
Algorithms for Deterministic Incremental
Dependency Parsing

Joakim Nivre∗,∗∗

Växjö University, Uppsala University

Parsing algorithms that process the input from left to right and construct a single derivation
have often been considered inadequate for natural language parsing because of the massive
ambiguity typically found in natural language grammars. Nevertheless, it has been shown
that such algorithms, combined with treebank-induced classifiers, can be used to build highly
accurate disambiguating parsers, in particular for dependency-based syntactic representations.
In this article, we first present a general framework for describing and analyzing algorithms
for deterministic incremental dependency parsing, formalized as transition systems. We then
describe and analyze two families of such algorithms: stack-based and list-based algorithms.
In the former family, which is restricted to projective dependency structures, we describe an
arc-eager and an arc-standard variant; in the latter family, we present a projective and a non-
projective variant. For each of the four algorithms, we give proofs of correctness and complexity.
In addition, we perform an experimental evaluation of all algorithms in combination with
SVM classifiers for predicting the next parsing action, using data from thirteen languages. We
show that all four algorithms give competitive accuracy, although the non-projective list-based
algorithm generally outperforms the projective algorithms for languages with a non-negligible
proportion of non-projective constructions. However, the projective algorithms often produce
comparable results when combined with the technique known as pseudo-projective parsing. The
linear time complexity of the stack-based algorithms gives them an advantage with respect to
efficiency both in learning and in parsing, but the projective list-based algorithm turns out to
be equally efficient in practice. Moreover, when the projective algorithms are used to implement
pseudo-projective parsing, they sometimes become less efficient in parsing (but not in learning)
than the non-projective list-based algorithm. Although most of the algorithms have been partially
described in the literature before, this is the first comprehensive analysis and evaluation of the
algorithms within a unified framework.

1. Introduction

Because parsers for natural language have to cope with a high degree of ambigu-
ity and nondeterminism, they are typically based on different techniques than the
ones used for parsing well-defined formal languages—for example, in compilers for

∗ School of Mathematics and Systems Engineering, Växjö University, 35195 Växjö, Sweden.
E-mail: joakim.nivre@vxu.se.

∗∗ Department of Linguistics and Philology, Uppsala University, Box 635, 75126 Uppsala, Sweden.
E-mail: joakim.nivre@lingfil.uu.se.

Submission received: 29 May 2007; revised submission received 22 September 2007; accepted for publication:
3 November 2007.

© 2008 Association for Computational Linguistics

Computational Linguistics Volume 34, Number 4

programming languages. Thus, the mainstream approach to natural language parsing
uses algorithms that efficiently derive a potentially very large set of analyses in parallel,
typically making use of dynamic programming and well-formed substring tables or
charts. When disambiguation is required, this approach can be coupled with a statistical
model for parse selection that ranks competing analyses with respect to plausibility.
Although it is often necessary, for efficiency reasons, to prune the search space prior
to the ranking of complete analyses, this type of parser always has to handle multiple
analyses.

By contrast, parsers for formal languages are usually based on deterministic parsing
techniques, which are maximally efficient in that they only derive one analysis. This
is possible because the formal language can be defined by a non-ambiguous formal
grammar that assigns a single canonical derivation to each string in the language, a
property that cannot be maintained for any realistically sized natural language gram-
mar. Consequently, these deterministic parsing techniques have been much less popular
for natural language parsing, except as a way of modeling human sentence process-
ing, which appears to be at least partly deterministic in nature (Marcus 1980; Shieber
1983).

More recently, however, it has been shown that accurate syntactic disambiguation
for natural language can be achieved using a pseudo-deterministic approach, where
treebank-induced classifiers are used to predict the optimal next derivation step when
faced with a nondeterministic choice between several possible actions. Compared to
the more traditional methods for natural language parsing, this can be seen as a severe
form of pruning, where parse selection is performed incrementally so that only a single
analysis is derived by the parser. This has the advantage of making the parsing process
very simple and efficient but the potential disadvantage that overall accuracy suffers
because of the early commitment enforced by the greedy search strategy. Somewhat
surprisingly, though, research has shown that, with the right choice of parsing algorithm
and classifier, this type of parser can achieve state-of-the-art accuracy, especially when
used with dependency-based syntactic representations.

Classifier-based dependency parsing was pioneered by Kudo and Matsumoto
(2002) for unlabeled dependency parsing of Japanese with head-final dependencies
only. The algorithm was generalized to allow both head-final and head-initial depen-
dencies by Yamada and Matsumoto (2003), who reported very good parsing accuracy
for English, using dependency structures extracted from the Penn Treebank for training
and testing. The approach was extended to labeled dependency parsing by Nivre, Hall,
and Nilsson (2004) (for Swedish) and Nivre and Scholz (2004) (for English), using a
different parsing algorithm first presented in Nivre (2003). At a recent evaluation of
data-driven systems for dependency parsing with data from 13 different languages
(Buchholz and Marsi 2006), the deterministic classifier-based parser of Nivre et al. (2006)
reached top performance together with the system of McDonald, Lerman, and Pereira
(2006), which is based on a global discriminative model with online learning. These
results indicate that, at least for dependency parsing, deterministic parsing is possible
without a drastic loss in accuracy. The deterministic classifier-based approach has also
been applied to phrase structure parsing (Kalt 2004; Sagae and Lavie 2005), although the
accuracy for this type of representation remains a bit below the state of the art. In this
setting, more competitive results have been achieved using probabilistic classifiers and
beam search, rather than strictly deterministic search, as in the work by Ratnaparkhi
(1997, 1999) and Sagae and Lavie (2006).

A deterministic classifier-based parser consists of three essential components: a
parsing algorithm, which defines the derivation of a syntactic analysis as a sequence

514

Nivre Deterministic Incremental Dependency Parsing

of elementary parsing actions; a feature model, which defines a feature vector represen-
tation of the parser state at any given time; and a classifier, which maps parser states,
as represented by the feature model, to parsing actions. Although different types of
parsing algorithms, feature models, and classifiers have been used for deterministic
dependency parsing, there are very few studies that compare the impact of different
components. The notable exceptions are Cheng, Asahara, and Matsumoto (2005), who
compare two different algorithms and two types of classifier for parsing Chinese, and
Hall, Nivre, and Nilsson (2006), who compare two types of classifiers and several types
of feature models for parsing Chinese, English, and Swedish.

In this article, we focus on parsing algorithms. More precisely, we describe two
families of algorithms that can be used for deterministic dependency parsing, supported
by classifiers for predicting the next parsing action. The first family uses a stack to store
partially processed tokens and is restricted to the derivation of projective dependency
structures. The algorithms of Kudo and Matsumoto (2002), Yamada and Matsumoto
(2003), and Nivre (2003, 2006b) all belong to this family. The second family, represented
by the algorithms described by Covington (2001) and recently explored for classifier-
based parsing in Nivre (2007), instead uses open lists for partially processed tokens,
which allows arbitrary dependency structures to be processed (in particular, structures
with non-projective dependencies). We provide a detailed analysis of four different
algorithms, two from each family, and give proofs of correctness and complexity for
each algorithm. In addition, we perform an experimental evaluation of accuracy and
efficiency for the four algorithms, combined with state-of-the-art classifiers, using data
from 13 different languages. Although variants of these algorithms have been partially
described in the literature before, this is the first comprehensive analysis and evaluation
of the algorithms within a unified framework.

The remainder of the article is structured as follows. Section 2 defines the task of
dependency parsing and Section 3 presents a formal framework for the characterization
of deterministic incremental parsing algorithms. Sections 4 and 5 contain the formal
analysis of four different algorithms, defined within the formal framework, with proofs
of correctness and complexity. Section 6 presents the experimental evaluation; Section 7
reports on related work; and Section 8 contains our main conclusions.

2. Dependency Parsing

Dependency-based syntactic theories are based on the idea that syntactic structure can
be analyzed in terms of binary, asymmetric dependency relations holding between the
words of a sentence. This basic conception of syntactic structure underlies a variety of
different linguistic theories, such as Structural Syntax (Tesnière 1959), Functional Gener-
ative Description (Sgall, Hajičová, and Panevová 1986), Meaning-Text Theory (Mel’čuk
1988), and Word Grammar (Hudson 1990). In computational linguistics, dependency-
based syntactic representations have in recent years been used primarily in data-driven
models, which learn to produce dependency structures for sentences solely from an
annotated corpus, as in the work of Eisner (1996), Yamada and Matsumoto (2003), Nivre,
Hall, and Nilsson (2004), and McDonald, Crammer, and Pereira (2005), among others.
One potential advantage of such models is that they are easily ported to any domain or
language in which annotated resources exist.

In this kind of framework the syntactic structure of a sentence is modeled by a depen-
dency graph, which represents each word and its syntactic dependents through labeled
directed arcs. This is exemplified in Figure 1, for a Czech sentence taken from the Prague

515

Computational Linguistics Volume 34, Number 4

(“Only one of them concerns quality.”)

ROOT0 Z1
(Out-of

✞ �

❄

AuxP

nich2
them

✞ �

❄

Atr

je3

is

✞ �

❄

Pred

jen4

only

✞ �

❄

AuxZ

jedna5

one-FEM-SG

✞ �

❄

Sb

na6

to

✞ �

❄

AuxP

kvalitu7
quality

❄
✞ �Adv

.8

.)

✞ �

❄

AuxK

Figure 1
Dependency graph for a Czech sentence from the Prague Dependency Treebank.

ROOT0 Economic1

✞ �

❄

NMOD

news2

✞ �

❄

SBJ

had3

✞ �

❄

ROOT

little4

✞ �

❄

NMOD

effect5

✞ �

❄

OBJ

on6

✞ �

❄

NMOD

financial7

✞ �

❄

NMOD

markets8

✞ �

❄

PMOD

.9
❄

✞ �
P

Figure 2
Dependency graph for an English sentence from the Penn Treebank.

Dependency Treebank (Hajič et al. 2001; Böhmová et al. 2003), and in Figure 2, for an
English sentence taken from the Penn Treebank (Marcus, Santorini, and Marcinkiewicz
1993; Marcus et al. 1994).1 An artificial word ROOT has been inserted at the beginning
of each sentence, serving as the unique root of the graph. This is a standard device that
simplifies both theoretical definitions and computational implementations.

Definition 1

Given a set L = {l1, . . . , l|L|} of dependency labels, a dependency graph for a sentence
x = (w0,w1, . . . ,wn) is a labeled directed graph G = (V,A), where

1. V = {0, 1, . . . ,n} is a set of nodes,

2. A ⊆ V × L× V is a set of labeled directed arcs.

The set V of nodes (or vertices) is the set of non-negative integers up to and including
n, each corresponding to the linear position of a word in the sentence (including ROOT).
The set A of arcs (or directed edges) is a set of ordered triples (i, l, j), where i and j
are nodes and l is a dependency label. Because arcs are used to represent dependency
relations, we will say that i is the head and l is the dependency type of j. Conversely,
we say that j is a dependent of i.

1 In the latter case, the dependency graph has been derived automatically from the constituency-based
annotation in the treebank, using the Penn2Malt program, available at http://w3.msi.vxu.se/users/
nivre/research/Penn2Malt.html.

516

Nivre Deterministic Incremental Dependency Parsing

Definition 2

A dependency graph G = (V,A) is well-formed if and only if:

1. The node 0 is a root, that is, there is no node i and label l such that
(i, l, 0) ∈ A.

2. Every node has at most one head and one label, that is, if (i, l, j) ∈ A then
there is no node i′ and label l′ such that (i′, l′, j) ∈ A and i �= i′ or l �= l′.

3. The graph G is acyclic, that is, there is no (non-empty) subset of arcs
{(i0, l1, i1), (i1, l2, i2), . . . , (ik−1, lk, ik)} ⊆ A such that i0 = ik.

We will refer to conditions 1–3 as ROOT, SINGLE-HEAD, and ACYCLICITY, respectively.
Any dependency graph satisfying these conditions is a dependency forest; if it is also
connected, it is a dependency tree, that is, a directed tree rooted at the node 0. It is worth
noting that any dependency forest can be turned into a dependency tree by adding arcs
from the node 0 to all other roots.

Definition 3

A dependency graph G = (V,A) is projective if and only if, for every arc (i, l, j) ∈
A and node k ∈ V, if i < k < j or j < k < i then there is a subset of arcs {(i, l1, i1),
(i1, l2, i2), . . . (ik−1, lk, ik)} ∈ A such that ik = k.

In a projective dependency graph, every node has a continuous projection, where the
projection of a node i is the set of nodes reachable from i in the reflexive and transitive
closure of the arc relation. This corresponds to the ban on discontinuous constituents
in orthodox phrase structure representations. We call this condition PROJECTIVITY.
When discussing PROJECTIVITY, we will often use the notation i→∗ j to mean that j
is reachable from i in the reflexive and transitive closure of the arc relation.

Example 1

For the graphs depicted in Figures 1 and 2, we have:

Figure 1: G1 = (V1,A1)

V1 = {0, 1, 2, 3, 4, 5, 6, 7, 8}
A1 = {(0, Pred, 3), (0,AuxK, 8), (1,Atr, 2), (3, Sb, 5), (3, AuxP, 6),

(5,AuxP, 1), (5,AuxZ, 4), (6,Adv, 7)}

Figure 2: G2 = (V2,A2)

V2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
A2 = {(0, ROOT, 3), (2, NMOD, 1), (3, SBJ, 2), (3, OBJ, 5), (3, P, 9),

(5, NMOD, 4), (5, NMOD, 6), (6, PMOD, 8), (8, NMOD, 7)}

Both G1 and G2 are well-formed dependency forests (dependency trees, to be specific),
but only G2 is projective. In G1, the arc (5,AuxP, 1) spans node 3, which is not reachable
from node 5 by following dependency arcs.

3. Deterministic Incremental Dependency Parsing

In this section, we introduce a formal framework for the specification of deterministic
dependency parsing algorithms in terms of two components: a transition system, which

517

Computational Linguistics Volume 34, Number 4

is nondeterministic in the general case, and an oracle, which always picks a single
transition out of every parser configuration. The use of transition systems to study
computation is a standard technique in theoretical computer science, which is here
combined with the notion of oracles in order to characterize parsing algorithms with
deterministic search. In data-driven dependency parsing, oracles normally take the
form of classifiers, trained on treebank data, but they can also be defined in terms of
grammars and heuristic disambiguation rules (Nivre 2003).

The main reason for introducing this framework is to allow us to characterize
algorithms that have previously been described in different traditions and to compare
their formal properties within a single unified framework. In particular, whereas this
type of framework has previously been used to characterize algorithms in the stack-
based family (Nivre 2003, 2006b; Attardi 2006), it is here being used also for the list-
based algorithms first discussed by Covington (2001).

Definition 4
A transition system for dependency parsing is a quadruple S = (C,T, cs,Ct), where

1. C is a set of configurations, each of which contains a buffer β of
(remaining) nodes and a set A of dependency arcs,

2. T is a set of transitions, each of which is a (partial) function t : C→ C,

3. cs is an initialization function, mapping a sentence x = (w0,w1, . . . ,wn) to a
configuration with β = [1, . . . ,n],

4. Ct ⊆ C is a set of terminal configurations.

A configuration is required to contain at least a buffer β, initially containing the nodes
[1, . . . ,n] corresponding to the real words of a sentence x = (w0,w1, . . . ,wn), and a set
A of dependency arcs, defined on the nodes in V = {0, 1, . . . ,n}, given some set of
dependency labels L. The specific transition systems defined in Sections 4 and 5 will
extend this basic notion of configuration with different data structures, such as stacks
and lists. We use the notation βc and Ac to refer to the value of β and A, respectively, in
a configuration c; we also use |β| to refer to the length of β (i.e., the number of nodes in
the buffer) and we use [] to denote an empty buffer.

