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Recent work in natural language generation has begun to take linguistic variation into account,
developing algorithms that are capable of modifying the system’s linguistic style based either
on the user’s linguistic style or other factors, such as personality or politeness. While stylistic
control has traditionally relied on handcrafted rules, statistical methods are likely to be needed for
generation systems to scale to the production of the large range of variation observed in human
dialogues. Previous work on statistical natural language generation (SNLG) has shown that the
grammaticality and naturalness of generated utterances can be optimized from data; however
these data-driven methods have not been shown to produce stylistic variation that is perceived
by humans in the way that the system intended. This paper describes PERSONAGE, a highly
parameterizable language generator whose parameters are based on psychological findings about
the linguistic reflexes of personality. We present a novel SNLG method which uses parameter
estimation models trained on personality-annotated data to predict the generation decisions
required to convey any combination of scalar values along the five main dimensions of personal-
ity. A human evaluation shows that parameter estimation models produce recognizable stylistic
variation along multiple dimensions, on a continuous scale, and without the computational cost
incurred by overgeneration techniques.

1. Introduction

Although language can be seen as simply a method for exchanging information, it also
has a social function (Goffman 1970; Dunbar 1996; Labov 2006). Speakers use linguistic
cues to project social aspects of utterances, such as the speaker’s personality, emotions,
and social group, and hearers use these cues to infer properties about the speaker.
Although some cues appear to be produced through automatic cognitive processes
(Levelt and Kelter 1982; Pickering and Garrod 2004), speakers may also overload their
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communicative intentions to try to satisfy multiple goals simultaneously (Pollack 1991;
Stone and Webber 1998; Jordan 2000), such as projecting a specific image to the hearer
while communicating information and minimizing communicative effort (Clark and
Brennan 1991; Brennan and Clark 1996). The combination of these pragmatic effects
results in the large range of linguistic variation observed between individual speakers
(Biber 1988).

Much of the research on generating utterances that manifest different linguistic
styles has focused on text generation applications such as journalistic writing or in-
struction manuals (Hovy 1988; Scott and de Souza 1990; Paris and Scott 1994; Green and
DiMarco 1996; Bouayad-Agha, Scott, and Power 2000; Power, Scott, and Bouayad-Agha
2003; Inkpen and Hirst 2004). Recent research in language generation for dialogue appli-
cations has also begun to take linguistic variation into account, developing algorithms
to modify the system’s linguistic style based on either the user’s linguistic style, or other
factors such as the user’s emotional state, her personality, or considerations of politeness
strategies (Walker, Cahn, and Whittaker 1997; Lester, Towns, and Fitzgerald 1999; Lester,
Stone, and Stelling 1999; André et al. 2000; Cassell and Bickmore 2003; Piwek 2003).
There is growing evidence that dialogue systems such as intelligent tutoring systems
are more effective if they can generate a range of different types of stylistic linguistic
variation (Litman and Forbes-Riley 2004, 2006; Porayska-Pomsta and Mellish 2004;
Wang et al. 2005; McQuiggan, Mott, and Lester 2008; Tapus and Mataric 2008). Most
of this work uses either templates or handcrafted rules to generate utterances. This
guarantees high quality, natural outputs, which is useful for demonstrating the utility
of stylistic variation.

Handcrafted approaches mean that utterances have to be constructed by hand
for each new application, however, leading to problems of portability and scalability
(Rambow, Rogati, and Walker 2001). Statistical natural language generation (SNLG)
has the potential to address such scalability issues by relying on annotated data rather
than manual parameter tuning. It also offers the promise of techniques for producing
continuous stylistic variation over multiple stylistic factors by automatically learning a
model of the relation between stylistic factors and properties (parameters) of generated
utterances (Paiva and Evans 2004, 2005). It is difficult to produce such continuous
variation over multiple factors with a rule-based or template-based approach (but see
Bouayad-Agha, Scott, and Power 2000). Moreover, to date, no one has shown that
humans correctly perceive the generated variation as the system intended, nor has
anyone shown that an SNLG approach can produce outputs that are natural enough to
be used in dialogue applications such as intelligent tutoring systems, interactive drama
systems, and conversational agents, where some types of stylistic variation have already
been shown to be useful.

In previous work, we argue that the Big Five model of personality provides a
useful framework for modeling some types of stylistic linguistic variation. This model
of human personality has become widely accepted in psychology over the last 50 years
(Funder 1997). Table 1 tabulates each Big Five trait along with some of the important
trait adjectives associated with the extremes of each trait. We believe that these trait
adjectives provide an intuitive, meaningful definition of linguistic style. In previous
work we describe a rule-based version of PERSONAGE, which here we will refer to as
PERSONAGE-RB (Mairesse and Walker 2007; Mairesse 2008). In PERSONAGE-RB, gen-
eration parameters are implemented, and their values are set based on correlations be-
tween linguistic cues and the Big Five traits that have been systematically documented
in the psychology literature (Scherer 1979; Furnham 1990; Pennebaker and King 1999;
Mehl, Gosling, and Pennebaker 2006). For example, parameters for the extraversion
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Table 1

Example adjectives associated with the extremes of all Big Five traits.

High

Low

Extraversion

Emotional stability

Agreeableness

Conscientiousness

Openness to experience

warm, gregarious, assertive,
sociable, excitement seeking,
active, spontaneous, optimistic,
talkative

calm, even-tempered, reliable,
peaceful, confident

trustworthy, friendly, considerate,
generous, helpful, altruistic

competent, disciplined, dutiful,
achievement striving,
deliberate, careful, orderly

creative, intellectual, imaginative,
curious, cultured, complex

shy, quiet, reserved, passive,
solitary, moody, joyless

neurotic, anxious, depressed,
self-conscious, oversensitive,
vulnerable

unfriendly, selfish, suspicious,
uncooperative, malicious

disorganized, impulsive,

unreliable, careless, forgetful

narrow-minded, conservative,
ignorant, simple

trait include verbosity, sentence length, and the production of positive content. We
showed experimentally that humans perceive utterances generated by PERSONAGE-RB
as conveying the extremes of all Big Five traits (e.g., neuroticism (low) vs. emotionally
stable (high), see Table 1). Our evaluation uses a validated perceptual questionnaire
from the personality psychology literature (Gosling, Rentfrow, and Swann 2003).

PERSONAGE-RB only generates 10 discrete personalities emphasizing either the
high or the low end of one trait; however, psychologists measure personality traits
on continuous scales (Norman 1963; Goldberg 1990; Marcus et al. 2006), and human
language simultaneously manifests multiple personality traits. Some computational
applications may require more than a small set of personality types, which suggests
that systems adapting their linguistic style to the user would benefit from fine-grained
personality models. We believe that the only way to robustly and efficiently learn such
fine-grained variation is to model personality as a continuous variable, rather than using
arbitrary discrete personality classes. Personality generation models should thus learn
to map continuous target personality scores to discrete utterances. In order to achieve
this, the handcrafted rule-based approach would require the manual examination of
psycholinguistic findings, followed by testing in the application domain, to determine
the appropriate range for each parameter value. Extending this approach to continuous
variation that can project multiple traits simultaneously does not appear to be tractable.

The objective of this article is to present and evaluate a language generator that
is trained with a novel method, and which learns to generate stylistic variation ex-
pressing multiple continuous stylistic dimensions (in this case multiple personality traits).
Before presenting our method, let us review existing paradigms for statistical language
generation.

1.1 Previous Statistical Language Generation Methods

Previous work on SNLG has focused on three main approaches: (a) learning statisti-
cal language models (SLMs) from corpora in order to rerank a set of pre-generated
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utterances; (b) learning utterance reranking models from user feedback rather than
corpora; and (c) learning generation parameters directly from data.

The first approach has used SLMs to rerank a large set of candidate utterances, and
focused on grammaticality and naturalness (Bangalore and Rambow 2000; Langkilde-
Geary 2002; Chambers and Allen 2004; Nakatsu and White 2006). The seminal work of
Langkilde and Knight (1998) in this area showed that high quality paraphrases can be
generated from an underspecified representation of meaning, by first applying a very
underconstrained, rule-based overgeneration phase, whose outputs are then ranked by
an SLM scoring phase. The SLM scoring gives a low score (rank) to any ungrammatical
output produced by the rule-based generator. We will refer to this as the overgenerate
and scoring (OS) approach.

In a novel twist, Isard, Brockmann, and Oberlander (2006) applied this method to
the generation of dialogues in which conversational agents with different personalities
discuss movies. The SLM ranking model blends SLMs from blogs annotated with Big
Five personality traits with SLMs from Switchboard, a much larger conversational
dialogue corpus. Their CRAG-2 generator discretizes the blog personality ratings into
three groups (low, medium, and high), and models personality with three distinct SLM
models for each trait. Each model estimates the likelihood of the utterance given the
personality type. A cache model based on recently used linguistic forms can also be
combined, in order to model recency effects and alignment (Pickering and Garrod
2004). This approach was integrated into a demonstrator, but it does not generate
continuous variation (discretization of personality ratings), and to our knowledge it
has never been evaluated to test whether the variation produced is perceivable by
users.

A second approach to SNLG is a variant of the OS technique that trains the scor-
ing phase to replicate human judgments rather than relying on the probabilities or
frequencies of a SLM. This approach typically uses higher-level syntactic, semantic,
and discourse features rather than only n-grams, with typical results demonstrating
that the performance of the scoring models approaches the gold-standard human rank-
ing with a relatively small training set (Rambow, Rogati, and Walker 2001; Stent and
Guo 2005; Nakatsu and White 2006). An advantage of this approach is that human
judgments can be based on any aspect of the output, such as stylistic differences in
politeness or personality. Walker et al. (2007) showed that this technique can be used
to model individual preferences in rhetorical structure, syntactic form, and content
ordering.

