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Traditionally, most research in NLP has focused on propositional aspects of meaning. To truly
understand language, however, extra-propositional aspects are equally important. Modality
and negation typically contribute significantly to these extra-propositional meaning aspects.
Although modality and negation have often been neglected by mainstream computational lin-
guistics, interest has grown in recent years, as evidenced by several annotation projects dedicated
to these phenomena. Researchers have started to work on modeling factuality, belief and certainty,
detecting speculative sentences and hedging, identifying contradictions, and determining the
scope of expressions of modality and negation. In this article, we will provide an overview of how
modality and negation have been modeled in computational linguistics.

1. Introduction

Modality and negation are two grammatical phenomena that have been studied for a
long time. Aristotle was the initial main contributor to the analysis of negation from
a philosophical perspective. Since then, thousands of studies have been performed, as
illustrated by the Basic Bibliography of Negation in Natural Language (Seifert and Welte
1987). One of the first categorizations of modality is proposed by Otto Jespersen (1924)
in the chapter about Mood, where the grammarian distinguishes between “categories
containing an element of will” and categories “containing no element of will.” His
grammar devotes also a chapter to negation.

In contrast to the substantial number of theoretical studies, the computational treat-
ment of modality and negation is a newly emerging area of research. The emergence
of this area is a natural consequence of the consolidation of areas that focus on the
computational treatment of propositional aspects of meaning, like semantic role label-
ing, and a response to the need for processing extra-propositional aspects of meaning
as a further step towards text understanding. That there is more to meaning than
just propositional content is a long-held view. Prabhakaran, Rambow, and Diab (2010)
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illustrate this statement with the following examples, where the event LAY OFF(GM,
workers) is presented with different extra-propositional meanings:

(1) a. GM will lay off workers.

b. A spokesman for GM said GM will lay off workers.

c. GM may lay off workers.

d. The politician claimed that GM will lay off workers.

e. Some wish GM would lay of workers.

f. Will GM lay off workers?

g. Many wonder whether GM will lay off workers.

Generally speaking, modality is a grammatical category that allows the expression
of aspects related to the attitude of the speaker towards her statements in terms of
degree of certainty, reliability, subjectivity, sources of information, and perspective. We
understand modality in a broad sense, which involves related concepts like “subjec-
tivity”, “hedging”, “evidentiality”, “uncertainty”, “committed belief,” and “factuality”.
Negation is a grammatical category that allows the changing of the truth value of
a proposition. A more detailed definition of these concepts with examples will be
presented in Sections 2 and 3.

Modality and negation are challenging phenomena not only from a theoretical
perspective, but also from a computational point of view. So far two main tasks have
been addressed in the computational linguistics community: (i) the detection of various
forms of negation and modality and (ii) the resolution of the scope of modality and
negation cues. Whereas modality and negation tend to be lexically marked, the class
of markers is heterogeneous, especially in the case of modality. Determining whether
a sentence is speculative or whether it contains negated concepts cannot be achieved
by simple lexical look-up of words potentially indicating modality or negation. Modal
verbs like might are prototypical modality markers, but they can be used in multiple
senses. Multiword expressions can also express modality (e.g., this brings us to the largest
of all mysteries or little was known). Modality and negation interact with mood and tense
markers, and also with each other. Finally, discourse factors also add to the complexity
of these phenomena.

Incorporating information about modality and negation has been shown to be
useful for a number of applications such as recognizing textual entailment (de Marneffe
et al. 2006; Snow, Vanderwende, and Menezes 2006; Hickl and Bensley 2007), machine
translation (Baker et al. 2010), trustworthiness detection (Su, Huang, and Chen 2010),
classification of citations (Di Marco, Kroon, and Mercer 2006), clinical and biomedical
text processing (Friedman et al. 1994; Szarvas 2008), and identification of text struc-
ture (Grabar and Hamon 2009).

This overview is organized as follows: Sections 2 and 3 define modality and nega-
tion, respectively. Section 4 gives details of linguistic resources annotated with various
aspects of negation and modality. We also discuss properties of the different annotation
schemes that have been proposed. Having discussed the linguistic basis as well as the
available resources, the remainder of the article then provides an overview of automated
methods for dealing with modality and negation. Most of the work in this area has
been carried out at the sentence or predicate level. Section 5 discusses various methods
for detecting speculative sentences. This is only a first step, however. For a more fine-
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grained analysis, it is necessary to deal with modality and negation on a sub-sentential
(i.e., predicate) level.

This is addressed in Section 6, which also discusses various methods for the impor-
tant task of scope detection. Section 7 then moves on to work on detecting negation and
modality at a discourse level, that is, in the context of recognizing contrasts and con-
tradictions. Section 8 takes a closer look at dealing with positive and negative opinions
and summarizes studies in the field of sentiment analysis that have explicitly modeled
modality and negation. Section 9 provides an overview of the articles in this special
issue. Finally, Section 10 concludes this article by outlining some of the remaining
challenges.

Some notational conventions should be clarified. In the literature, the affixes, words
or multiword expressions that express modality and negation have been referred to as
triggers, signals, markers, and cues. Here, we will refer to them as cues and we will
mark them in bold in the examples. The boundaries of their scope will be marked with
square brackets.

2. Modality

From a theoretical perspective, modality can be defined as a philosophical concept,
as a subject of the study of logic, or as a grammatical category. There are many def-
initions and classifications of modal phenomena. Even if we compiled an exhaustive
and precise set of existing definitions, we would still be providing a limited view
on what modality is, because, as Salkie, Busuttil, and van der Auwera (2009, page 7)
put it:

. . .modality is a big intrigue. Questions erstwhile considered solved become open
questions again. New observations and hypotheses come to light, not least because
the subject matter is changing.

Defining modality from a computational linguistics perspective for this special
issue becomes even more difficult because several concepts are used to refer to phe-
nomena that are related to modality, depending on the task at hand and the specific
phenomena that the authors address. To mention some examples, research focuses on
categorizing modality, on committed belief tagging, on resolving the scope of hedge
cues, on detecting speculative language, and on computing factuality. These concepts
are related to the attitude of the speaker towards her statements in terms of degree of
certainty, reliability, subjectivity, sources of information, and perspective. Because this
special issue focuses on the computational treatment of modality, we will provide a
general theoretical description of modality and the related concepts mentioned in the
computational linguistics literature at the cost of offering a simplified view of these
concepts.

Jespersen (1924, page 329) attempts to place all moods in a logically consistent
system, distinguishing between “categories containing an element of will” and “cat-
egories containing no element of will”—later named as propositional modality and
event modality by Palmer (1986). Lyons (1977, page 793) describes epistemic modality
as concerned with matters of knowledge and belief, “the speaker’s opinion or attitude
towards the proposition that the sentence expresses or the situation that the proposition
describes.” Palmer (1986, page 8) distinguishes propositional modality, which is “con-
cernedwith the speaker’s attitude to the truth-value or factual status of the proposition”
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as in Example (2a), and event modality, which “refers to events that are not actualized,
events that have not taken place but are merely potential” as in Example (2b):

(2) a. Kate must be at home now.

b. Kate must come in now.

Within propositional modality, Palmer defines two types: epistemic, used by speakers
“to express their judgement about the factual status of the proposition,” and evidential,
used “to indicate the evidence that they have for its factual status” (Palmer 1986, 8–
9). He also defines two types of event modality: deontic, which relates to obligation
or permission and to conditional factors “that are external to the relevant individual,”
and dynamic, where the factors are internal to the individual (Palmer 1986, pages 9–
13). Additionally, Palmer indicates other categories that may be marked as irrealis and
may be found in the mood system: future, negative, interrogative, imperative-jussive,
presupposed, conditional, purposive, resultative, wishes, and fears. Palmer explains
how modality relates to tense and aspect: The three categories are concerned with the
event reported by the utterance, whereas tense is concerned with the time of the event
and aspect is “concerned with the nature of the event in terms of its internal temporal
constituency” (Palmer 1986, pages 13–16).

From a philosophical standpoint, von Fintel (2006) defines modality as “a category
of linguistic meaning having to do with the expression of possibility and necessity.”
In this sense “a modalized sentence locates an underlying or prejacent proposition
in the space of possibilities.” Von Fintel describes several types of modal meaning
(alethic, epistemic, deontic, bouletic, circumstantial, and teleological), some of which
are introduced by von Wright (1951), and shows that modal meaning can be expressed
by means of several types of expressions, such as modal auxiliaries, semimodal verbs,
adverbs, nouns, adjectives, and conditionals.

Within the modal logic framework several authors provide a more technical ap-
proach to modality. Modal logic (von Wright 1951; Kripke 1963) attempts to represent
formally the reasoning involved in expressions of the type it is necessary that ... and
it is possible that ... starting from a weak logic called K (Garson 2009). Taken in a
broader sense, modal logic also aims at providing an analysis for expressions of deontic,
temporal, and doxastic logic. Within the modal logic framework, modality is analyzed
in terms of possible worlds semantics (Kratzer 1981). The initial idea is that modal
expressions are considered to express quantification over possible worlds.

Kratzer (1981, 1991), however, argues that modal expressions are more complex
than quantifiers and that their meaning is context-dependent. Recent work on modality
in the framework of modal logic is presented by Portner (2009, pages 2–8), who groups
modal forms into three categories: sentential modality (“the expression of modal mean-
ing at the level of the whole sentence”); sub-sentential modality (“the expression of
modal meaningwithin constituents smaller than a full clause”); and discoursemodality
(“any contribution to meaning in discourse which cannot be accounted for in terms of a
traditional semantic framework”).

From a typological perspective, the study of modality seeks to describe how the
languages of the world express different types of modality (Palmer 1986; van der
Auwera and Plungian 1998). Knowing how modality is expressed across languages is
relevant for the computational linguistics community, not only because it is essential
for developing automated systems for languages other than English, but also because
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it throws some light on the underlying phenomena that might be beneficial for the
development of novel methods for dealing with modality.

Concepts related to modality that have been studied in computational linguistics
are: hedging, evidentiality, uncertainty, factuality, and subjectivity. The term hedging is
originally due to Lakoff (1972, page 195), who describes hedges as “words whose job is
to make things more or less fuzzy.” Lakoff starts from the observation that “natural
language concepts have vague boundaries and fuzzy edges and that, consequently,
natural language sentences will very often be neither true, nor false, nor nonsensical,
but rather true to a certain extent and false to a certain extent, true in certain aspects
and false in certain aspects” (Lakoff 1972, page 183). In order to deal with this aspect of
language, he extends the classical propositional and predicate logic to fuzzy logic and
focuses on the study of hedges. Hyland (1998) studies hedging in scientific texts. He
proposes a pragmatic classification of hedge expressions based on an exhaustive analy-
sis of a corpus. The catalogue of hedging cues includes modal auxiliaries, epistemic
lexical verbs, epistemic adjectives, adverbs, nouns, and a variety of non-lexical cues.

Evidentiality is related to the expression of the information source of a statement.
As Aikhenvald (2004, page 1) puts it:

In about a quarter of the world’s languages, every statement must specify the type of
source on which it is based [...]. This grammatical category, whose primary meaning is
information source, is called ‘evidentiality’.

This grammatical category was already introduced by Boas (1938), and has been studied
afterwards, although less than modality. There is no agreement on whether it should
be a subcategory of modality (Palmer 1986; de Haan 1995) or a category by itself (de
Haan 1999; Aikhenvald 2004). A broader definition relates evidentiality to the expres-
sion of the speaker’s attitude towards the information being presented (Chafe 1986).
Ifantidou (2001, page 5) considers that the function of evidentials is to indicate the
source of knowledge (observation, hearsay, inference, memory) on which a statement
is based and the speaker’s degree of certainty about the proposition expressed.

