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We present a methodology for extracting subcategorization frames based on an automatic
lexical-functional grammar (LFG) f-structure annotation algorithm for the Penn-II and
Penn-III Treebanks. We extract syntactic-function-based subcategorization frames (LFG
semantic forms) and traditional CFG category-based subcategorization frames as well as
mixed function/category-based frames, with or without preposition information for obliques
and particle information for particle verbs. Our approach associates probabilities with frames
conditional on the lemma, distinguishes between active and passive frames, and fully
reflects the effects of long-distance dependencies in the source data structures. In contrast
to many other approaches, ours does not predefine the subcategorization frame types extracted,
learning them instead from the source data. Including particles and prepositions, we extract
21,005 lemma frame types for 4,362 verb lemmas, with a total of 577 frame types and an
average of 4.8 frame types per verb. We present a large-scale evaluation of the complete
set of forms extracted against the full COMLEX resource. To our knowledge, this is
the largest and most complete evaluation of subcategorization frames acquired automatically
for English.

1. Introduction

In modern syntactic theories (e.g., lexical-functional grammar [LFG] [Kaplan and
Bresnan 1982; Bresnan 2001; Dalrymple 2001], head-driven phrase structure gram-
mar [HPSG] [Pollard and Sag 1994], tree-adjoining grammar [TAG] [Joshi 1988], and
combinatory categorial grammar [CCG] [Ades and Steedman 1982]), the lexicon is
the central repository for much morphological, syntactic, and semantic information.
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Extensive lexical resources, therefore, are crucial in the construction of wide-coverage
computational systems based on such theories.

One important type of lexical information is the subcategorization requirements
of an entry (i.e., the arguments a predicate must take in order to form a grammatical
construction). Lexicons, including subcategorization details, were traditionally pro-
duced by hand. However, as the manual construction of lexical resources is time con-
suming, error prone, expensive, and rarely ever complete, it is often the case that the
limitations of NLP systems based on lexicalized approaches are due to bottlenecks in
the lexicon component. In addition, subcategorization requirements may vary across
linguistic domain or genre (Carroll and Rooth 1998). Manning (1993) argues that, aside
from missing domain-specific complementation trends, dictionaries produced by hand
will tend to lag behind real language use because of their static nature. Given these
facts, research on automating acquisition of dictionaries for lexically based NLP sys-
tems is a particularly important issue.

Aside from the extraction of theory-neutral subcategorization lexicons, there has
also been work in the automatic construction of lexical resources which comply
with the principles of particular linguistic theories such as LTAG, CCG, and HPSG
(Chen and Vijay-Shanker 2000; Xia 1999; Hockenmaier, Bierner, and Baldridge 2004;
Nakanishi, Miyao, and Tsujii 2004). In this article we present an approach to auto-
mating the process of lexical acquisition for LFG (i.e., grammatical-function-based sys-
tems). However, our approach also generalizes to CFG category-based approaches. In
LFG, subcategorization requirements are enforced through semantic forms specifying
which grammatical functions are required by a particular predicate. Our approach is
based on earlier work on LFG semantic form extraction (van Genabith, Sadler, and
Way 1999) and recent progress in automatically annotating the Penn-II and Penn-III
Treebanks with LFG f-structures (Cahill et al. 2002; Cahill, McCarthy, et al. 2004). Our
technique requires a treebank annotated with LFG functional schemata. In the early
approach of van Genabith, Sadler, and Way (1999), this was provided by manually
annotating the rules extracted from the publicly available subset of the AP Treebank to
automatically produce corresponding f-structures. If the f-structures are of high qual-
ity, reliable LFG semantic forms can be generated quite simply by recursively reading
off the subcategorizable grammatical functions for each local PRED value at each level of
embedding in the f-structures. The work reported in van Genabith, Sadler, and Way
(1999) was small scale (100 trees) and proof of concept and required considerable
manual annotation work. It did not associate frames with probabilities, discriminate
between frames for active and passive constructions, properly reflect the effects of
long-distance dependencies (LDDs), or include CFG category information. In this
article we show how the extraction process can be scaled to the complete Wall
Street Journal (WSJ) section of the Penn-II Treebank, with about one million words
in 50,000 sentences, based on the automatic LFG f-structure annotation algorithm
described in Cahill et al. (2002) and Cahill, McCarthy, et al. (2004). More recently
we have extended the extraction approach to the larger, domain-diverse Penn-III
Treebank. Aside from the parsed WSJ section, this version of the treebank contains
parses for a subsection of the Brown corpus (almost 385,000 words in 24,000 trees)
taken from a variety of text genres.1 In addition to extracting grammatical-function-