In previous work, we also applied this method to scoring randomly produced
outputs of PERSONAGE (Mairesse 2008). The resulting statistical generator is referred
to as PERSONAGE-OS. We randomly varied PERSONAGE’s non-deterministic decisions
points to generate a large number of paraphrases. We then computed post hoc fea-
tures consisting of the actual generation decisions, surface word n-grams, and content-
analysis features from the Linguistic Inquiry and Word Count (LIWC) tool (Pennebaker,
Francis, and Booth 2001) and the MRC psycholinguistic database (Coltheart 1981). Ex-
ample content-analysis features include the ratio of words related to positive emotions
(e.g., good), social interactions (e.g., pal), or the average frequency of use of each word.
Scoring models trained on personality ratings of random utterances (in-domain data)
outperformed the mean value baseline for all Big Five traits, with the best results for
agreeableness, extraversion, and emotional stability. The models for those traits predict
the ratings of unseen utterances with correlations of r = .52, 7 = .37, and r = .29, respec-
tively. We also trained models on out-of-domain data, that is, 96 personality-annotated
conversation extracts (without any generation decision features). Results show that the
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out-of-domain models perform worse for all traits, only outperforming the baseline
for agreeableness and conscientiousness. We also explored several hybrid methods for
training that mix and blend data from different sources. Inspired by recent work on
domain adaptation, we tested whether the performance of the out-of-domain models
can be improved when training includes a small amount of data from the target do-
main, by applying the method of Daumé (2007). Whereas adding out-of-domain data
improved performance for some traits, we find that adding a single domain feature per-
forms as well as Daume’s method. The results showed that mixing randomly generated
in-domain utterances with rule-based in-domain utterances improves performance; the
rule-based utterances provide a way to incorporate knowledge from the personality
psychology literature into an SNLG approach. Thus, personality scoring models can
be effective, although the computational cost of the OS approach remains a major
drawback.

The third SNLG approach estimates the generation parameters directly from data,
without any overgeneration phase. If the language generator is constrained to be a gen-
erative SLM, the parameters can then be learned through standard maximum-likelihood
estimation. Whereas n-gram SLMs can only model local linguistic phenomena, Belz
showed that a context-free grammar (PCFG) can successfully model individual differ-
ences in the production of weather reports (Belz 2005, 2008). This method provides a
principled way to produce utterances matching the linguistic style of a specific corpus
(e.g., of an individual author) without any overgeneration phase. However, standard
PCFG generation methods require a treebank-annotated corpus, and they cannot model
context-dependent generation decisions, such as the control of sentence length or the
generation of referring expressions.

Paiva and Evans (2005) adopt a more general framework by learning a regression
model mapping generation decisions to stylistic dimensions extracted from a corpus,
independently of the language generation mechanism. Factors are identified by apply-
ing factor analysis to a corpus exhibiting stylistic variation, and expressed as a linear
combination of linguistic features (Biber 1988). Textual outputs are generated with a
rule-based generator in the target domain that is allowed to randomly vary the gener-
ation parameters, while logging the parameter settings corresponding to each output.
Then the same factors found in the original corpus are measured in the random outputs,
and linear regression is applied to learn which generation parameters predict the factor
measurements. The generation parameters can then be manipulated to hit multiple
stylistic targets on a continuous scale (because factors are measured continuously) by
searching for the parameter setting yielding the target stylistic scores according to the
linear models. The generator of Paiva and Evans, trained in this way, can reproduce in-
tended factor levels across several factors, such as sentence length and type of referring
expression, thus modeling the stylistic variation as measured in the original corpus.
Again, it has not been shown that humans perceive the stylistic differences that this
approach produces.

1.2 Parameter Estimation Models

In the previous sections, we referred to two existing methods for controlling the param-
eters of PERSONAGE to produce stylistic variation: PERSONAGE-RB uses handcrafted
generation parameter values for every target style of interest, and PERSONAGE-OS
uses a statistical rescoring model to rerank a set of randomly generated utterances.
The following sections develop and evaluate PERSONAGE-PE, a trainable generator
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which uses a direct generation method inspired by Paiva and Evans” approach (2005), to
produce the stylistic variation found in personality traits, without any overgeneration
phase. Whereas Paiva and Evans learn models predicting the target stylistic scores from
the generation parameters, we train parameter estimation models (PE) to estimate the
optimal generation parameters given target personality scores, which are then used by
the base generator to produce the output utterance. As parameter estimation models
learn the reverse relationship to Paiva and Evans’ regression models, there is no need
to search for the optimal generation parameter values at generation time. We evaluate
the PE approach using the PERSONAGE base generator, whose parameters, architecture,
and capabilities are described in Section 2. Our experimental method is described in
Section 3, together with an analysis of the data required to train our models. Section 4
analyzes some of the learned models, and evaluates the quality of the generated outputs
using human judges, to compare our approach with the handcrafted PERSONAGE-RB
generator of our previous work. Finally, Section 5 discusses the implications of our
results and suggests many areas of future work.

This article makes several contributions. First, we present a novel method for train-
ing an SNLG system that can produce multiple stylistic dimensions simultaneously,
over continuous dimensions, without overgeneration or search. In order to evaluate our
approach, we present the first empirical results showing that humans correctly perceive
the stylistic variations (of any kind based on any utterance dimensions) that a statistical
language generator intended to produce. Our evaluation of PERSONAGE-RB is the only
other result that we know of for non-statistical generators (Mairesse and Walker 2007).
Our experiments show that PERSONAGE-PE produces utterances perceived by humans
as portraying different personalities, while maintaining a reasonable naturalness level
(4.0 on a scale of 1 to 7). We do not know of any other human evaluation of an
SNLG system that produces stylistic variation. Additionally, we test a wide range of
machine learning algorithms to determine the best model for each generation decision
in Section 4.1. We are not aware of any other work on SNLG to test such a wide range
of algorithms.

2. The PERSONAGE Base Generator

The architecture of the PERSONAGE base generator is shown in Figure 1; it is discussed
in detail in (Mairesse 2008) and (Mairesse and Walker 2010), and is only briefly summa-
rized here.

The PERSONAGE architecture (Figure 1) builds on a standard natural language
generation (NLG) pipeline architecture as described in Reiter and Dale (2000), Kittredge,
Korelsky, and Rambow (1991), and Walker and Rambow (2002). We assume that the
inputs to the generator are (1) a high-level communicative goal; (2) a content pool that
can be used to achieve that goal, and (3) a set of generation parameter values. In a
dialogue system, the communicative goal is provided by the dialogue manager. Two
types of communicative goals are currently supported by PERSONAGE: recommendation
and comparison of restaurants. PERSONAGE’s content pool is based on a database of
restaurants in New York City, with associated scalar values representing evaluative
ratings for six attributes: food quality, service, cuisine, location, price, and atmosphere.

The first component of the architecture shown in Figure 1 is the content planner,
which specifies the structure of the information to be conveyed. The resulting content
plan tree is then processed by the sentence planner, which selects syntactic templates
for expressing individual propositions, and aggregates them to produce the utterance’s
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INPUT
* Communicative goal, e.g., recommend (Chanpen Thai)
* Restaurant attributes, e.g. service = 0.6 OUTPUT
 Generation parameters, e.g., verbosity = 0.9 UTTERANCE
l Sentence planning
S . Pragmatic .
Content yntactic - K Lexical
planning = template Aggregation marker choice Surface
eg selection ef 2., haweve;r lllsel‘tlﬂll e.g. realization
verbosity, e.g., syntactic or contras e.g.', kind "f hedge, frequent
polarity complexity t‘“o; g;:;t;gm words
resource
A,
Generation SPARKY Pragmatic WordNet RealPro
dictionary (Stent et al. 2004) marker (Fellbaum 1998) (Lavoie and
database VERBOCEAN Rambow 1997)
(Chklovski & Pantel
2004)
Figure 1

The architecture of the PERSONAGE base generator.

full syntactic structure. The pragmatic marker insertion component then modifies the
syntactic structure locally to produce various pragmatic effects, depending on the mark-
ers’ insertion constraints. The lexical choice component selects the most appropriate
lexeme for each content word, given the lexical selection parameters. Finally, the Real-
Pro surface realizer (Lavoie and Rambow 1997) converts the final syntactic structure
into a string by applying surface grammatical rules, such as morphological inflection
and function word insertion. When integrated into a dialogue system, the output of the
realizer is annotated for prosodic information by the prosody assigner before being sent
to the text-to-speech engine to be converted into an acoustic signal. PERSONAGE does
not currently express personality through prosody, although there are studies that could
be used to develop such parameters (Scherer 1979; Furnham 1990).

Figure 1 also indicates the modules in which PERSONAGE introduces parameters to
produce and control personality-based linguistic variation. The generation parameters
are shown in Table 2 and organized into blocks that correspond to the modules of the
architecture in Figure 1; compare Figure 1 to Table 2. As mentioned previously, all
of PERSONAGE's parameters are motivated by findings in the personality psychology
literature. The mapping from a finding to parameters represents a set of hypotheses
about how the finding can be implemented, however, as discussed in more detail in
Mairesse and Walker (2007) and Mairesse (2008).

Table 2 includes a description for each parameter that explains what the parameter
does and often includes an example. For example, there are 12 content planning param-
eters shown in the first block of Table 2; these control aspects of utterances such as their
verbosity, rhetorical structure, content selection parameters such as positive content,
and the level of redundancy and restatement (Walker 1993). Table 2 also includes 13
pragmatic marker parameters, which we believe to be completely novel. These include
the introduction of HEDGES and TAG QUESTIONS. We are not aware of any other gen-
erators that produce the range of pragmatic variation illustrated here. Note also that
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Table 2

PERSONAGE’s generation parameters. The Type column indicates whether the stylistic effect is
modeled as a continuous (C) or binary (B) parameter (i.e., resulting in continuous or binary
parameter estimation models). Aggregation operation parameters are selection probabilities (C).

