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An important problem in knowledge discovery from text is the automatic extraction of semantic
relations. This paper presents a supervised, semantically intensive, domain independent ap-
proach for the automatic detection of part–whole relations in text. First an algorithm is described
that identifies lexico-syntactic patterns that encode part–whole relations. A difficulty is that these
patterns also encode other semantic relations, and a learning method is necessary to discriminate
whether or not a pattern contains a part–whole relation. A large set of training examples have
been annotated and fed into a specialized learning system that learns classification rules. The
rules are learned through an iterative semantic specialization (ISS) method applied to noun
phrase constituents. Classification rules have been generated this way for different patterns such
as genitives, noun compounds, and noun phrases containing prepositional phrases to extract
part–whole relations from them. The applicability of these rules has been tested on a test corpus
obtaining an overall average precision of 80.95% and recall of 75.91%. The results demonstrate
the importance of word sense disambiguation for this task. They also demonstrate that different
lexico-syntactic patterns encode different semantic information and should be treated separately
in the sense that different clarification rules apply to different patterns.

1. Introduction

The identification of semantic relations in text is at the core of Natural Language
Processing and many of its applications. Detecting semantic relations between various
text segments, such as phrases, sentences, and discourse spans, is important for auto-
matic text understanding (Rosario, Hearst, and Fillmore 2002; Lapata 2002; Morris and
Hirst 2004). Furthermore, semantic relations represent the core elements in the organi-
zation of lexical semantic knowledge bases intended for inference purposes. Recently,
there has been a renewed interest in text semantics as evidenced by the international
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participation in the Senseval 3 Semantic Roles competition,1 the associated workshops,2

and numerous other workshops.
An important semantic relation for many applications is the part–whole relation, or

meronymy. Let us notate the part–whole relation as PART(X, Y), where X is part of Y. For
example, the compound nominal door knob contains the part–whole relation PART(knob,
door). Part–whole relations occur frequently in text and are expressed by a variety of
lexical constructions as illustrated in the text below.

(1) The car’s mail messenger is busy at work in the mail car as the train moves
along. Through the open side door of the car, moving scenery can be seen.
The worker is alarmed when he hears an unusual sound. He peeks
through the door’s keyhole leading to the tender and locomotive cab and sees
the two bandits trying to break through the express car door.3

There are several part–whole relations in this text: 1) the mail car is part of the train,
2) the side door is part of the car, 3) the keyhole is part of the door, 4) the cab is part of the
locomotive, 5) the tender is part of the train, 6) the locomotive is part of the train, 7) the door
is part of the car, and 8) the car is part of the express train (in the compound noun express
car door).

This paper provides a supervised, knowledge-intensive method for the automatic
detection of part–whole relations in English texts. Based on a set of positive (encoding
meronymy) and negative (not encoding meronymy) training examples provided and
annotated by us, the algorithm creates a decision tree and a set of rules that classify
new data. The rules produce semantic conditions that the noun constituents matched
by the patterns must satisfy in order to exhibit a part–whole relation. For the dis-
covery of classification rules we used C4.5 decision tree learning (Quinlan 1993). The
learned function is represented by a decision tree transformed into a set of if–then
rules. The decision tree learning searches a complete hypothesis space from simple to
complex hypotheses until it finds a hypothesis consistent with the data. Its bias is a
preference for the shorter tree that places high information gain attributes closer to the
root.

For training purposes we used WordNet, and the LA Times (TREC9)4 and SemCor
1.75 text collections. From these we formed a large corpus of 27,963 negative examples
and 29,134 positive examples of well distributed subtypes of part–whole relationships
which provided a comprehensive set of classification rules. The rules were tested on

1 http://www.senseval.org/senseval3.
2 The Computational Lexical Semantics Workshop at the 2004 Human Language Technology

(HLT/NAACL) conference; the first and second Workshops on Text Meaning and Interpretation at the
HLT/NAACL-03 and the 2004 Association for Computational Linguistics conference (ACL), respectively;
the first and second Workshops on Multiword Expressions at ACL 2003 and 2004; the ACL 2005
Workshop on Deep Lexical Acquisition.

3 This example is an excerpt from a review of the 1903 movie “The Great Train Robbery”
(http://filmsite.org/grea.html).

4 TREC 9 is a text collection provided by NIST for the Question Answering competition (TREC-QA) at the
TExt Retrieval Conference in 2000. It contains 3 GBytes of news articles from the Wall Street Journal,
Financial Times, LA Times, Financial Report, AP Newswire, San Jose Mercury News, and Foreign
Broadcast Information Center from 1989 to 1994.

5 The SemCor collection (Miller et al., 1993) is a subset of the Brown Corpus and consists of 352 news
articles distributed into three sets in which the nouns, verbs, adverbs, and adjectives have been manually
tagged with their corresponding WordNet senses and part-of-speech tags using Brill’s tagger (1995).
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two different text collections (LA Times and Wall Street Journal) obtaining an overall
average precision of 80.95% and recall of 75.91%.

In this paper we do not distinguish between situations when whole objects consist
of parts that are always present, or parts that are only sometimes present. For example,
it might be relatively easy to pin down the parts of a car (e.g., four wheels, one engine,
as ever present parts of a car irrespective of its type) as compared to enumerating all
the components of a sandwich (e.g., two layers of cheese and/or salami, two slices of bread,
that depend on the type of sandwich). In our experiments we focus only on part–whole
instances that are mentioned in the corpus employed and on those provided by general-
purpose lexical knowledge bases such as WordNet,6 whether the parts are just sometimes
constituents of the entity considered or are always present. We do not check for the
validity of these instances (e.g., whether the instance ”wood is part of a sandwich” is true
or not). Based on a large training corpus of positive and negative part–whole examples,
our system infers what type of objects are parts and wholes. Also, our system does not
take into consideration modality information such as knowledge about the possibility,
certainty, or probability of existence of part–whole relations.

The paper is organized as follows. Section 2 presents a summary of previous
work on meronymy from several perspectives. Section 3 gives a detailed classifica-
tion of the lexico-syntactic patterns used to express meronymy in English texts and
a procedure for finding these patterns. Section 4 describes a method for learning
semantic classification rules, while Section 5 shows the results obtained for discov-
ering the part–whole relations by applying the classification rules on two distinct
test corpora. Section 6 comments on the method’s limitations and extensions, and
Section 7 discusses the relevance of the task to NLP applications. Conclusions are
offered in Section 8.

2. Previous Work on Meronymy

Historically, part–whole or meronymy relations have played an important role in lin-
guistics, philosophy, and psychology mainly because a clear understanding of part–
whole relations requires a deep interaction of logic, semantics, and pragmatics as they
provide the tools needed for our understanding of the world. The part–whole rela-
tion has been considered a fundamental ontological relation since the atomists (Plato,
Aristotle, and the Scholastics). They were the first to give a systematic characterization
of parts and wholes, the relation between them, and the inheritance properties of this
relation. However, most of the investigations of part–whole relations have been made
since the beginning of the 20th century.

The logical/philosophical studies of meronymy were concerned with formal theo-
ries of parts (mereologies), wholes, and their relation in the context of formal ontology.
This school of thought advocates a single, universal, and transitive part-of relation used
for modeling various domains such as time and space.

Simons (1986) criticized this standard extensional view and proposed a more
adequate account that offers an axiomatic representation of the part-of relation as a
strict partial-ordering relation. The axioms considered were: existence (if A is a part of
B then both A and B exist), asymmetry (if A is a part of B then B is not a part of A),
supplementarity (if A is a part of B then B has a part C disjoint of A), and transitivity (if

6 For example, in WordNet 1.7 the only part listed for the concept sandwich is bread.
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A is a part of B and B is a part of C then A is a part of C). In 1991, Simons (1991) added
two more axioms: extensionality (objects with the same parts are identical) and existence
of mereological sum (for any number of objects there exists a whole that consists exactly
of those objects).

Linguistics and cognitive psychology researchers focused on different part–whole
relations and their role as semantic primitives. Since there are different ways in which
something can be expressed as part of something else, many researchers have claimed
that meronymy is a complex relation that “should be treated as a collection of relations,
not as a single relation” (Iris, Litowitz, and Evens 1988).

Based on psycholinguistic experiments and the way in which the parts contribute
to the structure of the wholes, Winston, Chaffin, and Hermann (1987) determined
six types of part–whole relations: (1) COMPONENT–INTEGRAL OBJECT, (2) MEMBER–
COLLECTION, (3) PORTION–MASS, (4) STUFF–OBJECT, (5) FEATURE–ACTIVITY, and (6)
PLACE–AREA.

They also proposed three relation elements ( functional, homeomerous, and separable) to
further classify the six types of meronymy relations. The functional relational element
indicates that the part has a function with respect to its whole, whereas homeomerous
means that the part is identical to the other parts making up the whole. The separable
relational element shows that the part can be separated from the whole. For example,
the relation wheel–car is a COMPONENT–INTEGRAL part–whole relation that is functional,
non-homeomerous and separable. This means that the wheel has a specific function with
respect to the car, does not resemble the other parts of the car, and can be separated from
the car.

The COMPONENT–INTEGRAL relation is the relation between components and the
objects to which they belong. Integral objects have a structure, their components are sep-
arable and have a functional relation with their wholes. For example, kitchen–apartment
and aria–opera are COMPONENT–INTEGRAL relations.

The MEMBER–COLLECTION relation represents membership in a collection. Mem-
bers are parts, but they cannot be separated from their collections and do not play any
functional role with respect to their whole. For example, soldier–army, professor–faculty,
and tree–forest are MEMBER–COLLECTION relations.

PORTION–MASS captures the relations between portions and masses, extensive ob-
jects, and physical dimensions. The parts are separable and similar to each other and
to the wholes which they comprise, and do not play any functional role with respect to
their whole. For example, slice–pie and meter–kilometer are PORTION–MASS relations.

The STUFF–OBJECT category encodes the relations between an object and the stuff
of which it is partly or entirely made. The parts are not similar to the wholes that
they comprise, cannot be separated from the whole, and have no functional role. For
example, steel–car and alcohol–wine are STUFF–OBJECT relations.

The FEATURE–ACTIVITY relation captures the semantic links within features or
phases of various activities or processes. The parts have a functional role, but they are
not similar or separable from the whole. For example, paying–shopping and chewing–
eating are FEATURE–ACTIVITY relations.

PLACE–AREA captures the relation between areas and special places and locations
within them. The parts are similar to their wholes, but they are not separable from them.
For example, oasis–desert and Guadalupe Mountains National Park–Texas are PLACE–AREA
relations.

In this paper we use the Winston, Chaffin, and Hermann classification as a criterion
for building the training corpus to provide a wide coverage of such subtypes of part–
whole relations.
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In computational linguistics, although a considerable amount of work has been
done on semantic relation detection,7 the work most similar to the task of identifying
part–whole semantic relations is that of Hearst (1992) and Berland and Charniak (1999).