Certainty is a type of subjective information that can be conceived of as a variety
of epistemic modality (Rubin, Liddy, and Kando 2005). Here we take their definition
(page 65):

. . . certainty is viewed as a type of subjective information available in texts and a
form of epistemic modality expressed through explicitly-coded linguistic means.
Such devices [...] explicitly signal presence of certainty information that covers a
full continuum of writer’s confidence, ranging from uncertain possibility and
withholding full commitment to statements.

Factuality involves polarity, epistemic modality, evidentiality, and mood. It is
defined by Saurı́ (2008, page 1) as:

. . . the level of information expressing the commitment of relevant sources towards
the factual nature of eventualities in text. That is, it is in charge of conveying whether
eventualities are characterized as corresponding to a fact, to a possibility, or to a
situation that does not hold in the world.

Factuality can be expressed by several linguistic means: negative polarity particles,
modality particles, event-selecting predicates which project factuality information on
the events denoted by their arguments (claim, suggest, promise, etc.), and syntactic
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constructions involving subordination. The factuality of a specific event can change
during the unfolding of the text. As described in Saurı́ and Pustejovsky (2009), depend-
ing on the polarity, events are depicted as either facts or counterfacts. Depending on
the level of uncertainty combined with polarity, events will be presented as possibly
factual (3a) or possibly counterfactual (3b).

(3) a. The United States may extend its naval quarantine to Jordan’s Red Sea
port of Aqaba.

b. They may not have enthused him for their particular brand of political
idealism.

The term subjectivity is introduced by Banfield (1982). Work on subjectivity in
computational linguistics is initially due to Wiebe, Wilson, and collaborators (Wiebe
1994; Wiebe et al. 2004; Wiebe, Wilson, and Cardie 2005; Wilson 2008; Wilson et al. 2005;
Wilson, Wiebe, and Hwa 2006) and focuses on learning subjectivity from corpora. As
Wiebe et al. (2004, page 279) put it:

Subjective language is language used to express private states in the context of a text or
conversation. Private state is a general covering term for opinions, evaluations,
emotions, and speculations.

Subjectivity is expressed by means of linguistic expressions of various types from
words to syntactic devices that are called subjective elements. Subjective statements
are presented from the point of view of someone, who is called the source. As Wiebe
et al. (2004) highlight, subjective does not mean not true. For example, in Example (4a),
criticized expresses subjectivity, but the events CRITICIZE and SMOKE are presented as
being true. Not all events contained in subjective statements need to be true, however.
Modal expressions can be used to express subjective language, as in Example (4b),
where the modal cue perhaps combined with the future tense is used to present the event
FORGIVE as non-factual.

(4) a. John criticized Mary for smoking.

b. Perhaps you’ll forgive me for reposting his response.

Modality and evidentiality are grammatical categories, whereas certainty, hedging,
and subjectivity are pragmatic positions, and event factuality is a level of information. In
this special issue we will use the term modality in a broad sense, similar to the extended
modality of Matsuyoshi et al. (2010), which they use to refer to “modality, polarity, and
other associated information of an event mention.” Subjectivity in the general sense
and opinion are beyond the scope of this special issue, however, because research in
these areas focuses on different topics and already has a well defined framework of
reference.

Modality-related phenomena are not rare. According to Light, Qiu, and Srinivasan
(2004), 11% of sentences in MEDLINE contain speculative language. Vincze et al. (2008)
report that around 18% of sentences occurring in biomedical abstracts are specula-
tive. Nawaz, Thompson, and Ananiadou (2010) find that around 20% of the events
in a biomedical corpus belong to speculative sentences and that 7% of the events are
expressed with some degree of speculation. Szarvas (2008) notes that a significant
proportion of the gene names mentioned in a corpus of biomedical articles appear in
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speculative sentence (638 occurences out of a total of 1,968). This means that approx-
imately 1 in every 3 genes should be excluded from the interaction detection process.
Rubin (2006) reports that 59% of the sentences in a corpus of 80 articles from The New
York Times were identified as epistemically modalized.

3. Negation

Negation is a complex phenomenon that has been studied from many perspectives, in-
cluding cognition, philosophy, and linguistics. As described by Lawler (2010, page 554),
cognitively, negation “involves some comparison between a ‘real’ situation lacking
some particular element and an ‘imaginal’ situation that does not lack it.” In the logic
formalisms, “negation is the only significant monadic functor,” whose behavior is de-
scribed by the Law of Contradiction that asserts that no proposition can be both true
and not true. In natural language, negation functions as an operator, like quantifiers and
modals. A main characteristic of operators is that they have a scope, which means that
their meaning affects other elements in the text. The affected elements can be located in
the same clause (5a) or in a previous clause (5b).

(5) a. We didn’t find the book.

b. We thought we would find the book. This was not the case.

The study of negation in philosophy started with Aristotle, but nowadays is still a
topic that generates a considerable number of publications in the field of philosophy,
logic, psycholinguistics, and linguistics. Horn (1989) provides an extensive description
of negation from a historic perspective and an analysis of negation in relation to seman-
tic and pragmatic phenomena. Tottie (1991) studies negation as a grammatical category
from a descriptive and quantitative point of view, based on the analysis of empirical
material. She defines two main types of negation in natural language: rejections of
suggestions and denials of assertions. Denials can be explicit and implicit.

Languages have devices for negating entire propositions (clausal negation) or con-
stituents of clauses (constituent negation). Most languages have several grammatical
devices to express clausal negation, which are used with different purposes like negat-
ing existence, negating facts, or negating different aspects, modes, or speech acts (Payne
1997). As described by Payne (page 282):

. . . a negative clause is one that asserts that some event, situation, or state of affairs
does not hold. Negative clauses usually occur in the context of some presupposition,
functioning to negate or counter-assert that presupposition.

van der Wouden (1997) defines what a negative context is, showing that negation
can be expressed by a variety of grammatical categories. We reproduce some of his
examples in Example (6).

(6) a. Verbs: We want to avoid doing any look-up, if possible.

b. Nouns: The positive degree is expressed by the absence of any
phonic sequence.

c. Adjectives: It is pointless to teach any of the vernacular languages
as a subject in schools.
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d. Adverbs: I’ve never come across anyone quite as brainwashed as
your student.

e. Prepositions: You can exchange without any problem.

f. Determiners: This fact has no direct implications for any of the two
methods of font representation.

g. Pronouns: Nobody walks anywhere in Tucson.

h. Complementizers: Leave the door ajar, lest any latecomers should
find themselves shut out.

i. Conjunctions: But neither this article nor any other similar review I
have seen then had the methodological discipline to take the opposite
point of view.

Negation can also be expressed by affixes, as in motionless or unhappy, and by chang-
ing the intonation or facial expression, and it can occur in a variety of syntactic
constructions.

Typical negation problems that persist in the study of negation are determining
the scope when negation occurs with quantifiers (7a), neg-raising (7b), the use of
polarity items (7c) (any, the faintest idea), double or multiple negation (7d), and affixal
negation (Tottie 1991).

(7) a. All the boys didn’t leave.

b. I don’t think he is coming.

c. I didn’t see anything.

d. I don’t know nothing no more.

Like modality, negation is a frequent phenomenon in texts. Tottie reports that nega-
tion is twice as frequent in spoken text (27.6 per 1,000 words) as in written text (12.8 per
1,000 words). Elkin et al. (2005) find that 1,823 out of 14,792 concepts in 41 Health
Records from JohnsHopkins University are identified as negated by annotators. Nawaz,
Thompson, and Ananiadou (2010) report that more than 3% of the biomedical events
in 70 abstracts of the GENIA corpus are negated. Councill, McDonald, and Velikovich
(2010) annotate a corpus of product reviews with negation information and they find
that 19% of the sentences contain negations (216 out of 1,135).

3.1 Negation versus Negative Polarity

Negation and negative polarity are interrelated concepts, but it is important to notice
that they are different. Negation has been defined as a grammatical phenomenon used
to state that some event, situation, or state of affairs does not hold, whereas polarity
is a relation between semantic opposites. As Israel (2004, page 701) puts it, “as such
polarity encompasses not just the logical relation between negative and affirmative
propositions, but also the conceptual relations defining contrary pairs like hot–cold,
long–short, and good–bad.” Israel defines three types of polar oppositions: contradiction,
a relation in which one term must be true and the other false; contrariety, a relation
in which only one term may be true, although both can be false; and reversal, which
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involves an opposition between scales (〈necessary, likely, possible〉 〈impossible, un-
likely, uncertain〉.). The relation between negation and polarity lies in the fact that
negation can reverse the polarity of an expression.

In this context, negative polarity items (NPIs) “are expressions with a limited distri-
bution, part of which includes negative sentences” (Hoeksema 2000, page 115), like any
in Example (8a) or ever in Example (8b). Lawler (2010, page 554) defines NPI as “a term
applied to lexical items, fixed phrases, or syntactic construction types that demonstrate
unusual behavior around negation.” NPIs felicitously occur only in the scope of some
negative element, such as didn’t in Example (8b). If this element is removed, the sentence
becomes agrammatical, as shown in Example (8c). The presence of an NPI in a context
does not guarantee that something is being negated, however, because NPIs can also
occur in certain grammatical circumstances, like interrogatives as in Example (8d).

(8) a. I didn’t read any book.

b. He didn’t ever read the book.

c. * He ever read the book.

d. Do you think I could ever read this book?

Polarity is a discrete category that can take two values: positive and negative. De-
termining the polarity of words, and phrases is a central task in sentiment analysis,
in particular, disambiguating the contextual polarity of words (Wilson, Wiebe, and
Hoffman 2009). Thus, in the context of sentiment analysis positive and negative polarity
refers to positive and negative opinions, emotions, and evaluations.

Negation is a topic of study in sentiment analysis because it is what Wilson,
Wiebe, and Hoffman (2009, page 402) call a polarity influencer, an element that can
change the polarity of an expression. As they put it, however, “many things besides
negation can influence contextual polarity, and even negation is not always straight-
forward.” We discuss different ways of modeling negation in sentiment analysis in
Section 8. The study of negative polarity is beyond the scope of this special issue,
however.

4. Categorizing and Annotating Modality and Negation

Over the last few years, several corpora of texts from various domains have been
annotated at different levels (expression, event, relation, sentence) with information
related to modality and negation. Compared to other phenomena like semantic ar-
gument structure, dialogue acts, or discourse relations, however, no comprehensive
annotation standard has been defined for modality and negation. In this section, we
describe the categorization schemes that have been proposed and the corpora that have
been annotated.

In the framework of the OntoSem project (Nirenburg and Raskin 2004) a corpus
has been annotated with modality categories and an analyzer has been developed
that takes as input unrestricted raw text and carries out several levels of linguistic
analysis, including modality at the semantic level (Nirenburg and McShane 2008).
The output of the semantic analysis is represented as formal text-meaning represen-
tations. Modality information is encoded as part of the semantic module in the lexical
entries of the modality cues. Four modality attributes are encoded: MODALITY TYPE,
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VALUE, SCOPE, and ATTRIBUTED-TO. The MODALITY TYPES are: polarity, whether a
proposition is positive or negated; volition, the extent to which someone wants or
does not want the event/state to occur; obligation, the extent to which someone
considers the event/state to be necessary; belief, the extent to which someone be-
lieves the content of the proposition; potential, the extent to which someone believes
that the event/state is possible; permission, the extent to which someone believes that
the event/state is permitted; and evaluative, the extent to which someone believes
the event/state is a good thing. The SCALAR VALUE ranges from zero to one. The
SCOPE attribute is the predicate that is affected by the modality and the ATTRIBUTED-
TO attribute indicates to whom the modality is assigned, the default value being
the speaker. In Example (9), should is identified as a modality cue and character-
ized with the type obligative, value 0.8, scope camouflage, and is attributed to the
speaker.