Parameter Type Description

Content planning:

VERBOSITY C Control the number of propositions in the utterance

RESTATEMENTS C Paraphrase an existing proposition, e.g., ‘Chanpen Thai has
great service, it has fantastic waiters’

REPETITIONS C Repeat an existing proposition

CONTENT POLARITY C Control the polarity of the propositions expressed,
i.e,, referring to negative or positive attributes

REPETITIONS POLARITY C Control the polarity of the restated propositions

CONCESSIONS Emphasize one attribute over another, e.g., ‘even if
Chanpen Thai has great food, it has bad service’

CONCESSIONS POLARITY C Determine whether positive or negative attributes are
emphasized

POLARIZATION C Control whether the expressed polarity is neutral
or extreme

POSITIVE CONTENT FIRST C Determine whether positive propositions—including
the claim—are uttered first

REQUEST CONFIRMATION B Begin the utterance with a confirmation of the restaurant’s
name, e.g., ‘did you say Chanpen Thai?’

INITIAL REJECTION B Begin the utterance with a mild rejection, e.g., ‘I'm not sure’

COMPETENCE MITIGATION B Express the speaker’s negative appraisal of the hearer’s
request, e.g., ‘everybody knows that ...’

Syntactic template selection:

SELF-REFERENCES C Control the number of first person pronouns

SYNTACTIC COMPLEXITY C Control the syntactic complexity (syntactic embedding)

TEMPLATE POLARITY C Control the connotation of the claim, i.e., whether positive
or negative affect is expressed

Aggregation operations:

PERIOD C Leave two propositions in their own sentences, e.g.,
‘Chanpen Thai has great service. It has nice decor.”

RELATIVE CLAUSE C Aggregate propositions with a relative clause, e.g.,
‘Chanpen Thai, which has great service, has nice decor’

WITH CUE WORD C Aggregate propositions using with, e.g., ‘Chanpen Thai has
great service, with nice decor’

CONJUNCTION C Join two propositions using a conjunction, or a comma
if more than two propositions

MERGE C Merge the subject and verb of two propositions, e.g.,
‘Chanpen Thai has great service and nice decor’

ALSO CUE WORD C Join two propositions using also, e.g.,"Chanpen Thai has
great service, also it has nice decor’

CONTRAST - CUE WORD C Contrast two propositions using while, but, however, on the
other hand, e.g., 'While Chanpen Thai has great service,
it has bad decor’, ‘Chanpen Thai has great service, but it
has bad decor’

JUSTIFY - CUE WORD C Justify a proposition using because, since, so, e.g.,
‘Chanpen Thai is the best, because it has great service’

CONCEDE - CUE WORD C Concede a proposition using although, even if, but/though,

462

e.g., "Although Chanpen Thai has great service, it has bad
decor’, ‘Chanpen Thai has great service, but it has bad
decor though’



Mairesse and Walker

Trainable Generation of Personality Traits

Table 2

(continued)

Parameter Type Description

MERGE WITH COMMA C Restate a proposition by repeating only the object, e.g.,
‘Chanpen Thai has great service, nice waiters’

OBJECT ELLIPSIS C Restate a proposition after replacing its object by an
ellipsis, e.g., ‘Chanpen Thai has ..., it has great service’

Pragmatic markers:

SUBJECT IMPLICITNESS C Make the restaurant implicit by moving the attribute to
the subject, e.g., “the service is great’

STUTTERING C Duplicate the first letters of a restaurant’s name, e.g.,
‘Ch-ch-anpen Thai is the best’

PRONOMINALIZATION C Replace occurrences of the restaurant’s name by pronouns

NEGATION B Negate a verb by replacing its modifier by its antonym,
e.g., ‘Chanpen Thai doesn’t have bad service’

SOFTENER HEDGES B Insert syntactic elements (sort of, kind of, somewhat, quite,
around, rather, I think that, it seems that, it seems to me that)
to mitigate the strength of a proposition, e.g., ‘Chanpen
Thai has kind of great service” or ‘It seems to me that
Chanpen Thai has rather great service’

EMPHASIZER HEDGES B Insert syntactic elements (really, basically, actually, just) to
strengthen a proposition, e.g., ‘Chanpen Thai has really great
service’ or ‘Basically, Chanpen Thai just has great service’

ACKNOWLEDGMENTS B Insert an initial back-channel (yeah, right, ok, I see, oh, well),
e.g., 'Well, Chanpen Thai has great service’

FILLED PAUSES B Insert syntactic elements expressing hesitancy (like, I mean,
err, mmhm, you know), e.g., ‘I mean, Chanpen Thai has
great service, you know’ or ‘Err... Chanpen Thai has, like,
great service’

EXCLAMATION B Insert an exclamation mark, e.g., ‘Chanpen Thai has great
service!”

EXPLETIVES B Insert a swear word, e.g., ‘the service is damn great’

NEAR EXPLETIVES B Insert a near-swear word, e.g., ‘the service is darn great’

TAG QUESTION B Insert a tag question, e.g., ‘the service is great, isn’t it?’

IN-GROUP MARKER B Refer to the hearer as a member of the same social group,
e.g., pal, mate, and buddy

Lexical choice:

LEXICON FREQUENCY C Control the average frequency of use of each content word,
according to BNC frequency counts

LEXICON WORD LENGTH C Control the average number of letters of each content word

VERB STRENGTH C Control the strength of the verbs, e.g., ‘I would suggest’

vs. ‘I would recommend’

Figure 1 indicates that the lexical choice parameters in Table 2 make use of multiple on-
line lexical resources such as WordNet and VERBOCEAN to support lexical variation.
The LEXICAL FREQUENCY parameter is calculated with respect to a corpus.
Furthermore, whereas some parameters primarily have a linear effect on an utter-
ance (e.g., verbosity), other parameters are highly non-linear (e.g., the effect of inserting
two expletives rather than one is not as strong as the effect of inserting one expletive
rather than none). Parameters are therefore modeled as having either continuous (C) or
binary (B) values, as illustrated in column Type of Table 2. The models for continuous
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and binary parameters are trained using different algorithms. Section 3 will provide
examples of learned models of both types.

In addition, because generation decisions can be non-deterministic, some contin-
uous parameter values are generation decision probabilities; for example, the input
to aggregation parameters such as CONJUNCTION is the probability that the aggrega-
tion operation is selected to combine any pair of propositions in the utterance (e.g.,
CONJUNCTION aggregates two propositions with the conjunction and). If the propo-
sitions cannot be aggregated because of syntactic constraints, another aggregation
operation is sampled until the aggregation is successful. Complete details on the im-
plementation of individual parameters can be found in Mairesse (2008) and Mairesse
and Walker (2010).

To make PERSONAGE as domain-independent as possible, the input parameter
values are normalized between 0 and 1 for continuous parameters, and to 0 or 1 for
binary parameters. For example, a VERBOSITY parameter of 1 maximizes the utterance’s
verbosity given the input, regardless of the actual number of propositions expressed.
In order to ensure naturalness over the full parameter range, the maximum value of
some continuous parameters is associated with an input-independent threshold (e.g.,
there cannot be more than two repeated propositions per utterance). Although the
goal of the base generator is to satisfy its input parameters, it cannot guarantee that
all input parameter values will be reflected in the utterance due to constraints on
the input content plan and other parameters. A consequence is that non-deterministic
decision points are introduced to satisfy these naturalness constraints (e.g., if too many
pragmatic marker parameters are enabled, only a random subset will appear in the
utterance). Therefore, the only assumption we make regarding the impact of parameter
values on the generation process is that they affect the likelihood of observing their
intended effect over a large set of utterances.

3. Generation of Personality through Data-Driven Parameter Estimation

Whereas PERSONAGE-RB uses handcrafted parameter settings to convey different per-
sonality traits, PERSONAGE-PE relies on parameter estimation models to estimate the
parameter values in Table 2 from target personality scores. At training time, our method
requires the following steps:

1. Use a base generator to produce multiple utterances by randomly varying
its parameters (see Section 3.1).

2. Ask human subjects to evaluate (rate) the personality/style of each
utterance.

3. Train statistical models predicting the parameter values from the
personality ratings (see Section 4.1).

4. Select the best model for each parameter via cross-validation (see
Section 4.2).

At generation time, the models are used to predict the optimal set of generation param-
eters given a set of target personality scores, and the base generator is called once
with the predicted parameter values. The architecture for the PE method is shown in
Figure 2.
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INPUT 2
INPUT 1 ..
. Communicative goal

Target personahty e.g., recommend (Chanpen Thai)
scores Selection attributes
e.g., agreeableness = 6.3 e.g., service = 0.6

Parameter Generation q PERSONAGE # OUTPUT

estimation parameter values base

models e.g., verbosity = 0.9 generator UTTERANCE

Figure 2
PERSONAGE-PE’s parameter estimation framework.

In contrast with the overgenerate—score (OS) method discussed in Section 1.1,
parameter estimation models predict generation decisions directly from input person-
ality scores, in the spirit of the approach of Paiva and Evans (2005). However, whereas
Paiva and Evans’ approach searches for the generation decisions that will yield the
optimal target scores according to their model, our PE method does not involve any
search, as generation decisions are assumed to be conditionally independent given the
target personality, and treated as dependent variables in individual models.

This section further details the steps required for training parameter estimation
models. We first explain in Section 3.1 how we collect the judge’s ratings for our training
set. Then Section 3.2 analyzes the coverage and naturalness of the collected data. Finally,
Section 3.3 describes how the models are trained.

