
Squibs

Reliability Measurement without Limits

Dennis Reidsma∗

University of Twente

Jean Carletta∗∗

University of Edinburgh

In computational linguistics, a reliability measurement of 0.8 on some statistic such as κ is
widely thought to guarantee that hand-coded data is fit for purpose, with 0.67 to 0.8 tolerable,
and lower values suspect. We demonstrate that the main use of such data, machine learning, can
tolerate data with low reliability as long as any disagreement among human coders looks like
random noise. When the disagreement introduces patterns, however, the machine learner can
pick these up just like it picks up the real patterns in the data, making the performance figures
look better than they really are. For the range of reliability measures that the field currently
accepts, disagreement can appreciably inflate performance figures, and even a measure of 0.8 does
not guarantee that what looks like good performance really is. Although this is a commonsense
result, it has implications for how we work. At the very least, computational linguists should
look for any patterns in the disagreement among coders and assess what impact they will have.

1. Introduction

In computational linguistics, 0.8 is often regarded as some kind of magical reliability
cut-off guaranteeing the quality of hand-coded data (e.g., Reithinger and Kipp 1998;
Shriberg et al. 1998; Galley et al. 2004), with 0.67 to 0.8 tolerable—although it is as
often honored in the breech as in the observance. The argument for the meaning of
0.8 arises originally from Krippendorff (1980, page 147), in a comment about practice
in the field of content analysis. He states that correlations found between two variables
using their hand-coded values “tend to be insignificant” when the hand-codings have
a reliability below 0.8. He uses a specific reliability statistic, α, for his measurements,
but Carletta (1996) implicitly assumes kappa-like metrics are similar enough in practice
for the rule of thumb to apply to them as well. A detailed discussion on the differences
and similarities of these, and other, measures is provided by Krippendorff (2004); in this
article we will use Cohen’s κ (1960) to investigate the value of the 0.8 reliability cut-off
for computational linguistics.

Modern computational linguists use data in a completely different way from 1970s
content analysts. Rather than correlating two variables, we use hand-coded data as

∗ University of Twente, Human Media Interaction, Room ZI2067, PO Box 217, NL-7500 AE Enschede,
The Netherlands, D.Reidsma@utwente.nl.

∗∗ University of Edinburgh, Human Communication Research Centre, J.Carletta@ed.ac.uk.

Submission received: 4 September 2007; revised submission received: 20 December 2007; accepted for
publication: 6 April 2008.

© 2008 Association for Computational Linguistics



Computational Linguistics Volume 34, Number 3

training and test material for automatic classifiers. The 0.8 rule of thumb is irrelevant
for this purpose, because classifiers will be affected by disagreement differently than
correlations. Furthermore, Krippendorff’s argument comes with a caveat: the disagree-
ment must be due to random noise. For his case of correlations, any patterns in the
disagreement could accidentally bolster the relationship perceived in the data, leading
to false results. To be sure that data is fit for the intended purpose, Krippendorff advises
the analyst to look for structure in the disagreement and consider how it might affect
data use. Although computational linguists have rarely followed this advice, it is just
as relevant to us. Machine-learning algorithms are designed specifically to look for, and
predict, patterns in noisy data. In theory, this makes random disagreement unimportant.
More data will yield more signal and the learner will ignore the noise. However, as
Craggs and McGee Wood (2005) suggest, this also makes systematic disagreement
dangerous, because it provides an unwanted pattern for the learner to detect. We
demonstrate that machine learning can tolerate data with a low reliability measurement
as long as the disagreement looks like random noise, and that when it does not, data
can have a reliability measure commonly held to be acceptable but produce misleading
results.

2. Method

To explain what is wrong with using 0.8 as a cut-off, we need to think about how data
is used for classification tasks. Consider Figure 1, which shows a relation between some
features A and a class label B. Learning labels from a set of features is a common task
in computational linguistics; for instance, in Shriberg et al. (1998), which assumes a
pre-existing dialogue act segmentation, the labels are dialogue act types, and they are
learned from automatically derived prosodic features. In this way of using data, only
one of the variables—the output dialogue act label—is hand-coded. In the figure, the
real relationship between prosody and dialogue act label is shown on the left; R relates
the prosodic features A to the output act B.

Figure 1
Hand-coded target labels are used to train classifiers to automatically predict those labels
from features.