(9) Entrance to the tower should be totally camouflaged

The publicly available MPQA Opinion Corpus1 (Wiebe, Wilson, and Cardie 2005)
contains 10,657 sentences in 535 documents of English newswire annotated with in-
formation about private states at the word and phrase level. For every expression of
private state a private state frame is defined indicating the SOURCE of the private state,
whose private state is being expressed; the TARGET, what the private state is about;
and properties like INTENSITY, SIGNIFICANCE, and TYPE OF ATTITUDE. Three types of
private state expressions are considered for the annotation: explicit mentions like fears
in Example (10a), speech events like said in Example (10b), and expressive subjective
elements, like full of absurdities in Example (10b). Apart from representing private states
in private state frames, Wiebe, Wilson, and Cardie also define objective speech event
frames that represent “material that is attributed to some source, but is presented as
an objective fact” (page 171). Having two types of frames allows a distinction between
opinion-oriented material (10a, 10b) and factual material (10c).

(10) a. “The U.S. fears a spill-over,” said Xirao-Nima.

b. “The report is full of absurdities,” Xirao-Nima said.

c. Sergeant O’Leary said the incident took place at 2:00 pm.

Rubin, Liddy, and Kando (2005) define a model for categorizing certainty. The
model distinguishes four dimensions: LEVEL, which encodes the degree of certainty;
PERSPECTIVE, which encodes whose certainty is involved; FOCUS, the object of certainty;
and TIME, which encodes at what time the certainty is expressed. Each dimension is
further subdivided into categories, resulting in 72 possible dimension–category combi-
nations. The four certainty LEVELS are absolute (Example (11a)), high (Example (11b)),
moderate (Example (11c)), and low (Example (11d)). PERSPECTIVE separates the writer’s
point of view and the reported point of view. FOCUS is divided into abstract and fac-

tual information. TIME can be past, present, or future. The model is used to annotate
certainty markers in 32 articles from The New York Times along these dimensions. Rubin

1 The MPQA corpus is available from http://www.cs.pitt.edu/mpqa/mpqa corpus.html. Last accessed
on 8 December 2011.
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et al. find that editorials have a higher frequency of modality markers per sentence than
news stories.

(11) a. An enduring lesson of the Reagan years, of course, is that it really does
take smoke and mirrors to produce tax cuts, spending initiatives and a
balanced budget at the same time.

b. ... but clearly an opportunity is at hand for the rest of the world to
pressure both sides to devise a lasting peace based on democratic values
and respect for human rights.

c. That fear now seems exaggerated, but it was not entirely fanciful.

d. So far the presidential candidates are more interested in talking about
what a surplusmight buy than in the painful choices that lie ahead.

The model is adapted in Rubin (2006, 2007) by adding a category uncertainty for
certainty LEVEL, changing the FOCUS categories into facts and events and opin-

ions, emotions, or judgements, and adding the irrelevant category for TIME. Inter-
annotator agreement measures are reported for 20 articles of the 80 annotated articles
randomly selected from The New York Times (Rubin 2006). For the task of deciding
whether a statement wasmodalized by an explicit certaintymarker or not, an agreement
of 0.33 κcohen is reached. The agreement measures per dimension were 0.15 for level,
0.13 for focus, 0.44 for perspective, and 0.41 for time.

The Automatic Content Extraction 2008 corpus (Linguistic Data Consortium 2008)
for relation detection and recognition collects English and Arabic texts from a variety
of resources including radio and TV broadcast news, talk shows, newswire articles,
Internet news groups, Web logs, and conversational telephone speech. Relations are
ordered pairs of entities and are annotated with modality and tense attributes. The two
modality attributes are asserted and other. Asserted relations pertain to situations in
the real world, whereas other relations pertain to situations in “some other world de-
fined by counterfactual constraints elsewhere in the context.” If the entities constituting
the arguments of a relation are hypothetical, then the relation can still be understood
as asserted. In Example (12), the ORG-Aff.Membership relation between terrorists and
Al-Qaeda is annotated as asserted and the Physical.Located relation between terrorists
and Baghdad is annotated as other. The attributes for TENSE are past, future, present,
and unspecified.

(12) We are afraid Al-Qaeda terrorists will be in Baghdad.

The Penn Discourse TreeBank (Prasad et al. 2008) is a corpus annotated with in-
formation related to discourse structure. Discourse connectives are considered to be
the anchors of discourse relations and to act as predicates taking two abstract objects.
Abstract objects can be assertions, beliefs, facts, or eventualities. Discourse connectives
and their arguments are assigned attribution-related features (Prasad et al. 2006) such as
SOURCE (writer, other, arbitrary), TYPE (reflecting the nature of the relation between
the agent and the abstract object), SCOPAL POLARITY of attribution, and DETERMINACY

(indicating the presence of contexts canceling the entailment of attribution). The text
spans signaling the attribution are also marked. Prasad et al. (2006) report that 34% of
the discourse relations have some non-writer agent. SCOPAL POLARITY is annotated
to identify cases when verbs of attribution (say, think, ...) are negated syntactically
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(didn’t say) or lexically (denied). An argument of a connective is marked Neg for SCOPAL

POLARITY when the interpretation of the connective requires the surface negation to
take semantic scope over the lower argument. As stated by Prasad et al., in Example (13),
the but clause entails an interpretation such as “I think it’s not a main consideration,”
for which the negation must take narrow scope over the embedded clause rather than
the higher clause.

(13) “Having the dividend increases is a supportive element in the market
outlook, but I don’t think it’s a main consideration,” he says.

TimeML (Pustejovsky et al. 2005) is a specification language for events and temporal
expressions in natural language that has been applied to the annotation of corpora like
TimeBank (Pustejovsky et al. 2006). As described in Saurı́, Verhagen, and Pustejovsky
(2006), TimeML encodes different types of modality at the lexical and syntactic level
with different tags. At the lexical level, Situation Selecting Predicates (SSPs) are en-
coded by means of the attribute CLASS within the EVENT tag, which allows to encode
the difference between SSPs that are actions (Example (14a)2) and SSPs that are states
(Example (14b)). SSPs of perception (Example (14c)) and reporting (Example (14d)) are
encoded with more specific values due to their role in providing evidentiality. Informa-
tion about modal auxiliaries and negative polarity, which are also lexically expressed,
is encoded in the attributes MODALITY and POLARITY. Modality at the syntactic level
is encoded as an attribute of the tag SLINK (Subordination Link), which can have
several values: factive, counterfactive, evidential, negative evidential, modal,
and conditional.

(14) a. Companies such as Microsoft or a combined worldcom MCI are trying
to monopolize Internet access.

b. Analysts also suspect suppliers have fallen victim to their own success.

c. Some neighbors told Birmingham police they saw a man running.

d. No injuries were reported over the weekend.

FactBank (Saurı́ and Pustejovsky 2009) is a corpus of events annotated with factu-
ality information, which adds to the TimeBank corpus an additional level of semantic
information. Events are annotated with a discrete set of factuality values using a bat-
tery of criteria that allow annotators to differentiate among these values. It consists
of 208 documents that contain 9,488 annotated events. The categorization model is
based on Horn’s (1989) analysis of epistemic modality in terms of scalar predication.
For epistemic modality Horn proposes the scale 〈certain, {probable/likely}, possible〉.
For the negative counterpart he proposes the scale 〈uncertain, {unlikely/improbable},
impossible〉. Saurı́ and Pustejovsky map this system into the traditional Square of
Opposition (Parsons 2008), which originated with Aristotle. The resulting degrees
of factuality defined in FactBank are the following: fact, counterfact, probable,
not probable, possible, not certain, certain but unknown output, and unknown

or uncommitted. An example of the certain but unknown output value is shown in
Example (15) for the event COME, and examples of the unknown or uncommitted value

2 The event affected by the SSP is underlined.
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for the same event are found in Example (16). Discriminatory co-predication tests are
provided for the annotators to determine the factuality of events. The interannotator
agreement reported for assigning factuality values is κcohen 0.81.

(15) John knows whether Mary came.

(16) a. John does not know whether Mary came.

b. John does not know that Mary came.

c. John knows that Paul said that Mary came.

A corpus of 50,108 event mentions in blogs and Web posts in Japanese has been
annotated with information about extended modality (Matsuyoshi et al. 2010). The an-
notation scheme of extended modality is based on four desiderata: information should
be assigned to the event mention; the modality system has to be language independent;
polarity should be divided into two classes: POLARITY ON THE ACTUALITY of the
event and SUBJECTIVE POLARITY from the perspective of the source’s evaluation; and
the annotation labels should not be too fine-grained. In Example (17) the polarity on
actuality is negative for the events STUDY and PASS because they did not occur, but the
subjective polarity for the PASS event is positive. Extended modality is characterized
along seven components: SOURCE, indicating who expresses an attitude towards the
event; TIME, future or non future; CONDITIONAL, whether a target event mention is a
proposition with a condition; PRIMARY MODALITY TYPE, determining the fundamental
meaning of the event mention (assertion, volition, wish, imperative, permission, in-
terrogative); ACTUALITY, degree of certainty; EVALUATION, subjective polarity, which
can be positive, negative, or neutral; and FOCUS, what aspect of the event is the focus
of negation, inference, or interrogation. Reported inter-annotator agreement for two
annotators on 300 event mentions ranges from 0.69 to 0.76 κcohen depending on the
category.

(17) If I had studied mathematics harder, I could have passed the examination.

A publicly available modality lexicon3 has been developed by Baker et al. (2010)
in order to automatically annotate a corpus with modality information. This lexicon
contains modal cues related to factivity. The lexicon entries consist of five components:
the cue sequence of words, part-of-speech (PoS) for each word, a modality type, a head
word, and one or more subcategorization codes. Three components are identified in
sentences that contain a modality cue: the TRIGGER is the word or sequence of words
that expresses modality; the TARGET is the event, state, or relation that the modality
scopes over; and the HOLDER is the experiencer or cognizer of themodality. This scheme
distinguishes eight modalities: requirement (does H require P?), permissive (does H
allow P?), success (does H succeed in P?), effort (does H try to do P?), intention (does
H intend P?), ability (can H do P?), want (does H want P?), and belief (with what
strength does H believe P?). The annotation guidelines to annotate the modalities are
defined in Baker et al. (2009).

3 Web site of the modality lexicon: http://www.umiacs.umd.edu/∼bonnie/ModalityLexicon.txt.
Last accessed on 8 December 2011.
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The scope of negation has been annotated on a corpus of Conan Doyle stories
(Morante, Schrauwen, and Daelemans 2011)4 (The Hound of the Baskervilles and The
Adventure of Wisteria Lodge), which have also been annotated with coreference and
semantic roles for the SemEval Task Linking Events and Their Participants in Discourse
(Ruppenhofer et al. 2010). As for negation, the corpus is annotated with negation cues
and their scope in a way similar to the BioScope corpus (Vincze et al. 2008) described
subsequently, and in addition negated events are also marked, if they occur in fac-
tual statements. Blanco and Moldovan (2011) take a different approach by annotating
the focus, “that part of the scope that is most prominently or explicitly negated,” in
the 3,993 verbal negations signaled with MNEG in the PropBank corpus. According to the
authors, the annotation of the focus allows the derivation of the implicit positive mean-
ing of negated statements. For example, in Example (18) the focus of the negation is on
until 2008, and the implicit positive meaning is ‘They released the UFO files in 2008.’