3.1 Collecting Judgments of Random Sample

In order to train the parameter estimation models, the first step is to collect a data
set mapping generation decisions to personality ratings. This involves the following
substeps:

1.  Generate a sample of random utterances that produces examples covering
the full range of all of the 67 PERSONAGE parameters as shown in Table 2.

2. Log the generation decisions that were made to produce each utterance.

3. Judges rate the random sample with a standard personality test shown in
Figure 3, based on Gosling, Rentfrow, and Swann (2003). This results in
each utterance in the sample being labelled with five scalar values, one for
each of the Big Five traits.

To be the basis for training a high performing statistical generator, the random sample
must satisfy two properties. First, it must cover the full range of scalar values for
each Big Five trait or there will not be enough training data to learn how to produce
utterances manifesting those values. Second, the randomly produced utterances must
be natural enough to produce stable personality judgments. The only way to verify
that the random sample satisfies these properties is by first generating the random
sample and then analyzing the judge’s ratings. We generated 160 random utterances
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Section 12 - you ask your friend to recommend Flor De Mayo and this is what your friend says:

Utterance 1:

"Basically, Flor De Mayo isn’t as bad as the others. Obviously, it isn’t expensive. I mean, actually, its price is 18 dollars."

I see the speaker as...
1. Extraverted, enthusiastic Disagreestrongly 1 © 2 C 3 C 4 C 5C 6 C 7 C Agreestrongly
2. Reserved, quiet Disagreestrongly 1 © 2 C 3 C 4C 5C 6 C 7 C Agreestrongly
3. Critical, quarrelsome Disagreestrongly 1 © 2 C 3 C 4C 5C 6 C 7 C Agreestrongly
4. Dependable, self-disciplined Disagreestrongly 1 © 2 C 3 C 4C 5C 6 C 7 C Agreestrongly
5. Anxious, easily upset Disagree strongly 1 © 2 C 3 C 4 C 5C 6 C 7 C Agreestrongly
6. Open to new experiences, complex Disagreestrongly 1 © 2 C 3 C 4 C 5C 6 C 7 C Agree strongly
7. Sympathetic, warm Disagree strongly 1 © 2 C 3 C 4 C 5C 6C 7 C Agreestrongly
8. Disorganized, careless Disagree strongly 1 © 2 C 3 C 4C 5C 6 C 7 C Agreestrongly
9. Calm, emotionally stable Disagree strongly 1 © 2 C 3 C 4 C 5C 6 C 7 C Agree strongly
10. Conventional, uncreative Disagree strongly 1 © 2 C 3 C 4C 5C 6 C 7 C Agreestrongly

The utterance sounds natural Disagreestrongly 1 © 2 C 3 C 4C 5C 6 C 7 C Agreestrongly

Figure 3

The Ten Item Personality Inventory used in our experiments to calculate values for the Big Five
traits, as modified for our experimental setting.

to constitute our random sample. Table 3 shows examples of random utterances and
the scalar ratings for each trait that result from the judgment collection process.

A major advantage of the Big Five framework is that it offers standard validated
questionnaires (John, Donahue, and Kentle 1991; Costa and McCrae 1992; Gosling,
Rentfrow, and Swann 2003). Figure 3 shows the Ten Item Personality Inventory (TIPI)
that we used to collect the personality judgments (Gosling, Rentfrow, and Swann 2003),
adapted to our domain and task. The TIPI produces a scalar rating for each of the
Big Five traits ranging from 1 (e.g., highly neurotic) to 7 (e.g., very stable), and it was
shown to correlate well with longer questionnaires such as the Big Five Inventory, with
convergent correlations of .87, .70, .75, .81, and .65 for extraversion, emotional stability,
agreeableness, conscientiousness, and openness to experience, respectively (Gosling,
Rentfrow, and Swann 2003). Although the TIPI has mostly been used as a self-report
measure of personality, it has also been used to assess personality perceptions of
observers, for example, based on short social interactions (Srivastava, Guglielmo, and
Beer 2010) or social networking Web sites (Gosling, Gaddis, and Vazire 2007). The
judges in our experiment were researchers and postgraduate students in psychology,
history, and anthropology who were familiar with the Big Five trait theory, but not with
natural language generation. They were all native speakers of English. As illustrated in
Figure 3, the judges were asked to rate each utterance in the random sample using the
TIPI scale. They were instructed to rate the utterance as if it had been uttered by a friend
responding in a dialogue to a request to recommend restaurants. Each judge rated the
same sets of utterances corresponding to 20 communicative goals, 16 utterances per
goal, one set at a time. The order of the sets and the order of the utterances within each
set were both randomized. The judges were asked to read all the utterances in a set
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Table 3
Example outputs of PERSONAGE with random parameter settings (random utterances), and
scalar personality trait values after collection of TIPI judgments. Extra = extraversion, ems =
emotional stability, agree = agreeableness, consc = conscientiousness, and open = openness

to experience.

# Communicative goal PERSONAGE's output Ratings
la compare (Kin Khao, Kin Khao and Tossed are bloody outstanding. extra=4.75
Tossed) Kin Khao just has rude staff. Tossed ems=6.00
features sort of unmannered waiters, agree=3.75
even if the food is somewhat quite consc=4.00
adequate. open=3.25
1b  compare (Kin Khao, Err... I am not really sure. Tossed offers extra=4.00
Tossed) kind of decent food. Mmhm... however, ems=4.00
Kin Khao, which has quite ad-ad-adequate agree=5.50
food, is a thai place. You would probably consc=4.75
enjoy these restaurants. open=5.00
2.a compare (Le Rivage, Ok, right, Pintaile’s Pizza is rather cheap. extra=1.75
Pintaile’s Pizza) The atmosphere is bad, isn’t it? I guess ems=3.50
Le Rivage is in Manhattan, also its price agree=5.25
is... it’s expensive, you know. consc=4.00
open=2.75
2b compare (Le Rivage, Yeah, I thought everybody knew that extra=5.00
Pintaile’s Pizza) Le Rivage’s price is around 40 dollars, ems=4.25
it’s located in Manhattan with kind of agree=4.25
poor atmosphere, Pintaile’s Pizza is consc=5.75
located in the Upper East Side and its open=3.00
price is 14 dollars. They're... I would
advise these restaurants, alright?
3.a recommend Obviously, oh God Chimichurri Grill has extra=4.50
(Chimi-churri Grill) like, quite adequate food, so it’s the only ems=3.75
re-restaurant I would consider, and it’s a agree=5.25
latin american place and located in Midtown  consc=4.00
West with ra-ra-rather friendly staff. open=4.50
3b recommend I see, oh Chimichurri Grill is a latin american extra=2.50
(Chimi-churri Grill) place with sort of poor atmosphere. Although  ems=4.50
it doesn’t have rather nasty food, its priceis ~ agree=3.50
41 dollars. I suspect it’s kind of alright. consc=4.75
open=4.25
4.a recommend Did you say Ce-Cent’anni? I see, I mean, extra=4.75
(Cent anni) I'would consider it because it has friendly ems=5.00
staff and tasty food, you know buddy. agree=6.25
consc=6.25
open=>5.25
4b recommend I am not sure. Cent’anni is... it’s located in extra=4.25
(Cent anni) Manhattan, also the atmosphere is somewhat  ems=4.50
bloody poor, but it features tasty food agree=4.25
though. Actually, this eating house, which consc=4.25
provides quite acceptable service, is anitalian ~ open=5.75

restaurant. It’s sort of the best eating place
of its kind.
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before rating them. Eight utterances out of sixteen were randomly generated for
each communicative goal. The remaining utterances were generated using the
handcrafted parameter settings of PERSONAGE-RB for each end of each Big Five trait
(Mairesse and Walker 2007). The rule-based utterances are used as a comparison point,
not for training the models. The same methodology was used to collect additional
extraversion ratings for another set of 160 random and 80 rule-based utterances in a
separate experiment, resulting in 320 random and 240 rule-based utterances for that
trait, and 160 random utterances and 40 rule-based utterances for each of the other four
traits. Examples of the resulting scalar ratings are shown in Table 3. The judges also
evaluated the naturalness of each utterance on the same scale.

3.2 Generation Range and Naturalness

Analysis of the collected ratings of the random utterances shows that 67.8% of the
utterances were rated as natural (rating above or equal to 4), with an average nat-
uralness rating of 4.38 out of 7. Figure 4 shows the distributions of openness to ex-
perience and naturalness ratings. Figure 4a illustrates that most randomly generated
utterances are not perceived as projecting an extreme personality. Table 4 examines
whether randomly generated utterances can hit the extreme ends of each trait scale by
tabulating the most extreme ratings obtained from the 8 random utterances generated
for each communicative goal with the ratings of the rule-based utterance generated
from the same goal. This comparison provides useful information regarding (a) the
potential of data-driven models to outperform handcrafted methods, and (b) whether
our training corpus is large enough to capture the range of behavior we intend to
convey. Paired t-tests over 20 communicative goals show that on average the most
extreme random utterance is significantly more extreme for the positive end of the ex-
traversion, emotional stability, and agreeableness scales, and significantly more extreme
for both ends of the conscientiousness and openness to experience scales (p < .05, two-
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(a) Distribution of openness scores on the ran- (b) Distribution of naturalness scores on the
dom sample. random sample.
Figure 4

The distribution of training data samples for openness personality judgments and naturalness.
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Table 4

For each communicative goal, the most extreme rating of the random utterances (Random)

is compared with the ratings obtained for rule-based utterances (Rule-based). Ratings are
averaged over 20 content plans and over all judges. e = the ratings of the random utterances
are significantly more extreme (o = more moderate) than the ratings of rule-based utterances

(p < .05, two-tailed).

