based on the
known errors of an information extraction system that is itself sensitive to uncertain
texts (Szarvas 2008). Further instances are then collected (in an iterative fashion) on
the basis of their similarity to the current training instances. Based on the observation

4 See http://en.wikipedia.org/wiki/Wikipedia:Embrace_weasel_words.
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that uncertain sentences tend to contain more than one uncertainty cue, these models
successfully extend the seed sets with automatically labeled sentences, and can produce
an uncertainty classifier with a sentence-level F-score of 60–80% for the uncertain class,
given that the texts of the seed examples, the unlabeled pool, and the actual evaluation
data share very similar properties.
Szarvas (2008) showed that these models essentially learn the uncertainty lexicon

(set of cues) of the given domain, but are otherwise unable to disambiguate the potential
cue words—that is, to distinguish between the uncertain and certain uses of the previ-
ously seen cues. This deficiency of the derived models is inherent to the bootstrapping
process, which considers all occurrences of the cue candidates as good candidates for
positive examples (as opposed to unlabeled sentences without any previously seen cue
words).
Kilicoglu and Bergler (2008) proposed a semi-automatic method to expand a seed

cue lexicon. Their linguistically motivated approach is also based on the weakly super-
vised induction of a corpus of uncertain sentences. It exploits the syntactic patterns of
uncertain sentences to identify new cue candidates.
The previous studies on weakly supervised approaches to uncertainty detection

did not tackle the problem of disambiguating the certain and uncertain uses of cue
candidates, which is a major drawback from a practical point of view.

4.3 Cue Distribution Analyses

Besides automatic uncertainty recognition, several studies investigated the distribution
of hedge cues in scientific papers from different domains (Hyland 1998; Falahati 2006;
Rizomilioti 2006). The effect of different domains on the frequency of uncertain expres-
sions was examined in Rizomilioti (2006). Based on a previously defined dictionary of
hedge cues, she analyzed the linguistic tools expressing epistemic modality in research
papers from three domains, namely, archeology, literary criticism, and biology. Her
results indicated that archaeological papers tend to contain the most uncertainty cues
(which she calls downtoners) and the fewest uncertainty cues can be found in literary
criticism papers. Different academic disciplines were contrasted in Hyland (1998) from
the viewpoint of hedging: Papers belonging to the humanities contain significantly
more hedging devices than papers in sciences. It is interesting to note, however, that
in both studies, biological papers are situated in the middle as far as the percentage rate
of uncertainty cues is concerned. Falahati (2006) examined hedges in research articles in
medicine, chemistry, and psychology and concluded that it is psychology articles that
contain the most hedges.
Overall, these studies demonstrate that there are substantial differences in the way

different technical/scientific domains and different genres express uncertainty in gen-
eral, and in the use of semantic uncertainty in particular. Differences are found not just
in the use of different vocabulary for expressing uncertainty, but also in the frequency
of certain and uncertain usage of particular uncertainty cues. These findings underpin
the practical importance of domain portability and domain adaptation of uncertainty
detectors.

5. Uncertainty Cue Recognition

In this section, we present our uncertainty cue detector and the results of the cross-genre
and -domain experiments carried out by us. Before describing ourmodel and discussing
the results of the experiments, a short overview of the texts used as training and test

346



Szarvas et al. Cross-Genre and Cross-Domain Detection of Semantic Uncertainty

data sets will be given along with an empirical analysis of the sense distributions of the
most frequent cues.

5.1 Data Sets

In our investigations, we selected three corpora (i.e., BioScope, WikiWeasel, and Fact-
Bank) from different domains (biomedical, encyclopedia, and newswire, respectively).
Genres also vary in the corpora (in the scientific genre, there are papers and abstracts
whereas the other corpora contain pieces of news and encyclopedia articles). We pre-
ferred corpora on which earlier experiments had been carried out because this allowed
us to compare our results with those of previous studies. This selectionmakes it possible
to investigate domain and genre differences because each domain has its characteristic
language use (which might result in differences in cue distribution) and different genres
also require different writing strategies (e.g., in abstracts, implications of experimental
results are often emphasized, which usually involves the use of uncertain language).
The BioScope corpus (Vincze et al. 2008) contains clinical texts as well as biological

texts from full papers and scientific abstracts; the texts were manually annotated for
hedge cues and their scopes. In our experiments, 15 other papers annotated for the
CoNLL-2010 Shared Task (Farkas et al. 2010) were also added to the set of BioScope
papers. The WikiWeasel corpus (Farkas et al. 2010) was also used in the CoNLL-2010
Shared Task and it was manually annotated for weasel cues and semantic uncertainty
in randomly selected paragraphs taken from Wikipedia articles. The FactBank corpus
contains texts from the newswire domain (Saurı́ and Pustejovsky 2009). Events are
annotated in the data set and they are evaluated on the basis of their factuality from
the viewpoint of their sources.
Table 2 provides statistical data on the three corpora. Because in our experimental

set-up, texts belonging to different genres also play an important role, data on abstracts
and papers are included separately.

5.1.1 Genres and Domains. Texts found in the three corpora to be investigated can be
categorized into three genres, which can be further divided to subgenres at a finer level
of distinction. Figure 2 depicts this classification.
The majority of BioScope texts (papers and abstracts) belong to the scientific dis-

course genre. FactBank texts can be divided into broadcast and written news, and
Wikipedia texts belong to the encyclopedia genre.
As for the domain of the texts, there are three broad domains, namely, biology, news,

and encyclopedia. Once again, these domains can be further divided into narrower

Table 2
Data on the corpora. sent. = sentence; epist. = epistemic cue; dox. = doxastic cue;
inv. = investigation cue; cond. = condition cue.

Data Set #sent. #epist. #dox. #inv. #cond. Total

BioScope papers 7676 1373 220 295 187 2075
BioScope abstracts 11797 2478 200 784 24 3486
BioScope total 19473 3851 420 1079 211 5561
WikiWeasel 20756 1171 909 94 491 3265
FactBank 3123 305 201 36 178 720
Total 43352 5927 1530 1209 880 9546
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Figure 2
Genres of texts.

Figure 3
Domains of texts.

topics at a fine-grained level, which is shown in Figure 3. All abstracts and five papers
in BioScope are related to the MeSH terms human, blood cell, and transcription factor (hbc
in Figure 3). Nine BMC Bioinformatics papers come from the bioinformatics domain
(bmc in Figure 3), and ten papers describe some experimental results on the Drosophila
species (fly). FactBank news can be classified as stock news, political news, and
criminal news. Encyclopedia articles cover a broad range of topics, hence no detailed
classification is given here.