1 For the remainder of this work, when we refer to the Penn-II Treebank, we mean the parse-annotated WSJ,
and when we refer to the Penn-III Treebank, we mean the parse-annotated WSJ and Brown corpus
combined.
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based subcategorization frames, we also include the syntactic categories of the predicate
and its subcategorized arguments, as well as additional details such as the prepositions
required by obliques and particles accompanying particle verbs. Our method discrim-
inates between active and passive frames, properly reflects LDDs in the source data
structures, assigns conditional probabilities to the semantic forms associated with each
predicate, and does not predefine the subcategorization frames extracted.

In Section 2 of this article, we briefly outline LFG, presenting typical lexical entries
and the encoding of subcategorization information. Section 3 reviews related work in
the area of automatic subcategorization frame extraction. Our methodology and its
implementation are presented in Section 4. In Section 5 we present results from the
extraction process. We evaluate the complete induced lexicon against the COMLEX
resource (Grishman, MacLeod, and Meyers 1994) and present the results in Section 6.
To our knowledge, this is by far the largest and most complete evaluation of subcat-
egorization frames automatically acquired for English. In Section 7, we examine the
coverage of our lexicon in regard to unseen data and the rate at which new lexical
entries are learned. Finally, in Section 8 we conclude and give suggestions for future
work.

2. Subcategorization in LFG

Lexical functional grammar (Kaplan and Bresnan 1982; Bresnan 2001; Dalrymple
2001) is a member of the family of constraint-based grammars. It posits minimally
two levels of syntactic representation:2 c(onstituent)-structure encodes details of sur-
face syntactic constituency, whereas f(unctional)-structure expresses abstract syntactic
information about predicate–argument–modifier relations and certain morphosyntactic
properties such as tense, aspect, and case. C-structure takes the form of phrase structure
trees and is defined in terms of CFG rules and lexical entries. F-structure is pro-
duced from functional annotations on the nodes of the c-structure and implemented
in terms of recursive feature structures (attribute–value matrices). This is exemplified
by the analysis of the string The inquiry soon focused on the judge (wsj 0267 72) using
the grammar in Figure 1, which results in the annotated c-structure and f-structure in
Figure 2.

The value of the PRED attribute in an f-structure is a semantic form Π〈gf1, gf2, . . . ,
gfn〉, where Π is a lemma and gf a grammatical function. The semantic form provides
an argument list 〈gf1,gf2, . . . ,gfn〉 specifying the governable grammatical functions (or
arguments) required by the predicate to form a grammatical construction. In Figure 1
the verb FOCUS requires a subject and an oblique object introduced by the preposition
on: FOCUS〈(↑ SUBJ)(↑ OBLon)〉. The argument list can be empty, as in the PRED value
for judge in Figure 1. According to Dalrymple (2001), LFG assumes the following uni-
versally available inventory of grammatical functions: SUBJ(ect), OBJ(ect), OBJθ, COMP,
XCOMP, OBL(ique)θ, ADJ(unct), XADJ. OBJθ and OBLθ represent families of grammatical
functions indexed by their semantic role, represented by the theta subscript. This list
of grammatical functions is divided into governable (subcategorizable) grammatical
functions (arguments) and nongovernable (nonsubcategorizable) grammatical func-
tions (modifiers/adjuncts), as summarized in Table 1.

2 LFGs may also involve morphological and semantic levels of representation.
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Figure 1
Sample LFG rules and lexical entries.

A number of languages allow the possibility of object functions in addition to the
primary OBJ, such as the second or indirect object in English. Oblique arguments are
realized as prepositional phrases in English. COMP, XCOMP, and XADJ are all clausal
functions which differ in the way in which they are controlled. A COMP is a closed
function which contains its own internal SUBJ:

The judge thinks [COMP that it will resume].

XCOMP and XADJ are open functions not requiring an internal SUBJ. The subject is
instead specified externally in the matrix phrase:

The judge wants [XCOMP to open an inquiry].