Method Rule-based Random
Trait Low High Lowest Highest
Extraversion 2.96 5.98 3.60 o 623 e
Emotional stability 3.29 5.96 3.05 6.25 e
Agreeableness 341  5.66 3.26 6.01 e
Conscientiousness 3.71 5.53 311 e 593 e
Openness to experience  2.89  4.21 228 e 548 o
Naturalness 4.59 4.38

tailed). However, random utterances are not perceived as introverted as those generated
using the introvert parameter settings (see Rule-based/Low column for extraversion).
Compare the distributions of judgments for the rule-based extraversion utterances with
the judgments on the random sample shown in Figure 5. Nevertheless, these results
suggest that randomizing PERSONAGE’s parameters produces a wide range of variation
with an utterance sample of less than 10 utterances, for any communicative goal.

The bottom row of Table 4 also compares the naturalness of the random utter-
ances with the naturalness of the rule-based utterances produced by PERSONAGE-RB
(Mairesse and Walker 2007; Mairesse 2008). Results suggest that the random utterances
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(a) Distribution of extraversion scores on the (b) Distribution of extraversion scores on the

random sample.

Figure 5

rule-based sample.

The distribution of extraversion judgments for utterances generated using random parameters
(Random) and handcrafted parameters derived from psychology studies (Rule-based).
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Table 5
Average inter-rater correlation for the rule-based and random utterances. All correlations are
significant at the p < .05 level (two-tailed).

Parameter set Rule-based Random
Extraversion .73 .30
Emotional stability .67 .33
Agreeableness 54 40
Conscientiousness 42 .26
Openness to experience 44 .28

are less natural than the rule-based utterances, and this difference is close to significance
(p = .075, two-tailed t-test).

It is also important to quantify the quality of the annotations by evaluating the inter-
rater agreement between the judges. Table 5 shows that the judges agree significantly
on the ratings of random utterances for all Big Five traits (p < .05, two-tailed), with
correlations ranging from .26 (conscientiousness) to .40 (agreeableness), which are high
correlations for human perceptual judgments. However the agreement is lower than
on the rule-based utterances. A possible explanation of both the naturalness differences
and rater agreement is that the random generation decisions sometimes produce ut-
terances with inconsistent personality cues, which can be interpreted in different ways
by the judges. For example, the utterance ‘Err... I am sure you would like Chanpen Thai!”
expresses markers of both introversion (filled pause) and extraversion (exclamation
mark).

3.3 Training Parameter Estimation Models

Parameter estimation requires a series of pre-processing steps, in order to ensure that
the models” output is re-usable by the PERSONAGE base generator. The initial data set
includes the random sample annotated with the generation decision features shown
in Table 2, together with the average judges’ ratings along each Big Five dimension,
as described in Section 3.1. The following transformations are performed before the
learning phase:

®  Reverse input and output: As parameter estimation models map from
personality scores to generation parameters, the generation decisions are
set as the data set’s output variables and the averaged personality ratings
as the input features.

®  Predict parameters individually: A new data set is created for each output
variable (i.e., generation parameter) as the statistical models we use only
predict one output. We thus make the simplifying assumption that
PERSONAGE’s generation parameters are independent.!

*  Map output variables into PERSONAGE’s input space: The generation
decisions made when generating each utterance in the random sample
were recorded. In order to ensure that the parameter estimation models’

1 Although this assumption is violated by the internal constraints of PERSONAGE’s generation process,
Section 4.3 investigates the extent to which this violation affects the models” accuracy.
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output is re-usable by the base generator, the generation decision space
is mapped to PERSONAGE’s input parameter space. The conversion is
dependent on the type of generation parameter:

- Continuous parameters: Generation decision values are normalized over
all random utterances, resulting in values between 0 and 1. For example,
a VERBOSITY parameter value of 1 indicates the utterance with the largest
number of propositions in the utterance set.

- Aggregation operation probabilities: Frequency counts of aggregation
operations realizing a specific rhetorical relation are divided by the
number of occurrences of the rhetorical relation in the utterance. This
ratio is the maximum likelihood estimate of the conditional probability
of the aggregation operation given the rhetorical relation. For example,
if out of four INFER relations in the utterance, only one is realized using
the MERGE operation, the value for the INFER - MERGE parameter is
.25 for that utterance.

- Binary parameters: No processing is required as generation decisions are
already boolean. For example, if an exclamation mark was inserted in the
utterance, the EXCLAMATION parameter value is set to 1 rather than 0.

e  Feature selection: Personality traits that do not correlate with a generation
parameter with a Pearson’s correlation coefficient above .1 are removed
from that parameter’s data set. This has the effect of removing parameters
that do not correlate strongly with any trait, which are set to a constant
default value at generation time.

Once the data is partitioned into data sets mapping the relevant personality dimensions
(the features) to each generation parameter (the dependent variable), it can be used to
train parameter estimation models predicting the most appropriate parameter value
given target personality scores. Parameters are estimated using either regression or
classification models, depending on whether they are continuous (e.g., VERBOSITY) or
binary (e.g., EXCLAMATION). Recall that Table 2 indicated for each parameter whether it
is continous (C) or binary (B). In order to identify what model should be used for each
parameter, we compare various learning algorithms using the Weka toolbox (Witten
and Frank 2005).

Continuous parameters in Table 2 are modeled with a linear regression model
(LR), an M5 model tree (M5), and a model based on support vector machines with a
linear kernel (SVM). As regression models can extrapolate beyond the [0, 1] interval, the
output parameter values are truncated if needed—at generation time—before being sent
to the base generator. Regression models are evaluated using the correlation between
the model’s predictions and the actual parameter values in the test data.

Binary parameters in Table 2 are modeled using classifiers that predict whether the
parameter should be enabled or disabled. We test a Naive Bayes classifier (NB), a C4.5
decision tree (J48), a nearest-neighbor classifier using one neighbor (NN), the Ripper
rule-based learner (JRIP), the AdaBoost boosting algorithm (ADA), and a support vector
machines classifier with a linear kernel (SVM). Unless specified, the learning algorithms
use Weka's default parameter values.

4. Evaluation

This section first details some of the parameter estimation models trained on the data
collected in Section 3. The models’ predictive power is then evaluated by doing a
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10-fold cross-validation in Section 4.2. Finally, Section 4.3 evaluates human perceptions
of utterances generated using the models.

4.1 Qualitative Model Evaluation

Before discussing our quantitative results, we use Figures 6, 7, and 8 to illustrate how
the learned models predict generation parameters from input personality scores. Note
that sometimes the best performing model is non-linear. For example, given input trait
values, the AdaBoost model in Figure 6 outputs the class yielding the largest sum of
weights for the rules returning that class. The first rule of the EXCLAMATION model in
Figure 6 shows that an extraversion score above 6.42 out of 7 would increase the weight
of the enabled class by 1.81. The fifth rule indicates that a target agreeableness above
5.13 would further increase the weight by .42. Figure 6 also illustrates how personality
traits that do not have an effect on the parameter are removed, i.e., extraversion and
agreeableness are the traits that affect the use of exclamation marks. The STUTTERING
model tree in Figure 7 lets us calculate that a low emotional stability (1.0) together with a
neutral conscientiousness (4.0) and openness to experience (4.0) yield a parameter value
of .62 (see bottom-left linear model), whereas a neutral emotional stability decreases the
value down to .17. The full parameter range obtained when varying both emotional
stability and conscientiousness is illustrated in Figure 9, which shows that the .5 cut-off

Rules Weight
if extraversion > 6.42 then enabled else disabled 1.81
if extraversion > 442 then enabled else disabled 0.38
if extraversion < 6.58 then enabled else disabled 0.22
if extraversion > 4.71 then enabled else disabled 0.28
if agreeableness > 5.13  then enabled else disabled 0.42
if extraversion < 6.58 then enabled else disabled 0.14
if extraversion > 4.79 then enabled else disabled 0.19
if extraversion < 6.58 then enabled else disabled 0.17

Figure 6
AdaBoost model predicting the EXCLAMATION parameter. Given input trait values, the model
outputs the class yielding the largest sum of weights for the rules returning that class.

Conscientiousness
< 3.875 > 3.875
Stuttering = Emotional stability
-0.0136 * emotional stability
+ 0.0098 * conscientiousness < 4.375 > 4.375
+ 0.0063 * openness to experience
+ 0.0126
Stuttering = Stuttering =
-0.1531 * emotional stability -0.0142 * emotional stability
+ 0.004 * conscientiousness + 0.004 * conscientiousness
+ 0.1122 * openness to experience + 0.0076 * openness to experience
+ 0.3129 + 0.0576
Figure 7

M5’ model tree predicting the STUTTERING parameter.
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Content polarity =

-0.102 - emotional stability +
0.970 - agreeableness +

—0.110 - conscientiousness +
0.013 - openness to experience +
0.054

Figure 8
SVM model with a linear kernel predicting the CONTENT POLARITY parameter.

0.7 Emotional
stability

g 0.69 target score:
T;‘ — 1.0
sos4 2.0
% ---3.0
g 0.4 ---40
g _______ 5.0
g&o34 T 60
) 7.0
£
5 0.2+
=
2
@ 0.1

0.0

T T T T T T T
1.0 2.0 3.0 4.0 5.0 6.0 7.0
Conscientiousness target score

Figure 9

Variation of the predicted STUTTERING parameter value based on the model in Figure 7 for
different emotional stability and conscientiousness target scores. All other trait scores are set
to 4.0 out of 7.

point can be reached for low emotional stability scores and mid-range conscientiousness
scores. The linear model in Figure 8 shows that agreeableness has a strong effect on the
CONTENT POLARITY parameter (.97 weight), but emotional stability, conscientiousness,
and openness to experience also influence the parameter value.