Hearst developed a method for the automatic acquisition of hypernymy relations by
identifying a set of frequently used and mostly unambiguous lexico-syntactic patterns.
For example, countries, such as England indicates a hypernymy relation between the
words countries and England. In her paper, she mentions that she tried applying the
same method to meronymy, but without much success, as the patterns detected also
expressed other semantic relations. This is consistent with our study of part–whole
lexico-syntactic patterns presented in this paper.

In 1999, Berland and Charniak applied statistical methods to a very large corpus8

to find part–whole relations. Using Hearst’s method, they focused on a small set of
genitive patterns and a list of six seeds representing whole objects (book, building, car,
hospital, plant, and school). Their system’s output was an ordered list of possible parts
according to some statistical metrics (e.g., the log-likelihood metric (Dunning 1993)).
Although the training corpus used is very large, the coverage of the algorithm is small
due to the limited number of patterns used and the small number of wholes allowed.
Moreover, certain words, such as those ending in -ing, -ness, or -ity, were ruled out.
Their accuracy is 55% for the first 50 ranked parts and 70% for the first 20 ranked
parts. As a baseline, they considered as potential parts the head nouns immediately
surrounding the target whole object and ranked them based on the same statistical
metric. The baseline accuracy was 8%.

While Berland and Charniak’s method focuses solely on identifying parts given a
whole, our task targets the identification of both parts and wholes.

Hearst, and Berland and Charniak observed that for ambiguous whole words, such
as plant, the method produces the weakest part list of the six seeds considered. Although
they don’t provide a one-to-one comparison, Berland and Charniak mention that their
method outperforms Hearst’s pattern matching algorithm mainly due to the very large
corpus used. However, neither approach addresses the pattern ambiguity problem,
i.e., patterns such as genitives that can express different semantic relations in different
contexts (the dress of silk encodes a part–whole relation, but the dress of my girl does not).
The ambiguity of these patterns explains our rationale for choosing an approach based
on a machine learning method to discover discriminating rules automatically.

3. Lexico-Syntactic Patterns that Express Meronymy

The automatic discovery of any semantic relation must start with a thorough un-
derstanding of the lexical and syntactic forms used to express that relation. Since
there are many ways in which something can be part of something else, there is a
variety of lexico-syntactic structures that can express a meronymy semantic relation.

7 Besides the work on semantic roles (Charniak 2000; Gildea and Jurafsky 2002; Thompson, Levy, and
Manning 2003), considerable interest has been shown in the automatic interpretation of various noun
phrase-level constructions, such as noun compounds. The focus here is to determine the semantic
relations that link the two noun constituents. The best-performing noun compound interpretation
systems have employed either symbolic (Finin 1980; Vanderwende 1994) or statistical techniques
(Pustejovsky, Bergler, and Anick 1993; Lauer and Dras 1994; Lapata 2002) relying on rather ad hoc,
domain-specific, hand-coded semantic taxonomies, or on statistical patterns in a large corpus of
examples, respectively.

8 The North American News Corpus (NANC) of 1 million words.
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There are unambiguous lexical expressions that always convey a part–whole relation.
For example:

(2) The substance consists of three ingredients.

(3) The cloud was made of dust.

(4) Iceland is a member of NATO.

In these cases the simple detection of the patterns leads to the discovery of part–whole
relations.

On the other hand, there are many ambiguous expressions that are explicit but
convey part–whole relations only in some contexts. The detection of meronymy in these
cases is based on extracting semantic features of constituents and checking whether or
not these features match the classification rules. For example, The horn is part of the car is
meronymic whereas He is part of the game is not.

In the case of meronymy, since there are numerous unambiguous and ambiguous
patterns, we devised a method to find these patterns and rank them in the order of
their frequency of use. Our intention is to detect the most frequently occurring patterns
that express meronymy and provide an algorithm for their automatic detection and
disambiguation in text.

3.1 An Algorithm for Finding Lexico-Syntactic Patterns

In order to identify lexico-syntactic forms that express part–whole relations and de-
termine their distribution over a very large corpus, we used the following algorithm
inspired by Hearst’s (1998) work:

Step 1. Pick pairs of concepts Ci, Cj among which there is a part–whole relation
For this task, we used the information provided by WordNet 1.7 (Fellbaum 1998).
In WordNet, the nouns are organized into nine hierarchies, each hierarchy being
identified by its corresponding root concept: {abstraction}, {act}, {entity}, {event},
{group}, {phenomenon}, {possession}, {psychological feature}, and {state}. The nouns
are grouped in concepts or synsets; a concept consisting of a list of synonymous
word senses. For example, {mother#1, female parent#1} is a WordNet concept. Besides
concepts, WordNet contains 11 semantic relations: HYPONYMY (IS–A), HYPERNYMY
(REVERSE IS–A), MERONYMY (PART–WHOLE), HOLONYMY (REVERSE PART–WHOLE),
ENTAIL, CAUSE–TO, ATTRIBUTE, PERTAINYMY, ANTONYMY, SYNSET (SYNONYMY), and
SIMILARITY. The part–whole relations in WordNet are further classified into three
basic types: MEMBER-OF (e.g., UK#1 IS-MEMBER-OF NATO#1), STUFF-OF (e.g., carbon#1
IS-STUFF-OF coal#1), and PART-OF (e.g., leg#3 IS-PART-OF table#2) which includes all the
other part–whole relations described in the Winston, Chaffin and Hermann (WCH)
classification.

Since the part and whole concepts provided by WordNet can belong to almost
any WordNet noun hierarchy, we randomly selected 100 pairs of part–whole concepts
that were well distributed over all nine WordNet noun hierarchies, the three WordNet
meronymic relations, and the six types of part–whole relations of WCH. Two annotators
with computational linguistic knowledge classified the WordNet meronymic relations
into the WCH’s six part–whole types. According to our annotations, the MEMBER-
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OF WordNet relations correspond to Winston, Chaffin, and Hermann’s MEMBER–
COLLECTION relations, STUFF-OF relations correspond to WCH’s STUFF–OBJECT rela-
tions, and the PART-OF correspond to the other four WCH relations. The annotators
obtained a 100% agreement in mapping the MEMBER-OF to MEMBER–COLLECTION,
STUFF-OF to STUFF–OBJECT. The PART-OF relations were mapped to the other four types
of WCH relations with an average agreement of 98%. A third judge (one of the authors)
checked the correctness of all the mappings and decided on the non-agreed instances.
This mapping ensures that the 100 general-purpose WordNet pairs cover most of the
possible types of part–whole relations in text.

Table 1 shows only 50 pairs from the set of 100 WordNet part–whole pairs and
their distribution among the WordNet hierarchies and the part–whole types provided
by WordNet and the WCH taxonomy. For example, the pair Bucharest#1–Romania#1
is a PART-OF relation in WordNet, but based on the Winston, Chaffin, and Hermann
classification it can be further classified as a more specific meronymy relation, PLACE–
AREA.

For the purpose of this research, we lumped together all part–whole types in the
classification of Winston et al.9 However, the method presented in the paper is applica-
ble to extracting subtypes of part–whole relations; separate annotations for each type
would be necessary.

Step 2. Search a corpus and extract lexico-syntactic patterns that link a pair of part–
whole concepts
For each pair of part–whole noun concepts determined above, search the Internet or
any other large collection of documents and retain only the sentences containing that
pair. Since our intention is to demonstrate that the automatic procedure proposed here
is domain independent, we chose two distinct text collections: SemCor 1.7 and the
LA Times from TREC-9. From each collection we randomly selected 10,000 sentences,
which were searched for the pair of concepts selected. Since the LA Times collection is
not word-sense disambiguated, we searched for sentences containing the pair of nouns
without considering their senses. Out of these sentences, only some contained the part–
whole pairs selected in Step 1. We manually inspected these sentences and picked only
those in which the pairs involved meronymy. For example, the sentence I can feel my
fingers and close my hand contains the meronymic pair finger–hand, but in this context the
relationship is not expressed. From these sentences we manually extracted meronymic
lexico-syntactic patterns. Table 2 shows for each collection the number of sentences
used, the number of sentences that contain the studied concept pairs, the number of sen-
tences that contain part–whole relations, and the number of unique patterns discovered
from those sentences. Seven of the unique patterns occurred in both SemCor and the LA
Times.

In order to extract the patterns from the SemCor collection we used its gold standard
word sense annotations to our advantage and looked for the occurrences of concepts
(word with the sense) in the corpus. This explains the large difference between the
number of sentences discovered in the two corpora. The SemCor patterns thus extracted
did not need manual validation, since the noun concept pairs were always in a part–
whole relation.

9 The WCH categories were also used by the annotators to better distinguish between positive and
negative examples.
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3.2 Taxonomy of Part–Whole Patterns

From the 535 part–whole relations detected from the 20,000 SemCor and LA Times
sentences, 493 (92.15%) were expressed by phrase-level patterns and 42 (7.85%) by
sentence-level patterns. Overall, there were 42 unique meronymic lexico-syntactic pat-
terns, of which 31 were phrase-level patterns and 11 sentence-level patterns.

Recall our notation for the part–whole relation PART(X, Y), where X is part of Y.

a. Phrase-level patterns
Here, the part and whole concepts are included in the same phrase. For example, for the
pattern NPX PPY the noun phrase that contains the part and the prepositional phrase
that contains the whole are found in the same noun phrase. The engine in the car is an
instance of this pattern where X is the part (engine) and Y is the whole (car).

b. Sentence-level patterns
In these constructions, the part–whole relation is intrasentential. The patterns contain
specific verbs and the part and the whole can be found inside noun phrases or prepo-
sitional phrases that contain specific prepositions. A frequent such pattern is NPY verb
NPX, where NPX is the noun phrase that contains the part, NPY is the noun phrase that
contains the whole and the verb is restricted (see Table 2 of Appendix A). For instance,
the cars have doors is an instance of this pattern.

An extension of this pattern is NPX verb NPZ PPY, with NPZ containing the words
part or member. An example is: The engine is a part of the car; NPX — the engine, PPY — of
the car, and the verb — to be.

In some instances the meronymic constructions contained combinations, conjunc-
tions and/or disjunctions, of parts and wholes. For example, NPX1X2 PPY (e.g., wheels
and engine of a car) is a form of the pattern NPX PPY. This observation enabled us to gen-
eralize the list of patterns. A summary of phrase-level and sentence-level meronymic
patterns along with their extensions and generalizations is provided in Appendix A.