(18) They didn’t release the UFO files until 2008.

The corpora and categorization schemes described here reflect research focusing on
general-domain texts. With the growth of research on biomedical text mining, annota-
tion of modality phenomena in biomedical texts has become central. Scientific language
makes use of speculation and hedging to express lack of definite belief. Light, Qiu, and
Srinivasan (2004) are pioneers in analyzing the use of speculative language in scientific
texts. They study the expression of levels of belief in MEDLINE abstracts by means
of hypotheses, tentative conclusions, hedges, and speculations, and annotate a corpus
of abstracts in order to check whether the distinctions between high speculative, low
speculative, and definite sentences could be made reliably. Their findings suggest that
the speculative versus definite distinction is reliable while the distinction between low
and high speculative is not.

The annotation work by Wilbur, Rzhetsky, and Shatkay (2006) is motivated by the
need to identify and characterize parts of scientific documents where reliable infor-
mation can be found. They define five dimensions to characterize scientific sentences:
FOCUS (scientific versus general), POLARITY (positive versus negative statement),
LEVEL OF CERTAINTY in the range 0–3, STRENGTH of evidence, and DIRECTION/TREND

(increase or decrease in certain measurement).
A corpus5 of six articles from the functional genomics literature has been anno-

tated at the sentence level for speculation (Medlock and Briscoe 2007). Sentences are
annotated as being speculative or not. Of the 1,157 sentences, 380 were found to be
speculative. An inter-annotator agreement of 0.93 κcohen is reported.

BioInfer (Pyysalo et al. 2007) is a corpus of 1,100 sentences from abstracts of
biomedical research articles annotated with protein, gene, and RNA relationships. The
annotation scheme captures information about the absence of a relation. Statements
expressing absence of a relation such as not affected by or independent of are annotated
using a predicate NOT, as in this example: not:NOT(affect:AFFECT(deletion of SIR3,
silencing)).

The Genia Event corpus (Kim, Ohta, and Tsujii 2008) contains 9,372 sentences where
biological events are annotated with negation and uncertainty. In the case of negation,

4 Web site of the Conan Doyle corpus: http://www.clips.ua.ac.be/BiographTA/corpora.html.
Last accessed on 8 December 2011.

5 The Medlock and Briscoe corpus is available from http://www.benmedlock.co.uk/hedgeclassif.html.
Last accessed on 8 December 2011.
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events are marked with the label exists or non-exists. In the case of uncertainty,
events are labeled into three categories: certain, which is chosen by default; probable,
if the event existence cannot be stated with certainty; and doubtful, if the event is under
investigation or forms part of a hypothesis. Linguistic cues are not annotated.

The BioScope corpus (Vincze et al. 2008) is a freely available resource6 that gathers
medical and biological texts. It consists of three parts: clinical free-texts (radiology
reports), full-text biological articles, and biological article abstracts from the GENIA
corpus (Collier et al. 1999). In total it contains 20,000 sentences. Instances of negative
and speculative language are annotated with information about the linguistic cues that
express them and their scope. Negation is understood as the implication of the non-
existence of something as in Example (19a). Speculative statements express the possible
existence of something as in Example (19b). The scope of a keyword is determined by
syntax and it is extended to the largest syntactic unit to the right of the cue, including all
the complements and adjuncts of verbs and auxiliaries. The inter-annotator agreement
rate for scopes is defined as the F-measure of one annotation, treating the second
one as the gold standard. It ranges from 62.50 for speculation in full articles to 92.46
for negation in abstracts. All agreement measures are lower for speculation than for
negation. The BioScope corpus has been provided as a training corpus for the biological
track of the 2010 edition of the CoNLL Shared Task on Learning to Detect Hedges and their
Scope in Natural Language Text (Farkas et al. 2010b). The additional test files provided in
the Shared Task are annotated in the same way.

(19) a. Mildly hyperinflated lungs [without focal opacity].

b. This result [suggests that the valency of Bi in the material is smaller
than +3].

Because the Genia Event and BioScope corpus share 958 abstracts, it is possible to
compare their annotations, as it is done by Vincze et al. (2010). Their study shows that
the scopes of BioScope are not directly useful to detect the certainty status of the events
in Genia, and that the BioScope annotation is more easily adaptable to non-biomedical
applications. A description of negation cues and their scope in biomedical texts, based
on the cues that occur in the BioScope corpus, can be found in Morante (2010), where
information is provided relative to the ambiguity of the negation cue and to the type of
scope, as well as examples. The description shows that the scope depends mostly on the
PoS of the cue and on the syntactic features of the clause.

The NaCTeM team has annotated events in biomedical texts with meta-knowledge
that includes polarity andmodality (Thompson et al. 2008). Themodality categorization
scheme covers epistemic modality and speculation and contains information about the
following dimensions: KNOWLEDGE TYPE, LEVEL OF CERTAINTY, and POINT OF VIEW.
Four types of knowledge are defined, three of which are based on Palmer’s (1986) clas-
sification of epistemic modality: speculative, deductive, sensory, and experimental

results or findings. The levels of certainty are four: absolute, high, moderate, and
low. The possible values for POINT OF VIEW are writer and other. An updated ver-
sion of the meta-knowledge annotation scheme is presented by Nawaz, Thompson,
and Ananiadou (2010). The scheme consists of six dimensions: KNOWLEDGE TYPE,
certainty level, source, lexical polarity, manner, and LOGICAL TYPE. Three

6 The BioScope corpus is available from http://www.inf.u-szeged.hu/rgai/bioscope. Last accessed on
8 December 2011.
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levels of certainty are defined: low confidence or considerable speculation, high

confidence or slight speculation, and no expression of uncertainty or speculation.
Information about negation is encoded in the LEXICAL POLARITY dimension, which
identifies negated events. Negation is defined here as “the absence or non-existence of
an entity or a process.”

For languages other than English there are much fewer resources. A corpus of 6,740
sentences from the Stockholm Electronic Patient Record Corpus (Dalianis and Velupillai
2010) has been annotated with certain and uncertain expressions as well as speculative
and negation cues, with the purpose of creating a resource for the development of au-
tomatic detection of speculative language in Swedish clinical text. The categories used
are: certain, uncertain, and undefined at sentence level, and negation, speculative
words, and undefined speculative words at token level. Inter-annotator agreement
for certain sentences and negation are high, but for the rest of the classes results are
lower.

5. Detection of Speculative Sentences

Initial work on processing speculation focuses on classifying sentences as specula-
tive or definite (non-speculative), depending on whether they contain speculation
cues.

Light, Qiu, and Srinivasan (2004) explore the ability of a Support Vector Machine
(SVM) classifier to perform this task on a corpus of biomedical abstracts using a stem-
ming representation. The results of the system are compared to a majority decision
baseline and to a substring matching baseline produced by classifying as speculative
sentences which contain the following strings: suggest, potential, likely, may, at least,
in part, possible, potential, further investigation, unlikely, putative, insights, point toward,
promise, and propose. The precision results are higher for the SVM classifier (84% com-
pared with 55% for the substring matching method), but the recall results are higher for
the substring matching method (79% compared with 39% for the SVM classifier).

Medlock and Briscoe (2007) model hedge classification as a weakly supervised
machine learning task performed on articles from the functional genomics literature.
They develop a probabilistic learner to acquire training data, which returns a labeled
data set from which a probabilistic classifier is trained. The training corpus consists of
300,000 randomly selected sentences; the manually annotated test corpus consists of
six full articles.7 Their classifier obtains 0.76 BEP (Break Even Point), outperforming
baseline results obtained with a substring matching technique. Error analysis shows
that the system has problems distinguishing between a speculative assertion and one
relating to a pattern of observed non-universal behavior, like Example (20), which is
wrongly classified as speculative.

(20) Each component consists of a set of subcomponents that can be localized
within a larger distributed neural system.

Medlock (2008) presents an extension of this work by experimenting with more fea-
tures (PoS, stems, and bigrams). Experiments show that although the PoS representation

7 The Drosophila melanogaster corpus is available at http://www.benmedlock.co.uk/hedgeclassif.html.
Last accessed on 8 December 2011.
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does not yield significant improvement over the results in Medlock and Briscoe (2007),
the system achieves a weakly significant improvement with a stemming representation.
The best results are obtained with a combination of stems and adjacent stem bigrams
representation (0.82 BEP).

Following Medlock and Briscoe (2007), Szarvas (2008) develops a Maximum En-
tropy classifier that incorporates bigrams and trigrams in the feature representation
and performs a reranking based feature selection procedure that allows a reduction
of the number of keyword candidates from 2,407 to 253. The system is trained on the
data set of Medlock and Briscoe and evaluated on four newly annotated biomedical
full articles8 and on radiology reports. The best results of the system are achieved
by performing automatic and manual feature selection consecutively and by adding
external dictionaries. The final results on biomedical articles are 85.29 BEP and 85.08
F1 score. The results for the external corpus of radiology reports are lower, at 82.07
F1 score.

A different type of system is presented by Kilicoglu and Bergler (2008), who apply
a linguistically motivated approach to the same classification task by using knowledge
from existing lexical resources and incorporating syntactic patterns, including un-
hedgers, lexical cues, and patterns that strongly suggest non-speculation. Additionally,
hedge cues are weighted by automatically assigning an information gain measure to
them and by assigning weights semi-automatically based on their types and centrality
to hedging. The hypothesis behind this approach is that “a more linguistically oriented
approach can enhance recognition of speculative language.” The results are evaluated
on the Drosophila data set from Medlock and Briscoe (2007) and the four annotated
BMC Bioinformatics articles from Szarvas (2008). The best results on the Drosophila data
set are obtained with the semi-automatic weighting scheme, which achieves a compet-
itive BEP of 0.85. The best results on the BMC Bioinformatics articles are obtained also
with semi-automatic weighting yielding a BEP of 0.82 improving over previous results.
According to Kilicoglu and Bergler, the best results of the semi-automatic weighting
scheme are due to the fact that the scheme relies on the particular semantic properties
of the hedging indicators. The relatively stable results of the semi-automatic weighting
scheme across data sets could indicate that this scheme is more generalizable than one
based on machine learning techniques. The false negatives are due to missing syntactic
patterns and to certain derivational forms of epistemic words (suggest–suggestive)
that are not identified. False positives are due to word sense ambiguity of hedging
cues like could and appear, and to weak hedging cues like epistemic deductive verbs
(conclude, estimate), some adverbs (essentially, usually), and nominalizations (implication,
assumption).

A different task is introduced by Shatkay et al. (2008). The task consists of classifying
sentence fragments from biomedical texts along five dimensions, two of which are
CERTAINTY (four levels) and POLARITY (negated or not). Fragments are individual
statements in the sentences as exemplified in Example (21). For certainty level, the
feature vector represents single words, bigrams, and trigrams; for polarity detection,
it represents single words and syntactic phrases. They perform a binary classifica-
tion per class using SVMs. Results on polarity classification are 1.0 F-measure for the
positive class and 0.95 for the negative class, and results on level of certainty vary

8 The four annotated BMC Bioinformatics articles are available at http://www.inf.u-szeged.hu/∼szarvas/
homepage/hedge.html. Last accessed on 8 December 2011.
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from 0.99 F-measure for level 3, which is the majority class, to 0.46 F-measure for
level 2.