5.1.2 The Normalization of the Corpora. In order to uniformly evaluate our methods in
each domain and genre (and each corpus), the evaluation data sets were normalized.
This meant that cues had to be annotated in each data set and differentiated for types
of semantic uncertainty. This resulted in the reannotation of BioScope, WikiWeasel, and
FactBank.5 In BioScope, the originally annotated cues were separated into epistemic
cues and subtypes of hypothetical cues and instances of hypothetical uncertainty not
yet marked were also annotated. In FactBank, epistemic and hypothetical cues were
annotated: Uncertain events were matched with their uncertainty cues and instances
of hypothetical uncertainty that were originally not annotated were also marked in
the corpus. In the case of WikiWeasel, these two types of cues were separated from
discourse-level cues.
One class of hypothetical uncertainty (i.e., dynamic modality) was not annotated

in any of the corpora. Although dynamic modality seems to play a role in the news
domain, it is less important and less represented in the other two domains we investi-
gated here. The other subclasses are more of general interest for the applications. For
example, one of our training corpora comes from the scientific domain, where it is more
important to distinguish facts from hypotheses and propositions under investigation

5 The corpora are available at http://www.inf.u-szeged.hu/rgai/uncertainty.
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(which can be later confirmed or rejected, compare the meta-knowledge annotation
scheme developed for biological events [Nawaz, Thompson, andAnaniadou 2010]), and
from propositions that depend on each other (conditions).

5.1.3 Uncertainty Cues in the Corpora. An analysis of the cue distributions reveals some
interesting trends that can be exploited in uncertainty detection across domains and
genres. The most frequent cue stems in the (sub)corpora used in our study can be seen
in Table 3 and they are responsible for about 74% of epistemic cue occurrences, 55% of
doxastic cue occurrences, 70% of investigation cue occurrences, and 91% of condition
cue occurrences.
As can be seen, one of the most frequent epistemic cues in each corpus is may. If,

possible, might, and suggest also occur frequently in our data set.
The distribution of the uncertainty cues was also analyzed from the perspective of

uncertainty classes in each corpus, which is presented in Figure 4. Inmost of the corpora,
epistemic cues are the most frequent (except for FactBank) and they vary the most:
Out of the 300 cue stems occurring in the corpora, 206 are epistemic cues. Comparing
the domains, it can readily be seen that in biological texts, doxastic uncertainty is not
frequent, which is especially true for abstracts, whereas in FactBank and WikiWeasel
they cover about 27% of the data. The most frequent doxastic keywords exhibit some
domain-specific differences, however: In BioScope, the most frequent ones include puta-
tive and hypothesis, which rarely occur in FactBank and WikiWeasel. Nevertheless, cues
belonging to the investigation class can be found almost exclusively in scientific texts
(89% of them are in BioScope), which can be expected because the aim of scientific pub-
lications is to examine whether a hypothesized phenomenon occurs. Among the most

Table 3
The most frequent cues in the corpora. epist. = epistemic cue; dox. = doxastic cue; inv. =
investigation cue; cond. = condition cue.

Global Abstracts Full papers BioScope FactBank WikiWeasel

Epist. may 1508 suggest 616 may 228 suggest 810 may 43 may 721
suggest 928 may 516 suggest 194 may 744 could 29 probable 112
indicate 421 indicate 301 indicate 103 indicate 404 possible 26 suggest 108
possible 304 appear 143 possible 84 appear 213 likely 24 possible 93
appear 260 or 119 might 83 or 197 might 23 likely 80
might 256 possible 101 or 78 possible 185 appear 15 might 78
likely 221 might 72 can 73 might 155 seem 11 seem 67
or 198 potential 72 appear 70 can 117 potential 10 could 55
could 196 likely 60 likely 57 likely 117 probable 10 perhaps 51
probable 157 could 56 could 56 could 112 suggest 10 appear 32

Dox. consider 276 putative 43 putative 37 putative 80 expect 75 consider 250
believe 222 think 43 hypothesis 33 hypothesis 77 believe 25 believe 173
expect 136 hypothesis 43 assume 24 think 66 think 24 allege 81
think 131 believe 14 think 24 assume 32 allege 8 think 61
putative 83 consider 10 expect 22 predict 26 accuse 7 regard 58

Invest. whether 247 investigate 177 whether 73 investigate 221 whether 26 whether 52
investigate 222 examine 160 investigate 44 examine 183 if 3 if 20
examine 183 whether 96 test 25 whether 169 remain to be seen 2 whether or not 7
study 102 study 88 examine 23 study 101 question 1 assess 3
determine 90 determine 67 determine 20 determine 87 determine 1 evaluate 3

Cond. if 418 if 14 if 85 if 99 if 65 if 254
would 238 would 6 would 46 would 52 would 50 would 136
will 80 until 2 will 20 will 20 will 21 will 39
until 40 could 1 should 11 should 11 until 16 until 15
could 30 unless 1 could 9 could 10 could 9 unless 14
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Figure 4
Cue type distributions in the corpora.

frequent cues, investigate, examine, and study belong to this group. These data reveal
that the frequency of doxastic and investigation cues is strongly domain-dependent,
and this explains the fact that the investigation vocabulary is very limited in Factbank
and WikiWeasel. Only about 10 cue stems belong to this uncertainty class in these cor-
pora. The set of condition cue stems, however, is very small in each corpus; altogether
18 condition cue stems can be found in the data, although if and would are responsible
for almost 75% of condition cue occurrences. It should also be mentioned that the
percentage of condition cues is higher in FactBank than in the other corpora.
Another interesting trend was observed when word forms were considered instead

of stemmed forms: Certain verbs in third person singular (e.g., expects or believes) occur
mostly in FactBank and WikiWeasel. The reason for this may be that when speaking
about someone else’s opinion in scientific discourse, the source of the opinion is usually
provided in the form of references or citations—usually at the end of the sentence—and
due to this, the verb is often used in the passive form, as in Example (9).

(9) It is currently believed that both RAG1 and RAG2 proteins were originally
encoded by the same transposon recruited in a common ancestor of jawed
vertebrates [3,12,13,16].

In contrast, impersonal constructions are hardly used in news media, where the ob-
jective is to inform listeners about the source of the news presented as well in order
to enable them to judge the reliability of a piece of news. Here, a clause including the
source and a communication verb is usually attached to the proposition.
A genre-related difference between scientific abstracts and full papers is that con-

dition cues can rarely be found in abstracts, although they occur more frequently in
papers (with the non-cue usage still being much more frequent). Another difference is
the percentage of cues of the investigation type, which may be related to the structure
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of abstracts. Biological abstracts usually present the problem they examine and describe
methods they use. This entails the application of predicates belonging to the investiga-
tion class of uncertainty. It can be argued, however, that scientific papers also have these
characteristics but abstracts are much shorter than papers (generally, they contain about
10–12 sentences). Hence, investigation cues are responsible for a greater percentage of
cues.
There are some lexical differences among the corpora that are related to domain or

genre specificity. For instance, due to their semantics, the words charge, accuse, allege,
fear, worry, and rumor are highly unlikely to occur in scientific publications, but they
occur relatively often in news texts and in Wikipedia articles. As for lexical divergences
between abstracts and papers, many of them are related to verbs of investigation and
their different usage. In the corpora, verbs of investigations were marked only if it was
not clear whether the event/phenomenon would take place or not. If it has already
happened (The police are investigating the crime) or the existence of the thing under
investigation can be stated with certainty, independently of the investigation (The top
ten organisms were examined), then they are not instances of hypotheses, so they were
not annotated. As the data sets make clear, there were some candidates of investigation
verbs that occurred in the investigation sense mostly in abstracts but in another sense in
papers, especially in the bmc data set (e.g. assess or examine). Evaluate also had a special
mathematical sense in bmc papers, which did not occur in abstracts.
It can also be seen that some of the very frequent cues in papers do not occur (or