320



Reidsma and Carletta Reliability Measurement without Limits

In theory, there is one correct label for any given act. However, in practice hu-
man coders disagree, choosing different labels for the same act (sometimes even with
divergences that make one question whether there is one correct answer). The data
actually available for analysis is shown in the middle of the figure. Here, the automatic
features, A, are the same as before, but there are multiple, possibly differing labels
for the same act, Bobs, coming from different human annotators. Finally, on the right
the figure shows the classifier. It takes the same prosodic features A and uses them to
predict a dialogue act label Bpred on new data, using the relationship learned from the
observed data, RML. Projects vary in how they choose data from which to build the
classifier when coders disagree, but whatever they do is colored by the observations
they have available to them. We often think of reliability assessment as telling us how
much disagreement there is among the human coders, but the real issue is how their
individual interpretations of the coding scheme make RML differ from R.

There is a problem that arises for anyone using this methodology. Without the
“real” data, it is impossible to judge how well the learned relationship reflects the real
one. Classification performance for Bpred can only be calculated with respect to the “ob-
served” data Bobs. In this article, we surmount this problem by simulating the real world
so that we can measure the differences between this “observed” performance and the
“real” performance. Our simulation uses a Bayesian network (Pearl 1988) to create an
initial, “real” data set with 3,000 samples of features (A) and their corresponding target
labels (B). For simplicity, we use a single five-valued feature and five possible labels.
The relative label frequencies vary between 17% and 25%. This gives us a small amount
of variation around what is essentially equally distributed data. We corrupt the labels
(B) to simulate the “hand-coded” observed data (Bobs) corresponding to the output of
a human coder, and then train a neural network constructed using the WEKA toolkit
(Witten and Frank 2005) on 2,000 samples from Bobs. Finally, we calculate the neural
network’s performance twice, using as test data either the remaining 1,000 samples from
Bobs or the initial, “real” versions of those same 1,000 samples.

There are three ways in which we need to vary our simulation in order to be sys-
tematic. The first is in the strength of the relationship between the features the machine
learner takes as input and the target labels, which we achieve simply by changing the
probabilities in the Bayesian network that creates the data set. In the simulation, we
vary the strength of the relationship in eight graded steps.1 The second is in the amount
of disagreement we introduce when we create the observed data (Bobs). We create 200
different versions of the hand-coded data that cover a range of values from κ = 0 to

1 We use Cramer’s phi to measure the strength of a relationship. Cramer’s phi is defined as

φc =

√
χ2

(N) ∗ dfsmaller

with N the number of samples and dfsmaller the smallest degree of freedom of the two involved variables,
and is a measure of association for nominal variables with more than two values. It can be “considered
like a correlation coefficient” (Aron and Aron 2003) that takes data set size into account and can easily
be derived for a Bayesian network from the priors and the conditional probability tables. We varied
the strength of the network between φc = 0.06 and φc = 0.45. Following Cohen (1988), for a five-way
distinction Aron and Aron (page 527) would consider 0.06 to represent a small real relationship—that
is, one with not much effect—and 0.3, a large one. Thus we describe 0.06 as “weak,” 0.45 as “very
strong,” and intermediate points as “moderate” and “strong.” It is an open question what strengths
of relationships actually occur in computational linguistics data, although there may be no point in
learning a relationship that’s too strong.

321



Computational Linguistics Volume 34, Number 3

Figure 2
Machine-learning performance obtained on annotations with noise-like disagreements for (a)
weak (φc = 0.06), (b) moderate (φc = 0.20), (c) strong (φc = 0.32), and (d) very strong (φc = 0.45)
relationships between the features and labels.

κ = 1, by introducing a varying amount of observation errors in the simulated coding
process.2 The third is in the type of disagreement with which we degrade the real data
to create the observed data (Bobs), representing the types of coding errors the human
annotators make. Again for simplicity, we describe the effects of both random errors
and the overuse of a single coding label.

3. The Case of Noise

Figure 2 shows how a neural network performs when coders make random mistakes
in their coding task, that is, for noise-like disagreement, for the cases of (a) weak, (b)
moderate, (c) strong, and (d) very strong relationships between the features (A) and
labels (B). Here, the y axis shows “accuracy,” or the percentage of samples in the test

2 To calculate κ for a specific simulated coding we generate two copies of additional “real” data that has
not been used for training or testing, apply the same simulated human annotator to one copy, and a
second annotator who makes the same number of “mistakes” to the other copy. This mimics the
common practice of having one annotator code the data, with a second annotator coding enough to
test the reliability.