While many linguistic theories state subcategorization requirements in terms
of phrase structure (CFG categories), Dalrymple (2001) questions the viability and
universality of such an approach because of the variety of ways in which grammatical
functions may be realized at the language-specific constituent structure level. LFG
argues that subcategorization requirements are best stated at the f-structure level,
in functional rather than phrasal terms. This is because of the assumption that
abstract grammatical functions are primitive concepts as opposed to derivatives
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Figure 2
C- and f-structures for Penn Treebank sentence wsj 0267 72, The inquiry soon focused on the judge.

of phrase structural position. In LFG, the subcategorization requirements of a
particular predicate are expressed by its semantic form: FOCUS〈(↑ SUBJ)(↑ OBLon)〉 in
Figure 1.

The subcategorization requirements expressed by semantic forms are enforced at
f-structure level through completeness and coherence well-formedness conditions on
f-structure (Kaplan and Bresnan 1982):

An f-structure is locally complete iff it contains all the governable grammatical
functions that its predicate governs. An f-structure is complete iff it and all its
subsidiary f-structures are locally complete. An f-structure is locally coherent iff
all the governable grammatical functions that it contains are governed by a
local predicate. An f-structure is coherent iff it and all its subsidiary f-structures
are locally coherent. (page 211)

Consider again the f-structure in Figure 2. The semantic form associated with
the verb focus is FOCUS〈(↑ SUBJ)(↑ OBLon)〉. The f-structure is locally complete, as it
contains the SUBJ and an OBL with the preposition on specified by the semantic
form. The f-structure also satisfies the coherence condition, as it does not contain
any governable grammatical functions other than the SUBJ and OBL required by the
local PRED.
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Table 1
Governable and nongovernable grammatical functions in LFG.

Governable GFs Nongovernable GFs

SUBJ ADJ
OBJ XADJ
XCOMP
COMP
OBJθ
OBLθ

Because of the specific form of the LFG lexicon, our extraction approach differs in
interesting ways from that of previous lexical extraction experiments. This contrast is
made evident in Sections 3 and 4.

3. Related Work

The encoding of verb subcategorization properties is an essential step in the
construction of computational lexicons for tasks such as parsing, generation, and
machine translation. Creating such a resource by hand is time consuming and error
prone, requires considerable linguistic expertise, and is rarely if ever complete. In
addition, a hand-crafted lexicon cannot be easily adapted to specific domains or
account for linguistic change. Accordingly, many researchers have attempted to
construct lexicons automatically, especially for English. In this section, we discuss
approaches to CFG-based subcategorization frame extraction as well as attempts to
induce lexical resources which comply with specific linguistic theories or express
information in terms of more abstract predicate-argument relations. The evaluation of
these approaches is discussed in greater detail in Section 6, in which we compare our
results with those reported elsewhere in the literature.

We will divide more-general approaches to subcategorization frame acquisition
into two groups: those which extract information from raw text and those which
use preparsed and hand-corrected treebank data as their input. Typically in the
approaches based on raw text, a number of subcategorization patterns are predefined,
a set of verb subcategorization frame associations are hypothesized from the data,
and statistical methods are applied to reliably select hypotheses for the final lexicon.
Brent (1993) relies on morphosyntactic cues in the untagged Brown corpus as indicators
of six predefined subcategorization frames. The frames do not include details of specific
prepositions. Brent used hypothesis testing on binomial frequency data to statistically
filter the induced frames. Ushioda et al. (1993) run a finite-state NP parser on a
POS-tagged corpus to calculate the relative frequency of the same six subcategoriza-
tion verb classes. The experiment is limited by the fact that all prepositional phrases
are treated as adjuncts. Ushioda et al. (1993) employ an additional statistical method
based on log-linear models and Bayes’ theorem to filter the extra noise introduced by
the parser and were the first to induce relative frequencies for the extracted frames.
Manning (1993) attempts to improve on the approach of Brent (1993) by passing raw
text through a stochastic tagger and a finite-state parser (which includes a set of
simple rules for subcategorization frame recognition) in order to extract verbs and
the constituents with which they co-occur. He assumes 19 different subcategorization
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frame definitions, and the extracted frames include details of specific prepositions.
The extracted frames are noisy as a result of parser errors and so are filtered using
the binomial hypothesis theory (BHT), following Brent (1993). Applying his technique
to approximately four million words of New York Times newswire, Manning acquired
4,900 verb-subcategorization frame pairs for 3,104 verbs, an average of 1.6 frames
per verb. Briscoe and Carroll (1997) predefine 163 verbal subcategorization frames,
obtained by manually merging the classes exemplified in the COMLEX (MacLeod,
Grishman, and Meyers 1994) and ANLT (Boguraev et al. 1987) dictionaries and adding
around 30 frames found by manual inspection. The frames incorporate control informa-
tion and details of specific prepositions. Briscoe and Carroll (1997) refine the BHT with a
priori information about the probabilities of subcategorization frame membership and
use it to filter the induced frames. Recent work by Korhonen (2002) on the filtering
phase of this approach uses linguistic verb classes (based on Levin [1993]) for obtaining
more accurate back-off estimates for hypothesis selection. Carroll and Rooth (1998)
use a handwritten head-lexicalized, context-free grammar and a text corpus to
compute the probability of particular subcategorization patterns. The approach is
iterative with the aim of estimating the distribution of subcategorization frames
associated with a particular predicate. They perform a mapping between their frames
and those of the OALD, resulting in 15 frame types. These do not contain details of
specific prepositions.