Based on our observations of the corpus used for the pattern identification proce-
dure and based on the results obtained by others (Evens et al. 1980), we have concluded
that the lexico-syntactic patterns encoding meronymy can be classified according to
their semantic similarity and frequency of occurrence into the clusters presented in
Table 3. The clusters contain lexico-syntactic patterns that have similar semantic be-
havior. We also noticed that more than a half of cluster 4’s patterns are very rare;
for example, X branch of Y; In Y, X1 verb X2; or In Y packed to X. Overall, this cluster
covers less than 7% of the part–whole patterns discovered. Thus, for the purpose of
this research we considered only the first three clusters of lexico-syntactic patterns
expressing meronymy.

Table 2
Number of sentences and patterns containing the 100 part–whole pairs in each text collection
considered.

Collection Number of Number of sentences Number of sentences Number of
sentences containing the pairs containing patterns

part–whole relations

SemCor 10,000 87 48 12
LA Times 10,000 1,988 487 30
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Table 3
Clusters of lexico-syntactic patterns classified based on their semantic similarity and their
frequency of occurrence in the 20,000 sentence corpus used in the part–whole pattern
identification procedure.

Cluster Patterns Freq. Coverage Examples

C1. genitives NPX of NPY eyes of the baby
and NPY’s NPX 282 52.71% girl’s mouth
verb to have NPY have NPX The table has four legs.

C2. noun NPXY 86 16.07% door knob
compounds NPYX turkey pie

C3. preposition NPY PPX 133 24.86% A bird without wings cannot fly.
NPX PPY A room in the house.

C4. other others 34 6.36% The Supreme Court is a branch of
the Government.

This pattern classification criterion is justified, in part, by our desire to verify
whether or not the automatic approach proposed here is generally applicable not
only for the genitive cluster patterns (cluster 1) (Girju, Badulescu, and Moldovan
2003), but also for more complex types, such as noun compounds (cluster 2) and
prepositional constructions (cluster 3). Our intuition that the proposed patterns have
different semantic behavior, and thus have to be treated separately in distinct clusters,
is partially justified by a linguistic analysis summarized in Section 3.3 and supported
by our empirical results from Section 5.3. In the remainder of the paper, we refer to
these clusters as the genitives (cluster 1), noun compounds (cluster 2), preposition
(cluster 3), and other (cluster 4) clusters.

We also noticed that some patterns, such as the genitive and preposition clusters,
prefer the part and the whole in a certain position. For example, in of–genitives the part
is mostly in the first position (modifier), and the whole in the second (head) (e.g., door of
the car), while in s–genitives the positions are reversed (e.g., car’s door). The verb to have
requires parts in the second position, while noun compounds have a preference for them
in the second position (e.g., car has door and car door, respectively). In the preposition
cluster patterns, for the preposition in the part is usually in the first position (e.g., door
in the car) and for the preposition with the positions are reversed (e.g., car with four doors).

However, there are also exceptions. For instance, in some of–genitives the part can
occupy the second position (e.g., flock of birds) and in some noun compounds it can
be present in the first position (e.g., ham sandwich). In the corpus used for pattern
identification these exceptions are rare. Therefore, we will not consider the patterns NPY
of NPX and NPXY in our experiments. If such examples are encountered, the part and
the whole concepts are wrongly identified, representing one source of errors.

Berland and Charniak (1999) also used Hearst’s algorithm to find part–whole pat-
terns. However, they focused only on the first five patterns that occur frequently in their
corpus. These patterns are subsumed by our clusters as shown in Table 4. They noticed
that the last three patterns are ambiguous and decided to use only the first two in their
experiments.

3.3 The Ambiguity of Part–Whole Lexico-Syntactic Patterns

From the list of lexico-syntactic patterns thus extracted, we noticed that some of these
part–whole constructions always refer to meronymy, but most of them are ambiguous,
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Table 4
The patterns used by Berland and Charniak and the corresponding cluster patterns used by us.

Berland and Charniak patterns Our cluster patterns Example

NNwhole ’s NNpart NPY ’s NPX girl’s mouth
NNpart of (the|a) (JJ|NN) NNwhole NPX of NPY eyes of the baby
NNpart in (the|a) (JJ|NN) NNwhole NPX PPY ball in red box
NNparts of NNwholes NPX of NPY doors of cars
NNparts in NNwholes NPX PPY quotations in articles

in the sense that they express a part–whole relation only in some particular contexts and
only between specific pairs of nouns. For example, NP1 is member of NP2 always refers
to meronymy, but this is not true for NP1 has NP2. In most cases, the verb to have has the
sense of to possess, and only in some particular contexts refers to meronymy.

Table 5 presents a summary of some of the most frequent part–whole lexico-
syntactic patterns we observed, classified based on their ambiguity.

Below we discuss further the ambiguities encountered in the patterns of the first
three clusters.

The Semantic Ambiguity of Genitive Constructions
In English there are two kinds of genitives: the s-genitive and the of-genitive. A char-
acteristic of the genitives is that they are very ambiguous, as the constructions can be
given various interpretations (Moldovan and Badulescu 2005). For instance, genitives
can encode relations such as PART–WHOLE (Mary’s hand), POSSESSION (Mary’s car),
KINSHIP (Mary’s sister), PROPERTY/ATTRIBUTE HOLDER (Mary’s beauty), DEPICTION–
DEPICTED (Mary’s painting — if it depicts her), SOURCE-FROM (Mary’s birth city), or

Table 5
Examples of meronymic expressions based on their ambiguity.

Types of Positive Examples (part–whole) Negative Examples (not part–whole)
Part–Whole
Expressions

Unambiguous The parts of an airplane include
the engine, ..
The substance consists of
three ingredients.
One of the air’s constituents is
oxygen.
The cloud was made of dust.
Iceland is a member of NATO.

Ambiguous The horn is part of the car. He is part of the game (PARTICIPANT–EVENT)
The table has four legs. Kate has four cats. (POSSESSION)
The girl’s mouth is sensual. Mary’s brother is cute. (KINSHIP)
The eyes of the baby are blue. The dress of my niece is blue. (POSSESSION)
Each door knob was made of silver. Dallas is a modern Texas city. (LOCATION)
It was the girl with blue eyes. The woman with triplets received a lot

of attention. (KINSHIP)
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MAKE-PRODUCE (Mary’s novel — if Mary wrote it). Thus, any attempt to interpret
genitive constructions has to deal with the semantic analysis of the two noun con-
stituents. Sometimes world knowledge or more contextual information is necessary to
identify the correct semantic relation (e.g., Mary’s novel might mean the novel written
by Mary, read by Mary, or dreamed about by Mary).

The Semantic Ambiguity of the Verb To Have
According to WordNet 1.7, the verb to have in transitive constructions has 21 different
senses, such as to possess, feature, need, get, undergo, be confronted with, accept, suffer
from, and many others. Although the senses enumerated in WordNet represent a rather
disparate set with no well defined semantic connection among them, the verb to have
can participate in many different semantic structures and has been studied extensively
in the linguistics community (Freeze 1992; Schafer 1995; Jensen and Vikner 1996).

The semantic relations encoded by the verb to have are quite similar to those realized
by genitive constructions. Some researchers (Jensen and Vikner 1996) offered a detailed
analysis for the purpose of capturing the most important semantic features of the verb
to have. Their hypothesis is based on the idea that, semantically, the verb to have has
a sense of its own derived from the semantic interpretation of the close context or
the sentence in which it occurs. Let’s consider the following sentences: (a) Kate has a sister
(KINSHIP), (b) Kate has a cat (POSSESSION), and (c) Kate has green eyes (PART–WHOLE). The
meaning of the verb to have in these situations is derived from the semantic information
encoded in both the subject and the object.

The Semantic Ambiguity of Noun Compounds
Noun compounds (NCs) are noun sequences of the type N1 N2 .. Nn that have a
particular meaning as a whole. NCs have been studied intensively in linguistics (Levi
1978), psycholinguistics (Downing 1977), and computational linguistics (Spärck Jones
1983; Lauer and Dras 1994; Rosario and Hearst 2001) for a long time. The interpretation
of NCs focuses on the detection and classification of a comprehensive set of semantic
relations between the noun constituents. This task has proved to be very difficult due to
the complex semantic aspect of noun compounds:

1. NCs have implicit semantic relations: for example, spoon handle
(PART–WHOLE).

2. NCs’ interpretation is knowledge intensive and can be idiosyncratic: For
example, GM car (in order to correctly interpret this compound we have to
know that GM is a car-producing company).

3. There can be many possible semantic relations between a given pair of
word constituents. For example, linen bag can mean bag made of linen
(PART–WHOLE), as well as bag for linen (PURPOSE).

4. Interpretation of NCs can be highly context-dependent. For example, apple
juice seat can be defined as “seat with apple juice on the table in front of it”
(Downing 1977).

The Semantic Ambiguity of Prepositional Constructions
In English and various other natural languages, prepositions play a very important role
both syntactically and semantically in the phrases, clauses, and sentences in which they
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occur. Semantically speaking, prepositional constructions can encode various seman-
tic relations, their interpretations being provided most of the time by the underlying
context. For instance, in the following examples the preposition with encodes different
semantic relations: (a) It was the girl with blue eyes (MERONYMY), (b) The baby with the
red ribbon is cute (POSSESSION), and (c) The woman with triplets received a lot of attention
(KINSHIP).

The variety and ambiguity of these constructions show the complexity and impor-
tance of our task. We have seen that the interpretation of these constructions depends
heavily on the meaning of the two noun constituents. To get the meaning of the nouns
we rely on a word sense disambiguation system that takes into consideration surround-
ing contexts of the words.

4. A Machine Learning Algorithm for Automatic Discovery of Classification Rules

4.1 Approach

In this section we propose a method for the automatic discovery of rules that discrimi-
nate whether or not a selected pattern instance is meronymic. First a corpus is prepared
and patterns from clusters C1–C3 are identified. The approach relies on the assumption
that the semantic relation between two noun constituents representing the part and the
whole can be detected based on nouns’ semantic features.

This procedure applies to ambiguous constructions. The unambiguous construc-
tions don’t have to be processed since they lead unmistakably to part–whole relations.

The system learns automatically classification rules that check semantic features of
noun constituents. The classification rules are learned through an iterative semantic spe-
cialization (ISS) procedure applied on the noun constituents’ semantic features provided
by the WordNet lexical knowledge base (Fellbaum 1998). ISS starts by mapping the
training noun pairs to the corresponding top WordNet noun concepts using hypernymy
chains. Then, it builds a learning tree by recursively splitting the training corpus into
unambiguous and ambiguous examples based on the semantic information provided
by the WordNet noun hierarchies. The learning tree is built top-down, one level at a
time, each level corresponding to a specialization iteration. The internal nodes represent
sets of ambiguous examples at various levels of specialization, while the leaves contain
unambiguous examples. The ambiguous examples are further specialized with next-
level WordNet concepts. The process is repeated recursively until there are no more
ambiguous examples. For each set of unambiguous positive and negative examples
at each level in the downward descent, we apply Quinlan’s C4.5 algorithm and learn
classification rules of the form if X is/is not of a WordNet semantic class A and Y is/is not of
WordNet semantic class B, then the instance is/is not a part–whole relation.