Inspection of the learned models provides interesting information about whether
findings in the psychology literature carry over to our domain. However, in order to
optimize the overall generation performance, we rely on a quantitative analysis for
selecting individual models.

4.2 Cross-Validation on Corpus of Expert Judgments

We identify the best performing model(s) for each generation parameter via a 10-fold
cross-validation. For continuous parameters, Table 6 evaluates modeling accuracy by
comparing the correlations between the model’s predictions and the actual parameter
values in the test folds. Table 7 reports results for binary parameter classifiers, by
comparing the F-measures of the enabled class. The F-measure measures how well the
models predict the enabled class given the small proportion of instances labelled as
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Table 6

Pearson’s correlation coefficient between parameter model predictions and continuous
parameter values, for different regression models. Parameters that do not correlate with any
trait are omitted. Results are averaged over a 10-fold cross-validation, and the best result for
each parameter is in bold.

Continuous parameters LR M5 SVM
Content planning:

VERBOSITY 024 026 0.21
RESTATEMENTS 0.14 0.14 0.04
REPETITIONS 0.13 0.13 0.08
CONTENT POLARITY 0.46 046 0.47
REPETITION POLARITY 0.02 015 0.06
CONCESSIONS 0.23 023 0.12
CONCESSION POLARITY —-0.01 0.6 0.07
POLARIZATION 0.20 0.21 0.20
Syntactic template selection:

SYNTACTIC COMPLEXITY 0.10 033 0.26
TEMPLATE POLARITY 0.04 0.04 0.05

Aggregation operations:

INFER - ALSO CUE WORD 0.10 0.10 0.06
JUSTIFY - SINCE CUE WORD 0.03 0.07 0.05
JUSTIFY - SO CUE WORD 0.07 0.07 0.04
JUSTIFY - PERIOD 036 035 0.21
CONTRAST - PERIOD 0.27 026 0.26
RESTATE - MERGE WITH COMMA 0.18 0.18 0.09
CONCEDE - ALTHOUGH CUE WORD 0.08 0.08 0.05
CONCEDE - EVEN IF CUE WORD 0.05 0.05 0.03

Pragmatic markers:

SUBJECT IMPLICITNESS 0.13 0.13 0.04
STUTTERING 0.16 023 0.17
PRONOMINALIZATION 022 020 0.17
Lexical choice:

LEXICON FREQUENCY 021 021 0.19
LEXICON WORD LENGTH 0.18 0.18 0.15

enabled in the training utterances, namely, it is less sensitive to class-imbalance than
classification accuracy. Models producing the best cross-validation results are identified
in bold for each parameter; parameters that produce a poor modeling accuracy are omit-
ted. Because of the large number of parameters tested simultaneously in each training
utterance, many reported accuracies are relatively low. As our training approach aims
at including all parameters that can potentially convey personality, we include models
with correlations or F-measures above .05 in our system, and let individual models learn
the extent to which their parameter will affect the trained system.

Table 6 shows that the CONTENT POLARITY parameter is modeled the most accu-
rately, with the SVM model in Figure 8 producing a correlation of .47 with the true
parameter values in Table 6. Models of the PERIOD aggregation operation also perform
well, with a linear regression model yielding a correlation of .36 when realizing a
justification, and .27 when contrasting two propositions. The SYNTACTIC COMPLEXITY
and VERBOSITY parameters are also modeled successfully, with correlations of .33 and
.26 using a model tree. The model tree controlling the STUTTERING parameter illustrated

474



Mairesse and Walker Trainable Generation of Personality Traits

Table 7

F-measure of the enabled class for classification models of binary parameters. Parameters that do
not correlate with any trait are omitted. Results are averaged over a 10-fold cross-validation, and
the best result for each parameter is in bold.

Binary parameters NB J48 NN JRIP ADA SVM

Content planning:
REQUEST CONFIRMATION  0.00 0.00 0.07 0.05 0.04 0.04

Pragmatic markers:
SOFTENER HEDGES

kind of 0.00 0.00 016 013 0.11 0.10

quite 014 0.08 0.09 0.09 0.07 0.06

ok 013 0.07 0.06 0.05 0.05 0.05
FILLED PAUSES

err 032 020 024 024 022 0.19
EXCLAMATION 023 034 036 037 0.38 0.34
EXPLETIVES 027 018 024 020 017 015
IN-GROUP MARKER 040 031 031 026 024 0.21
TAG QUESTION 032 021 021 017 015 0.13

in Figure 7 produces a correlation of .23. Concerning binary parameters, although
differences between the best performing models are not significant, Table 7 suggests
that the Naive Bayes classifier is generally the most accurate, with F-measures of .40 for
the IN-GROUP MARKER parameter, and .32 for both the insertion of filled pauses (err)
and tag questions. The results suggest that the AdaBoost learning algorithm performs
best for predicting the EXCLAMATION parameter, with an F-measure of .38 for the model
in Figure 6.

These results show that there are large variations between model performance for a
given parameter (e.g., CONCESSION POLARITY). This suggests that exploring different
learning algorithms for individual parameters is beneficial. While the overall modeling
accuracy can seem relatively low—for example, there are only four parameters with
correlations above = .25 in Table 6—it is important to keep in mind that the utterances
were randomly generated, hence the effect of a specific parameter is likely to be affected
by other random parameter values. The next section therefore evaluates whether the
models are good enough to produce reliable effects on user perceptions.

4.3 Evaluation with Naive Subjects

The evaluation presented in Section 4.2 measures how well the PE models predict the
parameters, using parameter settings in the random sample and expert judge ratings
as the predictors. We relied on a small number of expert judges to minimize rating
inconsistencies and facilitate the learning process. In order to test whether the PE
method produces high quality outputs manifesting personality, we ran an experiment
with 24 native English speakers (12 male and 12 female graduate students from a range
of disciplines from both the U.K. and the U.S.). We produced a set of 50 utterances
for this experiment using the best performing models for each generation parameter
shown in Tables 6 and 7. Given this model, we generate 5 utterances for each of 10 input
communicative goals. Each utterance targets an extreme value for two traits (either 1
or 7 out of 7) and neutral values for the remaining three traits (4 out of 7). The goal is
for each utterance to project multiple traits on a continuous scale. Here, we test whether
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Figure 10
Distribution of the 20 emotional stability target scores, normally distributed over both extremes
with a standard deviation of 10% of the full scale.

PE models can convey personality in extreme regions of the Big Five space. In order to
generate a range of alternatives for each input communicative goal, all target scores are
randomized around their initial value according to a normal probability distribution
with a standard deviation of 10% of the full scale (see Figure 10).

All 50 utterances were evaluated by the 24 naive subjects using the TIPI in Figure 3
(Gosling, Rentfrow, and Swann 2003). As in the training data collection (Section 3.1),
the subjects rated one set of five utterances at a time, one for each communicative
goal. The communicative goals and the utterances were presented in random order.
To limit the experiment’s duration, only the two traits with extreme target values are
evaluated for each utterance. As a result, 20 utterances are evaluated for each trait, 10
of which were generated to convey the low end of that trait, and 10 of which target the
high end of that trait. Each utterance was also evaluated for its naturalness as before.
Subjects thus answered 5 questions for 50 utterances, two from the TIPI for each extreme
trait and one about naturalness (250 judgments in total per subject). Subjects were not
told that the utterances were intended to manifest extreme trait values.

Table 8 shows several sample outputs and the mean personality ratings from the
naive subjects for two communicative goals. For example, utterance l.a projects a
high extraversion through the insertion of an exclamation mark based on the model
in Figure 6, whereas utterance 2.a conveys introversion by beginning with the filled
pause err. The same utterance also projects a low agreeableness by focusing on negative
propositions, through a low CONTENT POLARITY parameter value produced by the
model in Figure 8.

4.3.1 Naturalness and Inter-Rater Agreement. Figure 11 shows the distribution of the nat-
uralness ratings. A Shapiro-Wilk test confirms that the ratings are normally distributed
(W = .97, p = .31), with only one utterance out of 50 rated below 2.5 out of 7 on average.
The average naturalness is 3.98 out of 7, with a rating of 4 indicating neither agreement
nor disagreement. This is lower than the naturalness scores obtained in Section 3.2
for the random training utterances collected using a small number of expert judges.
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Table 8

Example outputs from PERSONAGE-PE for a comparison (#1) and a recommendation (#2), with
the average judges’ personality (Rating) and naturalness (Nat) scores. Ratings are on a scale from
1 to 7, with 1 = very low (e.g., introvert) and 7 = very high (e.g., extravert).

# Trait and target Rating Nat Output utterance
l.a  Extraversion high 442 4.79  Radio Perfecto’s price is 25 dollars
6.90 but Les Routiers provides adequate
food. I imagine they're alright!
Agreeableness high  4.94
7.00
1b Emotional stability —high  5.35 5.04 Let’s see, Les Routiers and Radio
7.00 Perfecto... You would probably
appreciate them. Radio Perfecto
Conscientiousness  high  5.21 is in the East Village with kind of
6.21 acceptable food. Les Routiers is

located in Manhattan. Its price
is 41 dollars.

l.c  Agreeableness low 4.04 458 Les Routiers and Radio Perfecto are
1.28 outstanding. Radio Perfecto’s price
is 25 dollars, isn’t it? The food is
Openness to high  4.52 acceptable, also it’s located in
experience 7.00 the East Village. Err... although

Les Routiers offers adequate food,
it’'s damn costly.