More recently, a number of researchers have applied similar techniques to auto-
matically derive lexical resources for languages other than English. Schulte im Walde
(2002a, 2002b) uses a head-lexicalized probabilistic context-free grammar similar to
that of Caroll and Rooth (1998) to extract subcategorization frames from a large
German newspaper corpus from the 1990s. She predefines 38 distinct frame types,
which contain maximally three arguments each and are made up of a combination
of the following: nominative, dative, and accusative noun phrases; reflexive pro-
nouns; prepositional phrases; expletive es; subordinated nonfinite clauses; subordinated
finite clauses; and copula constructions. The frames may optionally contain details of
particular prepositional use. Unsupervised training is performed on a large German
newspaper corpus, and the resulting probabilistic grammar establishes the relevance of
different frame types to a specific lexical head. Because of computing time constraints,
Schulte im Walde limits sentence length for grammar training and parsing. Sentences
of length between 5 and 10 words were used to bootstrap the lexicalized grammar
model. For lexicalized training, sentences of length between 5 and 13 words were
used. The result is a subcategorization lexicon for over 14,000 German verbs. The
extensive evaluation carried out by Schulte im Walde will be discussed in greater detail
in Section 6.

Approaches using treebank-based data as a source for subcategorization infor-
mation, such as ours, do not predefine the frames to be extracted but rather learn them
from the data. Kinyon and Prolo (2002) describe a simple tool which uses fine-grained
rules to identify the arguments of verb occurrences in the Penn-II Treebank. This is
made possible by manual examination of more than 150 different sequences of syntactic
and functional tags in the treebank. Each of these sequences was categorized as a
modifier or argument. Arguments were then mapped to traditional syntactic functions.
For example, the tag sequence NP-SBJ denotes a mandatory argument, and its syntactic
function is subject. In general, argumenthood was preferred over adjuncthoood. As
Kinyon and Prolo (2002) does not include an evaluation, currently it is impossible to
say how effective their technique is. Sarkar and Zeman (2000) present an approach to
learn previously unknown frames for Czech from the Prague Dependency Bank (Hajic
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1998). Czech is a language with a freer word order than English and so configurational
information cannot be relied upon. In a dependency tree, the set of all dependents
of the verb make up a so-called observed frame, whereas a subcategorization frame
contains a subset of the dependents in the observed frame. Finding subcategorization
frames involves filtering adjuncts from the observed frame. This is achieved using three
different hypothesis tests: BHT, log-likelihood ratio, and t-score. The system learns 137
subcategorization frames from 19,126 sentences for 914 verbs (those which occurred
five times or more). Marinov and Hemming (2004) present preliminary work on the
automatic extraction of subcategorization frames for Bulgarian from the BulTreeBank
(Simov, Popova, and Osenova 2002). In a similar way to that of Sarkar and Zeman
(2000), Marinov and Hemming’s system collects both arguments and adjuncts. It then
uses the binomial log-likelihood ratio to filter incorrect frames. The BulTreebank trees
are annotated with HPSG-typed feature structure information and thus contain more
detail than the dependency trees. The work done for Bulgarian is small-scale, however,
as Marinov and Hemming are working with a preliminary version of the treebank with
580 sentences.