only relatively rarely) in abstracts. This is especially true for the bmc data set, where can,
if, would, could, and will are among the 15 most frequent cues and represent 23.21% of
cue occurrences, but only 3.85% in abstracts. It is also apparent that the rate of epistemic
cues is lower in bmc papers than in abstracts or other types of papers.
Genre-dependent characteristics can be analyzed if BioScope abstracts and hbc

papers are compared because their fine-grained domain is the same. Thus, it may be
assumed that differences between their cues are related to the genre. The sets of cues
used are similar, but the sense distributions may differ for certain ambiguous cues. For
instance, indicate mostly appears in the ‘suggest’ sense in abstracts, whereas in papers
it is used in the ‘signal’ sense. Another difference is that the percentage rate of doxastic
cues is almost twice as high in papers as in abstracts (10.6% and 5.7%, respectively).
Besides these differences, the two data sets are quite similar.
Domain-related differences can be analyzed when the three subdomains of biolog-

ical papers are contrasted. As stressed earlier, bmc papers contain fewer instances of
epistemic uncertainty, but condition cues occur more frequently in them. Nevertheless,
fly and hbc papers are rather similar in these respects but hbc papers contain more
investigation cues than the other two subcorpora. As regards lexical issues, the non-cue
usage of possible in comparative constructions is more frequent in the bmc data set than
in the other papers and many occurrences of if in bmc are related to definitions, which
were not annotated as uncertain. On the basis of this information, the fly and the hbc
domains seem to be more similar to each other than to the BMC data set from a linguistic
point of view.
From the perspective of genre and domain adaptation, the following points should

be highlighted concerning the distribution of uncertainty cues across corpora. Doxastic
uncertainty is of primary importance in the news and encyclopedia domains whereas
the investigation class is characteristic of the biological domain. Within the latter, there
is a genre-related difference as well: It is the epistemic and investigation classes that
are mainly present in abstracts whereas in papers cues belonging to other uncertainty
classes can also be found. Thus, when applying techniques developed for biological
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texts or abstracts to news texts, for example, doxastic uncertainty cues deserve special
attention as it might well be the case that there are insufficient training examples for this
class of uncertainty cues. The adaptation of an uncertainty cue detector constructed for
encyclopedia texts requires the special treatment of investigation cues, however, if, for
instance, scientific discourse is the target genre since they are underrepresented in the
source genre.

5.2 Evaluation Metrics

As evaluation metrics, we used cue-level and sentence-level Fβ=1 scores for the uncer-
tain class (the standard evaluation metrics of Task 1 of the CoNLL-2010 shared task)
and denote them by Fcue and Fsent, respectively. We report cue-level Fβ=1 scores on the
individual subcategories of uncertainty and the unlabeled (binary) Fβ=1 scores as well.
A sentence is treated as uncertain (in the gold standard and prediction) iff it contains at
least one cue. Note that the cue-level metric is quite strict as it is based on recognized
phrases—that is, only cues with perfect boundary matches are true positives. For the
sentence-level evaluation we simply labeled those sentences as uncertain that contained
at least one recognized cue.

5.3 Cross-Domain Cue Recognition Model

In order to minimize the development cost of a labeled corpus and an uncertainty
detector for a new genre/domain, we need to induce an accurate model from a minimal
amount of labeled data, or take advantage of existing corpora for different genres
and/or domains and use a domain adaptation approach. Experiments investigating the
value and sufficiency of existing corpora (which are usually out-of-domain) and simple
domain adaptation methods were carried out. For this purpose, we implemented a cue
recognition model, which is described in this section.
To train our models, we applied surface level (e.g., capitalization) and shallow

syntactic features (part-of-speech tags and chunks) and avoided the use of lexicon-based
features listing potential cue words, in order to reduce the domain dependence of the
learned models. Now we will introduce our model, which is competitive with the state-
of-the-art systems and focus on its domain adaptability. We will also describe the im-
plementation details of the learning model and the features employed. We should add
that the optimization of a cue detector was not the main focus of our study, however.

5.3.1 Feature Set.We extracted two types of features for each token to describe the token
itself, together with its local context in a window of limited size (1, 2, or no window,
depending on the feature).
The first group consists of features describing the surface form of the tokens. Here

we provide the list of the surface features with the corresponding window sizes:

� Stems of the tokens by the Porter stemmer in a window of size 2 (current
token and two tokens to the left and right).

� Surface pattern of the tokens in a window of size one (current token
and 1 token to the left and right). These patterns are similar to the word
shape feature described in Sun et al. (2007). This feature can describe the
capitalization and other orthographic features as well. Patterns represent
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character sequences of the same type with one single character for a
given word. There are six different pattern types denoting capitalized and
lowercased character sequences with the characters “A” and “a”, number
sequences with “0”, Greek letter sequences with “G” and “g”, Roman
numerals with “R” and “r”, and non-alphanumerical characters with “!”.

� Prefixes and suffixes of word forms from three to five characters long.

The second group of features describes the syntactic properties of the token and its
local context. The list of the syntactic features with the corresponding window sizes is
the following:

� Part-of-speech (POS) tags of the tokens by the C&C POS-tagger in a
window of size 2.

� Syntactic chunk of the tokens, as given by the C&C chunker,6 and the
chunk code of the tokens in a window of size 2.

� Concatenated stem, POS, and chunk labels similar to the features used
by Tang et al. (2010). These feature strings were a combination of the stem
and the chunk code of the current token, the stem of the current token
combined with the POS-codes of the token left and right, and the chunk
code of the current token with the stems of the neighboring tokens.

5.3.2 CoNLL-2010 Experiments. The CoNLL-2010 shared task Learning to detect hedges and
their scope in natural language text focused on uncertainty detection. Two subtasks were
defined at the shared task: The first task sought to recognize sentences that contain some
uncertain language in two different domains and the second task sought to recognize
lexical cues together with their linguistic scope in biological texts (i.e., the text span in
terms of constituency grammar that covers the part of the sentence that is modified
by the cue). The lexical cue recognition subproblem of the second task7 is identical
to the problem setting used in this study, with the only major difference being the
types of uncertainty addressed: In the CoNLL-2010 task biological texts contained only
epistemic, doxastic, and investigation types of uncertainty. Apart from these differences,
the CoNLL-2010 shared task offers an excellent testbed for comparing our uncertainty
detection model with other state-of-the-art approaches for uncertainty detection and to
compare different classification approaches. Here we present our detailed experiments
using the CoNLL data sets, analyze the performance of our models, and select the most
suitable models for further experiments.