322

http://www.mitpressjournals.org/action/showImage?doi=10.1162/coli.2008.34.3.319&iName=master.img-000.jpg&w=371&h=309


Reidsma and Carletta Reliability Measurement without Limits

data for which the network chooses the correct label. The x axis varies the amount of
coder errors in the data to correspond to different κ values, with the two black lines
marking the values of κ = 0.67 and κ = 0.8.

Look first at the series depicted as a line. It shows accuracy measured by using
the “observed” version of the test data, which is how testing is normally done. For each
relationship strength, as κ increases, so does accuracy. In all cases, at κ = 0 (that is, when
the coders fail to agree beyond what one would expect if they were all choosing their
labels randomly) accuracy is at 20%, which is what one would expect if the classifier
were choosing randomly as well. For any given κ value, the stronger the underlying
relationship, the more benefit the neural network can derive from the data. Now look
at the other of the two series, depicted as small squares. It shows accuracy measured
by using the “real” version of the data. Interestingly, the “real” performance, that is, the
power of the learned model to predict reality, is higher than performance as measured
against the observed data. This is because for some samples, the classifier’s predictions
are correct, but because the observations contain errors, the test data actually gets
them wrong. The stronger the relationship in the real data, the more marked this effect
becomes. The neural network is able to disregard noise-like coding errors at very low
κ values simply because the errors contain no patterns for it to learn.

4. The Case of Overusing a Label

Now consider the case where instead of random coding errors, the coder over-uses
the least frequent one of the five labels for B. Figure 3 shows the results for this kind
of coding error. Remember that in the graphs, the series depicted as a line shows the
observed performance of the classifier—that is, performance as it is usually measured.
The two black lines again mark the κ values of interest (κ = 0.67 and κ = 0.8).

The graphs show an entirely different effect from the one obtained for noise-like
coding errors: For lower values of κ, the observed performance is spuriously high. This
makes perfect sense—κ is low when the pattern of label overuse is strong, and the neural
network picks it up. When the observed data is used to test performance, some of the
samples match not because the classifier gets the label right, but because it overuses
the same label as the human coder. For data with a very strong correlation between the
input features A and the output labels B, the turning point below which performance
is spuriously high occurs at around κ = 0.55 (Figure 3d), a value the community holds
to be pretty low but which is not unknown in published work. However, when the
underlying relationship to be learned is moderate or strong (Figures 3b and 3c), the
spuriously high results already occur for κ values commonly held to be tolerable. With
a weak relationship, the turning point can occur at κ > 0.8 (Figure 3a).

5. Discussion

Our simulation highlights a danger for current practice in computational linguistics,
among other fields. Overuse of a label is a realistic type of error for human annotators
to make. For instance, imagine a coding scheme for dialogue acts that distinguishes
backchannel utterances from utterances which indicate agreement. In data containing
many utterances where the speech consists of “Yeah,” individual coders can easily have
a marked bias for either one of these two categories. Clearly, in actual coding, not all
disagreement will be of one type, but will contain a mix of different systematic and
noise-like errors. In addition, the underlying relationships that our systems attempt to

323



Computational Linguistics Volume 34, Number 3

Figure 3
Machine-learning performance obtained on annotations that suffered from over-coding for (a)
weak (φc = 0.06), (b) moderate (φc = 0.20), (c) strong (φc = 0.32), and (d) very strong (φc = 0.45)
relationships between the features and labels.

learn vary in strength. This makes discerning the degree of danger more difficult, but
does not change the substance of our argument.

Although the graphs we show are for a specific simulation, the general pattern we
describe is robust. In particular, using α in place of κ does not markedly change the
results; neither does increasing or decreasing the data set size. Our simulations and
results are presented for a machine-learning context. However, that does not mean that
other types of data use are immune to the problems we describe here. Other statistical
uses of data will be affected in their own ways by the difference between structural and
noise-like disagreement.