Work has been carried out on the extraction of formalism-specific lexical resources
from the Penn-II Treebank, in particular TAG, CCG, and HPSG. As these formalisms are
fully lexicalized with an invariant (LTAG and CCG) or limited (HPSG) rule component,
the extraction of a lexicon essentially amounts to the creation of a grammar. Chen and
Vijay-Shanker (2000) explore a number of related approaches to the extraction of a
lexicalized TAG from the Penn-II Treebank with the aim of constructing a statistical
model for parsing. The extraction procedure utilizes a head percolation table as intro-
duced by Magerman (1995) in combination with a variation of Collins’s (1997) approach
to the differentiation between complement and adjunct. This results in the construction
of a set of lexically anchored elementary trees which make up the TAG in question.
The number of frame types extracted (i.e., an elementary tree without a specific lexical
anchor) ranged from 2,366 to 8,996. Xia (1999) also presents a similar method for
the extraction of a TAG from the Penn Treebank. The extraction procedure consists
of three steps: First, the bracketing of the trees in the Penn Treebank is corrected and
extended based on the approaches of Magerman (1994) and Collins (1997). Then the
elementary trees are read off in a quite straightforward manner. Finally any invalid
elementary trees produced as a result of annotation errors in the treebank are filtered out
using linguistic heuristics. The number of frame types extracted by Xia (1999) ranged
from 3,014 to 6,099.

Hockenmaier, Bierner, and Baldridge (2004) outline a method for the automatic
extraction of a large syntactic CCG lexicon from the Penn-II Treebank. For each tree, the
algorithm annotates the nodes with CCG categories in a top-down recursive manner.
The first step is to label each node as either a head, complement, or adjunct based
on the approaches of Magerman (1994) and Collins (1997). Each node is subsequently
assigned the relevant category based on its constituent type and surface configuration.
The algorithm handles “like” coordination and exploits the traces used in the treebank
in order to interpret LDDs. Unlike our approach, those of Xia (1999) and Hockenmaier,
Bierner, and Baldridge (2004) include a substantial initial correction and clean-up of the
Penn-II trees.

Miyao, Ninomiya, and Tsujii (2004) and Nakanishi, Miyao, and Tsujii (2004)
describe a methodology for acquiring an English HPSG from the Penn-II Treebank.
Manually defined heuristics are used to automatically annotate each tree in the treebank
with partially specified HPSG derivation trees: Head/argument/modifier distinctions
are made for each node in the tree based on Magerman (1994) and Collins (1997);
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the whole tree is then converted to a binary tree; heuristics are applied to deal with
phenomena such as LDDs and coordination and to correct some errors in the tree-
bank, and finally an HPSG category is assigned to each node in the tree in accordance
with its CFG category. In the next phase of the process (externalization), HPSG lexical
entries are automatically extracted from the annotated trees through the application of
“inverse schemata.”

4. Methodology

The first step in the application of our methodology is the production of a tree-
bank annotated with LFG f-structure information. F-structures are attribute–value
structures which represent abstract syntactic information, approximating to ba-
sic predicate–argument–modifier structures. Most of the early work on automatic
f-structure annotation (e.g., van Genabith, Way, and Sadler 1999; Frank 2000; Sadler,
van Genabith, and Way 2000) was applied only to small data sets (fewer than 200
sentences) and was largely proof of concept. However, more recent work (Cahill et al.
2002; Cahill, McCarthy, et al. 2004) has presented efforts in evolving and scaling up
annotation techniques to the Penn-II Treebank (Marcus et al. 1994), containing more
than 1,000,000 words and 49,000 sentences.

We utilize the automatic annotation algorithm of Cahill et al. (2002) and Cahill,
McCarthy, et al. (2004) to derive a version of Penn-II in which each node in each
tree is annotated with LFG functional annotations in the form of attribute-value struc-
ture equations. The algorithm uses categorial, configurational, local head, and Penn-II
functional and trace information. The annotation procedure is dependent on locating
the head daughter, for which an amended version of Magerman (1994) is used. The
head is annotated with the LFG equation ↑=↓. Linguistic generalizations are provided
over the left (the prefix) and the right (suffix) context of the head for each syntactic
category occurring as the mother nodes of such heads. To give a simple example, the
rightmost NP to the left of a VP head under an S is likely to be the subject of the sen-
tence (↑ SUBJ =↓), while the leftmost NP to the right of the V head of a VP is most
probably the verb’s object (↑ OBJ =↓). Cahill, McCarthy, et al. (2004) provide four
classes of annotation principles: one for noncoordinate configurations, one for coor-
dinate configurations, one for traces (long-distance dependencies), and a final “catch
all and clean up” phase.