2.a  Extraversion low 3.65 3.21  Err... you would probably appreciate
1.92 Trattoria Rustica, wouldn’t you? It’s
in Manhattan, also it’s an italian
Agreeableness low 4.02 restaurant. It offers poor ambience,
1.73 also it’s quite costly.
2b  Emotional stability = low 413 450 Trattoria Rustica isn’t as bad as the
1.97 others. Err... even if it’s costly, it
offers kind of adequate food,
Openness to low 3.85 alright? It’s an italian place.
experience 1.00
2.c  Agreeableness low 3.27 3.58 Trattoria Rustica is the only eating
1.00 place that is any good. Err... it’s
located in Manhattan. This restaurant
Openness to low 3.94 is an italian place with poor ambience.
experience 1.33 It’s bloody costly, even if this eating

house has friendly waiters you see?

The differences in naturalness judgments could possibly be due to (a) the different set
of judges; (b) the fact that utterances conveying extreme personality are likely to be
perceived as less natural; or (c) the fact that the expert judges made a very large number
of judgments, and thus became accustomed to judging the outputs.

Table 9 reports the inter-rater correlation over all personality ratings, averaged over
the 276 pairs of judges. The level of agreement between the naive subjects reflects
the difficulty of the personality recognition task for humans, thus providing an upper
bound on the performance to be expected from a model trained on human data. The
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Figure 11
Distribution of naturalness ratings over the 50 utterances, averaged over all 24 judges. The mean
naturalness rating is 3.98, with a standard deviation of 1.07.

Table 9

Average and standard deviation of the inter-rater correlations over the 276 pairs of judges.
Trait Pinter Olinter

Extraversion .33 22

Emotional stability 41 17

Agreeableness 28 23

Conscientiousness 34 18

Openness to experience .17 25

All 34 .10

judges agree modestly, with correlations ranging from .17 (openness to experience) to
41 (emotional stability). This agreement is lower than that for rule-based utterances,
which could be due to the nature of the personality cues conveyed by PERSONAGE-
RB’s handcrafted parameters. However, this difference could also result from the use of
naive judges, which we believe are less consistent in their personality judgments.

4.3.2 Modeling Accuracy. Modeling accuracy is measured using both the correlation and
mean absolute error (on a scale from 1 to 7) between the target personality scores and the
judges’ ratings. Given the relatively small number of distinct utterances being evaluated
(20 per trait), it is important to take the non-determinism of PERSONAGE into account
when evaluating the correlation between the target scores and the judges’ ratings. Eval-
uating correlations over the 480 ratings of each judge and utterance pair is likely to result
in an inflated significance level, as it does not account for the possibility that a specific
outcome of PERSONAGE’s random generation decisions could produce the intended
personality, rather than accurate personality modeling. In order to address this issue,
we report correlations 7., between the target personality scores and the 20 personality
ratings averaged over all 24 judges (i.e., the reported significance levels do take the
number of distinct test utterances into account). Table 10 shows that extraversion is the
dimension modeled the most accurately by the parameter estimation models, produc-
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Table 10
Pearson’s correlation coefficient 7,,,, correlation significance level p, and absolute error e
between the target personality scores and the mean utterance ratings averaged over 24 judges.

Trait Tavg P e

Extraversion 80e p<.001 1.89
Emotional stability 640 p=.002 214
Agreeableness 68e p<.001 238
Conscientiousness —.02 2.79

Openness to experience 4le p=.07 2.51

o Statistically significant correlation, p < .05; « p = .07 (two-tailed).

ing a .80 correlation between the target extraversion and the average subjects’ ratings
(p < .001). Emotional stability and agreeableness ratings also correlate strongly with
the target scores, with correlations of .64 and .68, respectively (p < .005 and p < .001).
The correlation for openness to experience is also relatively strong (.41), although it is
not significant at the p < .05 level (p = .07). These correlations are unexpectedly high;
in corpus analyses, significant correlations as low as .05 to .15 are typically observed
between averaged personality ratings and linguistic markers (Pennebaker and King
1999; Mehl, Gosling, and Pennebaker 2006). Although each utterance is used to test
two hypotheses (i.e., rated for two traits), results for extraversion, emotional stability,
and agreeableness remain largely significant even after applying Bonferroni correction
(p < .001, p < .005, and p < .005 respectively).

Conscientiousness is the only dimension whose ratings do not correlate with the
target scores. The comparison with rule-based results in Table 11 suggests that this is
not because conscientiousness cannot be exhibited in our domain or manifested in a
single utterance, so perhaps this arises from differing perceptions of conscientiousness
between the expert and naive judges. It is also possible that inconsistencies in the
training data prevented the models from learning accurate cues for conscientiousness,
as Table 5 shows that the judges disagreed the most over that trait when rating the
training utterances.

Table 10 shows that the mean absolute error varies between 1.89 and 2.79 on a scale
from 1 to 7. Such large errors result from the decision to ask judges to answer just the
TIPI questions for the two traits that were the extreme targets, because the judges tend

Table 11

Comparison between the ratings of PERSONAGE-PE’s utterances with extreme target values
(Param models) and the expert judges’ ratings for utterances generated using the Rule-based
method of our previous work.

Method Rule-based  Param models
Trait Low High Low  High
Extraversion 2.96 5.98 3.690 5.06 0
Emotional stability 3.29 596 3.75 4.75 o
Agreeableness 341 566 3.42 433 0
Conscientiousness 3.71 553 4.16 4150

Openness to experience  2.89 421 3710 4.06

o Significant decrease of the variation range over the average rule-based ratings (p < .05, two-tailed).
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Table 12
Pearson’s correlation coefficient between the target personality scores and averaged ratings (7,)
for each group of extreme targets, as well as the target score range.

Correlation 7., Range
Trait Low High Low High
Extraversion .01 .05 .92 1.31
Emotional stability 46 55 e .97 .98
Agreeableness .20 -.17 1.13 .70
Conscientiousness .03 —-.32 97 .79
Openness to experience .08 46 84 1.52

o Correlation significant at the p = .08 (two-tailed).

to use the whole scale, with normally distributed ratings (Shapiro-Wilk tests, p > .05).
This means that although the judges make distinctions leading to high correlations,
the averaged ratings result in a compressed scale. This explains the large correlations
despite the magnitude of the absolute error.

It is important to emphasize that generation parameter values were predicted based
on five target personality scores. Thus, the results show that individual traits are per-
ceived even when utterances project other traits as well, as would be expected according
to the Big Five theory.

Table 11 compares the mean ratings of the utterances generated by PERSONAGE-PE
with ratings of 20 utterances generated with the rule-based parameter settings for each
extreme of each Big Five trait (40 for extraversion, resulting in 240 rule-based utterances
in total). Although rating differences could be due to the different set of judges, Table 11
suggests that the handcrafted parameter settings project a more extreme personality for
6 traits out of 10. However, the parameter estimation models are not significantly worse
than the rule-based generator for neuroticism, disagreeableness, unconscientiousness,
and openness to experience. Moreover, the differences between low and high average
ratings for the parameter models shown in the right-hand-side of Table 11 are significant
for all traits but conscientiousness (p < .001). Thus parameter estimation models can be
used in applications that only require discrete binary variation.

Additionally, we evaluate whether the naive subjects perceive the small differences
within each group of extreme utterances. At the beginning of this section, we mentioned
that the target scores used in the evaluation experiment were randomized according to a
normal distribution around 1 or 7, with a standard deviation of 10% of the full scale (.60).
Figure 10 shows the distribution of the target scores for emotional stability. We compute
the correlation between the target scores and the average judges’ ratings over each
group of extreme target scores.” Table 12 shows that the naive subjects failed to detect
the small variation within each group, although results are close to significance for the
positive end of the emotional stability scale, with a correlation of .55 for the emotionally
stable group (p = .08). This suggests that parameter estimation models could model
that trait with a high granularity given more training samples, as all that is needed is
for our models to learn to trigger relevant personality markers within extreme regions
of the stylistic space. For example, Figure 9 shows that the STUTTERING parameter value

2 Because target scores are truncated to fit PERSONAGE-PE’s input range (between 1 and 7), approximately
half of the values in each group are either 1.0 or 7.0.
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predicted by the model in Figure 7 varies considerably with emotional stability. Given
input conscientiousness and openness to experience scores of 4 out of 7, the STUTTERING
parameter becomes enabled (i.e., above .5) for emotional stability scores below 1.81 (see
middle leaf node in Figure 7).

The low correlation observed for other traits (e.g., extraversion) shows that the
high accuracy reported in Table 10 is due to the successful modeling of large variations
between each end of the scale, rather than the small-scale variations within one side of
the dimension. Although these results are promising, future work should evaluate the
granularity of parameter estimation models over the full range of the Big Five scales.

5. Discussion

This article presents a novel SNLG method based on parameter estimation models that
estimate optimal generation parameters given target stylistic scores, which are then
used directly by the base generator to produce the output utterance. We believe that
dialogue applications such as spoken dialogue systems, interactive drama systems, and
intelligent tutoring systems would benefit from taking individual stylistic differences
into account, and that theories of human personality traits represent an appropriate set
of dimensions for a computational model of this adaptation. Starting from a commu-
nicative goal, we show how personality affects all phases of the language generation
process, and that certain parameters such as the polarity of the content selected have
a strong effect on the perception of personality. We present, to our knowledge, the
first results of a human evaluation experiment using the perceptions of naive subjects
to evaluate the stylistic variation of a language generator. The parameter estimation
method is a computationally tractable generation method that does not require any
overgeneration phase, and our results show that naive judges can recognize the in-
tended system personality for most traits.

Whereas most previous work on SNLG is based on the overgenerate and scoring
(OS) framework (Langkilde and Knight 1998; Walker, Rambow, and Rogati 2002; Isard,
Brockmann, and Oberlander 2006), our results show that direct parameter optimization
is a viable alternative for stylistic control. Given the cost of an overgeneration phase,
parameter estimation methods might be the only alternative for real-time generation,
which is necessary for spoken dialogue interaction. The fact that the accuracy of OS
methods depends on the complexity of the overgeneration phase prevents them from
scaling to the large generation space required for stylistic variation. For example, an ex-
haustive search over PERSONAGE's output space would require more than 2%/ parame-
ter combinations, for each of which an utterance would have to be generated and scored.