6. Implications

At the moment, much of the effort we devote to reliability measurement as a community
is used to establish one or more overall reliability statistics for our data sets and to argue
about which reliability statistic is most appropriate. Methodological discussions focus
on questions such as how to force annotated data structures into the mathematical form
necessary to calculate κ, or what effects certain aspects of the annotation have on the
values of some metric rather than on possible uses of the resulting data (Marcu, Amorrortu,

324

http://www.mitpressjournals.org/action/showImage?doi=10.1162/coli.2008.34.3.319&iName=master.img-001.jpg&w=371&h=308


Reidsma and Carletta Reliability Measurement without Limits

and Romera 1999; Di Eugenio and Glass 2004; Artstein and Poesio 2005). Computational
linguists are of course aware that no overall reliability measure can give a complete
story, but often fail to spend time analyzing coder disagreements further. Unfortunately,
our results suggest that current practice is insufficient, at least where the data is destined
to be input for a machine-learning process and quite possibly for other data uses as
well. This complements observations of Artstein and Poesio: Besides the fact that many
different ways of calculating reliability metrics lead to different values, which makes
comparing them to a threshold difficult (Artstein and Poesio in press), the very idea
of having any such single threshold in the first place turns out to be impossible to
hold. Instead of worrying about exactly how much disagreement there is in a data
set and how to measure it, we should be looking at the form the disagreement takes.
A headline measurement, no matter how it is expressed, will not show the difference
between noise-like and systematic disagreement, but this difference can be critical for
establishing whether or not a data set is fit for the purpose for which it is intended.

To tease out what sort of disagreement a data set contains, Krippendorff suggests
calculating odd-man-out and per-class reliability to find out which class distinctions are
problematic (1980, page 150). Bayerl and Paul (2007) discuss methods for determining
which factors (schema changes, coding team changes, etc.) were involved in causing
poor annotation quality. Wiebe, Bruce, and O’Hara (1999) suggest looking at the mar-
ginals and how they differ between coders to find indications of whether disagreements
are caused by systematic bias (as opposed to being random) and in which classes
they occur. Although clearly useful techniques, none of these diagnostics is specifically
designed to address the needs of machine learners which are designed to recognize pat-
terns. Overusing a label is just one simple example of a type of systematic disagreement
that adds unwanted patterns that a machine learner can find. Any spurious pattern
could be a problem. For this reason, we should be looking specifically for patterns in
the disagreement itself.

Our suggestion for one possible diagnostic technique is based on the following
observation: If the disagreements between two coders contain no pattern, any test for
association or correlation, when performed on only the disagreed items, should show
no relation between the labels assigned by the two coders. For certain patterns in the
disagreement, however, a correlation would show up. (To see this, consider the case
where one coder tends to label rhetorical questions as yes/no-questions and the other
coder assigns both labels correctly: If this happens often enough, tests for association
would come up with a relation between the labels for the two coders for the disagreed
items.) If the test shows a correlation, the disagreements add patterns for the machine
learner to find. Unfortunately, the converse does not necessarily hold: It is possible
that not all patterns that could be picked up by a machine learner will show up in
correlations between disagreed items, for example because the amount of multiply-
annotated data is too small. The computational linguistics community therefore needs
to develop additional diagnostics for patterns in the coder disagreements.

It should go without saying that analysts will benefit from keeping how they
intend to use the data firmly in mind at all times. As Krippendorff (2004, page 429)
recommends, one should test reliability for the “distinctions that matter” and perform
“suitable experiments of the effects of unreliable data on the conclusions.” Patterns
found for an overall coding scheme will not always affect every possible data use. For
instance, we often build classifiers not for complete coding schemes, but for some subset
of the labels or some “class map” that transforms the scheme into a smaller set of classes.
In these cases, what is important is disagreement for the subset or transformation, not
the entire scheme. Similarly, where classifier performance is reported per class, the

325



Computational Linguistics Volume 34, Number 3

reliability for that particular label will be the most important. Finally, different machine-
learning algorithms may react differently to different kinds of patterns in the data and
to combinations of patterns in different relative strengths. In complicated cases, perhaps
the safest way to assess whether or not there is a problem with systematic disagreement
is to run a simulation like the one we have reported but with the kind and scale of
disagreement suspected of the data, and to use that to estimate the possible effects of
unreliable data on the performance of machine-learning algorithms.