The satisfactory treatment of long-distance dependencies by the annotation algo-
rithm is imperative for the extraction of accurate semantic forms. The Penn Treebank
employs a rich arsenal of traces and empty productions (nodes which do not realize
any lexical material) to coindex displaced material with the position where it should
be interpreted semantically. The algorithm of Cahill, McCarthy, et al. (2004) translates
the traces into corresponding reentrancies in the f-structure representation by treating
null constituents as full nodes and recording the traces in terms of index=i f-structure
annotations (Figure 3). Passive movement is captured and expressed at f-structure level
using a passive:+ annotation. Once a treebank tree is annotated with feature structure
equations by the annotation algorithm, the equations are collected, and a constraint
solver produces an f-structure.

In order to ensure the quality of the semantic forms extracted by our method, we
must first ensure the quality of the f-structure annotations. The results of two different
evaluations of the automatically generated f-structures are presented in Table 2. Both
use the evaluation software and triple encoding presented in Crouch et al. (2002). The
first of these is against the DCU 105, a gold-standard set of 105 hand-coded f-structures
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Figure 3
Use of reentrancy between TOPIC and COMP to capture long-distance dependency in Penn
Treebank sentence wsj 0008 2, Until Congress acts, the government hasn’t any authority to issue new
debt obligations of any kind, the Treasury said.

from Section 23 of the Penn Treebank as described in Cahill, McCarthy, et al. (2004). For
the full set of annotations they achieve precision of over 96.5% and recall of over 96.6%.
There is, however, a risk of overfitting when evaluation is limited to a gold standard
of this size. More recently, Burke, Cahill, et al. (2004a) carried out an evaluation of the
automatic annotation algorithm against the publicly available PARC 700 Dependency
Bank (King et al. 2003), a set of 700 randomly selected sentences from Section 23
which have been parsed, converted to dependency format, and manually corrected
and extended by human validators. They report precision of over 88.5% and recall of
over 86% (Table 2). The PARC 700 Dependency Bank differs substantially from both
the DCU 105 f-structure bank and the automatically generated f-structures in regard to

Table 2
Results of f-structure evaluation.

DCU 105 PARC 700

Precision 96.52% 88.57%
Recall 96.62% 86.10%
F-score 96.57% 87.32%
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the style of linguistic analysis, feature nomenclature, and feature geometry. Some, but
not all, of these differences are captured by automatic conversion software. A detailed
discussion of the issues inherent in this process and a full analysis of results is presented
in Burke, Cahill, et al. (2004a). Results broken down by grammatical function for the
DCU 105 evaluation are presented in Table 3. OBL (prepositional phrase) arguments are
traditionally difficult to annotate reliably. The results show, however, that with respect
to obliques, the annotation algorithm, while slightly conservative (recall of 82%), is very
accurate: 96% of the time it annotates an oblique, the annotation is correct.

A high-quality set of f-structures having been produced, the semantic form ex-
traction methodology is applied. This is based on and substantially extends both the
granularity and coverage of an idea in van Genabith, Sadler, and Way (1999):

For each f-structure generated, for each level of embedding we determine the local
PRED value and collect the subcategorisable grammatical functions present at that level
of embedding. (page 72)

Consider the automatically generated f-structure in Figure 4 for tree wsj 0003 22
in the Penn-II and Penn-III Treebanks. It is crucial to note that in the automatically
generated f-structures the value of the PRED feature is a lemma and not a semantic
form. Exploiting the information contained in the f-structure and applying the
method described above, we recursively extract the following nonempty semantic
forms: impose([subj, obj, obl:on]), in([obj]), of([obj]), and on([obj]). In effect,
in both the approach of van Genabith, Sadler, and Way (1999) and our approach,
semantic forms are reverse-engineered from automatically generated f-structures
for treebank trees. The automatically induced semantic forms contain the following
subcategorizable syntactic functions:

SUBJ OBJ OBJ2 OBLprep OBL2 COMP XCOMP PART

PART is not a syntactic function in the strict sense, but we decided to capture the
relevant co-occurrence patterns of verbs and particles in the semantic forms. Just as

Table 3
Precision and recall on automatically generated f-structures by feature against the DCU 105.