Definition 5
Let S = (C,T, cs,Ct) be a transition system. A transition sequence for a sentence x =
(w0,w1, . . . ,wn) in S is a sequence C0,m = (c0, c1, . . . , cm) of configurations, such that

1. c0 = cs(x),

2. cm ∈ Ct,

3. for every i (1 ≤ i ≤ m), ci = t(ci−1) for some t ∈ T.

The parse assigned to x by C0,m is the dependency graph Gcm = ({0, 1, . . . ,n},Acm),
where Acm is the set of dependency arcs in cm.

Starting from the initial configuration for the sentence to be parsed, transitions will
manipulate β and A (and other available data structures) until a terminal configuration
is reached. Because the node set V is given by the input sentence itself, the set Acm of
dependency arcs in the terminal configuration will determine the output dependency
graph Gcm = (V,Acm).

518

Nivre Deterministic Incremental Dependency Parsing

Definition 6

A transition system S = (C,T, cs,Ct) is incremental if and only if, for every configuration
c ∈ C and transition t ∈ T, it holds that:

1. if βc = [] then c ∈ Ct,

2. |βc| ≥ |βt(c)|,

3. if a ∈ Ac then a ∈ At(c).

The first two conditions state that the buffer β never grows in size and that parsing
terminates as soon as it becomes empty; the third condition states that arcs added
to A can never be removed. Note that this is only one of several possible notions of
incrementality in parsing. A weaker notion would be to only require that the set of arcs
is built monotonically (the third condition); a stronger notion would be to require also
that nodes in β are processed strictly left to right.

Definition 7

Let S = (C,T, cs,Ct) be a transition system for dependency parsing.

1. S is sound for a class G of dependency graphs if and only if, for every
sentence x and every transition sequence C0,m for x in S, the parse Gcm ∈ G.

2. S is complete for a class G of dependency graphs if and only if, for every
sentence x and every dependency graph Gx for x in G, there is a transition
sequence C0,m for x in S such that Gcm = Gx.

3. S is correct for a class G of dependency graphs if and only if it is sound
and complete for G.

The notions of soundness and completeness, as defined here, can be seen as correspond-
ing to the notions of soundness and completeness for grammar parsing algorithms,
according to which an algorithm is sound if it only derives parses licensed by the
grammar and complete if it derives all such parses (Shieber, Schabes, and Pereira 1995).

Depending on the nature of a transition system S, there may not be a transition
sequence for every sentence, or there may be more than one such sequence. The
systems defined in Sections 4 and 5 will all be such that, for any input sentence
x = (w0,w1, . . . ,wn), there is always at least one transition sequence for x (and usually
more than one).

Definition 8

An oracle for a transition system S = (C,T, cs,Ct) is a function o : C→ T.

Given a transition system S = (C,T, cs,Ct) and an oracle o, deterministic parsing can be
achieved by the following simple algorithm:

PARSE(x = (w0,w1, . . . ,wn))
1 c← cs(x)
2 while c �∈ Ct
3 c← [o(c)](c)
4 return Gc

519

Computational Linguistics Volume 34, Number 4

It is easy to see that, provided that there is at least one transition sequence in S for
every sentence, such a parser constructs exactly one transition sequence C0,m for a
sentence x and returns the parse defined by the terminal configuration cm, that is,
Gcm = ({0, 1, . . . ,n},Acm). The reason for separating the oracle o, which maps a configu-
ration c to a transition t, from the transition t itself, which maps a configuration c to a
new configuration c′, is to have a clear separation between the abstract machine defined
by the transition system, which determines formal properties such as correctness and
complexity, and the search mechanism used when executing the machine.

In the experimental evaluation in Section 6, we will use the standard technique
of approximating oracles with classifiers trained on treebank data. However, in the
formal characterization of different parsing algorithms in Sections 4 and 5, we will
concentrate on properties of the underlying transition systems. In particular, assuming
that both o(c) and t(c) can be performed in constant time (for every o, t and c), which
is reasonable in most cases, the worst-case time complexity of a deterministic parser
based on a transition system S is given by an upper bound on the length of transition
sequences in S. And the space complexity is given by an upper bound on the size of
a configuration c ∈ C, because only one configuration needs to be stored at any given
time in a deterministic parser.

4. Stack-Based Algorithms

The stack-based algorithms make use of a stack to store partially processed tokens, that
is, tokens that have been removed from the input buffer but which are still considered
as potential candidates for dependency links, either as heads or as dependents. A parser
configuration is therefore defined as a triple, consisting of a stack, an input buffer, and
a set of dependency arcs.

Definition 9

A stack-based configuration for a sentence x = (w0,w1, . . . ,wn) is a triple c = (σ,β,A),
where

1. σ is a stack of tokens i ≤ k (for some k ≤ n),

2. β is a buffer of tokens j > k,

3. A is a set of dependency arcs such that G = ({0, 1, . . . ,n},A) is a
dependency graph for x.

Both the stack and the buffer will be represented as lists, although the stack will have its
head (or top) to the right for reasons of perspicuity. Thus, σ|i represents a stack with top
i and tail σ, and j|β represents a buffer with head j and tail β.2 We use square brackets
for enumerated lists, for example, [1, 2, . . . ,n], with [] for the empty list as a special case.

Definition 10

A stack-based transition system is a quadruple S = (C,T, cs,Ct), where

1. C is the set of all stack-based configurations,

2. cs(x = (w0,w1, . . .wn)) = ([0], [1, . . . ,n], ∅),

2 The operator | is taken to be left-associative for the stack and right-associative for the buffer.

520

Nivre Deterministic Incremental Dependency Parsing

Transitions

LEFT-ARCl (σ|i, j|β,A)⇒ (σ, j|β,A∪{(j, l, i)})

RIGHT-ARCsl (σ|i, j|β,A)⇒ (σ, i|β,A∪{(i, l, j)})

SHIFT (σ, i|β,A)⇒ (σ|i,β,A)

Preconditions

LEFT-ARCl ¬[i = 0]
¬∃k∃l′[(k, l′, i) ∈ A]

RIGHT-ARCsl ¬∃k∃l′[(k, l′, j) ∈ A]

Figure 3
Transitions for the arc-standard, stack-based parsing algorithm.

3. T is a set of transitions, each of which is a function t : C→ C,

4. Ct = {c ∈ C|c = (σ, [],A)}.

A stack-based parse of a sentence x = (w0,w1, . . . ,wn) starts with the artificial root node
0 on the stack σ, all the nodes corresponding to real words in the buffer β, and an
empty set A of dependency arcs; it ends as soon as the buffer β is empty. The transitions
used by stack-based parsers are essentially composed of two types of actions: adding
(labeled) arcs to A and manipulating the stack σ and input buffer β. By combining such
actions in different ways, we can construct transition systems that implement different
parsing strategies. We will now define two such systems, which we call arc-standard
and arc-eager, respectively, adopting the terminology of Abney and Johnson (1991).

4.1 Arc-Standard Parsing

The transition set T for the arc-standard, stack-based parser is defined in Figure 3 and
contains three types of transitions:

1. Transitions LEFT-ARCl (for any dependency label l) add a dependency arc
(j, l, i) to A, where i is the node on top of the stack σ and j is the first node in
the buffer β. In addition, they pop the stack σ. They have as a precondition
that the token i is not the artificial root node 0 and does not already have
a head.

2. Transitions RIGHT-ARCsl (for any dependency label l) add a dependency
arc (i, l, j) to A, where i is the node on top of the stack σ and j is the first
node in the buffer β. In addition, they pop the stack σ and replace j by i
at the head of β. They have as a precondition that the token j does not
already have a head.3

3. The transition SHIFT removes the first node i in the buffer β and pushes
it on top of the stack σ.

3 The superscript s is used to distinguish these transitions from the non-equivalent RIGHT-ARCel transitions
in the arc-eager system.

521

Computational Linguistics Volume 34, Number 4

Transition Configuration
([0], [1, . . . , 9], ∅)

SHIFT =⇒ ([0, 1], [2, . . . , 9], ∅)
LEFT-ARCNMOD =⇒ ([0], [2, . . . , 9], A1 = {(2, NMOD, 1)})

SHIFT =⇒ ([0, 2], [3, . . . , 9], A1)
LEFT-ARCSBJ =⇒ ([0], [3, . . . , 9], A2 = A1∪{(3, SBJ, 2)})

SHIFT =⇒ ([0, 3], [4, . . . , 9], A2)
SHIFT =⇒ ([0, 3, 4], [5, . . . , 9], A2)

LEFT-ARCNMOD =⇒ ([0, 3], [5, . . . , 9], A3 = A2∪{(5, NMOD, 4)})
SHIFT =⇒ ([0, 3, 5], [6, . . . , 9], A3)
SHIFT =⇒ ([0, . . . 6], [7, 8, 9], A3)
SHIFT =⇒ ([0, . . . , 7], [8, 9], A3)

LEFT-ARCNMOD =⇒ ([0, . . . 6], [8, 9], A4 = A3∪{(8, NMOD, 7)})
RIGHT-ARCsPMOD =⇒ ([0, 3, 5], [6, 9], A5 = A4∪{(6, PMOD, 8)})
RIGHT-ARCsNMOD =⇒ ([0, 3], [5, 9], A6 = A5∪{(5, NMOD, 6)})

RIGHT-ARCsOBJ =⇒ ([0], [3, 9], A7 = A6∪{(3, OBJ, 5)})
SHIFT =⇒ ([0, 3], [9], A7)

RIGHT-ARCsP =⇒ ([0], [3], A8 = A7∪{(3, P, 9)})

RIGHT-ARCsROOT =⇒ ([], [0], A9 = A8∪{(0, ROOT, 3)})
SHIFT =⇒ ([0], [], A9)

Figure 4
Arc-standard transition sequence for the English sentence in Figure 2.

The arc-standard parser is the closest correspondent to the familiar shift-reduce parser
for context-free grammars (Aho, Sethi, and Ullman 1986). The LEFT-ARCl and RIGHT-
ARCsl transitions correspond to reduce actions, replacing a head-dependent structure
with its head, whereas the SHIFT transition is exactly the same as the shift action. One
peculiarity of the transitions, as defined here, is that the “reduce” transitions apply to
one node on the stack and one node in the buffer, rather than two nodes on the stack.
The reason for this formulation is to facilitate comparison with the arc-eager parser
described in the next section and to simplify the definition of terminal configurations.
By way of example, Figure 4 shows the transition sequence needed to parse the English
sentence in Figure 2.

Theorem 1
The arc-standard, stack-based algorithm is correct for the class of projective dependency
forests.

Proof 1
To show the soundness of the algorithm, we show that the dependency graph defined
by the initial configuration, Gcs(x) = (Vx, ∅), is a projective dependency forest, and that
every transition preserves this property. We consider each of the relevant conditions in
turn, keeping in mind that the only transitions that modify the graph are LEFT-ARCl
and RIGHT-ARCsl .

1. ROOT: The node 0 is a root in Gcs(x), and adding an arc of the form (i, l, 0) is
prevented by an explicit precondition of LEFT-ARCl.

522

Nivre Deterministic Incremental Dependency Parsing

2. SINGLE-HEAD: Every node i ∈ Vx has in-degree 0 in Gcs(x), and both
LEFT-ARCl and RIGHT-ARCsl have as a precondition that the dependent
of the new arc has in-degree 0.

3. ACYCLICITY: Gcs(x) is acyclic, and adding an arc (i, l, j) will create a cycle
only if there is a directed path from j to i. But this would require that a
previous transition had added an arc of the form (k, l′, i) (for some k, l′),
in which case i would no longer be in σ or β.

4. PROJECTIVITY: Gcs(x) is projective, and adding an arc (i, l, j) will make the
graph non-projective only if there is a node k such that i < k < j or j < k < i
and neither i→∗ k nor j→∗ k. Let C0,m be a configuration sequence for
x = (w0,w1, . . . ,wn) and let Π(p, i, j) (for 0 < p < m, 0 ≤ i < j ≤ n) be the
claim that, for every k such that i < k < j, i→∗ k or j→∗ k in Gcp . To prove
that no arc can be non-projective, we need to prove that, if cp ∈ C0,m and
cp = (σ|i, j|β,Acp), then Π(p, i, j). (If cp = (σ|i, j|β,Acp) and Π(p, i, j),
then Π(p′, i, j) for all p′ such that p < p′, since in cp every node k such that
i < k < jmust already have a head.) We prove this by induction over the
number ∆(p) of transitions leading to cp from the first configuration
cp−∆(p) ∈ C0,m such that cp−∆(p) = (σ|i,β,Acp−∆(p)

) (i.e., the first
configuration where i is on the top of the stack).

Basis: If ∆(p) = 0, then i and j are adjacent and Π(p, i, j) holds
vacuously.

Inductive step: Assume that Π(p, i, j) holds if ∆(p) ≤ q (for some
q > 0) and that ∆(p) = q+ 1. Now consider the transition tp that
results in configuration cp. There are three cases:

Case 1: If tp = RIGHT-ARCsl (for some l), then there is a node k
such that j < k, (j, l, k) ∈ Acp , and cp−1 = (σ|i|j, k|β,Acp−
{(j, l, k)}). This entails that there is an earlier configuration
cp−r (2 ≤ r ≤ ∆(p)) such that cp−r = (σ|i, j|β,Acp−r). Because
∆(p− r) = ∆(p)− r ≤ q, we can use the inductive hypothesis
to infer Π(p− r, i, j) and hence Π(p, i, j).

Case 2: If tp = LEFT-ARCl (for some l), then there is a node k
such that i < k < j, (j, l, k) ∈ Acp , and cp−1 = (σ|i|k, j|β,Acp−
{(j, l, k)}). Because ∆(p− 1) ≤ q, we can use the inductive
hypothesis to infer Π(p− 1, k, j) and, from this, Π(p, k, j).
Moreover, because there has to be an earlier configuration
cp−r (r < ∆(p)) such that cp−r = (σ|i, k|β,Acp−r) and
∆(p− r) ≤ q, we can use the inductive hypothesis again
to infer Π(p− r, i, k) and Π(p, i, k). Π(p, i, k), Π(p, k, j) and
(j, l, k) ∈ Acp together entail Π(p, i, j).

Case 3: If the transition tp = SHIFT, then it must have been
preceded by a RIGHT-ARCsl transition (for some l), because
otherwise i and jwould be adjacent. This means that there
is a node k such that i < k < j, (i, l, k) ∈ Acp , and cp−2 =
(σ|i, k|j|β,Acp − {(i, l, k)}). Because ∆(p− 2) ≤ q, we can
again use the inductive hypothesis to infer Π(p− 2, i, k)
and Π(p, i, k). Furthermore, it must be the case that either k
and j are adjacent or there is an earlier configuration cp−r

523

Computational Linguistics Volume 34, Number 4

(r < ∆(p)) such that cp−r = (σ|k, j|β,Acp−r); in both cases it
follows that Π(p, k, j) (in the latter through the inductive
hypothesis via Π(p− r, k, j)). As before, Π(p, i, k), Π(p, k, j)
and (i, l, k) ∈ Acp together entail Π(p, i, j).

For completeness, we need to show that for any sentence x and projective dependency
forest Gx = (Vx,Ax) for x, there is a transition sequence C0,m such that Gcm = Gx. We
prove this by induction on the length |x| of x = (w0,w1, . . . ,wn).

Basis: If |x| = 1, then the only projective dependency forest for x is
G = ({0}, ∅) and Gcm = Gx for C0,m = (cs(x)).