On the other hand, the tractability of OS methods could be improved by prun-
ing candidates throughout the generation process, as well as by using compact data
structures—such as in the OpenCCG chart realizer (White, Rajkumar, and Martin
2007)—although we do not know of any SNLG system using this approach. The main
advantage of the OS approach is that it can model global utterance features reflecting
multiple generation decisions as well as input dependencies (e.g., sentence length). The
predictive accuracy of scoring models trained on our data discussed in the introduction
suggests that OS methods could be useful for stylistic SNLG when limited to a mild
data-driven overgeneration phase, e.g., to rerank candidate utterances produced by
stochastic parameter estimation models. The OS approach therefore can be seen as a
way to relax the parameter independence assumptions required to learn robust models.

Parameter estimation models are trained on utterances generated in the application
domain. In contrast with out-of-domain corpus based methods (Isard, Brockmann, and
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Oberlander 2006), in-domain personality annotations not only reduce data sparsity by
constraining the range of outputs, they also allow us to explicitly model the relation
between stylistic factors and generation decisions. The parameter estimation approach
is inspired by previous work by Paiva and Evans (2005), who present a data-driven
method for stylistic control that does not require an overgeneration phase. We extend
this work in multiple ways. First, we focus on the control of the speaker’s personality,
rather than stylistic dimensions extracted from corpora. Second, we present a method
for learning parameter estimation models predicting generation decisions directly from
input personality scores, whereas the method of Paiva and Evans (2005) requires a
search for the optimal generation decision over the model’s input space. Third, we
present a perceptual evaluation of the generated stylistic variation, using naive human
judges.

We modeled stylistic variation in terms of the Big Five personality traits, because
these traits are widely accepted as the most important dimensions of behavioral vari-
ation within human beings (Norman 1963; Goldberg 1990). Collecting reliable per-
sonality annotations for in-domain utterances is a non-trivial task, as reflected by the
moderate inter-rater agreement reported in Section 4.3.1. The difficulty is increased by
the use of random generation decisions, which is necessary to ensure that the learned
relation between personality ratings and generation parameters is not due to artificial
correlations between generation decisions. One way to increase inter-rater agreement
would be to reduce the number of parameters varied simultaneously for each utterance,
thereby decreasing the chances of observing inconsistent markers. While this would
require collecting a larger training set to model the same number of parameters, one
could filter out irrelevant parameters in a first data collection phase, to focus on data
quality in a second phase. A second way to improve the quality of the annotations
would be to increase the size of each text sample, by simultaneously rating multiple
utterances generated from the same parameters, rather than a single utterance. This is
likely to produce models that are more robust to input variation, given a small increase
in annotation effort. Despite the difficulty of the annotation task, our experiments show
that parameter estimation models are able to detect a large range of personality markers
in our training set. The fact that those markers are successfully recognized by naive
judges suggests that our approach is robust to ambiguities in the data.

While the Big Five traits are widely accepted in the psychology literature, they
differ in terms of their impact on linguistic production. Results suggest that perceptions
of agreeableness and extraversion are easier to model, whereas conscientiousness and
openness to experience are more difficult. A possible explanation is that these traits
are not conveyed well in PERSONAGE’s narrow domain. However, previous personality
recognition results suggest that observed openness to experience is difficult to model
using general conversational data as well (Mairesse et al. 2007). It is therefore possible
that this trait may not be expressed through spoken language as clearly as other traits.

The evaluation using naive judges in Table 10 shows that the average ratings
correlate strongly with the target personality scores for all traits but conscientiousness,
with correlation coefficients ranging from .41 (openness to experience) up to .80
(extraversion). It is important to note that the magnitudes of the model correlations are
high compared to traditional correlations between personality and linguistic markers,
which typically range from .05 to .10 (Pennebaker and King 1999; Mehl, Gosling,
and Pennebaker 2006). This is possibly due to our experimental method, which
simultaneously tests a small number of personality markers in a controlled experiment,
whereas such markers are harder to extract from the varied language samples used in
psychology studies.
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In terms of limitations, even though PERSONAGE’s parameters were suggested by
psychological studies, some of them are not modeled successfully by the parameter es-
timation approach, and thus were omitted from Tables 6 and 7. This could be due to the
relatively small training set size (160 utterances to optimize 67 parameters). However,
even with a larger training set, it is possible that some of the parameters in Table 2 are
not perceivable in our domain. Additionally, the parameter-independence assumption
of the PE method could be responsible for the poor accuracy of some models. While
this issue could possibly be resolved by training statistical models that simultaneously
predict multiple dependent variables (e.g., structured prediction methods), this would
exponentially increase the size of the parameter prediction space and further aggravate
data sparsity issues.

We also find that parameter estimation models perform slightly worse when pro-
jecting extreme traits than the rule-based generator in the same domain (see Sec-
tion 4.3.2). We believe this is due to the lack of extreme utterances in the training data to
learn from. Future work should consider whether it is possible to flatten the distribution
of training data, perhaps using more knowledge or active learning methods for NLG
(Mairesse et al. 2010).

Another limitation of the current approach is that we assume the existence of
a generation dictionary containing syntactic templates that, in some cases, express
various pragmatic effects, even though most of PERSONAGE’s variation is generated
automatically. Our dictionary is currently handcrafted, but future work could build on
research on methods for extracting the generation dictionary from data (Barzilay and
Lee 2002; Higashinaka, Walker, and Prasad 2007; Snyder and Barzilay 2007).

Finally, it is likely that both the accuracy and coverage of parameter estimation
models could be improved with a larger sample of judges and random utterances at
development time. A larger number of judges would also smooth out rating inconsis-
tencies and individual differences in personality perception, thus allowing the direct
modeling of laypeople’s perceptions by removing the need for expert judges.

Another important area for future work is to explore the interface between the
language generator and the dialogue manager and text-to-speech (TTS) engine, because
personality also affects aspects of dialogue such as initiative and prosodic realization
(Scherer 1979; Vogel and Vogel 1986). It might be possible to apply a similar methodol-
ogy to the parameterization of a dialogue manager and a TTS component, in order to
project a consistent personality to the user, or to use a reinforcement learning approach
to train the dialogue manager (Walker, Fromer, and Narayanan 1998; Singh et al. 2002),
with personality judgments as the objective function. Our results suggest that person-
ality can be recognized by manipulating the linguistic cues of a single utterance, but it
is likely that additional cues (e.g., characterizing the system’s dialogue strategy) could
only make the user’s perception of the system’s personality more robust.

Nevertheless it is clear that the PE SNLG approach offers many advantages over
handcrafted methods. Firstly, SNLG methods can scale more easily to other domains
and other types of stylistic variation, as collecting data requires less effort than tuning
a large number parameters. In order to apply our method to a new domain or task, the
base generator would have to be modified. Although PERSONAGE was implemented
with domain independence in mind by using general parameters, handling a new com-
municative goal (e.g., a user request) would require modifying the syntactic aggregation
operations as well as the pragmatic marker insertion rules. Porting PERSONAGE to
a new information presentation domain would only require modifying the syntactic
templates in the generation dictionary. Once a base generator is available in the target
domain, it can be used to collect ratings for any stylistic dimension. Our parameter
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estimation method can then learn to control the generator’s output from data, without
any further handcrafting or parameter tuning. A second advantage of our parameter
estimation method over handcrafted approaches is that it can learn to target scalar
combinations of the Big Five traits, whereas handcrafting all possible ways in which
multiple stylistic dimensions can affect output utterances requires considerable effort.
Thirdly, our parameter estimation method can easily model continuous stylistic dimen-
sions, while producing such models by hand is not tractable. For example, one could
interpolate various handcrafted parameter sets to handle continuous input scales (e.g.,
to generate an utterance that is 75% extravert); however, the various weights can only
be learned reliably from data.

Our results also suggest that SNLG systems may still require handcrafting to guar-
antee the naturalness of the output, but that data-driven models can be used to control
various pragmatic effects. As naturalness depends on the combination of multiple
generation decisions, modeling naturalness in the PE framework would require taking
inter-parameter dependencies into account. At training time, this can be achieved by
extending each PE model with independent variables for naturalness as well as all
previous generation decisions made. During the generation process, the models would
predict future generation decisions given all previous decisions and a high input natu-
ralness value. Although we believe this approach is tractable, it optimizes parameters
sequentially in a greedy fashion. A global optimization method would require jointly
optimizing all (past and future) parameters simultaneously. However, predictions in
such a large output space would require a much larger training set. Nevertheless, we
believe that future work should evaluate methods for jointly optimizing multiple NLG
decisions.

Finally, this work focuses on controlling the perceptions of the output of a dialogue
system, but an important next step is to use these techniques together with personality-
based user modeling methods (Mairesse et al. 2007) to simultaneously model the
personality of the user and the system in dialogue. Both models provide the tools
for testing various hypotheses regarding personality-based alignment, such as the
similarity—attraction effect (Isard, Brockmann, and Oberlander 2006). Furthermore,
the optimal personality of the system is likely to be application-dependent; it would
thus be useful to evaluate how the user’s and the system’s personality affect task
performance in different applications.

The PERSONAGE language generator is available for download at http://mi.eng.
cam.ac.uk/~farm2/personage, as well as the personality-annotated corpus col-
lected for our experiments. An on-line demonstrator and a tutorial for customiz-
ing PERSONAGE for a new domain can be found at http://people.csail.mit.edu/
francois/research/personage.
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