CoNLL systems. The uncertainty detection systems that were submitted to the CoNLL
shared task can be classified into three major types. The first set of systems treats the
problem as a sentence classification task, that is, one to decide whether a sentence
contains any uncertain element or not. These models operate at the sentence level and
are unsuitable for cue detection. The second group handles the problem as a token

6 POS-tagging and chunking were performed on all corpora using the C&C Tools (Curran, Clark, and
Bos 2007).
7 As an intermediate level, participants of the first task could submit the lexical cues found in sentences
for evaluation, without their scope, which gave some insight into the nature of cue detection on the
Wikipedia corpus (where scope annotation does not exist) as well.
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Table 4
Results on the original CoNLL-2010 data sets. The first three rows correspond to our baseline,
token-based, and sequence labeling models. The BEST/SEQ row shows the results of the best
sequence labeling approach of the CoNLL shared task (for both domains), the BEST/TOK rows
show the best token-based models, and the BEST/SENT rows show the best sentence-level
classifiers (these models did not produce cue-level results).

BIOLOGICAL WIKIPEDIA

Fcue Fsent Fcue Fsent

BASELINE 74.5 81.4 19.5 58.6
TOKEN/MAXENT 79.7 85.8 22.3 58.1
SEQUENCE/CRF 81.4 87.0 32.7 47.0

BEST/SEQ (Tang et al. 2010) 81.3 86.4 36.5 55.0
BEST/TOK BIO (Velldal, Øvrelid, and Oepen 2010) 78.7 85.2 – –
BEST/TOKWIKI (Morante, Van Asch, and Daelemans 2010) 76.7 81.7 11.3 57.3
BEST/SENT BIO (Täckström et al. 2010) – 85.2 – 55.4
BEST/SENTWIKI (Georgescul 2010) – 78.5 – 60.2

classification task, and classifies each token independently as uncertain (or not).
Contextual information is only included in the form of feature functions. The third
group of systems handled the task as a sequential token labeling problem, that is, de-
termined the most likely label sequence of a sentence in one step, taking the informa-
tion about neighboring labels into account. Sequence labeling and token classification
approaches performed best for biological texts and sentence-level models and token
classification approaches gave the best results for Wikipedia texts (see Table 6 in Farkas
et al. [2010]). Here we compare a state-of-the-art token classification and sequence
labeling approach using a shared feature representation to decide which model to use
in further experiments.

Classifier models. We used a first-order linear chain conditional random fields (CRF)
model as a sequence labeler and a Maximum Entropy (Maxent) classifier model as a
token classifier, implemented in the Mallet (McCallum 2002) package for training the
uncertainty cue detectors. This choicewasmotivated by the fact that thesewere themost
popular classification approaches among the CoNLL-2010 participants, and that CRF
models are known to provide high accuracy for the detection of phrases with accurate
boundaries (e.g., in named entity recognition). We trained the CRF and Maxent models
with their default settings in Mallet for 200 iterations or until convergence (CRF), and
also until convergence (Maxent) in each experimental set-up.
As a baseline model, we applied a simple dictionary-based approach which clas-

sifies every uni- and bigram as uncertain that is tagged as uncertain in over 50% of
the cases in the training data. Hence, it is a similar system to that presented by Tjong
Kim Sang (2010), without tuning the decision threshold for predicting uncertainty.

CoNLL results. An overview of the results achieved on the CoNLL-2010 data sets can
be found in Table 4. A comparison of our models with the CoNLL systems reveals that
our uncertainty detection model is very competitive when applied on the biological
data set. Our CRF model trained on the official training data set of the shared task
achieved a cue-level F-score of 81.4 and sentence-level F-score of 87.0 on the biological
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evaluation data set. These results would have come first in the shared task, with a
marginal difference compared to the top performing participant. In contrast, our model
is less competitive on the Wikipedia data set: The Maxent model achieved a cue-level
F-score of 22.3 and sentence-level F-score of 58.1 on the Wikipedia evaluation data
set, whereas our CRF model was not competitive with the best participating systems.
The observation that sequence-labeling models perform worse than token-based
approaches on Wikipedia, especially for sentence-level evaluation measures, coincides
with the findings of the shared task: The discourse-level uncertainty cues in the
Wikipedia data set are rather long and heterogeneous and sequence labeling models
often revert to not annotating any token in a sentence when the phrase boundaries are
hard to detect. Still, sequence labeling models have an advantage in terms of cue-level
accuracy. This is not surprising because CRF is a state-of-the-art model for chunking /
sequence labeling tasks.
We conclude from Table 4 that our model is competitive with the state-of-the-art

systems for detecting semantic uncertainty (which is closer to the biological subtask),
but it is less suited to recognizing discourse-level uncertainty. In the subsequent exper-
iments we used our CRF model, which performed best in detecting uncertainty cues in
natural language sentences.

5.3.3 Domain Adaptation Model. In supervised machine learning, the task is to learn how
to make predictions on previously unseen, new examples based on a statistical model
learned from a collection of labeled training examples (i.e., a set of examples coupled
with the desired output for them). The classification setting assumes a set of labels L, a
set of features X, and a probability distribution p(X) describing the examples in terms of
their features. Then the training examples are assumed to be given in the form of {xi, li}
pairs and the goal of classification is to estimate the label distribution p(L|X), which can
be used later on to predict the labels for unseen examples.
Domain adaptation focuses on the problem where the same (or a closely related)

learning task has to be solved in multiple domains which have different characteristics
in terms of their features: The set of features X may be different or the probability dis-
tributions p(X) describing the inputs may be different. When the target tasks are treated
as different (but related), the label distribution p(L|X) is dependent on the domain. That
is, given a domain d, the problem can be formalized as modeling p(L|X)d based on Xd,
p(X)d and a set of examples: {xi,d, li}.8 In the context of domain adaptation, there is a
target domain t and a source domain s, with labeled data available for both, and the
goal is to induce a more accurate target domain model p(L|X)t from {xi,t, li} ∪ {xi,s, li}
than the one learned from {xi,t, li} only. In practical scenarios, the goal is to exploit the
source data to acquire an accurate model from just limited target data which are alone
insufficient to train an accurate in-domain model, and thus to port the model to a new
domain with moderate annotation costs. The problem is difficult because it is nontrivial
for a learning method to account for the different data (and label) distributions between
target and source, which causes a remarkable drop in model accuracy when it is applied
to classifying examples taken from the target domain.
In our experimental context, both topic- and genre-related differences of texts pose

an adaptation problem as these factors have an impact on both the vocabulary (p(X))
and the sense distributions of the cues (p(L|X)) found in different texts. There is some