(21) 〈fragment 1We demonstrate that ICG-001 binds specifically to CBP〉

〈fragment 2 but not the related transcriptional coactivator p3000〉

Ganter and Strube (2009) introduce a new domain of analysis. They develop a
system for automatic detection of Wikipedia sentences that contain weasel words, as
in Example (22). Weasel words are “words and phrases aimed at creating an impression
that something specific and meaningful has been said, when in fact only a vague or
ambiguous claim has been communicated.”9 As Ganter and Strube indicate, weasel
words are closely related to hedges and private states. Wikipedia editors are advised
to avoid weasel words because they “help to obscure the meaning of biased expressions
and are therefore dishonest.”10

(22) a. Others argue {{weasel-inline}} that the news media are simply catering
to public demand.

b. ... therefore America is viewed by some {{weasel-inline}} technology
planners as falling further behind Europe.

Ganter and Strube experiment with two classifiers, one based on words preceding
the weasel and another one based on syntactic patterns. The similar results (around
0.70 BEP) of the two classifiers show that word frequency and distance to the weasel tag
provide sufficient information. The classifier that uses syntactic patterns outperforms
the classifier based on words on data manually re-annotated by the authors, however,
suggesting that the syntactic patterns detect weasel words that have not yet been
tagged.

Classification of uncertain sentences was consolidated as a task with the 2010
edition of the CoNLL Shared Task on Learning to Detect Hedges and their Scope in Nat-
ural Language Text (Farkas et al. 2010b), where Task 1 consisted in detecting uncertain
sentences. Systems were required to perform a binary classification task on two types
of data: biological abstracts and full articles, and paragraphs fromWikipedia. As Farkas
et al. describe, the approaches to solving the task follow two major directions: Some
systems handle the task as a classical sentence disambiguation problem and apply a
bag-of-words approach, and other systems focus on identifying speculation cues, so
that sentences containing cues would be classified as uncertain. In this second group
some systems apply a token-based classification approach and others use sequential
labeling. The typical feature set for Task 1 includes the wordform, lemma or stem, PoS
and chunk codes; and some systems incorporate features from the dependency and/or
constituent parse tree of the sentences. The evaluation of Task 1 is performed at the
sentence level using the F1 score of the uncertain class. The scores for precision are
higher than for recall, and systems are ranked in different positions for each of the data
sets, which suggests that the systems are optimized for one of the data types. The top-
ranked systems for biological data follow a sequence labeling approach, whereas the

9 Definition of weasel words in Wikipedia: http://en.wikipedia.org/wiki/Weasel word. Last accessed
on 8 December 2011.

10 Wikipedia instructions about weasel words are available at http://simple.wikipedia.org/wiki/
Wikipedia:Avoid weasel words. Last accessed on 8 December 2011.
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top-ranked systems for Wikipedia data follow a bag-of-words approach. None of the
top-ranked systems uses features derived from syntactic parsing. The best system for
Wikipedia data (Georgescul 2010) implements an SVM and obtains an F1 score of 60.2,
whereas the best system for biological data (Tang et al. 2010) incorporates conditional
random fields (CRF) and obtains an F1 score of 86.4.

As a follow-up of the CoNLL Shared Task, Velldal (2011) proposes to handle the
hedge detection task as a simple disambiguation problem, restricted to the words that
have previously been observed as hedge cues. This reduces the number of examples
that need to be considered and the relevant feature space. Velldal develops a large-
margin SVM classifier based on simple sequence-oriented n-gram features collected for
PoS-tags, lemmas, and surface forms. This system produces better results (86.64 F1) than
the best system of the CoNLL Shared Task (Tang et al. 2010).

From the research presented in this section it seems that classifying sentences as
to whether they are speculative or not can be performed by using knowledge-poor
machine learning approaches as well as by linguistically motivated methods. It would
be interesting to determine whether a combination of both approaches would yield
better results. In the machine learning approaches the features used to solve this task
are mainly shallow features such as words, bigrams, and trigrams. Syntax features do
not seem to add new information, although a linguistically informed method based on
syntactic patterns can produce similar results to machine-learning approaches based
on shallow features. Hedge cues are ambiguous and domain dependent, reducing the
portability of hedge classifiers. It has also been shown that it is feasible to build a hedge
classifier in an unsupervised manner.

6. Event-Level Detection of Modality and Negation

Althoughmodality and negation detection at the sentence level can be useful for certain
purposes, it is often the case that not all the information contained in a sentence is
affected by the presence of modality and negation cues. Modality and negation cues are
operators that have a scope and only the part of the sentence within the scope will be
affected by them. For example, the sentence in Example (23a)11 would be classified as
speculative in a sentence-level classification task, despite the fact that the cue unlikely
scopes only over the clause headed by the event PRODUCE. In Example (23b) the
negation cue scopes over the subject of led, assigning negative polarity to the event
COPE WITH, but not to the rest of the events.

(23) a. He is now an enthusiastic proponent of austerity and reform but this
has lost him voters and [was unlikely to produce sufficient growth, or
jobs, to win him new ones by next spring].

b. Its [inability to cope with file-sharing] led to the collapse of
recorded-music sales and the growing dependence on live music.

Research focusing on determining the scope of cues has revolved around two types
of tasks: finding the events and concepts that are negated or speculated, and resolving
the full scope of cues. Sections 6.1 and 6.2 describe them in detail.

11 The two examples are sentences from articles in The Economist.
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6.1 Finding Speculated and Negated Events and Entities

Research on finding negated concepts originated in the medical domain motivated by
the need to index, extract, and encode clinical information that can be useful for patient
care, education, and biomedical studies. In order to automatically process information
contained in clinical reports it is of great importance to determine whether symptoms,
signs, treatments, outcomes, or any other clinical relevant factors are present or not. As
Elkin et al. (2005) state, “erroneous assignment of negation can lead to missing allergies
and other important health data that can negatively impact patient safety.” Chapman
et al. (2001a) point out that accurate indexing of reports requires differentiating perti-
nent negatives from positive conditions. Pertinent negatives are “findings and diseases
explicitly or implicitly described as absent in a patient.”

The first systems developed to find negated concepts in clinical reports are rule-
based and use lexical information. NegExpander (Aronow, Fangfang, and Croft 1999)
is a module of a health record classification system. It adds a negation prefix to the
negated tokens in order to differentiate between a concept and its negated variant.
Negfinder (Mutalik, Deshpande, and Nadkarni 2001) finds negated patterns in dictated
medical documents. It is a pipeline system that works in three steps: concept finding
to identify UMLS concepts; input transformation to replace every instance of a concept
with a coded representation; and a lexing/parsing step to identify negations, negation
patterns, and negation terminators. In this system negation is defined as “words imply-
ing the total absence of a concept or thing in the current situation.” Some phenomena are
identified as difficulties for the system: The fact that negation cues can be single words
or complex verb phrases like could not be currently identified; verbs that when preceded
by not negate their subject, as in X is not seen; and the fact that a single negation cue can
scope over several concepts (A, B, and C are absent) or over some but not all of them (there
is no A, B and C, but D seemed normal). Elkin et al. (2005) describe a rule-based system that
assigns a level of certainty to concepts in electronic health records. Negation assignment
is performed by the automated negation assignment grammar as part of the rule based
system that decides whether a concept has been positively, negatively, or uncertainly
asserted.

Chapman et al. (2001a, 2001b) developed NegEx,12 a regular expression based algo-
rithm for determining whether a finding or disease mentioned within narrative medical
reports is present or absent. The system uses information about negation phrases that
are divided in two groups: pseudo-negation phrases that seem to indicate negation, but
instead identify double negatives (not ruled out), and phrases that are used as negations
when they occur before or after Unified Medical Language System terms. The precision
of the system is 84% and the recall 78%. Among the system’s weaknesses, the authors
report detecting the scope of not and no. In the three examples in (24a–c) the system
would find that infection is negated. In Example (24d) edemawould be found as negated,
and in Example (24e) cva also. NegEx has been also adapted to process Swedish clinical
text (Skeppstedt 2010).

(24) a. This is not the source of the infection.

b. We did not treat the infection.

c. We did not detect an infection.

12 Web site of NegEx: http://code.google.com/p/negex/. Last accessed on 8 December 2011.
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d. No cyanosis and positive edema.

e.No history of previous cva.

ConText (Harkema et al. 2009) is an extension of NegEx. This system uses also
regular expressions and contextual information in order to determine whether clin-
ical conditions mentioned in clinical reports are negated, hypothetical, historical, or
experienced by someone other than the patient. As for negation, a term is negated if
it falls within the scope of a negation cue. In this approach, the scope of a cue extends
to the right of the cue and ends in a termination term or at the end of the sentence. The
system is evaluated on six different types of reports obtaining an average precision of
94% and average recall of 92%. Harkema et al. find that negation cues have the same
interpretation across report types.

The systems described here cannot determine correctly the scope of negation cues
when the concept is separated by multiple words from the cue. This motivated Huang
and Lowe (2007) to build a system based on syntax information. Negated phrases are lo-
cated within a parse tree by combining regular expression matching and a grammatical
approach. To construct the negation grammar, the authors manually identify sentences
with negations in 30 radiology reports andmark up negation cues, negated phrases, and
negation patterns. The system achieves a precision of 98.6% and a recall of 92.6%. The
limitations of this system are related to the comprehensiveness of a manually derived
grammar and to the performance of the parser.

Apart from rule-based systems, machine learning techniques have also been ap-
plied to find negated and speculated concepts. Goldin and Chapman (2003) experiment
with Naı̈ve Bayes and decision trees to determine whether a medical observation is
negated by theword not in a corpus of hospital reports. The F-measure of both classifiers
is similar, 89% and 90%, but Naı̈ve Bayes gets a higher precision and the decision tree a
higher recall. Averbuch et al. (2004) develop an Information Gain algorithm for learning
negative context patterns in discharge summaries and measure the effect of context
identification on the performance of medical information retrieval. 4,129 documents
are annotated with appearances of certain terms, which are annotated as positive or
negative, as in Example (25).

(25) a. The patient presented with episodes of nausea and vomiting associated
with epigastric pain for the past 2 weeks. POSITIVE

b. The patient was able to tolerate food without nausea or vomiting.
NEGATIVE

Their algorithm scores 97.47 F1. It selects certain items as indicators of negative context
(any, changes in, changes, denies, had no, negative for, of systems, was no, without), but it
does not select no and not. As Averbuch et al. (2004, page 284) put it, “Apparently, the
mere presence of the word “no” or “not” is not sufficient to indicate negation.” The
authors point out five sources of errors: coordinate clauses with but, as in Example (26a)
where weight loss is predicted as negative; future reference, as in Example (26b), where
the symptoms were predicted as positive; negation indicating existence, as in Exam-
ple (26c), where nausea is predicted as negative; positive adjectives, as in Example (26d),
where appetite andweight loss are predicted as negative; andwrong sentence boundaries.

(26) a. There were no acute changes, but she did have a 50 pound weight loss.
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b. The patient was given clear instructions to call for any worsening pain,
fever, chills, bleeding.

c. The patient could not tolerate the nausea and vomiting associated with
Carboplatininal Pain.

d. There were no fevers, headache, or dizziness at home and no diffuse
abdominal pain, fair appetite with significant weight loss.

Rokach, Romano, and Maimon (2008) present a pattern-based algorithm for iden-
tifying context in free-text medical narratives. The algorithm automatically learns
patterns similar to the manually written patterns for negation detection using two
algorithms: longest common sequence and Teiresias (Rigoutsos and Floratos 1998),
an algorithm designed to discover motifs in biological sequences. A non-ranker filter
feature selection algorithm is applied to select the informative patterns (35 out of 2,225).
In the classification phase three classifiers are combined sequentially, each learning
different types of patterns. Experimental results show that the sequential combination
of decision tree classifiers obtains 95.9 F-measure, outperforming the results of single
hiddenMankovmodels and CRF classifiers based on several versions of a bag-of-words
representation.