Inductive step: Assume that the claim holds if |x| ≤ p (for some p > 1) and
assume that |x| = p+ 1 and Gx = (Vx,Ax) (Vx = {0, 1, . . . , p}). Consider
the subgraph Gx′ = (Vx − {p},A−p), where A−p = Ax − {(i, l, j)|i = p ∨ j =
p}, that is, the graph Gx′ is exactly like Gx except that the node p and all
the arcs going into or out of this node are missing. It is obvious that,
if Gx is a projective dependency forest for the sentence x = (w0,w1, . . . ,wp),
then Gx′ is a projective dependency forest for the sentence x′ = (w0,w1, . . . ,
wp−1), and that, because |x′| = p, there is a transition sequence C0,q such
that Gcq = Gx′ (in virtue of the inductive hypothesis). The terminal
configuration of G0,q must have the form cq = (σcq , [],A

−p), where i ∈ σcq
if and only if i is a root in Gx′ (else iwould have been removed in a
LEFT-ARCl or RIGHT-ARCsl transition). It follows that, in Gx, i is either a
root or a dependent of p. In the latter case, any j such that j ∈ σcq and i < j
must also be a dependent of p (else Gx would not be projective, given that
i and j are both roots in Gx′). Moreover, if p has a head k in Gx, then k
must be the topmost node in σcq that is not a dependent of p (anything else
would again be inconsistent with the assumption that Gx is projective).
Therefore, we can construct a transition sequence C0,m such that Gcm =
Gx, by starting in c0 = cs(x) and applying exactly the same q transitions
as in C0,q, followed by as many LEFT-ARCl transitions as there are left
dependents of p in Gx, followed by a RIGHT-ARCsl transition if and only
if p has a head in Gx, followed by a SHIFT transition (moving the head of
p back to the stack and emptying the buffer). �

Theorem 2
The worst-case time complexity of the arc-standard, stack-based algorithm is O(n),
where n is the length of the input sentence.

Proof 2
Assuming that the oracle and transition functions can be computed in some constant
time, the worst-case running time is bounded by the maximum number of transitions
in a transition sequence C0,m for a sentence x = (w0,w1, . . . ,wn). Since a SHIFT transition
decreases the length of the buffer β by 1, no other transition increases the length of β,
and any configuration where β = [] is terminal, the number of SHIFT transitions in C0,m
is bounded by n. Moreover, since both LEFT-ARCl and RIGHT-ARCsl decrease the height
of the stack by 1, only SHIFT increases the height of the stack by 1, and the initial height
of the stack is 1, the combined number of instances of LEFT-ARCl and RIGHT-ARCsl in
C0,m is also bounded by n. Hence, the worst case time complexity is O(n). �

524

Nivre Deterministic Incremental Dependency Parsing

Remark 1
The assumption that the oracle function can be computed in constant time will be dis-
cussed at the end of Section 6.1, where we approximate oracles with treebank-induced
classifiers in order to experimentally evaluate the different algorithms. The assumption
that every transition can be performed in constant time can be justified by noting that
the only operations involved are those of adding an arc to the graph, removing the first
element from the buffer, and pushing or popping the stack.

Theorem 3
The worst-case space complexity of the arc-standard, stack-based algorithm is O(n),
where n is the length of the input sentence.

Proof 3
Given the deterministic parsing algorithm, only one configuration c = (σ,β,A) needs to
be stored at any given time. Assuming that a single node can be stored in some constant
space, the space needed to store σ and β, respectively, is bounded by the number of
nodes. The same holds for A, given that a single arc can be stored in constant space,
because the number of arcs in a dependency forest is bounded by the number of nodes.
Hence, the worst-case space complexity is O(n). �

4.2 Arc-Eager Parsing

The transition set T for the arc-eager, stack-based parser is defined in Figure 5 and
contains four types of transitions:

1. Transitions LEFT-ARCl (for any dependency label l) add a dependency arc
(j, l, i) to A, where i is the node on top of the stack σ and j is the first node in
the buffer β. In addition, they pop the stack σ. They have as a precondition
that the token i is not the artificial root node 0 and does not already have
a head.

Transitions

LEFT-ARCl (σ|i, j|β,A)⇒ (σ, j|β,A∪{(j, l, i)})

RIGHT-ARCel (σ|i, j|β,A)⇒ (σ|i|j,β,A∪{(i, l, j)})

REDUCE (σ|i,β,A)⇒ (σ,β,A)

SHIFT (σ, i|β,A)⇒ (σ|i,β,A)

Preconditions

LEFT-ARCl ¬[i = 0]
¬∃k∃l′[(k, l′, i) ∈ A]

RIGHT-ARCel ¬∃k∃l′[(k, l′, j) ∈ A]

REDUCE ∃k∃l[(k, l, i) ∈ A]

Figure 5
Transitions for the arc-eager, stack-based parsing algorithm.

525

Computational Linguistics Volume 34, Number 4

2. Transitions RIGHT-ARCel (for any dependency label l) add a dependency
arc (i, l, j) to A, where i is the node on top of the stack σ and j is the first
node in the buffer β. In addition, they remove the first node j in the buffer
β and push it on top of the stack σ. They have as a precondition that the
token j does not already have a head.

3. The transition REDUCE pops the stack β and is subject to the precondition
that the top token has a head.

4. The transition SHIFT removes the first node i in the buffer β and pushes it
on top of the stack σ.

The arc-eager parser differs from the arc-standard one by attaching right dependents
(using RIGHT-ARCel transitions) as soon as possible, that is, before the right dependent
has found all its right dependents. As a consequence, the RIGHT-ARCel transitions
cannot replace the head-dependent structure with the head, as in the arc-standard
system, but must store both the head and the dependent on the stack for further
processing. The dependent can be popped from the stack at a later time through the
REDUCE transition, which completes the reduction of this structure. The arc-eager
system is illustrated in Figure 6, which shows the transition sequence needed to parse
the English sentence in Figure 2 with the same output as the arc-standard sequence in
Figure 4.

Theorem 4
The arc-eager, stack-based algorithm is correct for the class of projective dependency
forests.

Transition Configuration
([0], [1, . . . , 9], ∅)

SHIFT =⇒ ([0, 1], [2, . . . , 9], ∅)
LEFT-ARCNMOD =⇒ ([0], [2, . . . , 9], A1 = {(2, NMOD, 1)})

SHIFT =⇒ ([0, 2], [3, . . . , 9], A1)
LEFT-ARCSBJ =⇒ ([0], [3, . . . , 9], A2 = A1∪{(3, SBJ, 2)})

RIGHT-ARCeROOT =⇒ ([0, 3], [4, . . . , 9], A3 = A2∪{(0, ROOT, 3)})
SHIFT =⇒ ([0, 3, 4], [5, . . . , 9], A3)

LEFT-ARCNMOD =⇒ ([0, 3], [5, . . . , 9], A4 = A3∪{(5, NMOD, 4)})
RIGHT-ARCeOBJ =⇒ ([0, 3, 5], [6, . . . , 9], A5 = A4∪{(3, OBJ, 5)})

RIGHT-ARCeNMOD =⇒ ([0, . . . , 6], [7, 8, 9], A6 = A5∪{(5, NMOD, 6)})
SHIFT =⇒ ([0, . . . , 7], [8, 9], A6)

LEFT-ARCNMOD =⇒ ([0, . . . 6], [8, 9], A7 = A6∪{(8, NMOD, 7)})
RIGHT-ARCePMOD =⇒ ([0, . . . , 8], [9], A8 = A7∪{(6, PMOD, 8)})

REDUCE =⇒ ([0, . . . , 6], [9], A8)
REDUCE =⇒ ([0, 3, 5], [9], A8)
REDUCE =⇒ ([0, 3], [9], A8)

RIGHT-ARCeP =⇒ ([0, 3, 9], [], A9 = A8∪{(3, P, 9)})

Figure 6
Arc-eager transition sequence for the English sentence in Figure 2.

526

Nivre Deterministic Incremental Dependency Parsing

Proof 4
To show the soundness of the algorithm, we show that the dependency graph defined
by the initial configuration, Gc0(x) = (Vx, ∅), is a projective dependency forest, and that
every transition preserves this property. We consider each of the relevant conditions in
turn, keeping in mind that the only transitions that modify the graph are LEFT-ARCl
and RIGHT-ARCel .

1. ROOT: Same as Proof 1.

2. SINGLE-HEAD: Same as Proof 1 (substitute RIGHT-ARCel for RIGHT-ARCsl).

3. ACYCLICITY: Gcs(x) is acyclic, and adding an arc (i, l, j) will create a cycle
only if there is a directed path from j to i. In the case of LEFT-ARCl, this
would require the existence of a configuration cp = (σ|j, i|β,Acp) such
that (k, l′, i) ∈ Acp (for some k and l′), which is impossible because any
transition adding an arc (k, l′, i) has as a consequence that i is no longer in
the buffer. In the case of RIGHT-ARCel , this would require a configuration
cp = (σ|i, j|β,Acp) such that, given the arcs in Acp , there is a directed path
from j to i. Such a path would have to involve at least one arc (k, l′, k′) such
that k′ ≤ i < k, which would entail that i is no longer in σ. (If k′ = i, then i
would be popped in the LEFT-ARCl′ transition adding the arc; if k′ < i,
then iwould have to be popped before the arc could be added.)

4. PROJECTIVITY: To prove that, if cp ∈ C0,m and cp = (σ|i, j|β,Acp), then
Π(p, i, j), we use essentially the same technique as in Proof 1, only with
different cases in the inductive step because of the different transitions.
As before, we let ∆(p) be the number of transitions that it takes to reach
cp from the first configuration that has i on top of the stack.

Basis: If ∆(p) = 0, then i and j are adjacent, which entails Π(p, i, j).

Inductive step: We assume that Π(p, i, j) holds if ∆(p) ≤ q (for some
q > 0) and that ∆(p) = q+ 1, and we concentrate on the transition
tp that results in configuration cp. For the arc-eager algorithm, there
are only two cases to consider, because if tp = RIGHT-ARCel (for
some l) or tp = SHIFT then ∆(p) = 0, which contradicts our
assumption that ∆(p) > q > 0. (This follows because the arc-eager
algorithm, unlike its arc-standard counterpart, does not allow
nodes to be moved back from the stack to the buffer.)

Case 1: If tp = LEFT-ARCl (for some l), then there is a node k
such that i < k < j, (j, l, k) ∈ Acp , and cp−1 = (σ|i|k, j|β,Acp−
{(j, l, k)}). Because ∆(p− 1) ≤ q, we can use the inductive
hypothesis to infer Π(p− 1, k, j) and, from this, Π(p, k, j).
Moreover, because there has to be an earlier configuration
cp−r (r < ∆(p)) such that cp−r = (σ|i, k|β,Acp−r) and
∆(p− r) ≤ q, we can use the inductive hypothesis again
to infer Π(p− r, i, k) and Π(p, i, k). Π(p, i, k), Π(p, k, j) and
(j, l, k) ∈ Acp together entail Π(p, i, j).

Case 2: If the transition tp = REDUCE, then there is a node k
such that i < k < j, (i, l, k) ∈ Acp , and cp−1 = (σ|i|k, j|β,Acp).
Because ∆(p− 1) ≤ q, we can again use the inductive
hypothesis to infer Π(p− 1, k, j) and Π(p, k, j). Moreover,

527

Computational Linguistics Volume 34, Number 4

there must be an earlier configuration cp−r (r < ∆(p)) such
that cp−r = (σ|i, k|β,Acp−r) and ∆(p− r) ≤ q, which entails
Π(p− r, i, k) and Π(p, i, k). As before, Π(p, i, k), Π(p, k, j) and
(i, l, k) ∈ Acp together entail Π(p, i, j).

For completeness, we need to show that for any sentence x and projective depen-
dency forest Gx = (Vx,Ax) for x, there is a transition sequence C0,m such that Gcm = Gx.
Using the same idea as in Proof 1, we prove this by induction on the length |x| of
x = (w0,w1, . . . ,wn).

Basis: If |x| = 1, then the only projective dependency forest for x is
G = ({0}, ∅) and Gcm = Gx for C0,m = (cs(x)).

Inductive step: Assume that the claim holds if |x| ≤ p (for some p > 1)
and assume that |x| = p+ 1 and Gx = (Vx,Ax) (Vx = {0, 1, . . . , p}). As in
Proof 1, we may now assume that there exists a transition sequence C0,q
for the sentence x′ = (w0,w1,wp−1) and subgraph Gx′ = (Vx − {p},A−p),
where the terminal configuration has the form cq = (σcq , [],A

−p). For the
arc-eager algorithm, if i is a root in Gx′ then i ∈ σcq ; but if i ∈ σcq then i is
either a root or has a head j such that j < i in Gx′ . (This is because imay
have been pushed onto the stack in a RIGHT-ARCel transition and may
or may not have been popped in a later REDUCE transition.) Apart from the
possibility of unreduced right dependents, we can use the same reasoning
as in Proof 1 to show that, for any i ∈ σcq that is a root in Gx′ , if i is a
dependent of p in Gx then any j such that j ∈ σcq , i < j and j is a root in
Gx′ must also be a dependent of p in Gx (or else Gx would fail to be
projective). Moreover, if p has a head k in Gx, then kmust be in σcq and
any j such that j ∈ σcq and k < jmust either be a dependent of p in Gx or
must have a head to the left in both Gx′ and Gx (anything else would again
be inconsistent with the assumption that Gx is projective). Therefore, we
can construct a transition sequence C0,m such that Gcm = Gx, by starting
in c0 = cs(x) and applying exactly the same q transitions as in C0,q,
followed by as many LEFT-ARCl transitions as there are left dependents of
p in Gx, interleaving REDUCE transitions whenever the node on top of the
stack already has a head, followed by a RIGHT-ARCel transition if p has a
head in Gx and a SHIFT transition otherwise (in both cases moving p to the
stack and emptying the buffer). �

Theorem 5
The worst-case time complexity of the arc-eager, stack-based algorithm is O(n), where
n is the length of the input sentence.

Proof 5
The proof is essentially the same as Proof 2, except that both SHIFT and RIGHT-ARCel
decrease the length of β and increase the height of σ, while both REDUCE and LEFT-
ARCl decrease the height of σ. Hence, the combined number of SHIFT and RIGHT-ARCel
transitions, as well as the combined number of REDUCE and LEFT-ARCl transitions, are
bounded by n. �

528

Nivre Deterministic Incremental Dependency Parsing

Theorem 6
The worst-case space complexity of the arc-eager, stack-based algorithm is O(n), where
n is the length of the input sentence.

Proof 6
Same as Proof 3. �

5. List-Based Algorithms

The list-based algorithms make use of two lists to store partially processed tokens, that
is, tokens that have been removed from the input buffer but which are still considered
as potential candidates for dependency links, either as heads or as dependents. A parser
configuration is therefore defined as a quadruple, consisting of two lists, an input buffer,
and a set of dependency arcs.

Definition 11

A list-based configuration for a sentence x = (w0,w1, . . . ,wn) is a quadruple c =
(λ1, λ2,β,A), where

1. λ1 is a list of tokens i1 ≤ k1 (for some k1 ≤ n),

2. λ2 is a list of tokens i2 ≤ k2 (for some k2, k1 < k2 ≤ n),

3. β is a buffer of tokens j > k,

4. A is a set of dependency arcs such that G = ({0, 1, . . . ,n},A) is a
dependency graph for x.

The list λ1 has its head to the right and stores nodes in descending order, and the list λ2
has its head to the left and stores nodes in ascending order. Thus, λ1|i represents a list
with head i and tail λ1, whereas j|λ2 represents a list with head j and tail λ2.