8 The literature also describes the case when the set of labels depends on the domain, but we omit this case
to simplify our notation and discussion. For details, see Pan and Yang (2010).
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confusion in the literature regarding the terminology describing the various domain
mismatches in the learning problem. For example, Daumé III (2007) describes a domain
adaptation method where he assumes that the label distribution is unchanged (we note
here that this assumption is not exploited in the method, and that the label distribution
changes in our problem), whereas Pan and Yang (2010) uses the term inductive transfer
learning to refer to our scenario (in their paper, domain adaptation refers to a different
setting).9 In this study we always use the term domain adaptation to refer to our problem
setting, that is, where both p(X) and p(L|X) are assumed to change.
In our experiments, we used various data sets taken from multiple genres and

domains (see Section 5.1.1 for an overview) and applied a simple but effective do-
main adaptation model (Daumé III 2007) for training our classifiers. In this model,
domain adaptation is carried out by defining each feature over the target and source
data sets twice—just once for target domain instances, and once for both the tar-
get and source domain instances. Formally, having a target domain t and a source
domain s and n features {f1, f2, . . . fn}, for each fi we have a target-only version fi,t
and a shared version fi,t+s. Each target domain example is described by 2n features:
{ f1,t, f2,t, . . . fn,t, f1,t+s, f2,t+s, . . . fn,t+s} and source domain examples are described by only
the n shared features: { f1,t+s, f2,t+s, . . . fn,t+s}. Using the union of the source and target
training data sets {xi,t, li} ∪ {xi,s, li} and this feature representation, any standard super-
vised machine learning technique can be used and it becomes possible for the algorithm
to learn target-dependent and shared patterns at the same time and handle the changes
in the underlying distributions. This easy domain adaptation technique has been found
to work well in many NLP-oriented tasks. We used the CRF models introduced herein
and in this way, we were able to exploit feature–label correspondences across domains
(for features that behave consistently across domains) and also to learn patterns specific
to the target domain.

5.4 Cross-Domain and Genre Experiments

We defined several settings (target and source pairs) with varied domain and genre
distances and target data set sizes. These experiments allowed us to study the po-
tential of transferring knowledge across existing corpora for the accurate detection of
uncertain language in a wide variety of text types. In our experiments, we used all the
combinations of genres and domains that we found plausible. News texts (and their
subdomains) were not used as source data because FactBank is significantly smaller
than the other corpora (WikiWeasel or scientific texts). As the source data set is typically
larger than the target data set in practical scenarios, news texts can only be used as target
data. Abstracts were only used as source data because information extraction typically
addresses full texts whereas abstracts just provide annotated data for development pur-
poses. Besides these restrictions, we experimented with all possible target and source
pairs.
We used four different machine-learning settings for each target–source pair in our

investigations. In the purely cross-domain (CROSS) setting, the model was trained on
the source domain and evaluated on the target (i.e., no labeled target domain data
sets were used for training). In the purely in-domain setting (TARGET), we performed

9 More on this can be found in Pan and Yang (2010) and at http://nlpers.blogspot.com/2007/11/
domain-adaptation-vs-transfer-learning.html.
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Table 5
Experimental results on different target and source domain pairs. The third column contains the
ratio of the target train and source data sets’ sizes in terms of sentences. DIST shows the distance
of the source and target domain/genre (’-’ same; ’+’ fine-grade difference; ’++’ coarse-grade
difference; bio = biological; enc = encyclopedia; sci paper = scientific paper; sci abs = scientific
abstract; sci paper hbc = scientific papers on human blood cell experiments; sci paper fly =
scientific papers on Drosophila; sci paper bmc = scientific papers on bioinformatics).

CROSS TARGET DA/ALL DA/CUE

TARGET SOURCE SOURCE
TARGET

DIST Fcue Fsent Fcue Fsent Fcue Fsent Fcue Fsent

enc sci paper+ abs 0.9 ++/++ 68.0 74.2 82.4 87.4 82.6 87.6 82.6 87.6
news sci paper+ abs 6.2 ++/++ 64.4 70.5 68.7 77.1 72.7 79.5 73.8 81.0
news enc 6.6 ++/++ 68.2 74.8 68.7 77.1 73.7 81.2 73.1 80.0
sci paper enc 2.7 ++/++ 67.8 75.1 78.8 84.4 80.0 85.9 79.8 85.4
sci paper bmc sci abs hbc 4.3 +/+ 58.2 70.5 64.0 74.5 68.1 76.7 69.3 77.8
sci paper fly sci abs hbc 3.4 +/+ 70.5 79.1 80.0 85.1 83.3 88.2 82.9 87.8
sci paper hbc sci abs hbc 8.2 –/+ 76.5 82.9 74.2 80.2 84.2 88.6 83.0 88.9
sci paper bmc sci paper fly+ hbc 1.8 +/– 69.8 77.6 64.0 74.5 70.0 78.2 69.4 78.1
sci paper fly sci paper bmc+ hbc 1.2 +/– 78.4 83.5 80.0 85.1 82.6 87.0 82.9 87.0
sci paper hbc sci paper bmc+ fly 4.4 +/– 81.7 85.9 74.2 80.2 80.7 86.9 80.7 85.9

AVERAGE: 70.4 77.4 73.5 80.6 77.8 84.0 77.8 84.0

10-fold cross-validation on the target data (i.e., no source domain data were used). In
the two domain adaptation settings, we again performed 10-fold cross-validation on
the target data but exploited the source data set (as described in Section 5.3). Here, we
either used each sentence of the source data set (DA/ALL) or only those sentences that
contained a cue observed in the target train data set (DA/CUE).
Table 5 lists the results obtained on various target and source domains in various

machine learning settings and Table 6 contains the absolute differences between a
particular result and the in-domain (TARGET) results.
Fine-grained semantic uncertainty classification results are summarized in Tables 7

and 8. Table 7 contrasts the coarse-grained Fcue with the unlabeled/binary Fcue of fine-
grained experiments, therefore it quantifies the difference in accuracy due to the more
difficult classification setting and the increased sparseness of the task. Table 8 shows
the per class Fcue scores, namely, how accurately our model recognizes the individual
uncertainty types.

Table 6
The absolute difference between the F-scores of Table 5 relative to the baseline TARGET setting.

CROSS TARGET DA/ALL DA/CUE

TARGET SOURCE SOURCE
TARGET

DIST Fcue Fsent Fcue Fsent Fcue Fsent Fcue Fsent

enc sci paper+ abs 0.9 ++/++ –14.4 –13.2 82.4 87.4 0.2 0.2 0.2 0.2
news sci paper+ abs 6.2 ++/++ –4.3 –6.6 68.7 77.1 4.0 2.4 5.1 3.9
news enc 6.6 ++/++ –0.5 –2.3 68.7 77.1 5.0 4.1 4.4 2.9
sci paper enc 2.7 ++/++ –11.0 –9.3 78.8 84.4 1.2 1.5 1.0 1.0
sci paper bmc sci abs hbc 4.3 +/+ –5.8 –4.0 64.0 74.5 4.1 2.2 5.3 3.3
sci paper fly sci abs hbc 3.4 +/+ –9.5 –6.0 80.0 85.1 3.3 3.1 2.9 2.7
sci paper hbc sci abs hbc 8.2 –/+ 2.3 2.7 74.2 80.2 10.0 8.4 8.8 8.7
sci paper bmc sci paper fly+ hbc 1.8 +/– 5.8 3.1 64.0 74.5 6.0 3.7 5.4 3.6
sci paper fly sci paper bmc+ hbc 1.2 +/– –1.6 –1.6 80.0 85.1 2.6 1.9 2.9 1.9
sci paper hbc sci paper bmc+ fly 4.4 +/– 7.5 5.7 74.2 80.2 6.5 6.7 6.5 5.7

AVERAGE: –3.1 –3.2 73.5 80.6 4.3 3.4 4.3 3.4
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Table 7
Comparison of cue-level binary (Fbin) and unlabeled F-scores (Funl). Binary F-score corresponds
to coarse-grained classification (uncertain vs. certain), and unlabeled F-score is the fine-grained
classification converted to binary (disregarding the fine-grained category labels).