Goryachev et al. (2006) compare the performance of four different methods of nega-
tion detection, two regular expression basedmethods that are adaptations of NegEx and
NegExpander, and two classification-based methods, Naı̈ve Bayes and SVM, trained
on 1,745 discharge reports. They find that the regular expression-based methods show
better agreement with humans and better accuracy than the classification methods.
Goryachev et al. indicate that the reason why the classifiers do not perform as well
as NegEx and NegExpander may be related to the fact that the classifiers are trained on
discharge summaries and tested on outpatient notes.

Another comparison of approaches to assertion classification is made by Uzuner,
Zhang, and Sibanda (2009), who develop a statistical assertion classifier, StAC, to
classify medical problems in patient records into four categories: positive, negative,
uncertain, and alter-association13 assertions. The StAC approach makes use of
lexical and syntactic context in conjunction with SVM. It is evaluated on discharge
summaries and on radiology reports. The comparison with an extended version of the
NegEx algorithm (ENegEx), adapted to capture alter-association in addition to positive,
negative, and uncertain assertions, shows a better performance of the statistical classi-
fier for all categories, even when it is trained and tested on different corpora. Results
also show that the StAC classifier can solve the task by using the words that occur in a
four-word window around the target problem and that it performs well across corpora.

This work focuses mostly on negation in clinical documents, but processing nega-
tion and speculation also plays a role in extracting relations and events from the abun-
dant literature on molecular biology. Finding negative cases is useful for filtering out
false positives in relation extraction, as support for automatic database curation, or for
refining pathways.

Sanchez-Graillet and Poesio (2007) develop a heuristics-based system that extracts
negated protein–protein interactions using a full dependency parser from articles about
chemistry. The system uses cue words and information from the syntax tree to find
potential constructions that express negation. If a negation construction is found, the

13 Alter-association assertions state that the problem is not associated with the patient.
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system extracts the arguments of the predicate that is negated based on the dependency
tree. The maximum F1 score that the system achieves is 62.96%, whereas the upper-
bound of the system with gold-standard protein recognition is 76.68% F1 score.

The BioNLP’09 Shared Task on Event Extraction (Kim et al. 2009) addressed bio-
molecular event extraction. It consisted of three subtasks each aiming at different levels
of specificity, one of which was dedicated to finding whether the recognized biological
events are negated or speculated. Six teams submitted systems with results varying
from 2.64 to 23.13 F-measure for negation and 8.95 to 25.27 for speculation. To partic-
ipate in this subtask the systems had to first perform Task 1 in order to detect events,
which explains the low results. The best scores were obtained by a system that applies
syntax-based heuristics (Kilicoglu and Bergler 2009). Once events are identified, the
system analyzes the dependency path between the event trigger and speculation or
negation cues in order to determine whether the event is within the scope of the cues.

Sarafraz and Nenadic (2010a) further explore the potential of machine learning
techniques to detect negated events in the BioNLP’09 Shared Task data. They train an
SVM with a model that represents lexical, semantic, and syntax features. The system
works with gold-standard event detection and results are obtained by performing
10-fold cross-validation experiments. Evaluation is performed only on gene regula-
tion events, which means that the results are not comparable with the Shared Task
results. The best results are obtained when all features are combined, achieving a 53.85
F1 score. Error analysis shows that contrastive patterns like that in Example (27) with
the cue unlike are recurrent as a source of errors. Sarafraz and Nenadic (2010b) have
also compared a machine learning approach with a rule-based approach based on
command relations, finding that the machine learning approach produces better re-
sults. Optimal results are obtained when individual classifiers are trained for each
event class.

(27) Unlike TNFR1, LMP1 can interact directly with receptor-interacting
protein (RIP) and stably associates with RIP in EBV-transformed
lymphoblastoid cell lines.

Modality and negation processing at the event level has also been performed on
texts from a domain outside the biomedical domain. Here we describe systems that
process the factuality of events and a modality tagger.

EvITA and SlinkET (Saurı́, Verhagen, and Pustejovsky 2006a, 2006b) are two sys-
tems for automatically identifying and tagging events in text and assigning to them
contextual modality features. EvITA assigns modality and polarity values to events
using pattern-matching techniques over chunks. SlinkET is a rule-based system that
identifies contexts of subordination that involve some types of modality, referred to as
SLINKs in TimeML (Pustejovsky et al. 2005), and assigns one of the following types
to them: factive, counterfactive, evidential, negative evidential or modal. The
reported performance for SlinkET is 92% precision and 56% recall (Saurı́, Verhagen,
and Pustejovsky 2006a). DeFacto (Saurı́ 2008) is a factuality profiler. As Saurı́ puts it,
the algorithm assumes a conceptual model where factuality is a property that speakers
(sources) attribute to events. Two relevant aspects of the algorithm are that it processes
the interaction of different factuality markers scoping over the same event and that it
identifies the relevant sources of the event. The system is described in detail in the article
by Saurı́ and Pustejovsky included in this special issue.

Baker et al. (2010) take a different approach. Instead of focusing on an event in
order to find its factuality, they focus on modality cues in order to find the predicate

245



Computational Linguistics Volume 38, Number 2

that is within their scope (target). They describe two modality taggers that identify
modality cues and modality targets, a string-based tagger and a structure-based tagger,
and compare their performances. The string-based tagger takes as input text tagged
with PoS and marks as modality cues words or phrases that match exactly cues from a
modality lexicon. More information about the modality taggers and their application in
machine translation can be found in the article by Baker et al. included in this special
issue.

Finally, Diab et al. (2009) model belief categorization as a sequence labeling task,
which allows them to treat cue detection and scope recognition in a unified fashion.
Diab et al. distinguish three belief categories. For committed belief the writer indicates
clearly that he or she believes a proposition. In the case of non-committed belief the
writer identifies the proposition as something in which he or she could believe but
about which the belief is not strong. This category is further subdivided into weak
belief, which is often indicated by modals, such as may, and reported speech. The
final category, not applicable, refers to cases which typically do not have a belief value
associated with them, for example because the proposition does not have a truth value.
This category covers questions and wishes. Diab et al. manually annotated a data set
consisting of 10,000 words with these categories and then used it to train and test an
automatic system for belief identification. The system makes use of a variety of lexical,
contextual, and syntactic features. Diab et al. found that relatively simple features such
as the tokens in a window around the target word and the PoS tags lead to the best
performance, possibly due to the fact that some of the higher level features, such as the
verb type, are noisy.

6.2 Full Scope Resolution

The scope resolution task consists of determining at a sentence level which tokens
are affected by modality and negation cues. Thanks to the existence of the BioScope
corpus several full scope resolvers have been developed. The task was first modeled
as a classification problem with the purpose of finding the scope of negation cues in
biomedical texts (Morante, Liekens, and Daelemans 2008). It was further developed
for modality and negation cues by recent work on the same corpus (Morante and
Daelemans 2009a, 2009b; Özgür and Radev 2009), and it was consolidated with the
edition of the 2010 CoNLL Shared Task on Learning to Detect Hedges and their Scope in
Natural Language Text (Farkas et al. 2010a).

Morante, Liekens, and Daelemans (2008) approach the scope resolution task as a
classification task. Their conception of the task is inspired by Ramshaw and Marcus’s
(1995) representation of text chunking as a tagging problem and by the standard CoNLL
representation format (Buchholz andMarsi 2006). By setting up the task in this way they
show that the task can be modeled as a sequence labeling problem, and by conforming
to the existing CoNLL standards they show that scope resolution could be integrated
in a joint learning setting with dependency parsing and semantic role labeling. Their
system is a memory-based scope finder that tackles the task in two phases: cue identifi-
cation and scope resolution, which are modeled as consecutive token level classification
tasks. Morante and Daelemans (2009b) present another scope resolution system that
uses a different architecture, can deal with multiword negation cues, and is tested on
the three subcorpora of the BioScope corpus. For resolving the scope, three classifiers
(kNN, SVM, CRF++) predict whether a token is the first token in the scope sequence,
the last, or neither. A fourth classifier is a metalearner that uses the predictions of the
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three classifiers to predict the scope classes. The system is evaluated on three corpora
using as measure the percentage of fully correct scopes (PCS), which is 66.07 for the
corpus of abstracts on which the classifiers are trained, 41.00 for the full articles and
70.75 for the clinical reports. They show that the system is portable to different corpora,
although performance fluctuates.

Full scope resolution of negation cues has been performed as a support task to
determine the polarity of sentiments. In this context, negation is conceived as a con-
textual valence shifter (Kennedy and Inkpen 2006). If a sentiment is found within
the scope of a negation cue, its polarity should be reversed. Several proposals de-
fine the scope of a negation cue in terms of a certain number of words to the right
of the cue (Pang, Lee, and Vaithyanathan 2002; Hu and Liu 2004), but this solution is
not accurate enough. This is why research has been performed on integrating scope
resolver into sentiment analysis systems (Jia, Yu, and Meng 2009; Councill, McDonald,
and Velikovich 2010).

Jia, Yu, and Meng (2009) describe a rule-based system that uses information from
a parse tree. The algorithm first detects a candidate scope and then prunes the words
within the candidate scope that do not belong to the scope. The candidate scope of a
negation term t is formed by the descendant leaf nodes of the least common-ancestor of
the node representing t and the node representing the word t’ immediately to the right
of t, that are found to the right of t’. Heuristic rules are applied in order to determine
the boundaries of the candidate scope. The rules involve the use of delimiters (elements
that mark the end of the scope), and conditional delimiters (elements that mark the end
of the scope under certain conditions). Additionally, situations are defined in which a
negation cue does not have a scope: phrases like not only, not just, not to mention, no
wonder, negative rhetorical questions, and restricted comparative sentences. Jia, Yu, and
Meng report that incorporating their scope resolution algorithm into two systems that
determine the polarity of sentiment words in reviews and in the TREC blogosphere
collection produces better accuracy results than incorporating other algorithms that are
described in the literature.

Councill, McDonald, and Velikovich (2010) present a system in some aspects similar
to the system described by Morante and Daelemans (2009b). The main differences with
Morante et al.’s system are that in the first phase, the cues are detected by means of a
dictionary of 35 cues instead of being machine learned; in the second phase only a CRF
classifier is used, and this classifier incorporates features from dependency syntax. The
system is trained and evaluated on the abstracts and clinical reports of the BioScope
corpus and on a corpus of product reviews. The PCS reported for the BioScope corpus
is 53.7 and 39.8 for the Product Reviews corpus. Cross training results are also reported
showing that the system obtains better results for the Product Reviews corpus when
trained on BioScope, which, according to the authors, would indicate that the scope
boundaries are more difficult to predict in the Product Reviews corpus. Councill et al.
also report that the scores of their sentiment analysis systemwith negation incorporated
improve by 29.5% and 11.4% for positive and negative sentiment, respectively. For
negative sentiment precision improves 46.8% and recall 6.6%.

It is worth mentioning that the systems trained on the BioScope corpus cannot deal
with intersentential, implicit, and affixal negation. Further research could focus on these
aspects of negation. Apart from scope resolvers for negation, several full scope resolvers
have been developed for modality.