4 We use
square brackets for enumerated lists as before, and we write λ1.λ2 for the concatenation
of λ1 and λ2, so that, for example, [0, 1].[2, 3, 4] = [0, 1, 2, 3, 4]. The notational conven-
tions for the buffer β and the set A of dependency arcs are the same as before.

Definition 12

A list-based transition system is a quadruple S = (C,T, cs,Ct), where

1. C is the set of all list-based configurations,

2. cs(x = (w0,w1, . . .wn)) = ([0], [], [1, . . . ,n], ∅),

3. T is a set of transitions, each of which is a function t : C→ C,

4. Ct = {c ∈ C|c = (λ1, λ2, [],A)}.

A list-based parse of a sentence x = (w0,w1, . . . ,wn) starts with the artificial root node 0
as the sole element of λ1, an empty list λ2, all the nodes corresponding to real words in
the buffer β, and an empty set A of dependency arcs; it ends as soon as the buffer β is
empty. Thus, the only difference compared to the stack-based systems is that we have
two lists instead of a single stack. Otherwise, both initialization and termination are

4 The operator | is taken to be left-associative for λ1 and right-associative for λ2.

529

Computational Linguistics Volume 34, Number 4

Transitions

LEFT-ARCnl (λ1|i, λ2, j|β,A)⇒ (λ1, i|λ2, j|β,A∪{(j, l, i)})

RIGHT-ARCnl (λ1|i, λ2, j|β,A)⇒ (λ1, i|λ2, j|β,A∪{(i, l, j)})

NO-ARCn (λ1|i, λ2,β,A)⇒ (λ1, i|λ2,β,A)

SHIFTλ (λ1, λ2, i|β,A)⇒ (λ1.λ2|i, [],β,A)

Preconditions

LEFT-ARCnl ¬[i = 0]
¬∃k∃l′[(k, l′, i) ∈ A]
¬[i→∗ j]A

RIGHT-ARCnl ¬∃k∃l′[(k, l′, j) ∈ A]
¬[j→∗ i]A

Figure 7
Transitions for the non-projective, list-based parsing algorithm.

essentially the same. The transitions used by list-based parsers are again composed of
two types of actions: adding (labeled) arcs toA and manipulating the lists λ1 and λ2, and
the input buffer β. By combining such actions in different ways, we can construct transi-
tion systems with different properties. We will now define two such systems, which we
call non-projective and projective, respectively, after the classes of dependency graphs
that they can handle.

A clarification may be in order concerning the use of lists instead of stacks for this
family of algorithms. In fact, most of the transitions to be defined subsequently make
no essential use of this added flexibility and could equally well have been formalized
using two stacks instead. However, we will sometimes need to append two lists into
one, and this would not be a constant-time operation using standard stack operations.
We therefore prefer to define these structures as lists, even though they will mostly be
used as stacks.

5.1 Non-Projective Parsing

The transition set T for the non-projective, list-based parser is defined in Figure 7 and
contains four types of transitions:

1. Transitions LEFT-ARCnl (for any dependency label l) add a dependency arc
(j, l, i) to A, where i is the head of the list λ1 and j is the first node in the
buffer β. In addition, they move i from the list λ1 to the list λ2. They have
as a precondition that the token i is not the artificial root node and does
not already have a head. In addition, there must not be a path from i to j in
the graph G = ({0, 1, . . . ,n},A).5

5 We use the notation [i −→∗ j]A to signify that there is a path connecting i and j in G = ({0, 1, . . . ,n},A).

530

Nivre Deterministic Incremental Dependency Parsing

2. Transitions RIGHT-ARCnl (for any dependency label l) add a dependency
arc (i, l, j) to A, where i is the head of the list λ1 and j is the first node in the
buffer β. In addition, they move i from the list λ1 to the list λ2. They have
as a precondition that the token j does not already have a head and that
there is no path from j to i in G = ({0, 1, . . . ,n},A).

3. The transition NO-ARC removes the head i of the list λ1 and inserts it at
the head of the list λ2.

4. The transition SHIFT removes the first node i in the buffer β and inserts it
at the head of a list obtained by concatenating λ1 and λ2. This list becomes
the new λ1, whereas λ2 is empty in the resulting configuration.

The non-projective, list-based parser essentially builds a dependency graph by consid-
ering every pair of nodes (i, j) (i < j) and deciding whether to add a dependency arc
between them (in either direction), although the SHIFT transition allows it to skip certain
pairs. More precisely, if i is the head of λ1 and j is the first node in the buffer β when
a SHIFT transition is performed, then all pairs (k, j) such that k < i are ignored. The fact
that both the head and the dependent are kept in either λ2 or β makes it possible to
construct non-projective dependency graphs, because the NO-ARCn transition allows
a node to be passed from λ1 to λ2 even if it does not (yet) have a head. However, an
arc can only be added between two nodes i and j if the dependent end of the arc is
not the artificial root 0 and does not already have a head, which would violate ROOT

and SINGLE-HEAD, respectively, and if there is no path connecting the dependent to the
head, which would cause a violation of ACYCLICITY. As an illustration, Figure 8 shows
the transition sequence needed to parse the Czech sentence in Figure 1, which has a
non-projective dependency graph.

Theorem 7
The non-projective, list-based algorithm is correct for the class of dependency forests.

Proof 7
To show the soundness of the algorithm, we simply observe that the dependency graph
defined by the initial configuration, Gc0(x) = ({0, 1, . . . ,n}, ∅), satisfies ROOT, SINGLE-
HEAD, and ACYCLICITY, and that none of the four transitions may lead to a violation
of these constraints. (The transitions SHIFTλ and NO-ARCn do not modify the graph at
all, and LEFT-ARCnl and RIGHT-ARCnl have explicit preconditions to prevent this.)

For completeness, we need to show that for any sentence x and dependency for-
est Gx = (Vx,Ax) for x, there is a transition sequence C0,m such that Gcm = Gx. Using
the same idea as in Proof 1, we prove this by induction on the length |x| of x =
(w0,w1, . . . ,wn).

Basis: If |x| = 1, then the only dependency forest for x is G = ({0}, ∅) and
Gcm = Gx for C0,m = (cs(x)).

Inductive step: Assume that the claim holds if |x| ≤ p (for some p > 1)
and assume that |x| = p+ 1 and Gx = (Vx,Ax) (Vx = {0, 1, . . . , p}). As in
Proof 1, we may now assume that there exists a transition sequence C0,q
for the sentence x′ = (w0,w1,wp−1) and subgraph Gx′ = (Vx − {p},A−p),
but the terminal configuration now has the form cq = (λcq , [], [],A

−p),
where λcq = [0, 1, . . . , p− 1]. In order to construct a transition sequence
C0,m such that Gcm = Gx we instead start from the configuration

531

Computational Linguistics Volume 34, Number 4

Transition Configuration
([0], [], [1, . . . , 8], ∅)

SHIFTλ =⇒ ([0, 1], [], [2, . . . , 8], ∅)
RIGHT-ARCnAtr =⇒ ([0], [1], [2, . . . , 8], A1 = {(1,Atr, 2)})

SHIFTλ =⇒ ([0, 1, 2], [], [3, . . . , 8], A1)
NO-ARCn =⇒ ([0, 1], [2], [3, . . . , 8], A1)
NO-ARCn =⇒ ([0], [1, 2], [3, . . . , 8], A1)

RIGHT-ARCnPred =⇒ ([], [0, 1, 2], [3, . . . , 8], A2 = A1∪{(0, Pred, 3)})
SHIFTλ =⇒ ([0, . . . , 3], [], [4, . . . , 8], A2)
SHIFTλ =⇒ ([0, . . . , 4], [], [5, . . . , 8], A2)

LEFT-ARCnAuxZ =⇒ ([0, . . . , 3], [4], [5, . . . , 8], A3 = A2∪{(5,AuxZ, 4)})
RIGHT-ARCnSb =⇒ ([0, 1, 2], [3, 4], [5, . . . , 8], A4 = A3∪{(3, Sb, 5)})

NO-ARCn =⇒ ([0, 1], [2, 3, 4], [5, . . . , 8], A4)
LEFT-ARCnAuxP =⇒ ([0], [1, . . . , 4], [5, . . . , 8], A5 = A4∪{(5,AuxP, 1)})

SHIFTλ =⇒ ([0, . . . , 5], [], [6, 7, 8], A5)
NO-ARCn =⇒ ([0, . . . , 4], [5], [6, 7, 8], A5)
NO-ARCn =⇒ ([0, . . . , 3], [4, 5], [6, 7, 8], A5)

RIGHT-ARCnAuxP =⇒ ([0, 1, 2], [3, 4, 5], [6, 7, 8], A6 = A5∪{(3,AuxP, 6)})
SHIFTλ =⇒ ([0, . . . , 6], [], [7, 8], A6)

RIGHT-ARCnAdv =⇒ ([0, . . . , 5], [6], [7, 8], A7 = A6∪{(6,Adv, 7)})

SHIFTλ =⇒ ([0, . . . , 7], [], [8], A7)
NO-ARCn =⇒ ([0, . . . , 6], [7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 5], [6, 7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 4], [5, 6, 7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 3], [4, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0, 1, 2], [3, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0, 1], [2, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0], [1, . . . , 7], [8], A7)

RIGHT-ARCnAuxK =⇒ ([], [0, . . . , 7], [8], A8 = A7∪{(0,AuxK, 8)})
SHIFTλ =⇒ ([0, . . . , 8], [], [], A8)

Figure 8
Non-projective transition sequence for the Czech sentence in Figure 1.

c0 = cs(x) and apply exactly the same q transitions, reaching the
configuration cq = (λcq , [], [p],A

−p). We then perform exactly p transitions,
in each case choosing LEFT-ARCnl if the token i at the head of λ1 is a
dependent of p in Gx (with label l), RIGHT-ARCnl′ if i is the head of p (with
label l′) and NO-ARCn otherwise. One final SHIFTλ transition takes us to
the terminal configuration cm = (λcq |p, [], [],Ax). �

Theorem 8
The worst-case time complexity of the non-projective, list-based algorithm is O(n2),
where n is the length of the input sentence.

Proof 8
Assuming that the oracle and transition functions can be performed in some constant
time, the worst-case running time is bounded by the maximum number of transitions

532

Nivre Deterministic Incremental Dependency Parsing

in a transition sequence C0,m for a sentence x = (w0,w1, . . . ,wn). As for the stack-based
algorithms, there can be at most n SHIFTλ transitions in C0,m. Moreover, because each of
the three other transitions presupposes that λ1 is non-empty and decreases its length by
1, there can be at most i such transitions between the i−1th and the ith SHIFT transition.
It follows that the total number of transitions in C0,m is bounded by

∑n
i=1 i+1, which is

O(n2). �

Remark 2
The assumption that transitions can be performed in constant time can be justified by
the same kind of considerations as for the stack-based algorithms (cf. Remark 1). The
only complication is the SHIFTλ transition, which involves appending the two lists λ1
and λ2, but this can be handled with an appropriate choice of data structures. A more
serious complication is the need to check the preconditions of LEFT-ARCnl and RIGHT-
ARCnl , but if we assume that it is the responsibility of the oracle to ensure that the
preconditions of any predicted transition are satisfied, we can postpone the discussion
of this problem until the end of Section 6.1.

Theorem 9
The worst-case space complexity of the non-projective, list-based algorithm is O(n),
where n is the length of the input sentence.

Proof 9
Given the deterministic parsing algorithm, only one configuration c = (λ1, λ2,β,A)
needs to be stored at any given time. Assuming that a single node can be stored in
some constant space, the space needed to store λ1, λ2, and β, respectively, is bounded
by the number of nodes. The same holds for A, given that a single arc can be stored in
constant space, because the number of arcs in a dependency forest is bounded by the
number of nodes. Hence, the worst-case space complexity is O(n). �

5.2 Projective Parsing

The transition set T for the projective, list-based parser is defined in Figure 9 and
contains four types of transitions:

1. Transitions LEFT-ARC
p
l (for any dependency label l) add a dependency arc

(j, l, i) to A, where i is the head of the list λ1 and j is the first node in the
buffer β. In addition, they remove i from the list λ1 and empty λ2. They
have as a precondition that the token i is not the artificial root node and
does not already have a head.

2. Transitions RIGHT-ARC
p
l (for any dependency label l) add a dependency

arc (i, l, j) to A, where i is the head of the list λ1 and j is the first node in the
buffer β. In addition, they move j from the buffer β and empty the list λ2.
They have as a precondition that the token j does not already have a head.

3. The transition NO-ARCp removes the head i of the list λ1 and inserts it at
the head of the list λ2. It has as a precondition that the node i already has
a head.

4. The transition SHIFTλ removes the first node i in the buffer β and inserts it
at the head of a list obtained by concatenating λ1 and λ2. This list becomes
the new λ1, while λ2 is empty in the resulting configuration.

533

Computational Linguistics Volume 34, Number 4

Transitions

LEFT-ARC
p
l (λ1|i, λ2, j|β,A)⇒ (λ1, [], j|β,A∪{(j, l, i)})

RIGHT-ARC
p
l (λ1|i, λ2, j|β,A)⇒ (λ1|i|j, [],β,A∪{(i, l, j)})

NO-ARCp (λ1|i, λ2,β,A)⇒ (λ1, i|λ2,β,A)

SHIFTλ (λ1, λ2, i|β,A)⇒ (λ1.λ2|i, [],β,A)

Preconditions

LEFT-ARC
p
l ¬[i = 0]

¬∃k∃l′[(k, l′, i) ∈ A]

RIGHT-ARC
p
l ¬∃k∃l′[(k, l′, j) ∈ A]

NO-ARCp ∃k∃l[(k, l, i) ∈ A]

Figure 9
Transitions for the projective, list-based parsing algorithm.

The projective, list-based parser uses the same basic strategy as its non-projective coun-
terpart, but skips any pair (i, j) that could give rise to a non-projective dependency arc.
The essential differences are the following:

1. While LEFT-ARCnl stores the dependent i in the list λ2, allowing it to have
dependents to the right of j, LEFT-ARC

p
l deletes it and in addition empties

λ2 because any dependency arc linking i, or any node between i and j, to a
node succeeding j would violate PROJECTIVITY.

2. While RIGHT-ARCnl allows the dependent j to seek dependents to the
left of i, by simply moving i from λ1 to λ2, RIGHT-ARC

p
l essentially

incorporates a SHIFTλ transition by moving j to λ1|i, because any
dependency arc linking j to a node preceding iwould violate
PROJECTIVITY. In addition, it does not move any nodes from λ2 to λ1,
since these nodes can no longer be linked to any node succeeding j
without violating PROJECTIVITY.

3. While NO-ARCn is permissible as long as λ1 is not empty, NO-ARCp

requires that the node i already has a head because any dependency arc
spanning a root node would violate PROJECTIVITY (regardless of which
arcs are added later).

The fact that the projective algorithm skips many node pairs that are considered by the
non-projective algorithm makes it more efficient in practice, although the worst-case
time complexity remains the same. Figure 10 shows the transition sequence needed
to parse the English sentence in Figure 2 with the same output as the stack-based
sequences in Figures 4 and 6.

Theorem 10
The projective, list-based algorithm is correct for the class of projective dependency
forests.