4.2 Preprocessing Part–Whole Lexico-Syntactic Patterns

Since our discovery procedure is based on the semantic information provided by Word-
Net, we need to preprocess the noun phrases (NPs) extracted by the three clusters
considered and identify the potential part and the whole concepts. For each NP we keep
only the largest sequence of words (from left to right) defined in WordNet. For example,
from the noun phrase brown carving knife the procedure retains only carving knife, since
this concept is defined in WordNet. For each such sequence of words, we manually
annotate it with its WordNet sense in context. For the example above we annotated
the noun phrase with sense #1 (carving knife#1), since in that context it had sense #1 in
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WordNet (for this concept WordNet lists only one sense, defined as “a large knife used
to carve cooked meat”). Table 6 shows a few examples of patterns from different clusters
and the results of this preprocessing step.

4.3 Building the Training Corpus

In order to learn the classification rules, we used the SemCor 1.7 and TREC 9 text
collections, and the part–whole information provided by WordNet. From the SemCor
collection we selected 19,000 sentences. Another 100,000 sentences were randomly ex-
tracted from the LA Times articles of TREC 9. As SemCor 1.7 is already annotated with
part-of-speech tags and WordNet senses, we part-of-speech tagged only the LA Times
collection using Brill’s tagger (1995). A corpus “A” was thus created from the selected
sentences of each text collection. Each sentence in this corpus was then parsed using the
syntactic parser developed by Charniak (2000). Focusing only on sentences containing
the lexico-syntactic patterns in each cluster C1–C3, we manually annotated nouns in the
patterns with their corresponding WordNet senses (with the exception of those from
SemCor), as shown in Section 4.2, and marked all candidate instances that encoded a
part–whole relation as positives, and negatives otherwise. In the corpus, 66% of the
annotated instances were PART-OF relations, 14% STUFF-OF, and 20% MEMBER-OF.

Moreover, WordNet 1.7 contains 27,636 part–whole relations linking various noun
concepts. As this information is very valuable for training purposes, we tried to see
which of the selected patterns match these pairs. For each WordNet part–whole pair,
we formed inflected queries (to capture singular and plural instances) and searched
the Web, the largest on-line general purpose text collection, using Altavista. From the
first 100 retrieved documents, we selected and syntactically parsed only those sen-
tences containing pairs within cluster patterns. We manually validated those instances
and registered which cluster(s) of patterns could extract the pair. All these sentences
formed a second corpus, corpus “B”. For instance, for the pair door#4–car#1 we searched
Altavista for documents containing both words car and door. Then, we retrieved all the
sentences that contained the two words in at least one of the target patterns. As a result,
we obtained sentences containing the pair of words linked by patterns such as door of
car, car’s door, car has door, car with four doors, car door, etc.

Overall, the 27,636 WordNet pairs were linked by the genitive cluster patterns,
while the noun compound and preposition clusters extracted only some subsets of these
pairs. Some part–whole pairs were linked by patterns that belong to more than one
cluster. For instance, door knob is a pair that usually belongs to the noun compound
cluster, but it can also be selected by the genitive cluster (e.g., knob of the door) and the
preposition cluster (e.g., the door with the iron knob).

Table 6
Examples of identifying the potential Part and Whole concepts for different clusters.

Cluster Example Potential Part(X) and Positive or
Whole(Y) concepts negative example

C1. genitives the door of the car the [door#4]X of the [car#1]Y positive
my friend’s car my [ friend#1]Y ’s [car#1]X negative

C2. noun compounds car door company [car door#1]X [company#1]Y negative
[car#1]X [door#4]Y positive

C3. prepositions window from the car [window#2]X from the [car#1]Y positive
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Corpus “B” was used only to convince us that the part–whole pairs selected from
WordNet were representative, ie., present in the patterns considered. Indeed corpus
“B” pairs were found in at least one of the cluster patterns. While corpus ”A” consists
of positive and negative examples from LA Times and SemCor collections, corpus
”B” contains only positive instances as they are WordNet part–whole pair concepts.
Moreover, although corpus ”B” has a different distribution than corpus ”A”, the noun
pairs from WordNet are general-purpose and always encode a part–whole relation.

Table 7 shows the statistics for the positive and negative training examples for each
cluster. In the genitive cluster, for example, there were 18,936 such pattern instances, of
which 325 encoded part–whole relations, while 18,611 did not. Thus, for the genitive
cluster we used a training corpus of 27,961 positive examples (325 pairs of concepts in
a part–whole relation extracted from corpus “A” and 27,636 extracted from WordNet
as selected pairs) and 18,611 negative examples (the non-part–whole relations extracted
from corpus “A”).

4.4 Inter-Annotator Agreement

The part–whole relation discovery procedure proposed in this paper was trained and
tested on a large corpus of human annotated examples (a part of the LA Times collection
for both training and testing, and a part of the Wall Street Journal (WSJ) collection for
testing). The annotators, two researchers in computational semantics, decided whether
an example pair encoded a part–whole relation or not. The examples were disam-
biguated in context: the annotators were given the pairs and the sentence in which they
occurred. The two annotators’ task was to determine the correct senses of the two noun
constituents and then decide if the relation is meronymic or not. A third researcher
decided on the non-agreed word senses and relations. The annotators were also pro-
vided with the list of subtypes of meronymy relations proposed by (Winston, Chaffin,
and Hermann 1987) as a guideline for detecting part–whole relations. If an example
contained one of the six meronymy subtypes, the annotators tagged that example as
positive (part–whole); otherwise they tagged it as a negative example.

The annotators’ agreement was measured using the kappa statistic (Siegel and
Castellan 1988), one of the most frequently used measures of inter-annotator agreement
for classification tasks:

K = Pr(A) − Pr(E)
1 − Pr(E) , (1)

where Pr(A) is the proportion of times the raters agree and Pr(E) is the probability of
agreement by chance.

Table 7
Training corpora statistics for each of the three clusters considered.

Positive examples Negative examples

Cluster from WordNet as from Corpus “A” from Corpus “A”
evidenced by corpus “B”

C1. genitives 27,636 325 18,611
C2. noun compounds 142 625 6,601
C3. prepositions 111 295 2,751
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The K coefficient is 1 if there is total agreement among the annotators, and 0 if
there is no agreement other than that expected to occur by chance. This coefficient
measures how well annotators agree at identifying both positive and negative instances
of meronymic relations.

Table 8 shows the inter-annotator agreement on the part–whole classification task
for each of the three clusters considered in both training and test phases of the part–
whole relation discovery procedure.

On average, the K coefficient is close to 0.85, showing a good level of agreement,
for all clusters in the training and test data. This can be explained by the instructions
the annotators received prior to annotation and by their expertise in lexical semantics.
The results also show that even for more productive genitive and noun compound
examples, the sentence-level context was enough to disambiguate the examples most
of the time.

4.5 Iterative Semantic Specialization (ISS) Learning

Iterative Semantic Specialization Learning is an iterative process that learns a decision
tree and classification rules by mapping the semantic features of the noun pairs to
the WordNet noun hierarchies. The procedure starts with a generalized version of the
training examples as pairs of top WordNet noun concepts using hypernymy chains. The
examples are then split into unambiguous and ambiguous. The ambiguous examples
are further specialized with next-level WordNet concepts. The process is repeated re-
cursively until there are no more ambiguous examples. For each set of unambiguous
positive and negative examples at each level in the downward descent, we apply
Quinlan’s C4.5 algorithm and learn classification rules. As will be shown in Section 5.3,
the algorithm is applied separately to each of the three clusters considered for optimal
results.

The Iterative Semantic Specialization (ISS) Learning Algorithm

Input: Positive and negative meronymic examples of pairs of concepts. The concepts are
WordNet words semantically disambiguated in context (tagged with their correspond-
ing WordNet senses).

Output: Classification rules in the form of semantic selectional restrictions on the modifier
and head concepts using WordNet IS–A hierarchy information.

Table 8
The inter-annotator agreement on the part–whole classification task for each of the three clusters
considered in both training and test phases of the part–whole relation discovery procedure.

Corpus Cluster Kappa agreement

LA Times genitives 0.878
(training and testing) noun compounds 0.826

prepositions 0.811
genitives 0.880

WSJ (testing) noun compounds 0.862
prepositions 0.836
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Step 1. Generalizing the training examples
Initially, the training corpus consists of examples that have the format 〈part#sense;
whole#sense; target〉, where target can be either Yes or No, depending whether the relation
between the part and whole is meronymy or not: for example, 〈aria#1, opera#1, Yes〉.
From this initial set of examples an intermediate corpus was created by expanding each
example using the following format:

〈part#sense, class part#sense, whole#sense, class whole#sense; target〉,
where class part and class whole correspond to the WordNet top semantic classes of
the part and whole concepts, respectively. For instance, the previous example becomes
〈aria#1, entity#1, opera#1, abstraction#6, Yes〉.

From this intermediate corpus a generalized set of training examples is built, retain-
ing only the semantic classes and the target value. At this point, the generalized training
corpus contains three types of examples:

1. Positive examples 〈X hierarchy#sense, Y hierarchy#sense, Yes〉
2. Negative examples 〈X hierarchy#sense, Y hierarchy#sense, No〉
3. Ambiguous examples 〈X hierarchy#sense, Y hierarchy#sense, Yes/No〉

The third situation occurs when the training corpus contains both positive and
negative examples for the same hierarchy types. For example, both the relationships
〈apartment#1, woman#1, No〉 and 〈hand#1, woman#1, Yes〉 are mapped into the more
general type 〈entity#1, entity#1, Yes/No〉. However, the first example is negative (a POS-
SESSION relation), while the second one is a positive example.

Step 2. Learning classification rules for unambiguous examples
For the unambiguous examples in the generalized training corpus (those that are either
positive or negative), rules are determined using C4.5. In this context, the features are
the components of the relation (the part and, respectively the whole) and the values of
the features are the corresponding WordNet semantic classes (the furthest ancestor in
WordNet of the corresponding concept).

With the first two types of examples, the unambiguous ones, a new training corpus
was created on which we applied C4.5 using a 10-fold cross validation. The corpus
is split in ten permutations, 9/10 training and 1/10 testing, and the output is rep-
resented by 10 sets of rules and default values generated from these unambiguous
examples.

The rules obtained are if–then rules with the part and whole noun semantic senses
as preconditions. The default value is the most probable value for the target value and
is used to classify unseen instances of that type when no other rule applies. It can be
either Yes or No, corresponding to the possible values of the target attribute (part–whole
relation or not).