Morante and Daelemans (2009a) test whether the scope resolver for negation
(Morante and Daelemans 2009b) is portable to resolve the scope of hedge cues, showing
that the same scope resolution approach can be applied to both negation and hedging.
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In the scope resolution phase, the system achieves 65.55% PCS in the abstracts corpus,
which is very similar to the result obtained by the negation resolver (66.07% PCS).
The system is also evaluated on the three types of text of the BioScope corpus. The
difference in performance for abstracts and full articles follows the same trends as in
the negation system, whereas the drop in performance for the clinical subcorpus is
higher, which indicates that there is more variation of modality cues across corpora
than there is of negation cues.

The modality scope resolver described by Özgur and Radev (2009) solves the task
in two phases also, but differently from Morante and Daelemans (2009a); in the second
phase the scope boundaries are found with a rule-based module that uses information
from the syntax tree. This system is evaluated on the abstracts and full articles of the
BioScope corpus. The scope resolution is evaluated in terms of accuracy, achieving
79.89% in abstracts and 61.13% in full articles.

Task 2 of the 2010 edition of the CoNLL Shared Task (Farkas et al. 2010b) consisted
of resolving the scope of hedge cues on biomedical texts. A scope-level F1 measure was
used as the main evaluation metric where true positives were scopes which exactly
matched the gold-standard cues and gold-standard scope boundaries assigned to the
cue word. The best system (Morante, van Asch, and Daelemans 2010) achieved a
F1 score of 57.3. As Farkas et al. (2010b) describe, each Task 2 system was built upon
a Task 1 system, attempting to recognize the scopes for the predicted cue phrases. Most
systems regarded multiple cues in a sentence to be independent from each other and
formed different classification instances from them. The scope resolution for a certain
cue was typically carried out by a token based classification. Systems differ in the
number of class labels used as a target and in the machine learning approaches ap-
plied. Most systems, following Morante and Daelemans (2009a), used three class labels:
first, last, and none, and two systems used four classes by adding inside, whereas
three systems followed a binary classification approach. Most systems included a post-
processing mechanism to produce continuous scopes, according to the BioScope anno-
tation. Sequence labeling and token-based classification machine learning approaches
were applied, and information from the dependency path between the cue and the
token in question was generally encoded in the feature space.

The system that scored the best results for Task 2 (Morante, van Asch, and
Daelemans 2010) follows the same approach as Morante and Daelemans (2009a), al-
though it introduces substantial differences: This system uses only one classifier to
solve Task 2, whereas the system described in Morante and Daelemans (2009a) used
three classifiers and a metalearner; this system uses features from both shallow and
dependency syntax, instead of only shallow syntax features; and it incorporates in the
feature representation information from a lexicon of hedge cues generated from the
training data.

As a follow-up of the CoNLL Shared Task, Øvrelid, Velldal, and Oepen (2010)
investigate the contribution of syntax to scope resolution. They apply a hybrid, two-
stage approach to the scope resolution task. In the first stage, a Maximum Entropy
classifier, combining surface-oriented and syntax features, identifies cue words, and
multiword cues are identified in a postprocessing step. In the second stage a small set
of hand-crafted rules operating over dependency representations are applied to resolve
the scope. This system is evaluated following exactly the same settings as the CoNLL
Shared Task. The results do not improve over the best shared task results but show that
handcrafted syntax-based rules achieve a very competitive performance. Øvrelid et al.
report that the errors of their system are mostly of two classes: (i) failing to recognize
phrase and clause boundaries, as in Example (28a), and (ii) not dealing successfully with
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relatively superficial properties of the text as in Example (28b). The scope boundaries
produced by the system are marked with ‘‖’.

(28) a. ... [the reverse complement ‖mR of m will be considered to be ...‖].

b. This ‖[might affect the results] if there is a systematic bias on the
composition of a protein interaction set‖.

Finally, Zhu et al. (2010) approach the scope learning problem via simplified shallow
semantic parsing. The cue is regarded as the predicate and its scope is mapped into
several constituents as the arguments of the cue. The system resolves the scope of nega-
tion and modality cues in the standard two phase approach. For cue identification they
apply an SVM that uses features from the surrounding words and from the structure of
the syntax tree. The scope resolution task is different than in previous systems. The task
is addressed in three consecutive phases: (1) argument pruning, consisting of collecting
as argument candidates any constituent in the parse tree whose parent covers the given
cue except the cue node itself and its ancestral constituents; (2) argument identification
where a binary classifier is applied to determine the argument candidates as either
valid arguments or non-arguments; and (3) postprocessing to guarantee that the scope
is a continuous sequence of arguments. The system is trained on the abstracts part of
the BioScope corpus and tested on the three parts of the BioScope corpus. Evaluating
the system following the CoNLL Shared Task setting would shed more light on the
advantages of the semantic parsing approach as compared to other approaches.

From the systems and results described in this section, we can conclude that al-
though there has been substantial research on the scope resolution task, there is still
room for improvement. The performance of scope resolvers is still far from having
reached the level of well established tasks like semantic role labeling or parsing. Prob-
ably, better results can be obtained by a combination of more experimental work with
algorithms and a deeper analysis of the task from a linguistic perspective so that the
representation models can be improved. The article by Velldal et al. in this special issue
provides new insights into the task.

7. Processing Contradiction and Contrast

The concept of negation is closely related to the discourse-level concepts of “contradic-
tion” and “contrast,” which typically require an explicit or implicit negation.

Contradiction is a relation that holds between two documents with contradictory
content. Detecting contradiction is important for tasks which extract information from
multi-document collections, such as question-answering and multi-document summa-
rization. Since 2007 contradiction detection has also been included as a subtask in the
Textual Entailment Challenge (Giampiccolo et al. 2007), spurring an increased interest
in the development of systems which can automatically detect contradictions. The two
contradictory sentence pairs in Examples (29) and (30) (both from Harabagiu et al.
[2006]) illustrate the relation between contradiction and negation. In Example (29) the
contradiction is signaled by the explicit negation marker never, whereas in Example (30)
the negation is implicit and signaled by the use of call off in the second sentence (which
is an antonym of begin in the first sentence).

(29) a. Joachim Johansson held off a dramatic fightback from defending
champion Andy Roddick, to reach the semi-finals of the US Open
on Thursday night.
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b. Defending champion Andy Roddick never took on Joachim Johansson.

(30) a. In California, one hundred twenty Central Americans, due to be
deported, began a hunger strike when their deportation was delayed.

b. A hunger strike was called off.

Although contradiction typically occurs across documents, contrast is a discourse
relation within documents. At least some types of contrast involve negation, notably
those that involve a denial of expectation. The negation can be explicit as in Exam-
ple (31a), implicit (31b), or entailed (31c) (see Umbach [2004]).

(31) a. John cleaned his room, but he didn’t wash the dishes.

b. John cleaned his room, but he skipped the washing up.

c. John cleaned up the room, but Bill did the dishes.

Given this interrelation between negation and contradiction on the one hand and
negation and contrast on the other, it it not surprising that negation detection has been
studied in the context of discourse relation classification and contradiction detection.
Most studies in this area use fairly standard—i.e., sentence-based—methods for nega-
tion detection. Once the negation has been detected it is then used as a feature for the
higher-level tasks of contradiction or contrast detection.

For instance, Harabagiu, Hickl, and Lacatusu (2006) discuss a system which first
detects negated expressions and then finds contradictions on the basis of the de-
tected negations. To detect explicit negation Harabagiu et al. use a lexicon of explicit
cues. To determine the scope they use a set of heuristics, which varies depending on
whether the negated object is an event, an entity, or a state. For events, the negation is
assumed to scope over the whole predicate–argument structure. For entities and for
states realized by nominalizations the negation is assumed to scope over the whole
NP. Implicit negations are detected by searching for antonymy chains in WordNet. de
Marneffe, Rafferty, and Manning (2008) also make use of negation detection to discover
contradictions. They do so rather implicitly, however, by using a number of features
which check for explicit negation, polarity, and antonymy. Ritter et al. (2008) present a
contradiction detection system that uses the TEXTRUNNER system (Banko et al. 2007)
to extract relations of the form R(x,y) (e.g., was born in(Mozart,Salzburg)). They then
inspect potential contradictions (i.e., relations which overlap in one variable but not in
the other) and filter out non-contradictions by looking, for example, for synonyms and
meronyms.

In the context of contrast detection in discourse processing, negation detection is
rarely used as an explicit step. An exception is Kim et al. (2006), who are concerned
with discovering contrastive information about protein interaction in biomedical texts.
They only deal with explicitly marked negation which occurs in the context of a contrast
relation marked by a contrast signaling connective such as but. Unlike Kim et al., Pitler,
Louis, and Nenkova (2009) are concerned with detecting implicit discourse relations—
namely, relations which are not explicitly signalled by a connective such as but. To detect
such relations, they define a number of features, including polarity features. Hence they
make implicit use of negation information but do not aim to detect it as a separate
subtask.
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8. Positive and Negative Opinions

Much work in the NLP community has been carried out in the area of identifying
positive and negative opinions, also known as opinion mining, sentiment analysis, or
subjectivity analysis.14 Sentiment analysis touches on the topic of this special issue as
both negation and modality cues can help determine the opinion of an opinion holder
on a subject. Negation in particular has received attention in the sentiment analysis
community as negation can affect the polarity of an expression. Negation and polarity
are two different concepts, however (see Section 3.1). The relation between negation and
polarity is also not always entirely straightforward. For example, whereas negation can
change the polarity of an expression from positive to negative (e.g., good vs. not good in
Examples (32a) vs. (32b)) it can also shift negative polarity to neutral or even positive
polarity (32c).

(32) a. This is a good camera.

b. This is not a good camera.

c. This is by no means a bad camera.

In this section, we discuss some approaches that make explicit use of negation in
the context of sentiment analysis. For a recent general overview of work on sentiment
analysis, we refer the reader to Pang and Lee (2008).

Wiegand et al. (2010) present a survey of the role of negation in sentiment analysis.
They indicate that it is necessary to perform fine-grained linguistic analysis in order
to extract features for machine learning or rule-based opinion analysis systems. The
features allow the incorporation of information about linguistic phenomena such as
negation (Wiegand et al. 2010, page 60). Early approaches made use of negation in
a bag-of-words model by prefixing a word x with a negation marker if a negation
word was detected immediately preceding x (Pang, Lee, and Vaithyanathan 2002).
Thus x and NOT x were treated as two completely separate features. Although this
model is relatively simple to compute and leads to an improvement over a bag-of-
words model without negation, Pang, Lee, and Vaithyanathan (2002) found that the
effect of adding negation was relatively small, possibly because the introduction
of additional features corresponding to negated words increases the feature space
and thereby also data sparseness. Later work introduced more sophisticated use of
negation, for example, by explicitly modeling negation expressions as polarity shifters,
which change the polarity of an expression (Kennedy and Inkpen 2006; Polanyi
and Zaenen 2006), or by introducing specific negation features (Wilson, Wiebe, and
Hoffman 2005; Wilson, Wiebe, and Hwa 2006; Wilson 2008). It was found that these
more sophisticated models typically lead to a significant improvement over a simple
bag-of-words model with negation prefixes. This improvement can to a large extent
be directly attributed to the better modeling of negation (Wilson, Wiebe, and Hoffman
2009). Whereas modeling negation in opinion mining frequently involves determining
the polarity of opinions (Hu and Liu 2004; Kim and Hovy 2004; Wilson, Wiebe, and
Hoffman 2005; Wilson 2008), some researchers have also used negation models to

14 The three terms are used sometimes interchangeably and sometimes reserved for somewhat different
contexts. We follow here the definitions of Pang and Lee (2008) who use “opinion mining” and
“sentiment analysis” as largely synonymous terms and “subjectivity analysis” as a cover term for both.
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determine the strength of opinions (Popescu and Etzioni 2005; Wilson, Wiebe, and Hwa
2006). Choi and Cardie (2010) found that performing both tasks jointly can lead to a
significant improvement over a pipeline model in which the two tasks are performed
separately. Councill, McDonald, and Velikovich (2010) also show that explicit modeling
of negation has a positive effect on polarity detection.