534

Nivre Deterministic Incremental Dependency Parsing

Transition Configuration
([0], [], [1, . . . , 9], ∅)

SHIFTλ =⇒ ([0, 1], [], [2, . . . , 9], ∅)
LEFT-ARC

p
NMOD =⇒ ([0], [], [2, . . . , 9], A1 = {(2, NMOD, 1)})

SHIFTλ =⇒ ([0, 2], [], [3, . . . , 9], A1)
LEFT-ARC

p
SBJ =⇒ ([0], [], [3, . . . , 9], A2 = A1∪{(3, SBJ, 2)})

RIGHT-ARC
p
ROOT =⇒ ([0, 3], [], [4, . . . , 9], A3 = A2∪{(0, ROOT, 3)})

SHIFTλ =⇒ ([0, 3, 4], [], [5, . . . , 9], A3)
LEFT-ARC

p
NMOD =⇒ ([0, 3], [], [5, . . . , 9], A4 = A3∪{(5, NMOD, 4)})

RIGHT-ARC
p
OBJ =⇒ ([0, 3, 5], [], [6, . . . , 9], A5 = A4∪{(3, OBJ, 5)})

RIGHT-ARC
p
NMOD =⇒ ([0, . . . , 6], [], [7, 8, 9], A6 = A5∪{(5, NMOD, 6)})

SHIFTλ =⇒ ([0, . . . , 7], [], [8, 9], A6)
LEFT-ARCNMOD =⇒ ([0, . . . 6], [], [8, 9], A7 = A6∪{(8, NMOD, 7)})

RIGHT-ARC
p
PMOD =⇒ ([0, . . . , 8], [], [9], A8 = A7∪{(6, PMOD, 8)})

NO-ARCp =⇒ ([0, . . . , 6], [8], [9], A8)
NO-ARCp =⇒ ([0, 3, 5], [6, 8], [9], A8)
NO-ARCp =⇒ ([0, 3], [5, 6, 8], [9], A8)

RIGHT-ARC
p
P =⇒ ([0, 3, 9], [], [], A9 = A8∪{(3, P, 9)})

Figure 10
Projective transition sequence for the English sentence in Figure 2.

Proof 10
To show the soundness of the algorithm, we show that the dependency graph defined
by the initial configuration, Gc0(x) = (V, ∅), is a projective dependency forest, and that
every transition preserves this property. We consider each of the relevant conditions in
turn, keeping in mind that the only transitions that modify the graph are LEFT-ARC

p
l

and RIGHT-ARC
p
l .

1. ROOT: Same as Proof 1 (substitute LEFT-ARC
p
l for LEFT-ARCl).

2. SINGLE-HEAD: Same as Proof 1 (substitute LEFT-ARC
p
l and RIGHT-ARC

p
l

for LEFT-ARCl and RIGHT-ARCsl , respectively).

3. ACYCLICITY: Gcs(x) is acyclic, and adding an arc (i, l, j) will create a cycle
only if there is a directed path from j to i. In the case of LEFT-ARC

p
l , this

would require the existence of a configuration cp = (λ1|j, λ2, i|β,Acp) such
that (k, l′, i) ∈ Acp (for some k < i and l′), which is impossible because any
transition adding an arc (k, l′, i) has as a consequence that i is no longer in
the buffer. In the case of RIGHT-ARC

p
l , this would require a configuration

cp = (λ1|i, λ2, j|β,Acp) such that, given the arcs in Acp , there is a directed
path from j to i. Such a path would have to involve at least one arc (k, l′, k′)
such that k′ ≤ i < k, which would entail that i is no longer in λ1 or λ2.
(If k′ = i, then iwould be removed from λ1—and not added to λ2—in the
LEFT-ARC

p
l′ transition adding the arc; if k′ < i, then i would have to be

moved to λ2 before the arc can be added and removed as this list is
emptied in the LEFT-ARC

p
l′ transition.)

535

Computational Linguistics Volume 34, Number 4

4. PROJECTIVITY: Gcs(x) is projective, and adding an arc (i, l, j) will make the
graph non-projective only if there is a node k such that i < k < j or j < k < i
and neither i→∗ k nor j→∗ k. Let C0,m be a configuration sequence for
x = (w0,w1, . . . ,wn) and let Π(p, i, j) (for 0 < p < m, 0 ≤ i < j ≤ n) be the
claim that, for every k such that i < k < j, i→∗ k or j→∗ k in Gcp . To prove
that no arc can be non-projective, we need to prove that, if cp ∈ C0,m and
cp = (λ1|i, λ2, j|β,Acp), then Π(p, i, j). (If cp = (λ1|i, λ2, j|β,Acp) and Π(p, i, j),
then Π(p′, i, j) for all p′ such that p < p′, because in cp every node k such
that i < k < jmust already have a head.) We prove this by induction over
the number ∆(p) of transitions leading to cp from the first configuration
cp−∆(p) ∈ C0,m such that cp−∆(p) = (λ1, λ2, j|β,Acp−∆(p)

) (i.e., the first
configuration where j is the first node in the buffer).

Basis: If ∆(p) = 0, then i and j are adjacent and Π(p, i, j) holds
vacuously.

Inductive step: Assume that Π(p, i, j) holds if ∆(p) ≤ q (for some
q > 0) and that ∆(p) = q+ 1. Now consider the transition tp that
results in configuration cp. For the projective, list-based algorithm,
there are only two cases to consider, because if tp = RIGHT-ARC

p
l

(for some l) or tp = SHIFT then ∆(p) = 0, which contradicts our
assumption that ∆(p) > q > 0. (This follows because there is no
transition that moves a node back to the buffer.)

Case 1: If tp = LEFT-ARC
p
l (for some l), then there is a node k

such that i < k < j, (j, l, k) ∈ Acp , cp−1 = (λ1|i|k, λ2, j|β,Acp−
{(j, l, k)}), and cp = (λ1|i, [], j|β,Acp). Because ∆(p− 1) ≤ q,
we can use the inductive hypothesis to infer Π(p− 1, k, j)
and, from this, Π(p, k, j). Moreover, because there has to
be an earlier configuration cp−r (r < ∆(p)) such that cp−r =
(λ1|i, λ2′ , k|β,Acp−r) and ∆(p− r) ≤ q, we can use the
inductive hypothesis again to infer Π(p− r, i, k) and Π(p, i, k).
Π(p, i, k), Π(p, k, j), and (j, l, k) ∈ Acp together entail Π(p, i, j).

Case 2: If the transition tp = NO-ARCp, then there is a node k
such that i < k < j, (i, l, k) ∈ Acp , cp−1 = (λ1|i|k, λ2, j|β,Acp),
and cp = (λ1|i, k|λ2, j|β,Acp). Because ∆(p− 1) ≤ q, we can
again use the inductive hypothesis to infer Π(p− 1, k, j) and
Π(p, k, j). Moreover, there must be an earlier configuration
cp−r (r < ∆(p)) such that cp−r = (λ1|i, λ2′ , k|β,Acp−r) and
∆(p− r) ≤ q, which entails Π(p− r, i, k) and Π(p, i, k). As
before, Π(p, i, k), Π(p, k, j), and (i, l, k) ∈ Acp together entail
Π(p, i, j).

For completeness, we need to show that for any sentence x and dependency forest Gx =
(Vx,Ax) for x, there is a transition sequence C0,m such that Gcm = Gx. The proof is by
induction on the length |x| and is essentially the same as Proof 7 up to the point where
we assume the existence of a transition sequence C0,q for the sentence x′ = (w0,w1,wp−1)
and subgraphGx′ = (Vx − {p},A−p), where the terminal configuration still has the form
cq = (λcq , [], [],A

−p), but where it can no longer be assumed that λcq = [0, 1, . . . , p− 1].
If i is a root in Gx′ then i ∈ λcq ; but if i ∈ λcq then i is either a root or has a head j such

536

Nivre Deterministic Incremental Dependency Parsing

that j < i in Gx′ . (This is because a RIGHT-ARC
p
l transition leaves the dependent in λ1

while a LEFT-ARC
p
l removes it.) Moreover, for any i ∈ λcq that is a root in Gx′ , if i is a

dependent of p in Gx then any j such that j ∈ λcq , i < j and j is a root in Gx′ must also be
a dependent of p in Gx (else Gx would fail to be projective). Finally, if p has a head k in
Gx, then kmust be in λcq and any j such that j ∈ λcq and k < jmust either be a dependent
of p in Gx or must have a head to the left in both Gx′ and Gx (anything else would again
be inconsistent with the assumption that Gx is projective). Therefore, we can construct
a transition sequence C0,m such that Gcm = Gx, by starting in c0 = cs(x) and applying
exactly the same q transitions as in C0,q, followed by as many LEFT-ARC

p
l transitions

as there are left dependents of p in Gx, interleaving NO-ARCp transitions whenever the
node at the head of λ1 already has a head, followed by a RIGHT-ARC

p
l transition if p

has a head in Gx. One final SHIFTn transition takes us to the terminal configuration
cm = (λcm , [], [],Ax). �

Theorem 11
The worst-case time complexity of the projective, list-based algorithm is O(n2), where n
is the length of the input sentence.

Proof 11
Same as Proof 8. �

Theorem 12
The worst-case space complexity of the projective, list-based algorithm is O(n), where n
is the length of the input sentence.

Proof 12
Same as Proof 9. �

6. Experimental Evaluation

We have defined four different transition systems for incremental dependency parsing,
proven their correctness for different classes of dependency graphs, and analyzed their
time and space complexity under the assumption that there exists a constant-time oracle
for predicting the next transition. In this section, we present an experimental evaluation
of the accuracy and efficiency that can be achieved with these systems in deterministic
data-driven parsing, that is, when the oracle is approximated by a classifier trained
on treebank data. The purpose of the evaluation is to compare the performance of the
four algorithms under realistic conditions, thereby complementing the purely formal
analysis presented so far. The purpose is not to produce state-of-the-art results for all
algorithms on the data sets used, which would require extensive experimentation and
optimization going well beyond the limits of this study.

6.1 Experimental Setup

The data sets used are taken from the CoNLL-X shared task on multilingual dependency
parsing (Buchholz and Marsi 2006). We have used all the available data sets, taken

537

Computational Linguistics Volume 34, Number 4

Table 1
Data sets. Tok = number of tokens (×1000); Sen = number of sentences (×1000); T/S = tokens
per sentence (mean); Lem = lemmatization present; CPoS = number of coarse-grained
part-of-speech tags; PoS = number of (fine-grained) part-of-speech tags; MSF = number of
morphosyntactic features (split into atoms); Dep = number of dependency types; NPT =
proportion of non-projective dependencies/tokens (%); NPS = proportion of non-projective
dependency graphs/sentences (%).

Language Tok Sen T/S Lem CPoS PoS MSF Dep NPT NPS

Arabic 54 1.5 37.2 yes 14 19 19 27 0.4 11.2
Bulgarian 190 14.4 14.8 no 11 53 50 18 0.4 5.4
Chinese 337 57.0 5.9 no 22 303 0 82 0.0 0.0
Czech 1,249 72.7 17.2 yes 12 63 61 78 1.9 23.2
Danish 94 5.2 18.2 no 10 24 47 52 1.0 15.6
Dutch 195 13.3 14.6 yes 13 302 81 26 5.4 36.4
German 700 39.2 17.8 no 52 52 0 46 2.3 27.8
Japanese 151 17.0 8.9 no 20 77 0 7 1.1 5.3
Portuguese 207 9.1 22.8 yes 15 21 146 55 1.3 18.9
Slovene 29 1.5 18.7 yes 11 28 51 25 1.9 22.2
Spanish 89 3.3 27.0 yes 15 38 33 21 0.1 1.7
Swedish 191 11.0 17.3 no 37 37 0 56 1.0 9.8
Turkish 58 5.0 11.5 yes 14 30 82 25 1.5 11.6

from treebanks of thirteen different languages with considerable typological variation.
Table 1 gives an overview of the training data available for each language.

For data sets that include a non-negligible proportion of non-projective dependency
graphs, it can be expected that the non-projective list-based algorithm will achieve
higher accuracy than the strictly projective algorithms. In order to make the comparison
more fair, we therefore also evaluate pseudo-projective versions of the latter algorithms,
making use of graph transformations in pre- and post-processing to recover non-
projective dependency arcs, following Nivre and Nilsson (2005). For each language,
seven different parsers were therefore trained as follows:

1. For the non-projective list-based algorithm, one parser was trained
without preprocessing the training data.

2. For the three projective algorithms, two parsers were trained after
preprocessing the training data as follows:

(a) For the strictly projective parser, non-projective dependency graphs
in the training data were transformed by lifting non-projective
arcs to the nearest permissible ancestor of the real head. This
corresponds to the Baseline condition in Nivre and Nilsson (2005).

(b) For the pseudo-projective parser, non-projective dependency
graphs in the training data were transformed by lifting
non-projective arcs to the nearest permissible ancestor of the
real head, and augmenting the arc label with the label of the real
head. The output of this parser was post-processed by lowering
dependency arcs with augmented labels using a top-down,
left-to-right, breadth-first search for the first descendant of the
head that matches the augmented arc label. This corresponds to
the Head condition in Nivre and Nilsson (2005).

538

Nivre Deterministic Incremental Dependency Parsing

Table 2
Feature models. Rows represent tokens defined relative to the current configuration (L[i] = ith
element of list/stack L of length n; hd(x) = head of x; ld(x) = leftmost dependent of x; rd(x) =
rightmost dependent of x). Columns represent attributes of tokens (Form = word form; Lem =
lemma; CPoS = coarse part-of-speech; FPoS = fine part-of-speech; Feats = morphosyntactic
features; Dep = dependency label). Filled cells represent features used by one or more
algorithms (All = all algorithms; S = arc-standard, stack-based; E = arc-eager, stack-based;
N = non-projective, list-based; P = projective, list-based).

Attributes

Tokens Form Lem CPoS FPoS Feats Dep

β[0] All All All All All N
β[1] All All
β[2] All
β[3] All
ld(β[0]) All
rd(β[0]) S

σ[0] SE SE SE SE SE E
σ[1] SE
hd(σ[0]) E
ld(σ[0]) SE
rd(σ[0]) SE

λ1[0] NP NP NP NP NP NP
λ1[1] NP
hd(λ1[0]) NP
ld(λ1[0]) NP
rd(λ1[0]) NP

λ2[0] N
λ2[n] N

All parsers were trained using the freely available MaltParser system,6 which provides
implementations of all the algorithms described in Sections 4 and 5. MaltParser also
incorporates the LIBSVM library for support vector machines (Chang and Lin 2001),
which was used to train classifiers for predicting the next transition. Training data for
the classifiers were generated by parsing each sentence in the training set using the gold-
standard dependency graph as an oracle. For each transition t(c) in the oracle parse, a
training instance (Φ(c), t) was created, where Φ(c) is a feature vector representation of
the parser configuration c. Because the purpose of the experiments was not to optimize
parsing accuracy as such, no work was done on feature selection for the different
algorithms and languages. Instead, all parsers use a variant of the simple feature model
used for parsing English and Swedish in Nivre (2006b), with minor modifications to suit
the different algorithms.

Table 2 shows the feature sets used for different parsing algorithms.7 Each row
represents a node defined relative to the current parser configuration, where nodes

6 Available at http://w3.msi.vxu.se/users/nivre/research/MaltParser.html.
7 For each of the three projective algorithms, the strictly projective and the pseudo-projective variants

used exactly the same set of features, although the set of values for the dependency label features
were different because of the augmented label set introduced by the pseudo-projective technique.