CROSS TARGET DA/ALL DA/CUE

TARGET SOURCE SOURCE
TARGET

DIST Fbin Funl Fbin Funl Fbin Funl Fbin Funl

enc sci paper+ abs 0.9 ++/++ 68.0 67.4 82.4 82.4 82.6 81.9 82.6 81.7
news sci paper+ abs 6.2 ++/++ 64.4 59.9 68.7 66.4 72.7 71.5 73.8 71.8
news enc 6.6 ++/++ 68.2 67.0 68.7 66.4 73.7 73.6 73.1 73.4
sci paper enc 2.7 ++/++ 67.8 67.2 78.8 78.3 80.0 80.2 79.8 79.5
sci paper bmc sci abs hbc 4.3 +/+ 58.2 66.3 64.0 61.9 68.1 68.5 69.3 67.9
sci paper fly sci abs hbc 3.4 +/+ 70.5 78.7 80.0 79.2 83.3 83.4 82.9 83.2
sci paper hbc sci abs hbc 8.2 –/+ 76.5 83.6 74.2 69.3 84.2 83.1 83.0 83.4
sci paper bmc sci paper fly+ hbc 1.8 +/– 69.8 69.7 64.0 61.9 70.0 69.5 69.4 65.9
sci paper fly sci paper bmc+ hbc 1.2 +/– 78.4 77.7 80.0 79.2 82.6 82.1 82.9 82.5
sci paper hbc sci paper bmc+ fly 4.4 +/– 81.7 81.9 74.2 69.3 80.7 81.3 80.7 81.2

AVERAGE: 70.4 71.9 73.5 71.4 77.8 77.5 77.8 77.0

Table 8
The per class cue-level F-scores in fine-grained classification. Fcrs, Ftgt, and Fda correspond to the
CROSS, TARGET, and DA/CUE settings, respectively (same as previous). The DA/ALL setting
is not shown for space reasons and due to its similarity to the DA/CUE results.

EPISTEMIC INVESTIGATION DOXASTIC CONDITION

TARGET SOURCE Fcrs Ftgt Fda Fcrs Ftgt Fda Fcrs Ftgt Fda Fcrs Ftgt Fda

enc sci paper+ abs 75.9 83.4 82.8 67.3 67.5 70.4 48.8 89.2 88.1 54.4 62.6 61.2
news sci paper+ abs 70.9 65.4 75.2 79.5 75.9 83.1 39.1 68.9 71.3 47.2 57.1 57.5
news enc 65.4 65.4 74.5 74.6 75.9 87.5 76.3 68.9 78.0 50.6 57.1 56.7
sci paper enc 72.9 81.2 81.9 36.5 72.9 72.4 63.6 74.9 79.8 57.0 58.9 59.7
sci paper bmc sci abs hbc 71.5 68.3 72.6 56.1 37.7 58.1 68.1 61.9 69.4 45.5 45.0 49.5
sci paper fly sci abs hbc 82.9 82.1 85.3 69.0 68.6 76.6 75.1 71.7 75.4 28.6 63.4 64.1
sci paper hbc sci abs hbc 87.5 77.7 86.4 76.5 53.5 77.5 80.6 39.0 76.7 26.1 10.0 33.3
sci paper bmc sci paper fly+ hbc 74.4 68.3 69.2 55.9 37.7 57.4 63.7 61.9 64.7 57.3 45.0 50.7
sci paper fly sci paper bmc+ hbc 80.3 82.1 84.3 66.7 68.6 75.8 77.7 71.7 77.3 53.5 63.4 68.0
sci paper hbc sci paper bmc+ fly 85.2 77.7 86.0 74.0 53.5 70.3 75.9 39.0 70.2 58.1 10.0 41.4

AVERAGE: 76.7 75.2 79.8 65.6 61.2 72.9 66.9 64.7 75.1 47.8 47.3 54.2

The size of the target training data sets proved to be an important factor in these
investigations. Hence, we performed experiments with different target data set sizes.
We utilized the DA/ALL model (which is more robust for extremely small target data
sizes [e.g., 100-400 sentences]) and performed the same 10-fold cross validation on the
target data set as in Tables 5-8. For each fold of the cross-validation here, however, we
just used n sentences (x axis of the figures) from the target training data set and a fixed
set of 4,000 source sentences to alleviate the effect of varying data set sizes. Figure 5
depicts the learning curves for two target/source data set pairs.

6. Discussion

As Table 5 shows, incorporating labeled data from different genres and/or domains
consistently improves the performance. The successful applicability of domain adap-
tation tells us that the problem of detecting uncertainty has similar characteristics
across genres and domains. The uncertainty cue lexicons of different domains and
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Figure 5
Learning curves: Results achieved with different target train sizes. The left and right figures
show two selected source/target pairs. The upper figures depict coarse-grained classification
results (Fcue); DA, CROSS, and TARGET with the same settings as in Table 5. The lower figures
show the per class Fcue of the DA/ALL model in the fine-grained classification.

genres indeed share a core vocabulary and despite the differences in sense distributions,
labeled data from a different source improves uncertainty classification in a new genre
and domain if the different data sets are annotated consistently. This justifies our aim
to create a consistent representation of uncertainty that can be applied to multiple
domains.

6.1 Domain Adaptation Results

The size of the target and source data sets largely influences to what extent external
data can improve results. The only case where domain adaptation had only a negligible
effect (an F-score gain less than 1%) is where the target data set is itself very large.
This is expected as the more target data one has, the less crucial it is to incorporate
additional data with some undesirable characteristics (difference in style, domain,
certain/uncertain sense distribution, etc.).
The performance scores for the CROSS setting clearly indicate the domain/genre

distance of the data sets: Themore distant the domain and genre of the source and target
data sets are, the more the CROSS performance (where no labeled target data is used)
degrades, compared with the TARGET model. In general, when the distance between
both the domain and the genre of texts is substantial (++/++ and +/+ rows in Tables 5
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and 6), this accounts for a 6–10% decrease in both the sentence and cue-level F-scores.
An exception is the case of encyclopedic source and news target domains. Here the
performance is very close to the target domain performance. This indicates that these
settings are not so different from each other as it might seem at the first glance. The
encyclopedic and news genres share quite a lot of commonalities (compare cue distribu-
tions in Figure 4, for instance). We verified this observation by using a knowledge-poor
quantitative estimator of similarity between domains (Van Asch and Daelemans 2010):
Using cosine as the similarity measure, the newswire and encyclopedia texts are found
to be the second most similar domain pair in our experiments, with a score comparable
to those obtained for the pairs of scientific article types bmc, hbc, and fly.
When there is a domain or genre match between source and target (−/+ and +/−