The rules were ranked according to their frequency of occurrence and average
accuracy obtained for each particular set. In order to use the best rules, we decided
to keep only those that had a frequency above a threshold (occurring in at least 7 of the
10 sets of rules) and an average accuracy greater than or equal to 50%.

In order to minimize the redundancies that may occur during the learning process,
rules with the same classification value as the default value are ignored. The idea is that
the default rule incorporates all the rules with the same target value.

For instance, after running C4.5 on the unambiguous set for the abstraction#6–
abstraction#6 example, we obtained a list of five rules and a default value No, as shown
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in Table 9. Rules 1 and 5 were discarded as they were incorporated into the default
class. Rules 3 and 4 were also discarded as their frequency did not pass the threshold of
7. Thus, rule 2 remains the only applicable rule.

After filtering the rules that have the default value or do not pass the frequency and
accuracy thresholds, there might be cases in which the set of remaining rules is empty.

Step 3. Specializing ambiguous examples
Since C4.5 cannot be applied to ambiguous examples, we recursively specialize them to
eliminate the ambiguity. The specialization procedure is based on the IS–A information
provided by WordNet. Initially, each semantic class represented the root of one of the
noun hierarchies in WordNet. By specialization, the semantic class is replaced with the
corresponding hyponym for that particular sense, i.e., the concept immediately below
in the hierarchy.

For this task, we again considered the intermediate training corpus of examples.
For instance, the examples 〈leg#2, entity#1, bee#1, entity#1, Yes〉 and 〈beehive#1,

entity#1, bee#1, entity#1, No〉 that caused the ambiguity 〈entity#1, entity#1, Yes/No〉, were
replaced with 〈leg#2, thing#12, bee#1, organism#1, Yes〉 and 〈beehive#1, object#1, bee#1,
organism#1, No〉, respectively. This intermediate example is thus generalized in the less
ambiguous examples 〈thing#12, organism#1, Yes〉 and 〈object#1, organism#1, No〉. This way,
we specialize the ambiguous examples with more specific values for the attributes. The
specialization process for this particular example is shown in Figure 1.

Although this specialization procedure eliminates a proportion of the ambigu-
ous examples, there is no guarantee it will work for all the ambiguous examples of
this type. This is because the specialization splits the initial hierarchy into smaller
distinct subhierarchies, with the examples distributed over this new set of subhier-
archies. For the examples described above, the procedure eliminates the ambiguity
through specialization of the semantic classes into new ones: thing#12–organism#1 and
object#1–organism#1.

However, not all the examples can be disambiguated after only one specialization.
For the examples 〈leg#2, bee#1, Yes〉 and 〈world#7, bee#1, No〉, the procedure generalizes
abstraction#6–abstraction#6 into the ambiguous example 〈entity#1, entity#1, Yes/No〉 and
then specializes it in the ambiguous example 〈part#7, organism#1, Yes/No〉. After one
specialization the ambiguity still remains.

Steps 2 and 3 are repeated until there are no more ambiguous examples. The general
architecture of this procedure is shown in Figure 2.

Table 9
The list of rules for the iteration generated by the unambiguous subset of the ambiguous
example 〈abstraction#6, abstraction#6, yes/no〉. ’Yes’ means part–whole relation, while ’No’
means non-part–whole relation. The global default target value of this unambiguous node
is No. Note that rules 3 and 4 are discarded as their frequency is below 7, and rules 1 and
5 were also discarded as incorporated in the default class No.

Rule no. Part Class Whole Class Target Accuracy value Frequency

1 measure#3 abstraction#6 No 92.51 9
2 time#5 abstraction#6 Yes 79.21 9
3 abstraction#6 time#5 Yes 85.70 1
4 abstraction#6 measure#3 Yes 63.00 1
5 abstraction#6 attribute#2 No 93.00 1
Default No
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Figure 1
The specialization of examples 〈leg#2, entity#1, bee#1, entity#1, Yes〉, 〈beehive#1, entity#1, bee#1,
entity#1, No〉, and 〈world#7, entity#1, bee#1, entity#1, No〉 with the corresponding WordNet
semantic classes.

We observed that after the first generalization, 99.72% of the examples were am-
biguous. After each specialization, the percentage decreases. For instance, after one level
of specialization, 97.36% of the examples for entity#1–entity#1, 96.05% for abstraction#6–
abstraction#6, and 97.56% for entity#1–group#1 were ambiguous.

Table 10 presents a sample of the iterations produced by the program to specialize
the genitive cluster ambiguous example abstraction#6–abstraction#6. Each indentation
corresponds to a specialization iteration.

The training corpus considered for this research required on average 2.5 and at most
five levels of specialization.

The next section describes the construction of classification rules, the experiments,
and the results obtained.

Figure 2
Diagram of the ISS system.
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Table 10
A sample iteration produced by the ISS procedure for the genitive cluster
abstraction#6–abstraction#6 ambiguous example. The italicized examples are unambiguous.

abstraction#6–abstraction#6
attribute#2–attribute#2
attribute#2–measure#3
attribute#2–relation#1
relation#1–attribute#2
measure#3–measure#3
measure#3–relation#1
time#5–time#5
relation#1–time#5
relation#1–relation#1

magnitude relation#1–magnitude relation#1
part#1–part#1
social relation#1–part#1

communication#2–language unit#1
social relation#1–social relation#1

communication#2–communication#2
signal#1–message#2
signal#1–written communication#1
written communication#1–written communication#1

writing#2–writing#2
message#2–written communication#1

5. Formulating Classification Rules and Applying them to Discover
Part–Whole Relations

5.1 Building the Learning Tree

The ISS learning procedure presented in the previous section builds a learning tree by
recursively splitting the training corpus into unambiguous and ambiguous examples,
based on the semantic information provided by the WordNet noun hierarchies. The
learning tree is built top-down, one level at a time, each level corresponding to a
specialization iteration. The internal nodes represent ambiguous examples at various
levels of specialization, while the leaves contain sets of unambiguous examples. For
instance, Figure 3 shows the learning tree corresponding to the specialization from
Table 10.

Initially, the learning tree contains only a dummy root node that provides no
information. After the generalization done in step 1 of the ISS learning procedure,
all the initial examples are mapped into corresponding pairs of top noun semantic
classes in WordNet and split into unambiguous and ambiguous sets based on their
target function. All these new sets of examples form the first level of the learning
tree.

The learning tree has two types of nodes: unambiguous nodes, corresponding to the
sets of unambiguous examples from each iteration (e.g., nodes 1.1, 1.3.1, and 1.4.1 from
Figure 3) and ambiguous nodes, corresponding to each ambiguous example from each
iteration (e.g., nodes 1.2, 1.3, 1.4, and 1.4.2 from Figure 3). Each node has associated with
it a pair {R, D} representing a set of rules and a default value. The set of rules represents
the rules to be used for classifying the new instances and the default value represents
the target value (Yes if an instance is a part–whole relation and No if the instance is
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Figure 3
A snapshot of the learning subtree abstraction#6–abstraction#6 on which the combination and
propagation algorithm is exemplified. Each node has an associated set of rules and a default
value. The rule number references are for the “No.” column from Table 11.

not a part–whole relation) that should be returned if none of the rules classify the new
instances.

After learning the classification rules in Step 2 of the ISS procedure, all the unam-
biguous nodes have default values and some have rules.

5.2 Formulating the Classification Rules

In order to generate an overall set of classification rules, we traverse the learning tree
in a bottom-up fashion, applying the rules generated at each level in this order. The
rationale of this approach is that the rules closer to the bottom are more specific,
and thus more accurate. At each level, the idea is to combine the rules associated
with each sibling node and propagate the result to the parent. The combination and
propagation steps are applied recursively until the root is reached. The combination
phase guarantees that the rules to be combined are applied in a particular order at each
level.

Figure 4 shows a typical tree corresponding to one iteration of the ISS procedure on
which we will explain the combination and propagation algorithm. Node L represents
an internal node containing an ambiguous example. Through specialization, the learn-
ing procedure generated a set of unambiguous examples represented by the leaf LU, and
a sequence of n ambiguous examples represented by the internal nodes LA1 , LA2 , .. LAn.
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Table 11
The rules and default value learned for the genitive cluster for the abstraction#6–abstraction#6
ambiguous example. “Val.” is the target value, “Acc.” is the rules’ accuracy, and “Fr.” is their
occurrence frequency. The numbering style used in the “No.” column is intended to indicate
rules at different specialization levels.

No. Part Class Whole Class Val. Acc. Fr. Example

abstraction#6 abstraction#6 No glory#2–past#1
1 linear measure#3 measure#3 Yes 63 9 centimeter#1–decimeter#1
2 communication#2 communication#2 Yes act#3–play#1
2.1 written comm.#1 written comm.#1 No text#1–act#3
2.1.1 writing#2 writing#2 Yes New Testament#1–Bible#1
2.1.1.1 matter#6 No 79.98 9 text#1–act#3
2.2 indication#1 message#2 No 73.25 10 copy#1–recommendation#1
2.3 message#2 communication#2 No 79.72 8 irony#1–play#1
3 time#5 abstraction#6 Yes 79.21 9 carboniferous#1–paleozoic#1
Default No glory#2–past#1

The values associated with the ambiguous nodes (rules and default values) are
generated through propagation from lower levels.

Rule combination and propagation algorithm:

Input: Pairs of rules and associated default values for each unambiguous and ambigu-
ous node: {RU, DU}, {RA1 , DA1}, {RA2 , DA2}, ..{RAn , DAn};

Output: A pair of rules and default value for parent node: {RL, DL}.

Step 1. Propagating the default value to the parent node: DL ← DU
The default value of the unambiguous examples (DU) will be directly propagated

to the parent as the global default value of the subtree L (DL). For example, the default
value for the unambiguous node 1.1 from Figure 3 is No and it will propagate to the
parent node abstraction#6–abstraction#6 (node 1 in Figure 3).

If there is no unambiguous node LU (and therefore default value DU), the default
value for the first ambiguous example is propagated to L. For instance, for the am-
biguous node 1.4.2 (social relation#1–social relation#1), there were no unambiguous ex-

Figure 4
A part of the learning tree generated by the ISS learning procedure. The pairs of rules and
default value associated with the parent node are generated through propagation of the
combined pairs of rules and default values of the children.
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amples; and therefore the default value from the node 1.4.2.1 (written communication#2–
written communication#2) will be used.

Step 2. Propagating the rules from an ambiguous node with the same default value
to the parent node: RL ← {RAi |DAi = DL, 1 ≤ i ≤ n}

The ambiguous nodes are the first to be tested. All the rules associated with the
ambiguous nodes having the same default value as the global one are applied with the
highest priority. For instance, all the ambiguous nodes for abstraction#6–abstraction#6
(nodes 1.2–1.8 in Figure 3) received a default value of No through propagation from
their descendents. Since the default value for this node is No, it will receive all their
rules (Rules 1 and 2 from Table 12).