539

Computational Linguistics Volume 34, Number 4

defined relative to the stack σ are only relevant for stack-based algorithms, whereas
nodes defined relative to the lists λ1 and λ2 are only relevant for list-based algorithms.
We use the notation L[i], for arbitrary lists or stacks, to denote the ith element of L, with
L[0] for the first element (top element of a stack) and L[n] for the last element. Nodes
defined relative to the partially-built dependency graph make use of the operators hd, ld,
and rd, which return, respectively, the head, the leftmost dependent, and the rightmost
dependent of a node in the dependency graph Gc defined by the current configuration
c, if such a node exists, and a null value otherwise. The columns in Table 2 represent
attributes of nodes (tokens) in the input (word form, lemma, coarse part-of-speech, fine
part-of-speech, morphosyntactic features) or in the partially-built dependency graph
(dependency label), which can be used to define features. Each cell in the table thus
represents a feature fij = aj(ni), defined by selecting the attribute aj in the jth column
from the node ni characterized in the ith row. For example, the feature f11 is the word
form of the first input node (token) in the buffer β. The symbols occurring in filled
cells indicate for which parsing algorithms the feature is active, where S stands for arc-
standard stack-based, E for arc-eager stack-based, N for non-projective list-based, and
P for projective list-based. Features that are used for some but not all algorithms are
typically not meaningful for all algorithms. For example, a right dependent of the first
node in the buffer β can only exist (at decision time) when using the arc-standard stack-
based algorithm. Hence, this feature is inactive for all other algorithms.

The SVM classifiers were trained with a quadratic kernel K(xi, xj) = (γxTi xj + r)
2

and LIBSVM’s built-in one-versus-one strategy for multi-class classification, convert-
ing symbolic features to numerical ones using the standard technique of binarization.
The parameter settings were γ = 0.2 and r = 0 for the kernel parameters, C = 0.5 for
the penalty parameter, and ε = 1.0 for the termination criterion. These settings were
extrapolated from many previous experiments under similar conditions, using cross-
validation or held-out subsets of the training data for tuning, but in these experiments
they were kept fixed for all parsers and languages. In order to reduce training times, the
set of training instances derived from a given training set was split into smaller sets, for
which separate multi-class classifiers were trained, using FPoS(β[0]), that is, the (fine-
grained) part of speech of the first node in the buffer, as the defining feature for the
split.

The seven different parsers for each language were evaluated by running them on
the dedicated test set from the CoNLL-X shared task, which consists of approximately
5,000 tokens for all languages. Because the dependency graphs in the gold standard
are always trees, each output graph was converted, if necessary, from a forest to a tree
by attaching every root node i (i > 0) to the special root node 0 with a default label
ROOT. Parsing accuracy was measured by the labeled attachment score (LAS), that is,
the percentage of tokens that are assigned the correct head and dependency label, as
well as the unlabeled attachment score (UAS), that is, the percentage of tokens with
the correct head, and the label accuracy (LA), that is, the percentage of tokens with the
correct dependency label. All scores were computed with the scoring software from
the CoNLL-X shared task, eval.pl, with default settings. This means that punctuation
tokens are excluded in all scores. In addition to parsing accuracy, we evaluated
efficiency by measuring the learning time and parsing time in seconds for each data set.

Before turning to the results of the evaluation, we need to fulfill the promise from
Remarks 1 and 2 to discuss the way in which treebank-induced classifiers approximate
oracles and to what extent they satisfy the condition of constant-time operation that
was assumed in all the results on time complexity in Sections 4 and 5. When pre-
dicting the next transition at run-time, there are two different computations that take

540

Nivre Deterministic Incremental Dependency Parsing

place: the first is the classifier returning a transition t as the output class for an input
feature vector Φ(c), and the second is a check whether the preconditions of t are satisfied
in c. If the preconditions are satisfied, the transition t is performed; otherwise a default
transition (with no preconditions) is performed instead.8 (The default transition is SHIFT

for the stack-based algorithms and NO-ARC for the list-based algorithms.) The time
required to compute the classification t of Φ(c) depends on properties of the classifier,
such as the number of support vectors and the number of classes for a multi-class SVM
classifier, but is independent of the length of the input and can therefore be regarded
as a constant as far as the time complexity of the parsing algorithm is concerned.9

The check of preconditions is a trivial constant-time operation in all cases except one,
namely the need to check whether there is a path between two nodes for the LEFT-ARCnl
and RIGHT-ARCnl transitions of the non-projective list-based algorithm. Maintaining the
information needed for this check and updating it with each addition of a new arc
to the graph is equivalent to the union-find operations for disjoint set data structures.
Using the techniques of path compression and union by rank, the amortized time per
operation is O(α(n)) per operation, where n is the number of elements (nodes in this
case) and α(n) is the inverse of the Ackermann function, which means that α(n) is
less than 5 for all remotely practical values of n and is effectively a small constant
(Cormen, Leiserson, and Rivest 1990). With this proviso, all the complexity results from
Sections 4 and 5 can be regarded as valid also for the classifier-based implementation of
deterministic, incremental dependency parsing.

6.2 Parsing Accuracy

Table 3 shows the parsing accuracy obtained for each of the 7 parsers on each of the
13 languages, as well as the average over all languages, with the top score in each
row set in boldface. For comparison, we also include the results of the two top scoring
systems in the CoNLL-X shared task, those of McDonald, Lerman, and Pereira (2006)
and Nivre et al. (2006). Starting with the LAS, we see that the multilingual average
is very similar across the seven parsers, with a difference of only 0.58 percentage
points between the best and the worst result, obtained with the non-projective and
the strictly projective version of the list-based parser, respectively. However, given the
large amount of data, some of the differences are nevertheless statistically significant
(according to McNemar’s test, α = .05). Broadly speaking, the group consisting of the
non-projective, list-based parser and the three pseudo-projective parsers significantly
outperforms the group consisting of the three projective parsers, whereas there are
no significant differences within the two groups.10 This shows that the capacity to
capture non-projective dependencies does make a significant difference, even though
such dependencies are infrequent in most languages.

The best result is about one percentage point below the top scores from the original
CoNLL-X shared task, but it must be remembered that the results in this article have

8 A more sophisticated strategy would be to back off to the second best choice of the oracle, assuming that
the oracle provides a ranking of all the possible transitions. On the whole, however, classifiers very rarely
predict transitions that are not legal in the current configuration.

9 The role of this constant in determining the overall running time is similar to that of a grammar constant
in grammar-based parsing.

10 The only exception to this generalization is the pseudo-projective, list-based parser, which is significantly
worse than the non-projective, list-based parser, but not significantly better than the projective,
arc-standard, stack-based parser.

541

Computational Linguistics Volume 34, Number 4

Table 3
Parsing accuracy for 7 parsers on 13 languages, measured by labeled attachment score (LAS),
unlabeled attachment score (UAS) and label accuracy (LA). NP-L = non-projective list-based;
P-L = projective list-based; PP-L = pseudo-projective list-based; P-E = projective arc-eager
stack-based; PP-E = pseudo-projective arc-eager stack-based; P-S = projective arc-standard
stack-based; PP-S = pseudo-projective arc-standard stack-based; McD = McDonald, Lerman
and Pereira (2006); Niv = Nivre et al. (2006).

Labeled Attachment Score (LAS)

Language NP-L P-L PP-L P-E PP-E P-S PP-S McD Niv

Arabic 63.25 63.19 63.13 64.93 64.95 65.79 66.05 66.91 66.71
Bulgarian 87.79 87.75 87.39 87.75 87.41 86.42 86.71 87.57 87.41
Chinese 85.77 85.96 85.96 85.96 85.96 86.00 86.00 85.90 86.92
Czech 78.12 76.24 78.04 76.34 77.46 78.18 80.12 80.18 78.42
Danish 84.59 84.15 84.35 84.25 84.45 84.17 84.15 84.79 84.77
Dutch 77.41 74.71 76.95 74.79 76.89 73.27 74.79 79.19 78.59
German 84.42 84.21 84.38 84.23 84.46 84.58 84.58 87.34 85.82
Japanese 90.97 90.57 90.53 90.83 90.89 90.59 90.63 90.71 91.65
Portuguese 86.70 85.91 86.20 85.83 86.12 85.39 86.09 86.82 87.60
Slovene 70.06 69.88 70.12 69.50 70.22 72.00 71.88 73.44 70.30
Spanish 80.18 79.80 79.60 79.84 79.60 78.70 78.42 82.25 81.29
Swedish 83.03 82.63 82.41 82.63 82.41 82.12 81.54 82.55 84.58
Turkish 64.69 64.49 64.37 64.37 64.43 64.67 64.73 63.19 65.68

Average 79.77 79.19 79.49 79.33 79.63 79.38 79.67 80.83 80.75

Unlabeled Attachment Score (UAS)

Language NP-L P-L PP-L P-E PP-E P-S PP-S McD Niv

Arabic 76.43 76.19 76.49 76.31 76.25 77.76 77.98 79.34 77.52
Bulgarian 91.68 91.92 91.62 91.92 91.64 90.80 91.10 92.04 91.72
Chinese 89.42 90.24 90.24 90.24 90.24 90.42 90.42 91.07 90.54
Czech 84.88 82.82 84.58 82.58 83.66 84.50 86.44 87.30 84.80
Danish 89.76 89.40 89.42 89.52 89.52 89.26 89.38 90.58 89.80
Dutch 80.25 77.29 79.59 77.25 79.47 75.95 78.03 83.57 81.35
German 87.80 87.10 87.38 87.14 87.42 87.46 87.44 90.38 88.76
Japanese 92.64 92.60 92.56 92.80 92.72 92.50 92.54 92.84 93.10
Portuguese 90.56 89.82 90.14 89.74 90.08 89.00 89.64 91.36 91.22
Slovene 79.06 78.78 79.06 78.42 78.98 80.72 80.76 83.17 78.72
Spanish 83.39 83.75 83.65 83.79 83.65 82.35 82.13 86.05 84.67
Swedish 89.54 89.30 89.03 89.30 89.03 88.81 88.39 88.93 89.50
Turkish 75.12 75.24 75.02 75.32 74.81 75.94 75.76 74.67 75.82

Average 85.43 84.96 85.29 84.95 85.19 85.04 85.39 87.02 85.96

Label Accuracy (LA)

Language NP-L P-L PP-L P-E PP-E P-S PP-S McD Niv

Arabic 75.93 76.15 76.09 78.46 78.04 79.30 79.10 79.50 80.34
Bulgarian 90.68 90.68 90.40 90.68 90.42 89.53 89.81 90.70 90.44
Chinese 88.01 87.95 87.95 87.95 87.95 88.33 88.33 88.23 89.01
Czech 84.54 84.54 84.42 84.80 84.66 86.00 86.58 86.72 85.40
Danish 88.90 88.60 88.76 88.62 88.82 89.00 88.98 89.22 89.16
Dutch 82.43 82.59 82.13 82.57 82.15 80.71 80.13 83.89 83.69
German 89.74 90.08 89.92 90.06 89.94 90.79 90.36 92.11 91.03
Japanese 93.54 93.14 93.14 93.54 93.56 93.12 93.18 93.74 93.34
Portuguese 90.56 90.54 90.34 90.46 90.26 90.42 90.26 90.46 91.54
Slovene 78.88 79.70 79.40 79.32 79.48 81.61 81.37 82.51 80.54
Spanish 89.46 89.04 88.66 89.06 88.66 88.30 88.12 90.40 90.06
Swedish 85.50 85.40 84.92 85.40 84.92 84.66 84.01 85.58 87.39
Turkish 77.79 77.32 77.02 77.00 77.39 77.02 77.20 77.45 78.49

Average 85.84 85.83 85.63 85.99 85.87 86.06 85.96 86.96 87.03

542

Nivre Deterministic Incremental Dependency Parsing

been obtained without optimization of feature representations or learning algorithm
parameters. The net effect of this can be seen in the result for the pseudo-projective
version of the arc-eager, stack-based parser, which is identical to the system used by
Nivre et al. (2006), except for the lack of optimization, and which suffers a loss of 1.12
percentage points overall.

The results for UAS show basically the same pattern as the LAS results, but with
even less variation between the parsers. Nevertheless, there is still a statistically sig-
nificant margin between the non-projective, list-based parser and the three pseudo-
projective parsers, on the one hand, and the strictly projective parsers, on the other.11

For label accuracy (LA), finally, the most noteworthy result is that the strictly projec-
tive parsers consistently outperform their pseudo-projective counterparts, although the
difference is statistically significant only for the projective, list-based parser. This can
be explained by the fact that the pseudo-projective parsing technique increases the
number of distinct dependency labels, using labels to distinguish not only between
different syntactic functions but also between “lifted” and “unlifted” arcs. It is there-
fore understandable that the pseudo-projective parsers suffer a drop in pure labeling
accuracy.

Despite the very similar performance of all parsers on average over all languages,
there are interesting differences for individual languages and groups of languages.
These differences concern the impact of non-projective, pseudo-projective, and strictly
projective parsing, on the one hand, and the effect of adopting an arc-eager or an arc-
standard parsing strategy for the stack-based parsers, on the other. Before we turn
to the evaluation of efficiency, we will try to analyze some of these differences in a
little more detail, starting with the different techniques for capturing non-projective
dependencies.

First of all, we may observe that the non-projective, list-based parser outperforms its
strictly projective counterpart for all languages except Chinese. The result for Chinese
is expected, given that it is the only data set that does not contain any non-projective
dependencies, but the difference in accuracy is very slight (0.19 percentage points).
Thus, it seems that the non-projective parser can also be used without loss in accuracy
for languages with very few non-projective structures. The relative improvement in
accuracy for the non-projective parser appears to be roughly linear in the percent-
age of non-projective dependencies found in the data set, with a highly significant
correlation (Pearson’s r = 0.815, p = 0.0007). The only language that clearly diverges
from this trend is German, where the relative improvement is much smaller than
expected.

If we compare the non-projective, list-based parser to the strictly projective stack-
based parsers, we see essentially the same pattern but with a little more variation. For
the arc-eager, stack-based parser, the only anomaly is the result for Arabic, which is
significantly higher than the result for the non-projective parser, but this seems to be
due to a particularly bad performance of the list-based parsers as a group for this
language.12 For the arc-standard, stack-based parser, the data is considerably more
noisy, which is related to the fact that the arc-standard parser in itself has a higher

11 The exception this time is the pseudo-projective, arc-eager parser, which has a statistically significant
difference up to the non-projective parser but a non-significant difference down to the projective,
arc-standard parser.

12 A possible explanation for this result is the extremely high average sentence length for Arabic, which
leads to a greater increase in the number of potential arcs considered for the list-based parsers than for
the stack-based parsers.

543

Computational Linguistics Volume 34, Number 4

variance than the other parsers, an observation that we will return to later on. Still, the
correlation between relative improvement in accuracy and percentage of non-projective
dependencies is significant for both the arc-eager parser (r = 0.766, p = 0.001) and the
arc-standard parser (r = 0.571, p = 0.02), although clearly not as strong as for the list-
based parser. It therefore seems reasonable to conclude that the non-projective parser in
general can be expected to outperform a strictly projective parser with a margin that is
directly related to the proportion of non-projective dependencies in the data.

Having compared the non-projective, list-based parser to the strictly projective
parsers, we will now scrutinize the results obtained when coupling the projective
parsers with the pseudo-projective parsing technique, as an alternative method for
capturing non-projective dependencies. The overall pattern is that pseudo-projective
parsing improves the accuracy of a projective parser for languages with more than 1%
of non-projective dependencies, as seen from the results for Czech, Dutch, German, and
Portuguese. For these languages, the pseudo-projective parser is never outperformed
by its strictly projective counterpart, and usually does considerably better, although the
improvements for German are again smaller than expected. For Slovene and Turkish,
we find improvement only for two out of three parsers, despite a relatively high share
of non-projective dependencies (1.9% for Slovene, 1.5% for Turkish). Given that Slovene
and Turkish have the smallest training data sets of all languages, this is consistent with
previous studies showing that pseudo-projective parsing is sensitive to data sparseness
(Nilsson, Nivre, and Hall 2007). For languages with a lower percentage of non-projective
dependencies, the pseudo-projective technique seems to hurt performance more often
than not, possibly as a result of decreasing the labeling accuracy, as noted previously.
It is worth noting that Chinese is a special case in this respect. Because there are no
non-projective dependencies in this data set, the projectivized training data set will be
identical to the original one, which means that the pseudo-projective parser will behave
exactly as the projective one.