rows in Tables 5 and 6), however, and the distance regarding the other is just moderate,
the cross-training performance is close to or even better than the target-only results.
That is, the larger amount of source training data balances the differences between the
domains. These results indicate that the learned uncertainty classifiers can be directly
applied to slightly different data sets. This suitability is due to the learned disambigua-
tion models, which generalize well in similar settings. This is contrary to the findings
of earlier studies, which built the uncertainty detectors using seed examples and boot-
strapping. These models were not designed to learn any disambiguation models for
the cue words found, and their performance degraded even for slightly different data
(Szarvas 2008).
Comparing the two domain adaptation procedures DA/CUE and DA/ALL, adap-

tation via transferring only source sentences that contain a target domain cue is, on
average, comparable to transferring all the data from the source domain. In other words,
when we have a small but sufficient amount of target data available, it is enough to
account for source data corresponding to the uncertainty cues we saw in the limited
target data set. This observation has several consequences, namely:

� The source-only cues, or to be more precise, their disambiguation models,
are not helpful for the target domains as they cannot be adapted. This is
due to the differences in the source and target disambiguation models.

� Similarly, domain adaptation improves the disambiguation models for the
observed target cues, rather than introducing new vocabulary into the
target domain. This mechanism coincides with our initial goal of using
domain adaptation to learn better semantic models. This effect is the
opposite of how bootstrapping-based weakly supervised approaches
improve the performance in an underresourced domain. This observation
suggests a promising future direction of combining the two approaches to
maximize the gains while minimizing the annotation costs.

� In a general context, we can effectively extend the data for a given domain
if we have robust knowledge of the potential uncertainty vocabulary for
that domain. Given the wide variety of the domains and genres of our data
sets, it is reasonable to suppose that they represent uncertain language in
general quite well, and the joint vocabularies provide a good starting point
for a targeted data development for further domains.

As regards the fine-grained classification results, Table 7 demonstrates that the
fine-grained distinction results in only a small, or no, loss in performance. The coarse-
grained model is slightly more accurate than the fine-grained model (counting correctly
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recognized but misclassified cues as true positives) in most settings. The most signif-
icant difference is observed for the target-only settings, where no out-of-domain data
are used for the training and thus the data sets are accordingly smaller. A noticeable
exception is when scientific abstracts are used for cross training: In those settings the
coarse-grained model performs poorly, due to its lower recall, which we attribute to
overfitting the special characteristics of abstracts. The fact that in fine-grained classi-
fication the CROSS results consistently outperform the TARGET models (see Table 8)
even for distant domain pairs, also underlines that the increased sparseness caused by
the differentiation of the various subtypes of uncertainty is an important factor only for
smaller data sets. The improvement by domain adaptation is clearly more prominent
in fine-grained than in coarse-grained classification, however: The individual cue types
benefit by 5–10% points in terms of the F-score from out-of-domain data and domain
adaptation. Moreover, as Table 8 shows, for the domain pairs and fine-grained classes
where a nice amount of positive examples are at hand, the per class Fcue scores are
also around 80% and above. This means that it is possible to accurately identify the
individual subtypes of semantic uncertainty, and thus it also proves the feasibility of
the subcategorization and annotation scheme proposed in this study (Section 2). Other
important observations here are that domain adaptation is even more significant in the
more difficult fine-grained classification setting, and that the condition class represents
a challenge for our model. The performance for the condition class is lower than that
for the other classes, which can only in part be attributed to the fact that this is the
least represented subtype in our data sets: as opposed to other cue types, condition cues
are typically used in many different contexts and they may belong to other uncertainty
classes as well.

6.2 The Required Amount of Annotation

Based on our experiments, we may conclude that a manually annotated training data
set consisting of 3,000–5,000 sentences is sufficient for training an accurate cue detector
for a new genre/domain. The results of our learning curve experiments (Figure 5)
illustrate the situations where only a limited amount of annotated data (fewer than 3,000
sentences) is available for the target domain. The feasibility of decreasing annotation
efforts and the real added value of domain adaptation are more prominent in this range.
It is easy to see that the TARGET results approach to DA results with more target data.
Figure 5 shows that the size of the target training data set where the supervised

TARGET setting outperforms the CROSS model (trained on 4,000 source sentences) is
around 1,000 sentences. Aswementioned earlier, even distant domain data can improve
the cue recognition model in the absence of a sufficient target data set. Figure 5 justifies
this observation, as the CROSS and DA settings outperform the TARGET setting on
each source–target data set pair. It can also be observed that the doxastic type is more
domain-dependent than the others and its results consistently improve by increasing
the size of the target domain annotation (which coincides with the cue frequency
investigations of Section 5.1.3). In the news target domain, however, the investigation
and epistemic classes benefit a lot from a small amount of annotated target data but their
performance scores increase just slightly after that. This indicates that most of the im-
portant domain-dependent (probably lexical) knowledge could be gathered from 100–
400 sentences. In the biological experiments, we may conclude that the investigation
class is already covered by the source domain (intuitively, the investigation cues are well
represented in the abstracts) and its results are not improved significantly by usingmore
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target data. The condition class is underrepresented in both the source and target data
sets and hence no reliable observations can bemade regarding this subclass (see Table 2).
Overall, if we would like to have an uncertainty cue detector for a new

genre/domain: (i) We can achieve performance around 60–70% by using cross training
depending on the difference between the domains (i.e., without any annotation effort);
(ii) By annotating around 3,000 sentences, we can have a performance of 70–80%,
depending on the level of difficulty of the texts; (iii) We can get the same 70–80% results
with annotating just 1,000 sentences and using domain adaptation.

6.3 Interesting Examples and Error Analysis

As might be expected, most of the erroneous cue predictions were due to vocabulary
differences, for example, fear or accuse occurred only in news texts, which is why they
were not recognized by models trained on biological or encyclopedia texts. Another
example is the case of or, which is a frequent cue in biological texts. Still, it is rarely
used as a cue in other domains but without domain adaptation, the model trained on
biological texts marks quite a few occurrences of or as cues in the news or encyclope-
dia domains. Many of these anomalies were eliminated by the application of domain
adaptation techniques, however.
Many errors were related to multi-class cues. These cues are especially hard to

disambiguate because not only can they refer to several classes of uncertainty, but
they typically have non-cue usage as well. For instance, the case of would is rather
complicated because it can fulfill several functions:

(10) EPISTEMIC USAGE (‘IT IS HIGHLY PROBABLE’): Further biochemical studies
on the mechanism of action of purified kinesin-5 from multiple systems
would obviously be fruitful. (Corpus: fly)

(11) CONDITIONAL: “If religion was a thing that money could buy,/The rich
would live and the poor would die.” (Corpus: WikiWeasel)