Step 3. Propagating the rules from an ambiguous node with the opposite default
value to the parent node: RL ← RL ∪ {if Aj then RAj ∪ DAj |DAj �= DL, 1 ≤ j ≤ n}

The remaining ambiguous nodes have associated with them a different default
value (a non-default value). Since the two nodes have opposite default values, the
default value (DAj ) needs to be used when the rules for the child node (Aj) do not hold.
Therefore, a new rule, specific to the example Aj, needs to be created, for handling all
the instances of Aj: if Aj then RAj ∪ DAj .

For example, the ambiguous node 1.4.2.1.2 (written communication#1–written
communication#1) has the default value No. Its only ambiguous node (node 1.4.2.1.2.2 :
writing#2–writing#2) has the default value Yes. Therefore, a specific rule (Rule 2.1.1 from
Table 12) needs to be created for the example (Part=writing#2 and Whole=writing#2),

Table 12
The list of rules obtained for the ambiguous example abstraction#6–abstraction#6 for the genitive
cluster.

1 if Part is linear measure#3 and Whole Class is measure#3
then It is a part–whole relation

2 if Part is communication#2 and Whole is communication#2
then

2.1 if Part is written communication#1 and Whole is written communication#1
then

2.1.1 if Part is writing#2 and Whole is writing#2
then

2.1.1.1 if Part is matter#6
then It is not a part–whole relation
else It is a part–whole relation

else It is not a part–whole relation
else

2.2 if Part is indication#1 and Whole is message#2
then It is not a part–whole relation
else

2.3 if Part is message#2 and Whole is communication#2
then It is not a part–whole relation
else It is a part–whole relation

3 if Part is time#5 and Whole is abstraction#6
then It is a part–whole relation
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that applies its rule (Rule 2.1.1.1: if Part=matter#6 then No) and returns its default value
(a non-default value) for the other cases:

if Part=writing#2 and Whole=writing#2 - the ambiguous example Aj
then

if Part=matter#6 then No (Is not part–whole) - the rules RAj

else Yes (Is part–whole) - the non-default value DAj

Step 4. Propagating the rules learned from an unambiguous node to the parent node:
RL ← RL ∪ RU

Last, the rules learned from the unambiguous examples propagate to the parent
node. They are applied last, since they are more general than the other rules. For
example, after running C4.5 on the unambiguous set for the abstraction#6–abstraction#6
ambiguous example (Node 1 in Figure 3), and eliminating the non-satisfactory rules
(see Table 9), we obtained only Rule 3: if Part is time#5 and Whole is abstraction#6 then
Yes and the default value No (see Table 11). The rule is propagated to the parent node
abstraction#6– abstraction#6 and applied last.

In the end, the rules learned from the unambiguous examples are propagated to the
parent node L. The procedure repeats until the top node of the tree is reached. After the
combination and propagation procedure finishes, the root node contains the complete
set of rules. The default value is added as a last rule, for classifying the instances that
are not captured by the rules.

A sample of the rules obtained using the ISS procedure for the genitive cluster
is shown in Table 11 in the order in which they were applied and propagated to the
abstraction#6–abstraction#6 node. Table 12 shows a translation of these rules into if–then–
else rules.

The meaning of a rule Part Class Whole Class Val is if Part is Part Class and Whole is
Whole Class, then It is a part–whole relation (Val. = Yes) or not (Val. = No). For example,
Rule 1 is if Part is a linear measure#3 and Whole is a measure#3, then It is a part–whole
relation.

5.3 Classification Rules for Each Cluster

In this section we present the classification rules learned for each cluster using the ISS
learning procedure. We also performed various experiments to study the similarities
and differences among clusters, especially to determine whether or not the classifica-
tion rules learned for a particular cluster can be applied with high accuracy to other
clusters.

A. Experiments with the genitive cluster
The most frequently used set of part–whole lexico-syntactic patterns is represented

by the genitive cluster. Tables 13 shows some of the classification rules learned for this
cluster by the ISS learning procedure in the order provided by the combination and
propagation algorithm. The full list of classification rules is shown in Tables 1 and 2
from Appendix B. The unambiguous set at level 1 of the learning tree did not generate
any rules. The rule labeled Default in Table 13 shows the learning tree global default
value (No). The tables of classification rules show only the frequency and accuracy of
the rules generated at the unambiguous nodes.
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Overall, for the genitive cluster the ISS procedure obtained 27 complex sets of
classification rules.

B. Experiments with the noun compound cluster
Taking into consideration the results already obtained for the genitive cluster, there

are three possible approaches for detecting part–whole relations using the Y X and X Y
patterns:

a. [C1] Use the classification rules obtained for the genitive cluster.

b. [C1 + C2] Determine new classification rules collectively for the genitive
and noun compound clusters (Y’s X; X of Y; Y have X; and Y X).

c. [C2] Determine classification rules only for the noun compound cluster
(Y X; X Y).

Table 14 shows the results obtained for the noun compound cluster using these
three approaches. As one can observe, the best approach is to use only the classification
rules generated by the noun compound cluster training examples. The recall increases
significantly when new classification rules are learned for both the genitive and noun
compound clusters, while the precision jumps considerably when the classification rules
are learned only from the noun compound cluster examples. These statistics indicate
that the genitive and noun compound clusters encode different semantic information,
and consequently should be treated separately.

Table 15 shows the classification rules learned only for the noun compound cluster.

C. Experiments with the preposition cluster
Taking into consideration the results obtained for the previous two clusters, there

are five possible approaches for detecting part–whole relations using X prep Y and Y
prep X patterns:

a. [C1] Use the classification rules obtained for the genitive cluster.

b. [C2] Use the classification rules obtained for the noun compound cluster.

c. [C1 + C3] Determine new classification rules for all the patterns in the
genitive and preposition clusters (Y’s X; X of Y; and Y have X; Y prep X;
and X prep Y).

Table 14
The results obtained for each of the three approaches for the Y X; X Y patterns applied on the LA
Times test corpus.

Results Genitives Genitives + Noun compounds Noun compounds
(C1) (C1 + C2) (C2)

Precision 48.43% 52.98% 79.02%
Recall for cluster 58.08% 73.46% 75.33%
F-measure 52.82% 61.56% 77.13%
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Table 16
The results obtained for each of the five approaches for the Y prep X and X prep Y patterns in the
preposition cluster applied on the LA Times test corpus. C1 refers to the genitive cluster, C2 to
the noun compound cluster, and C3 to the preposition cluster.

Results C1 C2 C1 + C3 C2 + C3 C3 C1 + C2 + C3

Precision 46.98% 61.54% 4.81% 36.36% 82.56% 40.74%
Recall for cluster 61.37% 54.55% 8.26% 36.36% 62.83% 15.06%
F-measure 53.25% 57.84% 6.18% 36.36% 71.36% 22.78%

d. [C2 + C3] Determine new classification rules for all the patterns in the
noun compound and preposition clusters (Y X, Y prep X and X prep Y).

e. [C3] Determine classification rules only for the preposition cluster patterns
(Y prep X and X prep Y patterns).

f. [C1 + C2 + C3] Determine new classification rules for all the patterns in all
three clusters (Y’s X; X of Y; X Y; Y X, and Y have X; Y prep X and X prep Y).

Table 16 shows the results obtained for the preposition cluster patterns in each of
the five approaches used. One can observe that the preposition cluster alone provides
the best results over all other combinations. These statistics are also consistent with the
results obtained for the noun compound cluster experiments. The best approach is to
use only the classification rules generated by the preposition cluster training examples.

Table 17 shows the classification rules learned only for the preposition cluster
patterns.

5.4 Results for Discovering Part–Whole Relations

In order to test the classification rules for the extraction of part–whole relations, we
selected two different text collections: the LA Times news articles from TREC 9 and the
Wall Street Journal (WSJ) articles from Treebank2.10 From each collection we randomly
selected 10,000 sentences that formed two distinct test corpora. This corpus was
parsed and disambiguated using a state-of-the-art domain independent Word Sense
Disambiguation system that has an accuracy of 71% when disambiguating nouns in
texts (Novischi et al. 2004). In cases in which the noun constituents were not in WordNet,
we used an in-house Named Entity Recognizer (NERD) that has a 96% F-measure on
MUC6 data.

The part–whole relations extracted by the ISS system were validated by com-
paring them with the gold standard for the test set obtained through inter-annotator
agreement.

We define the precision, recall, and F-measure performance metrics in this context:

Precision =
Number of correctly retrieved relations

Number of relations retrieved (2)

10 Treebank2 is a text collection developed at UPenn consisting of a million words of 1989 Wall Street
Journal material.
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Recall =
Number of correctly retrieved relations

Number of correct relations (3)

F − measure = 2
1

Precision + 1
Recall

(4)

Tables 18 and 19 show the overall results obtained by the ISS system on the Wall
Street Journal (WSJ) and on the LA Times collections of news articles, respectively. The
results obtained for each cluster are summarized in Tables 1 and 2 in Appendix C.

Overall, on the WSJ test set the system obtained 82.87% precision and 79.09% recall
on these three clusters. Besides the 373 relations corresponding to the three clusters, 33
other meronymy relations (406 − 373) were found in the corpus corresponding to part–
whole lexico-syntactic patterns that were not studied in this paper, giving us a global
part–whole relation coverage (recall) of 72.66%.

The ISS system’s results were compared to four baseline measures. Baseline1 shows
the results obtained by the system with no word sense disambiguation (WSD), using
only sense#1 (the most frequent sense in WordNet) for the pair of concepts. In Baseline2,
the system considered WSD and applied the specialization algorithm, but ran C4.5 only
once on all the unambiguous sets of specialized training examples representing all the
leaves of the learning tree. Baseline3 shows the results obtained without generalizing
the concepts; and Baseline4 shows the results obtained with automatic word sense
disambiguation (WSD) on the training corpus as opposed to the manual word sense
disambiguation used for ISS training.

From the baselines’ results for both the WSJ and LA Times text collections, one can
see the importance of the WSD and IS–A generalization/specialization features to the
extraction of the part–whole relations.

Table 18
The number of part–whole relations obtained and the accuracy in the WSJ collection.

Results Baseline1 Baseline2 Baseline3 Baseline4 ISS
(No WSD) (One learning) (No generalization) (Using WSD System

for training)

Precision 7.72% 7.73% 15.71% 53.57% 82.87%
Pattern recall 24% 43% 2.95% 27.87% 79.09%
Relation recall 10.81% 19.37% 2.71% 25.86% 72.66%
F-measure 3.56% 6.02% 4.97% 36.67% 82.05%

Table 19
The number of part–whole relations obtained and the accuracy in the LA Times collection.