Acknowledgments
We thank Rieks op den Akker, Ron Artstein,
and Bonnie Webber for discussions that have
helped us frame this article, as well as the
anonymous reviewers for their thoughtful
comments. This work is supported by the
European IST Programme Project FP6-033812
(AMIDA, publication 36). This article only
reflects the authors’ views and funding
agencies are not liable for any use that may
be made of the information contained herein.

References
Aron, Arthur and Elaine N. Aron. 2003.

Statistics for Psychology. Prentice Hall,
Upper Saddle River, NJ.

Artstein, Ron and Massimo Poesio. 2005.
Bias decreases in proportion to the number
of annotators. In Proceedings of FG-MoL
2005, pages 141–150, Edinburgh.

Artstein, Ron and Massimo Poesio. In press.
Inter-coder agreement for computational
linguistics. Computational Linguistics.

Bayerl, Petra Saskia and Karsten Ingmar
Paul. 2007. Identifying sources of
disagreement: Generalizability theory
in manual annotation studies.
Computational Linguistics, 33(1):3–8.

Carletta, Jean C. 1996. Assessing agreement
on classification tasks: The kappa statistic.
Computational Linguistics, 22(2):249–254.

Cohen, Jacob. 1960. A coefficient of
agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46.

Cohen, Jacob. 1988. Statistical power analysis
for the behavioral sciences, 2nd edition.
Lawrence Erlbaum, Hillsdale, NJ.

Craggs, Richard and Mary McGee Wood.
2005. Evaluating discourse and dialogue
coding schemes. Computational Linguistics,
31(3):289–296.

Di Eugenio, Barbara and Michael Glass.
2004. The kappa statistic: A second look.
Computational Linguistics, 30(1):95–101.

Galley, Michel, Kathleen McKeown, Julia
Hirschberg, and Elizabeth Shriberg.
2004. Identifying agreement and
disagreement in conversational speech:

Use of Bayesian networks to model
pragmatic dependencies. In Proceedings
of the 42nd Meeting of the Association for
Computational Linguistics (ACL–04),
pages 669–676, Barcelona.

Krippendorff, Klaus. 1980. Content Analysis:
An Introduction to its Methodology,
volume 5 of The Sage CommText Series.
Sage Publications, London.

Krippendorff, Klaus. 2004. Reliability
in content analysis. Some common
misconceptions and recommendations.
Human Communication Research,
30(3):411–433.

Marcu, Daniel, Estibaliz Amorrortu, and
Magdalena Romera. 1999. Experiments in
constructing a corpus of discourse trees.
In Marilyn Walker, editor, Towards
Standards and Tools for Discourse Tagging:
Proceedings of the Workshop. Association
for Computational Linguistics, Somerset,
NJ, pages 48–57.

Pearl, Judea. 1988. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers
Inc., San Francisco, CA.

Reithinger, Norbert and Michael Kipp.
1998. Large scale dialogue annotation in
Verbmobil. In Workshop Proceedings of
ESSLLI 98, pages 1–6, Saarbrücken.

Shriberg, Elizabeth, Rebecca Bates, Paul
Taylor, Andreas Stolcke, Daniel Jurafsky,
Klaus Ries, Noah Coccaro, Rachel
Martin, Marie Meteer, and Carol Van
Ess-Dykema. 1998. Can prosody aid the
automatic classification of dialog acts in
conversational speech? Language and
Speech, 41(3-4):443–492.

Wiebe, Janyce M., Rebecca F. Bruce, and
Thomas P. O’Hara. 1999. Development
and use of a gold-standard data set
for subjectivity classifications. In
Proceedings of the 37th Annual Meeting
of the Association for Computational
Linguistics, pages 246–253, Morristown, NJ.

Witten, Ian H. and Eibe Frank. 2005. Data
Mining: Practical Machine Learning Tools and
Techniques, 2nd edition. Morgan Kaufmann,
San Francisco, CA.

326





This article has been cited by:

1. Ron Artstein, Massimo Poesio. 2008. Inter-Coder Agreement for Computational Linguistics.
Computational Linguistics 34:4, 555-596. [Abstract] [PDF] [PDF Plus]

http://dx.doi.org/10.1162/coli.07-034-R2
http://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-034-R2
http://www.mitpressjournals.org/doi/pdfplus/10.1162/coli.07-034-R2