9. Overview of the Articles in this Special Issue

For this special issue we invited articles on all aspects of the computational modeling
and processing of modality and negation. Given that this area is both theoretically
complex—with several competing linguistic theories having been put forward for
various aspects of negation and modality—and computationally challenging, we
particularly encouraged submissions with a substantial analysis component, either
in the form of a data or task analysis or in the form of a detailed error analysis. We
received 25 submissions overall, reflecting a significant interest in these phenomena
in the computational linguistics community. After a rigorous review process, we
selected five articles, covering various aspects of the topic. Three of the articles (Saurı́
and Pustejovsky; de Marneffe et al.; and Szarvas et al.) deal with one specific aspect
of modality, namely, certainty (in the widest sense) from both a theoretical and a
computational perspective. The remaining two articles (Velldal et al. and Baker et al.)
deal with both negation and modality detection in a more application-focused setting.
The following paragraphs provide a detailed overview of the articles.

In the first article, Saurı́ and Pustejovsky introduce their model of factuality. They
distinguish the dimensions of polarity and certainty and use a four-point scale for the
latter. They also explicitly model different sources and embedding of factuality across
several levels. They then present a linguistically motivated, symbolic system, DeFacto,
for computing factuality and attributing it to the correct sources. The model operates
on dependency parses and exploits a number of lexical cues together with hard-coded
rules to process factuality within a sentence in a top–down fashion.

Whereas Saurı́ and Pustejowsky focus on lexical and intra-sentential aspects of
factuality, the article by de Marneffe et al. looks specifically at the pragmatic component
of factuality (called veridicality in their article). They argue that although individual
lexemes might be associated with discrete veridicality categories out of context, spe-
cific usages are better viewed as evoking probability distributions over veridicality
categories, where world knowledge and discourse context can shift the probabilities
in one or the other direction. To support this hypothesis, de Marneffe et al. carried
out an annotation study with linguistically naive subjects, which provides evidence for
considerable variation between subjects, especially with respect to neighboring veridi-
cality categories. In a second step, de Marneffe et al. show how this type of pragmatic
veridicality can be modeled in a supervised machine learning setting.

In the following article, Szarvas et al. provide a cross-domain and cross-genre
view of (un-)certainty. They propose a novel categorization scheme for uncertainty that
unifies existing schemes, which, they argue, are to some extent domain- and genre-
dependent. They provide a detailed analysis of different linguistic manifestations of
uncertainty in several types of text and then propose a method for adapting uncertainty
detection systems to novel domains. They show that instead of simply boosting the
available training data from the target domain with randomly selected data from the
source domain, it is often more beneficial to select those instances from the source
domain that contain uncertainty cues that are also observed in the target domain. In

252



Morante and Sporleder Modality and Negation

this scenario, the additional data from the source domain is exploited to fine-tune the
disambiguation of target domain cues rather than to learn novel cues.

Moving from certainty to negation and speculation in a more general sense, Velldal
et al. show how deep and shallow approaches can be combined for cue detection and
scope resolution. They assume a closed class of speculation and negation cues and cast
cue detection as a disambiguation rather than a classification task, using supervised
machine learning based on n-gram features.

In a second step, they tackle scope resolution, for which they propose two models.
The first implements a number of syntax-driven rules over dependency structures, and
the second model is data-driven and ranks candidate scopes on the basis of constituent
trees.

The final article, by Baker et al., also addresses modality and negation processing,
but within a particular application scenario, namely, machine translation. The authors
propose a novel annotation scheme for modality and negation and two rule-based
taggers for identifying cues and scopes. The first tagger employs string matching in
combination with a semi-automatically developed cue lexicon; the second goes beyond
the surface string and utilizes heuristics based on syntax. In the machine translation
process, syntax trees in the source language are then automatically enriched with
modality and negation information before being translated.

10. Final Remarks

In this article, we have given an overview of the treatment of negation and modality
in computational linguistics. Although much work has been done in recent years and
many models for dealing with various aspects of these two phenomena have been
proposed, it is clear that much still remains to be done.

The first challenge is a theoretical one and pertains to the categorization and anno-
tation of negation and, especially, modality. Currently, many annotation schemes exist
in parallel (see Section 4). As a consequence, the existing annotated corpora are all rel-
atively small. Significant progress in this area depends on the availability of annotated
resources, however, both for training and testing automated systems and for (corpus)
linguistic studies that can support the development of linguistically informed systems.
Ideally, any larger scale resource creation project should be preceded by a discussion in
the computational linguistics community about which aspects of negation andmodality
should be annotated and how this should be done (see, e.g., Nirenburg and McShane
[2008]). To some extent this is already happening and the public release of annotated
resources such as the MPQA (Wiebe, Wilson, and Cardie 2005) or the BioScope (Vincze
et al. 2008) corpus, as well as the organization of shared tasks (Farkas et al. 2010a), are
steps in the right direction. Related to this challenge is the question of which aspects
of extra-propositional meaning need to be modeled for which applications. Outside
sentiment analysis, relatively little research has been carried out in this area so far.

A second challenge involves the adequate modeling of modality and negation.
For example, although we can detect extra-propositional content, few researchers so
far have investigated how interactions between extra-propositional meaning aspects
can be adequately modeled. Also, most approaches have addressed the detection of
negation at a sentence or predicate level. Discourse-level interdependencies between
different aspects of extra-propositional content have been largely ignored. To address
this challenge, we believe that more research into linguistically motivated approaches
is necessary.
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Finally, most research so far has been carried out on English and on selected do-
mains and genres (biomedical, reviews, newswire). It would be interesting to also look
at different languages and devisemethods for cross-lingual bootstrapping. It would also
be good to broaden the set of domains and genres (including fiction, scientific texts,
weblogs, etc.) since extra-propositional meaning is particularly susceptible to domain
and genre effects.
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Shatkay, Hagit, Fengxia Pan, Andrey
Rzhetsky, and W. John Wilbur. 2008.
Multi-dimensional classification of
biomedical texts: Toward automated
practical provision of high-utility
text to diverse users. Bioinformatics,
24(18):2086–2093.

Skeppstedt, Maria. 2010. Negation detection
in Swedish clinical text. In Proceedings
of the NAACL HLT 2010 Second Louhi
Workshop on Text and Data Mining of Health
Documents, pages 15–21, Los Angeles, CA.

Snow, Rion, Lucy Vanderwende, and Arul
Menezes. 2006. Effectively using syntax for
recognizing false entailment. In Proceedings
of the Main Conference on Human Language
Technology Conference of the North American
Chapter of the Association of Computational
Linguistics, pages 33–40, Morristown, NJ.

Su, Qi, Chu-Ren Huang, and Helen Kai-yun
Chen. 2010. Evidentiality for text
trustworthiness detection. In Proceedings of
the 2010 Workshop on NLP and Linguistics:
Finding the Common Ground, pages 10–17,
Uppsala.

Szarvas, György. 2008. Hedge classification
in biomedical texts with a weakly
supervised selection of keywords. In
Proceedings of ACL 2008, pages 281–289,
Columbus, OH.

Tang, Buzhou, Xiaolong Wang, Xuan Wang,
Bo Yuan, and Shixi Fan. 2010. A cascade
method for detecting hedges and their
scope in natural language text. In
Proceedings of the Fourteenth Conference
on Computational Natural Language
Learning, pages 13–17, Uppsala.

Thompson, Paul, Gilua Venturi, John
McNaught, Simonetta Montemagni, and
Sophia Ananiadou. 2008. Categorising
modality in biomedical texts. In Proceedings
of the LREC 2008 Workshop on Building and
Evaluating Resources for Biomedical Text
Mining 2008, pages 27–34, Marrakech.

Tottie, Gunnel. 1991. Negation in English
Speech and Writing: A Study in Variation.
Academic Press, New York.

Umbach, Carla. 2004. On the notion of
contrast in information structure and
discourse structure. Journal of Semantics,
21:155–175.
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Móra, Tomoko Ohta, and Richard Farkas.
2010. Linguistic scope-based and
biological event-based speculation and
negation annotations in the genia event
and BioScope corpora. In Proceedings
of the Symposium for Semantic Mining in
Biomedicine (SMBM 2010), pages 84–92,
Hinxton.

von Fintel, Kai. 2006. Modality and
language. In D. M. Borchert, editor,
Encyclopedia of Philosophy. MacMillan
Reference, Detroit, MI, second edition.
Available at http://mit.edu/fintel/
fintel-2006-modality.pdf.

von Wright, Georg H. 1951. An Essay in
Modal Logic. North Holland, Amsterdam.

Wiebe, Janyce. 1994. Tracking point of view
in narrative. Computational Linguistics,
20(2):233–287.

Wiebe, Janyce, Theresa Wilson, Rebecca
Bruce, Matthew Bell, and Melanie Martin.
2004. Learning subjective language.
Computational Linguistics, 30(3):277–308.

Wiebe, Janyce, Theresa Wilson, and Claire
Cardie. 2005. Annotating expressions of
opinions and emotions in language.
Language Resources and Evaluation,
38:165–210.

Wiegand, Michael, Alexandra Balahur,
Benjamin Roth, Dietrich Klakow, and
Andrés Montoyo. 2010. A survey on the
role of negation in sentiment analysis. In
Proceedings of the Workshop on Negation and

259



Computational Linguistics Volume 38, Number 2

Speculation in Natural Language Processing,
pages 60–68, Uppsala.

Wilbur, W. John, Andrey Rzhetsky, and
Hagit Shatkay. 2006. New directions in
biomedical text annotations: Definitions,
guidelines and corpus construction.
BMC Bioinformatics, 7:356.

Wilson, Theresa. 2008. Fine-grained
Subjectivity and Sentiment Analysis:
Recognizing the Intensity, Polarity, and
Attitudes of Private States. Ph.D. thesis,
University of Pittsburgh, Pittsburgh, PA.

Wilson, Theresa, Paul Hoffmann, Swapna
Somasundaran, Jason Kessler, Janyce
Wiebe, Yejin Choi, Claire Cardie, Ellen
Riloff, and Siddharth Patwardhan. 2005.
OpinionFinder: A system for subjectivity
analysis. In Proceedings of HLT/EMNLP on
Interactive Demonstrations, pages 34–35,
Morristown, NJ.

Wilson, Theresa, Janyce Wiebe, and Paul
Hoffman. 2005. Recognizing contextual
polarity in phrase-level sentiment
analysis. In Proceedings of HLT-EMNLP,
pages 347–354, Vancouver.

Wilson, Theresa, Janyce Wiebe, and Paul
Hoffman. 2009. Recognizing contextual
polarity: An exploration of features for
phrase-level analysis. Computational
Linguistics, 35(3):399–433.

Wilson, Theresa, Janyce Wiebe, and Rebecca
Hwa. 2006. Recognizing strong and weak
opinion clauses. Computational Intelligence,
22(2):73–99.

Zhu, Qiaoming, Junhui Li, Hongling Wang,
and Guodong Zhou. 2010. A unified
framework for scope learning via
simplified shallow semantic parsing.
In Proceedings of EMNLP 2010,
pages 714–724, Cambridge, MA.

260