Comparing non-projective parsing to pseudo-projective parsing, it seems clear that
both can improve parsing accuracy in the presence of significant amounts of non-
projective dependencies, but the former appears to be more stable in that it seldom
or never hurts performance, whereas the latter can be expected to have a negative effect
on accuracy when the amount of training data or non-projective dependencies (or both)
is not high enough. Moreover, the non-projective parser tends to outperform the best
pseudo-projective parsers, both on average and for individual languages. In fact, the
pseudo-projective technique outperforms the non-projective parser only in combination
with the arc-standard, stack-based parsing algorithm, and this seems to be due more to
the arc-standard parsing strategy than to the pseudo-projective technique as such. The
relevant question here is therefore why arc-standard parsing seems to work particularly
well for some languages, with or without pseudo-projective parsing.

Going through the results for individual languages, it is clear that the arc-standard
algorithm has a higher variance than the other algorithms. For Bulgarian, Dutch, and
Spanish, the accuracy is considerably lower than for the other algorithms, in most
cases by more than one percentage point. But for Arabic, Czech, and Slovene, we find
exactly the opposite pattern, with the arc-standard parsers sometimes outperforming
the other parsers by more than two percentage points. For the remaining languages,
the arc-standard algorithm performs on a par with the other algorithms.13 In order to

13 The arc-standard algorithm achieves the highest score also for Chinese, German, and Turkish, but in
these cases only by a small margin.

544

Nivre Deterministic Incremental Dependency Parsing

explain this pattern we need to consider the way in which properties of the algorithms
interact with properties of different languages and the way they have been annotated
syntactically.

First of all, it is important to note that the two list-based algorithms and the arc-
eager variant of the stack-based algorithm are all arc-eager in the sense that an arc (i, l, j)
is always added at the earliest possible moment, that is, in the first configuration where
i and j are the target tokens. For the arc-standard stack-based parser, this is still true for
left dependents (i.e., arcs (i, l, j) such that j < i) but not for right dependents, where an
arc (i, l, j) (i < j) should be added only at the point where all arcs of the form (j, l′, k) have
already been added (i.e., when the dependent j has already found all its dependents).
This explains why the results for the two list-based parsers and the arc-eager stack-
based parser are so well correlated, but it does not explain why the arc-standard strategy
works better for some languages but not for others.

The arc-eager strategy has an advantage in that a right dependent j can be attached
to its head i at any time without having to decide whether j itself should have a right
dependent. By contrast, with the arc-standard strategy it is necessary to decide not only
whether j is a right dependent of i but also whether it should be added now or later,
which means that two types of errors are possible even when the decision to attach j
to i is correct. Attaching too early means that right dependents can never be attached
to j; postponing the attachment too long means that j will never be added to i. None of
these errors can occur with the arc-eager strategy, which therefore can be expected to
work better for data sets where this kind of “ambiguity” is commonly found. In order
for this to be the case, there must first of all be a significant proportion of left-headed
structures in the data. Thus, we find that in all the data sets for which the arc-standard
parsers do badly, the percentage of left-headed dependencies is in the 50–75% range.
However, it must also be pointed out that the highest percentage of all is found in
Arabic (82.9%), which means that a high proportion of left-headed structures may be
a necessary but not sufficient condition for the arc-eager strategy to work better than
the arc-standard strategy. We conjecture that an additional necessary condition is an
annotation style that favors more deeply embedded structures, giving rise to chains
of left-headed structures where each node is dependent on the preceding one, which
increases the number of points at which an incorrect decision can be made by an arc-
standard parser. However, we have not yet fully verified the extent to which this condi-
tion holds for all the data sets where the arc-eager parsers outperform their arc-standard
counterparts.

Although the arc-eager strategy has an advantage in that the decisions involved in
attaching a right dependent are simpler, it has the disadvantage that it has to commit
early. This may either lead the parser to add an arc (i, l, j) (i < j) when it is not correct
to do so, or fail to add the same arc in a situation where it should have been added, in
both cases because the information available at an early point makes the wrong decision
look probable. In the first case, the arc-standard parser may still get the analysis right,
if it also seems probable that j should have a right dependent (in which case it will
postpone the attachment); in the second case, it may get a second chance to add the arc
if it in fact adds a right dependent to j at a later point. It is not so easy to predict what
type of structures and annotation will favor the arc-standard parser in this way, but it
is likely that having many right dependents attached to (or near) the root could cause
problems for the arc-eager algorithms, since these dependencies determine the global
structure and often span long distances, which makes it harder to make correct decisions
early in the parsing process. This is consistent with earlier studies showing that parsers
using the arc-eager, stack-based algorithm tend to predict dependents of the root with

545

Computational Linguistics Volume 34, Number 4

lower precision than other algorithms.14 Interestingly, the three languages for which
the arc-standard parser has the highest improvement (Arabic, Czech, Slovene) have a
very similar annotation, based on the Prague school tradition of dependency grammar,
which not only allows multiple dependents of the root but also uses several different
labels for these dependents, which means that they will be analyzed correctly only if a
RIGHT-ARC transition is performed with the right label at exactly the right point in time.
This is in contrast to annotation schemes that use a default label ROOT, for dependents
of the root, where such dependents can often be correctly recovered in post-processing
by attaching all remaining roots to the special root node with the default label. We
can see the effect of this by comparing the two stack-based parsers (in their pseudo-
projective versions) with respect to precision and recall for the dependency type PRED

(predicate), which is the most important label for dependents of the root in the data sets
for Arabic, Czech, and Slovene. While the arc-standard parser has 78.02% precision and
70.22% recall, averaged over the three languages, the corresponding figures for the arc-
eager parser are as low as 68.93% and 65.93%, respectively, which represents a drop of
almost ten percentage points in precision and almost five percentage points in recall.

Summarizing the results of the accuracy evaluation, we have seen that all four algo-
rithms can be used for deterministic, classifier-based parsing with competitive accuracy.
The results presented are close to the state of the art without any optimization of feature
representations and learning algorithm parameters. Comparing different algorithms,
we have seen that the capacity to capture non-projective dependencies makes a signif-
icant difference in general, but with language-specific effects that depend primarily on
the frequency of non-projective constructions. We have also seen that the non-projective
list-based algorithm is more stable and predictable in this respect, compared to the use
of pseudo-projective parsing in combination with an essentially projective parsing algo-
rithm. Finally, we have observed quite strong language-specific effects for the difference
between arc-standard and arc-eager parsing for the stack-based algorithms, effects that
can be tied to differences in linguistic structure and annotation style between different
data sets, although a much more detailed error analysis is needed before we can draw
precise conclusions about the relative merits of different parsing algorithms for different
languages and syntactic representations.

6.3 Efficiency

Before we consider the evaluation of efficiency in both learning and parsing, it is
worth pointing out that the results will be heavily dependent on the choice of support
vector machines for classification, and cannot be directly generalized to the use of
deterministic incremental parsing algorithms together with other kinds of classifiers.
However, because support vector machines constitute the state of the art in classifier-
based parsing, it is still worth examining how learning and parsing times vary with the
parsing algorithm while parameters of learning and classification are kept constant.

Table 4 gives the results of the efficiency evaluation. Looking first at learning times,
it is obvious that learning time depends primarily on the number of training instances,
which is why we can observe a difference of several orders of magnitude in learning
time between the biggest training set (Czech) and the smallest training set (Slovene)

14 This is shown by Nivre and Scholz (2004) in comparison to the iterative, arc-standard algorithm of
Yamada and Matsumoto (2003) and by McDonald and Nivre (2007) in comparison to the spanning
tree algorithm of McDonald, Lerman, and Pereira (2006).

546

Nivre Deterministic Incremental Dependency Parsing

Table 4
Learning and parsing time for seven parsers on six languages, measured in seconds.
NP-L = non-projective list-based; P-L = projective list-based; PP-L = pseudo-projective list-based;
P-E = projective arc-eager stack-based; PP-E = pseudo-projective arc-eager stack-based; P-S =
projective arc-standard stack-based; PP-S = pseudo-projective arc-standard stack-based.

Learning Time

Language NP-L P-L PP-L P-E PP-E P-S PP-S

Arabic 1,814 614 603 650 647 1,639 1,636
Bulgarian 6,796 2,918 2,926 2,919 2,939 3,321 3,391
Chinese 17,034 13,019 13,019 13,029 13,029 13,705 13,705
Czech 546,880 250,560 248,511 279,586 280,069 407,673 406,857
Danish 2,964 1,248 1,260 1,246 1,262 643 647
Dutch 7,701 3,039 2,966 3,055 2,965 7,000 6,812
German 48,699 16,874 17,600 16,899 17,601 24,402 24,705
Japanese 211 191 188 203 208 199 199
Portuguese 25,621 8,433 8,336 8,436 8,335 7,724 7,731
Slovene 167 78 90 93 99 86 90
Spanish 1,999 562 566 565 565 960 959
Swedish 2,410 942 1,020 945 1,022 1,350 1,402
Turkish 720 498 519 504 516 515 527

Average 105,713 46,849 46,616 51,695 51,876 74,798 74,691

Parsing Time

Language NP-L P-L PP-L P-E PP-E P-S PP-S

Arabic 213 103 131 108 135 196 243
Bulgarian 139 93 102 93 103 135 147
Chinese 1,008 855 855 855 855 803 803
Czech 5,244 3,043 5,889 3,460 6,701 3,874 7,437
Danish 109 66 83 66 83 82 106
Dutch 349 209 362 211 363 253 405
German 781 456 947 455 945 494 1,004
Japanese 10 8 8 9 10 7 7
Portuguese 670 298 494 298 493 437 717
Slovene 69 44 62 47 65 43 64
Spanish 133 67 75 67 75 80 91
Swedish 286 202 391 201 391 242 456
Turkish 218 162 398 162 403 153 380

Average 1,240 712 1,361 782 1,496 897 1,688

for a given parsing algorithm. Broadly speaking, for any given parsing algorithm, the
ranking of languages with respect to learning time follows the ranking with respect
to training set size, with a few noticeable exceptions. Thus, learning times are shorter
than expected, relative to other languages, for Swedish and Japanese, but longer than
expected for Arabic and (except in the case of the arc-standard parsers) for Danish.

However, the number of training instances for the SVM learner depends not only
on the number of tokens in the training set, but also on the number of transitions
required to parse a sentence of length n. This explains why the non-projective list-based
algorithm, with its quadratic complexity, consistently has longer learning times than
the linear stack-based algorithms. However, it can also be noted that the projective, list-
based algorithm, despite having the same worst-case complexity as the non-projective

547

Computational Linguistics Volume 34, Number 4

algorithm, in practice behaves much more like the arc-eager stack-based algorithm and
in fact has a slightly lower learning time than the latter on average. The arc-standard
stack-based algorithm, finally, again shows much more variation than the other algo-
rithms. On average, it is slower to train than the arc-eager algorithm, and sometimes
very substantially so, but for a few languages (Danish, Japanese, Portuguese, Slovene)
it is actually faster (and considerably so for Danish). This again shows that learning time
depends on other properties of the training sets than sheer size, and that some data sets
may be more easily separable for the SVM learner with one parsing algorithm than with
another.

It is noteworthy that there are no consistent differences in learning time between
the strictly projective parsers and their pseudo-projective counterparts, despite the fact
that the pseudo-projective technique increases the number of distinct classes (because of
its augmented arc labels), which in turn increases the number of binary classifiers that
need to be trained in order to perform multi-class classification with the one-versus-one
method. The number of classifiers is m(m−1)

2 , where m is the number of classes, and the
pseudo-projective technique with the encoding scheme used here can theoretically lead
to a quadratic increase in the number of classes. The fact that this has no noticeable effect
on efficiency indicates that learning time is dominated by other factors, in particular the
number of training instances.

Turning to parsing efficiency, we may first note that parsing time is also dependent
on the size of the training set, through a dependence on the number of support vectors,
which tend to grow with the size of the training set. Thus, for any given algorithm, there
is a strong tendency that parsing times for different languages follow the same order as
training set sizes. The notable exceptions are Arabic, Turkish, and Chinese, which have
higher parsing times than expected (relative to other languages), and Japanese, where
parsing is surprisingly fast. Because these deviations are the same for all algorithms, it
seems likely that they are related to specific properties of these data sets. It is also worth
noting that for Arabic and Japanese the deviations are consistent across learning and
parsing (slower than expected for Arabic, faster than expected for Japanese), whereas
for Chinese there is no consistent trend (faster than expected in learning, slower than
expected in parsing).

Comparing algorithms, we see that the non-projective list-based algorithm is slower
than the strictly projective stack-based algorithms, which can be expected from the
difference in time complexity. But we also see that the projective list-based algorithm,
despite having the same worst-case complexity as the non-projective algorithm, in
practice behaves like the linear-time algorithms and is in fact slightly faster on average
than the arc-eager stack-based algorithm, which in turn outperforms the arc-standard
stack-based algorithm. This is consistent with the results from oracle parsing reported in
Nivre (2006a), which show that, with the constraint of projectivity, the relation between
sentence length and number of transitions for the list-based parser can be regarded
as linear in practice. Comparing the arc-eager and the arc-standard variants of the
stack-based algorithm, we find the same kind of pattern as for learning time in that
the arc-eager parser is faster for all except a small set of languages: Chinese, Japanese,
Slovene, and Turkish. Only two of these, Japanese and Slovene, are languages for which
learning is also faster with the stack-based algorithm, which again shows that there is
no straightforward correspondence between learning time and parsing time.

Perhaps the most interesting result of all, as far as efficiency is concerned, is to be
found in the often dramatic differences in parsing time between the strictly projective
parsers and their pseudo-projective counterparts. Although we did not see any clear
effect of the increased number of classes, hence classifiers, on learning time earlier, it is

548

Nivre Deterministic Incremental Dependency Parsing

quite clear that there is a noticeable effect on parsing time, with the pseudo-projective
parsers always being substantially slower. In fact, in some cases the pseudo-projective
parsers are also slower than the non-projective list-based parser, despite the difference
in time complexity that exists at least for the stack-based parsers. This result holds on
average over all languages and for five out of thirteen of the individual languages and
shows that the advantage of linear-time parsing complexity (for the stack-based parsers)
can be outweighed by the disadvantage of a more complex classification problem in
pseudo-projective parsing. In other words, the larger constant associated with a larger
cohort of SVM classifiers for the pseudo-projective parser can be more important than
the better asymptotic complexity of the linear-time algorithm in the range of sentence
lengths typically found in natural language. Looking more closely at the variation in
sentence length across languages, we find that the pseudo-projective parsers are faster
than the non-projective parser for all data sets with an average sentence length above
18. For data sets with shorter sentences, the non-projective parser is more efficient in all
except three cases: Bulgarian, Chinese, and Japanese. For Chinese this is easily explained
by the absence of non-projective dependencies, making the performance of the pseudo-
projective parsers identical to their strictly projective counterparts. For the other two
languages, the low number of distinct dependency labels for Japanese and the low per-
centage of non-projective dependencies for Bulgarian are factors that mitigate the effect
of enlarging the set of dependency labels in pseudo-projective parsing. We conclude
that the relative efficiency of non-projective and pseudo-projective parsing depends
on several factors, of which sentence length appears to be the most important, but
where the number of distinct dependency labels and the percentage of non-projective
dependencies also play a role.