Results Baseline1 Baseline2 Baseline3 Baseline4 ISS
(No WSD) (One learning) (No generalization) (Using WSD System

for training)

Precision 2.10% 3.24% 24.34% 48.22% 79.03%
Pattern recall 11.61% 42.86% 6.25% 20.61% 85.30%
Relation recall 3.02% 11.16% 5.80% 30.05% 79.15%
F-measure 11.68% 13.1% 9.98% 28.88% 80.94%
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Figure 5 shows the learning curve where the classifier is trained on an incrementally
increasing number of training data instances. The learning curve was determined by
applying the training rules obtained through specialization on the LA Times test corpus
annotated with automatic WSD. If for 1,000 positive and 1,000 negative examples the
F-measure is only 35%, for 5,000 it increases to 70%, for 10,000 to 74%, for 15,000 to
77%, and it stabilizes at 87% for 20,000 examples. The learning curve shows that the ISS
system obtains an F-measure of about 75% with only 16.8% of the training data.

5.5 Comparison with Previous Work

In this section we compare our work with two other approaches most similar to our task
of part–whole semantic relation detection.

Berland and Charniak (1999) limit their approach to single words denoting some
entities that have recognizable parts, such as car and building. As they also observe,
this approach causes errors, such as the detection of conditioner is part of car instead of
air conditioner is part of car. Our system is considerably more knowledge intensive, but
more general in the sense that it relies on WordNet and NERD to detect both single
word and multiple word concepts in context. Moreover, their system was tested only
on a working list of predefined highly probable wholes for their corpus based on the
genitive syntactic patterns. In contrast, the ISS system can disambiguate any pair of
concepts, provided they are in WordNet or can be classified by NERD.

In order to eliminate a part of the data ambiguities, Berland and Charniak apply
an ad hoc filtering procedure to eliminate those instances that represent properties or
qualities of objects, such as those ending in -ing, -ity, and -ness. Our procedure is general
enough to treat both positive and negative example instances.

Using the genitive patterns they find parts of a predefined list of wholes from a
large text collection. Our method, however, determines if two noun concepts are in a
part–whole relation or not. By generalizing the method to all the parts and wholes from
our testing corpus, the accuracy of the system will fall. On the other hand, to be able
to test the system on their six whole concepts we would need thousands of positive
and negative examples for each such word. For instance, for the word book, Berland

Figure 5
The learning curve for the number of learning examples.
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and Charniak had almost 2,000 examples for the top 50 ranked parts. Unfortunately,
in our LA Times testing corpus we couldn’t find more than ten parts for each of their
proposed whole objects. Therefore, we are unable to replicate their work using our text
collection.

ISS algorithm is based on an iterative semantic specialization method that allows
us to go deeper into the semantic complexity problem of the patterns considered. To
the best of our knowledge, ISS is the only noun-phrase interpretation system that
uses word sense disambiguation. One other noun compound interpretation sys-
tem, SENS (Vanderwende 1995), used IS–A generalizations, and considered only the
first sense of the noun constituents. The current state-of-the-art approaches in auto-
matic detection of semantic roles (Gildea and Jurafsky 2002) have tried to use lexico-
semantic hierarchies, such as WordNet, to generalize from lexical noun features.
However, they also rely on the first sense listed for each noun occurring in the train-
ing data. Our experiments indicate the importance of WSD in extracting part–whole
semantic relations.

6. Limitations and Extensions

The difficulty of detecting part–whole relations is due to a variety of factors ranging
from syntactic analysis, to semantic and pragmatic information. In this section we
analyze the sources of errors occurring in our experiments and present some possible
improvements.

To arrive at an interpretation of the pair of words selected by the cluster patterns, it
is first necessary to identify that both words are nouns, and not other parts of speech.
For example, if Brill’s tagger mis-tags an adjective or verb as a noun, then the ISS system
will also be affected.

Our classification rule learning approach is based on the WordNet semantic classes
of the two concepts that represent the part and the whole, respectively. Thus, if the
WSD system fails to annotate the concepts with the correct senses, the ISS system
can generate wrong semantic classes, which leads to wrong conclusions. For example,
the WordNet concept end has 14 senses corresponding to 6 semantic classes (entity,
abstraction, event, psychological feature, state, and act) (see Table 20). However, not all
the senses refer to a part–whole relation (e.g., senses 4, 6, 8, 9, 11, and 14 do not).
Some senses corresponding to both positive and negative examples are mapped into
the same semantic class (e.g., senses 7 and 8). In this case, the classification error will
not affect the final result as it is eliminated in the specialization phase. However, when
a part–whole sense of end is mapped erroneously into a semantic class that is represent-
ative of negative examples, then the error might propagate to the final classification
rule.

For some words, WordNet does not have all their senses. For example, the concepts
import and export are not listed in WordNet as denoting the act of importing/exporting
commodities from a foreign country. Thus, relations such as import of sweater and export
of milk are mis-classified. Similar examples are participant and beneficiary for which
WordNet lists only the senses corresponding to people and not to other entities, such
as countries (e.g., a country can be one of the participants at a NATO meeting).

When a noun is too specific to be found in WordNet, we rely on a named entity
recognizer (NERD). NERD identifies people, organizations, and other information ex-
traction categories and annotates them accordingly. However, NERD doesn’t always
provide the correct annotation. For example, in the phrase attorney of York, it identifies
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Table 20
The semantic classes and part–whole status for all the senses of the concept end in WordNet.

Sense Semantic Class Part–Whole Examples
No. Relation?

1 entity Yes end of line
2 abstraction Yes end of year
3 event Yes end of movie
4 psychological feature No the end justifies the means
5 psychological feature Yes end of section
6 state No glorious end of the experiment

(sense of destruction, death)
7 entity Yes end of box
8 entity No end hold the pass
9 entity No both ends wrote encouraging thoughts

10 entity Yes end of town
11 act No -
12 abstraction Yes In the end of the presentation
13 entity Yes the end of the cloth
14 act No the end from the line of scrimmage

York as a name of a person and tags it with sense#1. However, York#1 is defined in
WordNet as the House of York, the English royal house that reigned from 1461 to 1485.
Consequently, the ISS system will consider York#1 a group instead of an entity, yielding
an erroneous result.

The WSD tool identifies noun compounds and annotates them with the correspond-
ing WordNet sense. For instance in the sentence “... by/IN simply/RB/1 redesigning/VBG/1
how/WRB/1 a/DT car door/NN/1 is/VBZ assembled/VBN/1” the system annotated the
concept car door with its WordNet sense (sense 1). This way, the ISS system considers the
two words as a concept and not as a noun compound encoding a part–whole relation.
The majority of noun compounds from the test corpus are names of people (e.g., Andrea
West, Mr. Moore), dates (e.g., Oct 12, Monday afternoon), names of institutions (e.g., Bank
of America, Planters Corp., Research Inc., Johnson & Johnson), or numbers (e.g., six days, five
years). After analyzing the ambiguous pairs of nouns in noun compound instances, we
noticed that only a few of them were positive examples. This error can be easily fixed
by disabling the labeling of noun compounds with word senses.

Another class of errors involves the position of part and whole concepts. For exam-
ple, the part–whole instance band#1 of people#1 is detected by the pattern NPX of NPY
and the system classifies erroneously band as part, and people as whole. One way to
overcome this is to further classify the patterns based on selectional restrictions on their
constituent nouns (e.g., group nouns in of–genitives have different positions for the part
and whole concepts).

We present in Table 21 the types of errors and their frequency of occurrence for each
cluster and overall.

Although our approach takes context into account through the use of word sense
disambiguation, it does so in a limited way, without access to the general discourse
and pragmatic context within which a pair of nouns is embedded. Various researchers
(Spärck Jones 1983; Lascarides and Copestake 1998; Lapata 2002) showed that the
interpretation of noun compounds, for example, may be influenced by discourse and
pragmatic knowledge. For instance, the discourse context provided by the following
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Table 21
Error types statistics measured on the Wall Street Journal corpus for the ISS system.

Clusters

Error Type Genitives Noun Preposition All Error (%)
compounds

WSD System 57 36 26 119 53.85%
NERD module 11 5 9 25 11.31%
Brill’s tagger 7 4 8 19 8.6%
Missing WordNet sense 10 1 7 18 8.14%
Part and Whole identification 5 10 0 15 6.79%
Classification rules 7 2 5 14 6.33%
Unseen examples
Noun compound annotation 0 9 2 11 4.98%
Total 97 67 57 221 100%

sentences prefers the PURPOSE interpretation (bag for cotton clothes) of the noun com-
pound cotton bag over the PART–WHOLE meaning (bag made of cotton) (cf. (Lapata 2002)):

(5) Mary sorted her clothes into various bags made from plastic.

(6) She put her skirt into the cotton bag.11

Encoding discourse knowledge is thus necessary. However, this is an open research
problem and involves considerable manual annotation effort.

Furthermore, our experiments focused on the detection of part–whole relations
in compositional constructions. A more general approach would consider lexicalized
instances as well. Pragmatic knowledge is particularly important for the interpretation
of lexicalized constructions, such as soap opera. The meaning of lexicalized instances is
usually captured by semantic lexicons and dictionaries.

Finally, the approach presented here can be extended to other semantic relations
encoded by the cluster patterns considered. The only part–whole elements used in this
algorithm were the patterns and the examples. Thus the learning and the validation
procedures are generally applicable and we intend to generalize the method for the
detection of other semantic relations, such as KINSHIP and PURPOSE. So far, we have
obtained encouraging results for a list of 35 general-purpose semantic relations encoded
by genitives (Moldovan and Badulescu 2005), by noun compounds (Girju et al. 2005),
and different noun phrase-level patterns including genitives, noun compounds, and the
preposition patterns (Moldovan et al. 2004).

The drawback of the method presented here, as for other very precise learning
methods, is that the number of training examples needs to be very large. If a certain
class of negative or positive examples is not seen in the training data (and therefore it is
not captured by the classification rules), the system cannot classify its instances. Thus,
the larger and more diverse the training data, the better the classification rules.

11 These sentences were introduced in (Lapata 2002).
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Table 22
The components of the AH–64A Apache Helicopter found on Web documents.

AH–64A Apache Helicopter
Hellfire air-to-surface missile

millimeter wave seeker
70mm Folding Fin Aerial rocket
30mm Cannon camera
armaments
General Electric 1700-GE engine
4-rail launchers
four-bladed main rotor
anti-tank laser guided missile
Longbow millimetre wave fire control radar

integrated radar frequency interferometer
rotating turret
tandem cockpit

Kevlar seats

7. Importance to NLP Applications

Since part–whole semantic relations occur frequently in text and have been recognized
as fundamental ontological relations since ancient times, their discovery is paramount
for applications such as Question Answering, automatic ontology construction, textual
inferencing, and others. For questions like What parts does General Electric manufacture?,
What are the components of X, What is Y made of?, and many more, the discovery of part–
whole relations is necessary to assemble the right answer.