(12) FUTURE IN THE PAST: This Aarup can trace its history back to 1500, but it
would be 1860’s before it would become a town. (Corpus: WikiWeasel)

(13) REPEATED ACTION IN THE PAST (‘USED TO’): ’Becker’ was the next T.V.
Series for Paramount that Farrell would co-star in. (Corpus: WikiWeasel)

(14) DYNAMIC MODALITY: Individuals would first have a small lesion at the
site of the insect bite, which would eventually leave a small scar. (Corpus:
WikiWeasel)

(15) PRAGMATIC USAGE: Although some would dispute the fact, the joke
related to a peculiar smell that follows his person. (Corpus: WikiWeasel)

The epistemic uses of would are annotated as epistemic cues whereas its occurrences in
conditionals are marked as hypothetical cues. The habitual past meaning is not related
to uncertainty, hence it is not annotated. The future in the past meaning (i.e., past tense
of will), however, denotes an event of which it is known that happened later, so it is
certain. The dynamically modal would is similar to the future will (which is an instance
of dynamic modality as well), but it is not annotated in the corpora. The pragmatic
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use of would does not refer to semantic uncertainty (the semantic value of the sentence
would be exactly the same without it or if it is replaced with may, might, will, etc., that
is, some will/may/might/∅ dispute the fact mean the same). It is rather a stylistic issue
to further express uncertainty at the discourse level (i.e., there are some unidentified
people who dispute the fact, hence the opinion cannot be associated with any definite
source).
The last two uses of would are not typically described in grammars of English

and seem to be characteristic primarily of the news and encyclopedia domains. Thus
it is advisable to explore such cases and treat them with special consideration when
adapting an algorithm trained and tested in a specific domain to another domain.
Another interesting example is may in its non-cue usage. Being (one of) the most

frequent cues in each subcorpus, its non-cue usage is rather limited but can be found
occasionally in FactBank and WikiWeasel. The following instance of may in FactBank
was correctly marked as non-cue by the cue detector when trained on Wikipedia texts.
On the other hand, it was marked as a cue when trained on biological texts since in this
case, there were insufficient training examples of may not being a cue:

(16) “Wellmay we say ‘God save the Queen,’ for nothing will save the
republic,” outraged monarchist delegate David Mitchell said. (Corpus:
FactBank)

A final example to be discussed is concern. This word also has several uses:

(17) NOUN MEANING ‘COMPANY’: The insurance concern said all conversion
rights on the stock will terminate on Nov. 30. (Corpus: FactBank)

(18) NOUN MEANING ‘WORRY’: Concern about declines in other markets,
especially New York, caused selling pressure. (Corpus: FactBank)

(19) PREPOSITION: The company also said it continues to explore all options
concerning the possible sale of National Aluminum’s 54.5% stake in an
aluminum smelter in Hawesville, Ky. (Corpus: FactBank)

(20) VERB: Many of the predictions in these two data sets concern protein pairs
and proteins that are not present in other data sets. (Corpus: bmc)

Among these examples, only the second one should be annotated as uncertain. POS-
tagging seems to provide enough information for excluding the verbal and preposi-
tional uses of the word but in the case of nominal usage, additional information is also
required to enable the system to decide whether it is an uncertainty cue or not (in this
case, the noun in the ‘company’ sense cannot have an argument while in the ‘worry’
sense, it can have [about declines]). Again, the frequency of the two senses depends
heavily on the domain of the texts, which should also be considered when adapting
the cue detector to a different domain. We should mention that the role of POS-tagging
is essential in cue detection because many ambiguities can be resolved on the basis of
POS-tags. Hence, POS-tagging errors can lead to a serious decline in performance.
We think that an analysis of similar examples can further support domain adapta-

tion and cue detection across genres and domains.
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7. Conclusions and Future Work

In this article, we introduced an uncertainty cue detection model that can perform well
across different domains and genres. Even though several types of uncertainty exist,
available corpora and resources focus only on some of the possible types and thereby
only cover particular aspects of the phenomenon. This means that uncertainty models
found in the literature are heterogeneous, and the results of experiments on different
corpora are hardly comparable. These facts motivated us to offer a unified model of
semantic uncertainty enhanced by linguistic and computer science considerations. In
accordance with this classification, we reannotated three corpora from several domains
and genres using our uniform annotation guidelines.
Our results suggest that simple cross training can be employed and it achieves a

reasonable performance (60–70% cue-level F-score) when no annotated data is at hand
for a new domain. When some annotated data is available (here somemeans fewer than
3,000 annotated sentences for the target domain), domain adaptation techniques are
the best choice: (i) they lead to a significant improvement compared to simple cross
training, and (ii) they can provide a reasonable performance with significantly less
annotation. In our experiments, the annotation of 3,000 sentences and training only on
these is roughly equivalent to the annotation of 1,000 sentences using external data and
domain adaptation. If the size of the training data set is sufficiently large (larger than
5,000 sentences) the effect of incorporating additional data—having some undesirable
characteristics—is not crucial.
Comparing different domain adaptation techniques, we found that similar results

could be attained when the source domain was filtered for sentences that contained
cues in the target domain. This tells us that models learn to better disambiguate the
cues seen in the target domain instead of finding new, unseen cues. In this sense, this
approach can be regarded as a complementarymethod toweakly supervised techniques
for lexicon extraction. A promising way to further minimize annotation costs while
maximizing performance would be the integration of the two approaches, which we
plan to investigate in the near future.
In our study, we did not pay attention to dynamic modality (due to the lack of an-

notated resources), but the detection of such phenomena is also desirable. For instance,
dynamically modal events cannot be treated as certain—that is, the event of buying
cannot be assigned the same truth value in They agreed to buy the company and They
bought the company. Whereas the second sentence expresses a fact, the first one informs
us about the intention of buying the company, which will be certainly carried out in a
world where moral or business laws are observed but at the moment it cannot be stated
whether the transaction takes place (i.e., that it is certain). Hence, in the future, we also
intend to integrate the identification of dynamically modal cues into our uncertainty
cue detector.
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Farkas, Richárd, Veronika Vincze, György
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Özgür, Arzucan and Dragomir R. Radev.
2009. Detecting speculations and their
scopes in scientific text. In Proceedings
of the 2009 Conference on Empirical
Methods in Natural Language Processing,
pages 1398–1407, Singapore.

Palmer, Frank Robert. 1979.Modality and
the English Modals. Longman, London.

Palmer, Frank Robert. 1986.Mood and
Modality. Cambridge University Press,
Cambridge.

Pan, Sinno Jialin and Qiang Yang. 2010.
A survey on transfer learning. IEEE
Transactions on Knowledge and Data
Engineering, 22(10):1345–1359.

Rei, Marek and Ted Briscoe. 2010. Combining
manual rules and supervised learning
for hedge cue and scope detection. In
Proceedings of the Fourteenth Conference on
Computational Natural Language Learning
(CoNLL-2010): Shared Task, pages 56–63,
Uppsala.

Rizomilioti, Vassiliki. 2006. Exploring
epistemic modality in academic discourse
using corpora. In Elisabet Arnó Macia,
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