7. Related Work

Data-driven dependency parsing using supervised machine learning was pioneered by
Eisner (1996), who showed how traditional chart parsing techniques could be adapted
for dependency parsing to give efficient parsing with exact inference over a probabilistic
model where the score of a dependency tree is the sum of the scores of individual arcs.
This approach has been further developed in particular by Ryan McDonald and his
colleagues (McDonald, Crammer, and Pereira 2005; McDonald et al. 2005; McDonald
and Pereira 2006) and is now known as spanning tree parsing, because the problem
of finding the most probable tree under this type of model is equivalent to finding
an optimum spanning tree in a dense graph containing all possible dependency arcs.
If we assume that the score of an individual arc is independent of all other arcs, this
problem can be solved efficiently for arbitrary non-projective dependency trees using
the Chu-Liu-Edmonds algorithm, as shown by McDonald et al. (2005). Spanning tree
algorithms have so far primarily been combined with online learning methods such as
MIRA (McDonald, Crammer, and Pereira 2005).

The approach of deterministic classifier-based parsing was first proposed for
Japanese by Kudo and Matsumoto (2002) and for English by Yamada and Matsumoto
(2003). In contrast to spanning tree parsing, this can be characterized as a greedy
inference strategy, trying to construct a globally optimal dependency graph by making
a sequence of locally optimal decisions. The first strictly incremental parser of this kind
was described in Nivre (2003) and used for classifier-based parsing of Swedish by Nivre,
Hall, and Nilsson (2004) and English by Nivre and Scholz (2004). Altogether it has now
been applied to 19 different languages (Nivre et al. 2006, 2007; Hall et al. 2007). Most
algorithms in this tradition are restricted to projective dependency graphs, but it is

549

Computational Linguistics Volume 34, Number 4

possible to recover non-projective dependencies using pseudo-projective parsing
(Nivre and Nilsson 2005). More recently, algorithms for non-projective classifier-based
parsing have been proposed by Attardi (2006) and Nivre (2006a). The strictly deter-
ministic parsing strategy has been relaxed in favor of n-best parsing by Johansson
and Nugues (2006), among others. The dominant learning method in this tradition is
support vector machines (Kudo and Matsumoto 2002; Yamada and Matsumoto 2003;
Nivre et al. 2006) but memory-based learning has also been used (Nivre, Hall, and
Nilsson 2004; Nivre and Scholz 2004; Attardi 2006).

Of the algorithms described in this article, the arc-eager stack-based algorithm is
essentially the algorithm proposed for unlabeled dependency parsing in Nivre (2003),
extended to labeled dependency parsing in Nivre, Hall, and Nilsson (2004), and most
fully described in Nivre (2006b). The major difference is that the parser is now initialized
with the special root node on the stack, whereas earlier formulations had an empty
stack at initialization.15 The arc-standard stack-based algorithm is briefly described in
Nivre (2004) but can also be seen as an incremental version of the algorithm of Yamada
and Matsumoto (2003), where incrementality is achieved by only allowing one left-to-
right pass over the input, whereas Yamada and Matsumoto perform several iterations
in order to construct the dependency graph bottom-up, breadth-first as it were. The
list-based algorithms are both inspired by the work of Covington (2001), although the
formulations are not equivalent. They have previously been explored for deterministic
classifier-based parsing in Nivre (2006a, 2007). A more orthodox implementation of
Covington’s algorithms for data-driven dependency parsing is found in Marinov (2007).

8. Conclusion

In this article, we have introduced a formal framework for deterministic incremental
dependency parsing, where parsing algorithms can be defined in terms of transition
systems that are deterministic only together with an oracle for predicting the next
transition. We have used this framework to analyze four different algorithms, proving
the correctness of each algorithm relative to a relevant class of dependency graphs, and
giving complexity results for each algorithm.

To complement the formal analysis, we have performed an experimental evaluation
of accuracy and efficiency, using SVM classifiers to approximate oracles, and using data
from 13 languages. The comparison shows that although strictly projective dependency
parsing is most efficient both in learning and in parsing, the capacity to produce non-
projective dependency graphs leads to better accuracy unless it can be assumed that
all structures are strictly projective. The evaluation also shows that using the non-
projective, list-based parsing algorithm gives a more stable improvement in this respect
than applying the pseudo-projective parsing technique to a strictly projective parsing
algorithm. Moreover, despite its quadratic time complexity, the non-projective parser is
often as efficient as the pseudo-projective parsers in practice, because the extended set
of dependency labels used in pseudo-projective parsing slows down classification. This
demonstrates the importance of complementing the theoretical analysis of complexity
with practical running time experiments.

Although the non-projective, list-based algorithm can be said to give the best trade-
off between accuracy and efficiency when results are averaged over all languages in the
sample, we have also observed important language-specific effects. In particular, the

15 The current version was first used in the CoNLL-X shared task (Nivre et al. 2006).

550

Nivre Deterministic Incremental Dependency Parsing

arc-eager strategy inherent not only in the arc-eager, stack-based algorithm but also in
both versions of the list-based algorithm appears to be suboptimal for some languages
and syntactic representations. In such cases, using the arc-standard parsing strategy,
with or without pseudo-projective parsing, may lead to significantly higher accuracy.
More research is needed to determine exactly which properties of linguistic structures
and their syntactic analysis give rise to these effects.

On the whole, however, the four algorithms investigated in this article give very
similar performance both in terms of accuracy and efficiency, and several previous
studies have shown that both the stack-based and the list-based algorithms can achieve
state-of-the-art accuracy together with properly trained classifiers (Nivre et al. 2006;
Nivre 2007; Hall et al. 2007).

Acknowledgments
I want to thank my students Johan Hall and
Jens Nilsson for fruitful collaboration and for
their contributions to the MaltParser system,
which was used for all experiments. I also
want to thank Sabine Buchholz, Matthias
Buch-Kromann, Walter Daelemans, Gülşen
Eryiğit, Jason Eisner, Jan Hajič, Sandra
Kübler, Marco Kuhlmann, Yuji Matsumoto,
Ryan McDonald, Kemal Oflazer, Kenji Sagae,
Noah A. Smith, and Deniz Yuret for useful
discussions on topics relevant to this article.
I am grateful to three anonymous reviewers
for many helpful suggestions that helped
improve the final version of the article. The
work has been partially supported by the
Swedish Research Council.

References
Abney, Steven and Mark Johnson. 1991.

Memory requirements and local
ambiguities of parsing strategies. Journal
of Psycholinguistic Research, 20:233–250.

Aho, Alfred V., Ravi Sethi, and Jeffrey D.
Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley,
Reading, MA.

Attardi, Giuseppe. 2006. Experiments
with a multilanguage non-projective
dependency parser. In Proceedings of
the Tenth Conference on Computational
Natural Language Learning (CoNLL-X),
pages 166–170, New York.

Böhmová, Alena, Jan Hajič, Eva Hajičová,
and Barbora Hladká. 2003. The Prague
Dependency Treebank: A three-level
annotation scenario. In Anne Abeillé,
editor, Treebanks: Building and Using
Parsed Corpora. Kluwer Academic
Publishers, Dordrecht, pages 103–127.

Buchholz, Sabine and Erwin Marsi. 2006.
CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of

the Tenth Conference on Computational
Natural Language Learning, pages 149–164,
New York.

Chang, Chih-Chung and Chih-Jen Lin,
2001. LIBSVM: A Library for Support
Vector Machines. Software available
at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.

Cheng, Yuchang, Masayuki Asahara,
and Yuji Matsumoto. 2005. Machine
learning-based dependency analyzer for
Chinese. In Proceedings of International
Conference on Chinese Computing (ICCC),
pages 66–73, Singapore.

Cormen, Thomas H., Charles E. Leiserson,
and Ronald L. Rivest. 1990. Introduction to
Algorithms. MIT Press, Cambridge, MA.

Covington, Michael A. 2001. A fundamental
algorithm for dependency parsing. In
Proceedings of the 39th Annual ACM
Southeast Conference, pages 95–102,
Athens, GA.

Eisner, Jason M. 1996. Three new
probabilistic models for dependency
parsing: An exploration. In Proceedings
of the 16th International Conference on
Computational Linguistics (COLING),
pages 340–345, Copenhagen.

Hajič, Jan, Barbora Vidova Hladka, Jarmila
Panevová, Eva Hajičová, Petr Sgall, and
Petr Pajas. 2001. Prague Dependency
Treebank 1.0. LDC, 2001T10.

Hall, J., J. Nilsson, J. Nivre, G. Eryiğit,
B. Megyesi, M. Nilsson, and M. Saers.
2007. Single malt or blended? A study
in multilingual parser optimization. In
Proceedings of the CoNLL shared task of
EMNLP-CoNLL 2007, pages 933–939,
Prague.

Hall, Johan, Joakim Nivre, and Jens Nilsson.
2006. Discriminative classifiers for
deterministic dependency parsing. In
Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 316–323,
Sydney.

551

Computational Linguistics Volume 34, Number 4

Hudson, Richard A. 1990. English Word
Grammar. Blackwell, Oxford.

Johansson, Richard and Pierre Nugues.
2006. Investigating multilingual
dependency parsing. In Proceedings
of the Tenth Conference on Computational
Natural Language Learning (CoNLL-X),
pages 206–210, New York.

Kalt, Tom. 2004. Induction of greedy
controllers for deterministic treebank
parsers. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing (EMNLP), pages 17–24,
Barcelona.

Kudo, Taku and Yuji Matsumoto. 2002.
Japanese dependency analysis using
cascaded chunking. In Proceedings of the
Sixth Workshop on Computational Language
Learning (CoNLL), pages 63–69, Taipei.

Marcus, Mitchell P. 1980. A Theory of Syntactic
Recognition for Natural Language. MIT
Press, Cambridge, MA.

Marcus, Mitchell P., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19:313–330.

Marcus, Mitchell P., Beatrice Santorini,
Mary Ann Marcinkiewicz, Robert
MacIntyre, Ann Bies, Mark Ferguson,
Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating
predicate-argument structure. In
Proceedings of the ARPA Human Language
Technology Workshop, pages 114–119,
Plainsboro, NJ.

Marinov, S. 2007. Covington variations. In
Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 1144–1148,
Prague.

McDonald, Ryan, Koby Crammer, and
Fernando Pereira. 2005. Online
large-margin training of dependency
parsers. In Proceedings of the 43rd
Annual Meeting of the Association for
Computational Linguistics (ACL),
pages 91–98, Ann Arbor, MI.

McDonald, Ryan, Kevin Lerman, and
Fernando Pereira. 2006. Multilingual
dependency analysis with a two-stage
discriminative parser. In Proceedings
of the Tenth Conference on Computational
Natural Language Learning (CoNLL),
pages 216–220.

McDonald, Ryan and Joakim Nivre. 2007.
Characterizing the errors of data-driven
dependency parsing models. In Proceedings
of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and

Computational Natural Language Learning
(EMNLP-CoNLL), pages 122–131, Prague.

McDonald, Ryan and Fernando Pereira.
2006. Online learning of approximate
dependency parsing algorithms. In
Proceedings of the 11th Conference of the
European Chapter of the Association for
Computational Linguistics (EACL),
pages 81–88, Trento.

McDonald, Ryan, Fernando Pereira,
Kiril Ribarov, and Jan Hajič. 2005.
Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of
the Human Language Technology Conference
and the Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP),
pages 523–530, Vancouver.

Mel’čuk, Igor. 1988. Dependency Syntax:
Theory and Practice. State University of
New York Press, New York.

Nilsson, Jens, Joakim Nivre, and Johan Hall.
2007. Generalizing tree transformations
for inductive dependency parsing. In
Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics
(ACL), pages 968–975, Prague.

Nivre, Joakim. 2003. An efficient algorithm
for projective dependency parsing.
In Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT),
pages 149–160, Nancy.

Nivre, Joakim. 2004. Incrementality in
deterministic dependency parsing. In
Proceedings of the Workshop on Incremental
Parsing: Bringing Engineering and Cognition
Together (ACL), pages 50–57, Barcelona.

Nivre, Joakim. 2006a. Constraints on
non-projective dependency graphs.
In Proceedings of the 11th Conference
of the European Chapter of the Association
for Computational Linguistics (EACL),
pages 73–80, Trento.

Nivre, Joakim. 2006b. Inductive Dependency
Parsing. Springer, Dordrecht.

Nivre, Joakim. 2007. Incremental
non-projective dependency parsing. In
Proceedings of Human Language Technologies:
The Annual Conference of the North American
Chapter of the Association for Computational
Linguistics (NAACL HLT), pages 396–403,
Rochester, NY.

Nivre, Joakim, Johan Hall, and Jens Nilsson.
2004. Memory-based dependency parsing.
In Proceedings of the 8th Conference on
Computational Natural Language Learning
(CoNLL), pages 49–56, Boston, MA.

Nivre, Joakim, Johan Hall, Jens Nilsson,
Atanas Chanev, Gülşen Eryiǧit, Sandra
Kübler, Svetoslav Marinov, and

552

Nivre Deterministic Incremental Dependency Parsing

Erwin Marsi. 2007. MaltParser: A
language-independent system for
data-driven dependency parsing.
Natural Language Engineering, 13:95–135.

Nivre, Joakim, Johan Hall, Jens Nilsson,
Gülsen Eryiğit, and Svetoslav Marinov.
2006. Labeled pseudo-projective
dependency parsing with support
vector machines. In Proceedings of
the Tenth Conference on Computational
Natural Language Learning (CoNLL),
pages 221–225, New York, NY.

Nivre, Joakim and Jens Nilsson. 2005.
Pseudo-projective dependency parsing.
In Proceedings of the 43rd Annual Meeting
of the Association for Computational
Linguistics (ACL), pages 99–106,
Ann Arbor, MI.

Nivre, Joakim and Mario Scholz. 2004.
Deterministic dependency parsing
of English text. In Proceedings of the
20th International Conference on
Computational Linguistics (COLING),
pages 64–70, Geneva.

Ratnaparkhi, Adwait. 1997. A linear
observed time statistical parser based
on maximum entropy models. In
Proceedings of the Second Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 1–10,
Providence, RI.

Ratnaparkhi, Adwait. 1999. Learning to
parse natural language with maximum

entropy models.Machine Learning,
34:151–175.

Sagae, Kenji and Alon Lavie. 2005. A
classifier-based parser with linear
run-time complexity. In Proceedings of the
9th International Workshop on Parsing
Technologies (IWPT), pages 125–132,
Vancouver.

Sagae, Kenji and Alon Lavie. 2006. A
best-first probabilistic shift-reduce
parser. In Proceedings of the COLING/ACL
2006 Main Conference Poster Sessions,
pages 691–698, Sydney.

Sgall, Petr, Eva Hajičová, and Jarmila
Panevová. 1986. The Meaning of the Sentence
in Its Pragmatic Aspects. Reidel, Dordrecht.

Shieber, Stuart M. 1983. Sentence
disambiguation by a shift-reduce parsing
technique. In Proceedings of the 21st
Conference on Association for Computational
Linguistics (ACL), pages 113–118,
Cambridge, MA.

Shieber, Stuart M., Yves Schabes, and
Fernando C. N. Pereira. 1995. Principles
and implementation of deductive parsing.
Journal of Logic Programming, 24:3–36.

Tesnière, Lucien. 1959. Éléments de syntaxe
structurale. Editions Klincksieck, Paris.

Yamada, Hiroyasu and Yuji Matsumoto.
2003. Statistical dependency analysis with
support vector machines. In Proceedings of
the 8th International Workshop on Parsing
Technologies (IWPT), pages 195–206, Nancy.

553