The concepts and part–whole relations acquired from a collection of documents
can be useful in answering difficult questions that normally can not be handled based
solely on keyword matching and proximity. As the level of difficulty increases, Question
Answering systems need richer semantic resources, including ontologies and larger
knowledge bases. Consider the question What does the AH–64A Apache helicopter consist
of? For questions like this, the system must extract all the components the war helicopter
has. Unless an ontology of such army attack helicopter parts exists in the knowledge
base, which in an open domain situation is highly unlikely, the system must first acquire
from the document collection all the pieces the helicopter is made of. These parts
can be scattered all over the text collection, so the Question Answering system has to
gather together these partial answers into a single and concise hierarchy of parts. This
technique is called answer fusion (Girju 2001).

Using a state-of-the-art Question Answering system (Moldovan et al. 2002) adapted
for answer fusion and including the ISS system as a module, the question presented
above was answered by searching the Internet (the website for the Defence Industries—
army at www.army-technology.com). The QA system started with the question focus
helicopter and extracted and disambiguated all the meronymy relations using the ISS
module. Table 22 shows the taxonomic ontology created for this question (presenting
all the parts of a whole).

For example, the relation “AH–64 Apache helicopter has part Hellfire air-to-surface
missile” was determined from the sentence AH–64 Apache helicopter has a Longbow-
millimetre wave fire control radar and a Hellfire air-to-surface missile. Only the heads of the
noun phrases were considered as they occur in WordNet (i.e., helicopter and air-to-surface
missile, respectively).

120



Girju, Badulescu, and Moldovan Automatic Discovery of Part–Whole Relations

Ontologies12 are used more and more as means to boost the accuracy of natural
language application systems (Moldovan and Girju 2001). Semantically richer ontolo-
gies can be built by incorporating more semantic relations in addition to the traditional
IS–A relation. Part–whole is an excellent example of such relations. Recently, Tatu
and Moldovan (2005) have shown that semantic relations such as part–whole can be
combined with other relations using a semantic calculus for the purpose of improving
the performance of a textual inference system.

8. Conclusions

In this paper we presented a supervised, knowledge-intensive approach to the auto-
matic detection of part–whole relations encoded by the three most frequent clusters of
syntactic constructions: (1) genitives and NP have NP clauses, (2) noun compounds, and
(3) other NP PP phrases. The detection of the part–whole relations is difficult due to
the highly ambiguous nature of the syntactic constructions, as they can encode other
relations than meronymy.

Our method for detection of part–whole relations discovers semi-automatically the
part–whole lexico-syntactic patterns and learns automatically the semantic classifica-
tion rules needed for the disambiguation of these patterns. We defined the task as a
binary classification problem and used an approach that relies on the assumption that
the semantic relation between two constituent nouns representing the part and the
whole can be detected based on the components’ semantic classification rules. The clas-
sification rules are learned automatically through an iterative semantic specialization (ISS)
procedure applied on the noun constituents’ semantic classes provided by WordNet.
We successfully combined the results of decision tree learning with the WordNet IS-A
hierarchy specialization for more accurate learning. We proved the method is domain
independent.

The classification rules learned by our method and listed in several tables can be
easily implemented to extract part–whole relations from text. However, to apply these
rules a word sense disambiguation system for nouns is necessary.

Our experiments revealed the importance of word sense disambiguation and Word-
Net IS–A specialization. We have directly compared and contrasted the results of our
system with a variety of baselines and have shown impressive results. Combination of
word sense disambiguation information with IS-A semantic information in WordNet
yields better performance over either WSD or IS-A specialization alone.

Our experiments also showed that the three cluster patterns considered are not al-
ternative ways of encoding part–whole information. This observation is very important
for various text understanding applications.

Moreover, the approach presented can be extended to other semantic relations since
the learning procedures are generally applicable and yield good results for sufficiently
large training corpora.

12 Gartner Group identified Ontologies as one of the leading IT technologies, ranked 3rd in its list of top 10
technologies forecast for 2005.
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Appendix A: Experiments with Meronymic Patterns

Tables 1, 2, and 3 present a summary of phrase-level and sentence-level meronymic
patterns and their possible extensions.

Table 1
The phrase-level patterns determined with the pattern identification procedure in Section 3.
“Fr.” means frequency.

No. Pattern Fr. Example

1 NPX PPY 173 door of his car
— PPY starts with of the executive of the new government

2 NPX PPY 61 people in the world
— PPY starts with in

3 NPX PPY 14 They organized the executive branch of government
— NPX ends with branch
— PPY begins with of

4 NPX PPY 9 oxygen from air
— PPY starts with from people from all over the world

5 NPX PPY 6 people throughout the world
— PPY starts with throughout

6 NPX PPY 5 window at the rear of the building
— PPY starts with at

7 NPX PPY 16 five fingers on one hand
— PPY starts with on

8 NPX PPY 3 the door to the house
— PPY starts with to

9 NPX PPY 2 people around the world
— PPY starts with around

10 NPX PPY 1 people all over the world
— PPY starts with all over

11 X and other Z of Y 1 in Romania and the other countries of Eastern Europe
12 NPX PPY 1 severe ligament damage to the left knee

— PPY starts with to
— NPX ends with damage

13 NPX PPY 1 pavement onto streets
— PPY starts with onto

14 NPX PPY 1 windows outside the court building
— PPY starts with outside

15 NPY PPX 7 the organization with 120 members
— PPX starts with with The spiders with 6 legs are dangerous.

16 NPY PPX 4 They amputate his leg above the knee.
— PPX starts with above

17 NPY’s NPX 71 car’s engine
organization’s membership

18 PPX PPY 2 in an abdomen, in a reclining torso
— PPX starts with in
— PPY starts with in

19 PPY PPX 1 on her car, on her window
— PPX starts with on
— PPY starts with on

20 NPX, NPY 10 Bucharest, Romania
in Atlanta ,Ga.

21 PPY WHPX 4 The club whose membership
— WHPX starts with whose
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Table 1
(cont.)

No. Pattern Fr. Example

22 NPX1X2 PPY 8 between the executive and legislative branches
of government

— NPX1X2 ends with branches
— NPX1X2 contains and or or
— PPY begins with of

23 NPX1X2 PPY 1 the memory and other features of IBM-compatible
personal computers.

— NPX1X2 contains and or or
— PPY begins with of

24 NPY (NPX1X2) 1 the three states of Southern New England
(Massachusetts, Connecticut, and Rhode Island)

— NPX1X2 contains and or or
25 NPX (NPY) 1 red-bellied snake (Storeria)
26 NPY NPX 42 He sell car doors
27 NPZ–NPX NPY 26 a one–act ballet
28 NPY NPX NPZ 12 faulty garage door lock

computer memory chip
four–door compact car

29 NPX NPY 3 membership organization
power window buildings

30 NPX–NPY NPZ 3 a play–act universe
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Table 3
Extensions for lexico-syntactic patterns discovered in the 20,000 sentence corpus used in the
pattern identification procedure in Section 3.

No. Pattern Example

1 NPY PPX A bird without wings cannot fly.
- PPY starts with without

2 NPX PPY X inside Y The walls inside the building had better colors.
- PPY starts with inside
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Appendix C: Performance Results per Cluster

Tables 1 and 2 show the performance results obtained for each cluster considered on LA
Times and WSJ test corpora.

Table 1
The number of part–whole relations obtained and the accuracy for each cluster and for all the
clusters in the WSJ collection.

Results Genitives Noun compounds Preposition All
cluster cluster cluster clusters

ISS system

Number of patterns 1514 1217 1081 3812
Number of correctly retrieved 161 85 49 295

relations
Number of relations retrieved 202 90 64 356
Number of correct relations 167 141 65 373

for the pattern(s)
Number of correct relations 406
Precision 79.70% 94.44% 76.56% 82.87%
Recall for cluster(s) 96.41% 60.28% 75.38% 79.09%
Coverage 72.66%
F-measure 86.87% 77.13% 71.36% 82.05%

Baseline1 — No WSD

Precision 6.04% 50% 45.45% 7.72%
Recall for the pattern(s) 36% 3.57% 22.73% 24%
Coverage 10.81%
F-measure 2.12% 7.41% 23.26% 3.56%

Baseline2 — One learning

Precision 7.18% 37.5% 20% 7.73%
Recall for the pattern(s) 78% 10.71% 4.54% 43%
Coverage 19.37%
F-measure 6% 10% 3.57% 6.02%

Baseline3 — No Generalization

Precision 28.21% 0% 0% 15.71%
Recall for the pattern(s) 6.59% 0% 0% 2.95%
Coverage 2.71%
F-measure 10.68% 1.12% 0% 4.97%

Baseline4 — WSD using system for training

Precision 62.42% 50.74% 59.05% 53.57%
Recall for the pattern(s) 92.40% 68.67% 54.87% 27.87%
Coverage 25.86%
F-measure 74.51% 58.36% 56.88% 36.67%
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Table 2
The number of part–whole relations obtained and the accuracy for each cluster and for all the
clusters in the LA Times collection.

Results Genitives Noun compounds Preposition All
cluster cluster cluster clusters

ISS system

Number of patterns 4106 3442 2577 10125
Number of correctly retrieved 321 113 71 505

relations
Number of relations retrieved 410 143 86 639
Number of correct relations 329 150 113 592

for the pattern(s)
Number of correct relations 638
Precision 78.29% 79.02% 82.56% 79.03%
Recall for cluster(s) 97.57% 75.33% 62.83% 85.30%
Coverage 79.15%
F-measure 87.26% 73.59% 75.97% 80.94%

Baseline1 — No WSD

Precision 1.16% 33.33% 38.46% 2.10%
Recall for the pattern(s) 12.07% 4.17% 16.67% 11.61%
Coverage 3.02%
F-measure 10.34% 6.66% 30.3% 11.68%

Baseline2 — One learning

Precision 3.12% 12.5% 3.84% 3.24%
Recall for the pattern(s) 77.59% 8.33% 3.33% 42.86%
Coverage 11.16%
F-measure 13.15% 16.66% 7.4% 13.1%

Baseline3 — No Generalization

Precision 34.29% 3.33% 0% 24.34%
Recall for the pattern(s) 10.94% 0.67% 0% 6.25%
Coverage 5.80%
F-measure 16.59% 1.12% 0% 9.98%

Baseline4 — WSD using system for training

Precision 52.8% 54% 39.81% 48.22%
Recall for the pattern(s) 79.04% 57.45% 63.08% 20.61%
Coverage 30.05%
F-measure 63.31% 55.67% 48.81% 28.88%
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