Feature Precision Recall F-score

ADJUNCT 892/968 = 92 892/950 = 94 93
COMP 88/92 = 96 88/102 = 86 91
COORD 153/184 = 83 153/167 = 92 87
DET 265/267 = 99 265/269 = 99 99
OBJ 442/459 = 96 442/461 = 96 96
OBL 50/52 = 96 50/61 = 82 88
OBLAG 12/12 = 100 12/12 = 100 100
PASSIVE 76/79 = 96 76/80 = 95 96
RELMOD 46/48 = 96 46/50 = 92 94
SUBJ 396/412 = 96 396/414 = 96 96
TOPIC 13/13 = 100 13/13 = 100 100
TOPICREL 46/49 = 94 46/52 = 88 91
XCOMP 145/153 = 95 145/146 = 99 97
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Figure 4
Automatically generated f-structure and extracted semantic forms for the Penn-II Treebank
string wsj 0003 22, In July, the Environmental Protection Agency imposed a gradual ban on virtually
all uses of asbestos.

OBLprep includes the prepositional head of the PP, PART includes the actual particle
which occurs, for example, add([subj, obj, part:up]).

In the work presented here, we substantially extend and scale the approach of
van Genabith, Sadler, and Way (1999) in regard to coverage, granularity, and eval-
uation. First, we scale the approach to the full WSJ section of the Penn-II Treebank
and the parsed Brown corpus section of Penn-III, with a combined total of approx-
imately 75,000 trees. Van Genabith, Sadler, and Way (1999) was proof of concept on
100 trees. Second, in contrast to the approach of van Genabith, Sadler, and Way (1999)
(and many other approaches), our approach fully reflects long-distance dependencies,
indicated in terms of traces in the Penn-II and Penn-III Treebanks and correspond-
ing reentrancies at f-structure. Third, in addition to abstract syntactic-function-
based subcategorization frames, we also compute frames for syntactic function–CFG
category pairs, for both the verbal heads and their arguments, and also generate
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Table 4
Conflation of Penn Treebank tags.

Conflated Category Penn Treebank Category

JJ JJ
JJR
JJS

N NN
NNS
NNP
NNPS
PRP

RB RB
RBR
RBS

V VB
VBD
VBG
VBN
VBP
VBZ
MD

pure CFG-based subcategorization frames. Fourth, in contrast to the approach of
van Genabith, Sadler, and Way (1999) (and many other approaches), our method differ-
entiates between frames for active and passive constructions. Fifth, in contrast to that of
van Genabith, Sadler, and Way (1999), our method associates conditional probabilities
with frames. Sixth, we evaluate the complete set of semantic forms extracted (not
just a selection) against the manually constructed COMLEX (MacLeod, Grishman, and
Meyers 1994) resource.

In order to capture CFG-based categorial information, we add a CAT feature to
the f-structures automatically generated from the Penn-II and Penn-III Treebanks. Its
value is the syntactic category of the lexical item whose lemma gives rise to the PRED
value at that particular level of embedding. This makes it possible to classify words
and their semantic forms based on their syntactic category and reduces the risk of
inaccurate assignment of subcategorization frame frequencies due to POS ambiguity,
distinguishing, for example, between the nominal and verbal occurrences of the lemma
fight. With this, the output for the verb impose in Figure 4 is impose(v,[subj, obj,
obl:on]). For some of our experiments, we conflate the different verbal (and other)
tags used in the Penn Treebanks to a single verbal marker (Table 4). As a further
extension, the extraction procedure reads off the syntactic category of the head of
each of the subcategorized syntactic functions: impose(v,[subj(n),obj(n),obl:on]).3

In this way, our methodology is able to produce surface syntactic as well as abstract
functional subcategorization details. Dalrymple (2001) argues that there are cases,
albeit exceptional ones, in which constraints on syntactic category are an issue in
subcategorization. In contrast to much of the work reviewed in Section 3, which limits
itself to the extraction of surface syntactic subcategorization details, our system can
provide this information as well as details of grammatical function.

3 We do not associate syntactic categories with OBLs as they are always PPs.
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Another way in which we develop and extend the basic extraction algorithm
is to deal with passive voice and its effect on subcategorization behavior. Consider
Figure 5: Not taking into account that the example sentence is a passive construction,
the extraction algorithm extracts outlaw([subj]). This is incorrect, as outlaw is a tran-
sitive verb and therefore requires both a subject and an object to form a gram-
matical sentence in the active voice. To cope with this problem, the extraction al-
gorithm uses the feature-value pair passive:+, which appears in the f-structure at
the level of embedding of the verb in question, to mark that predicate as occurring
in the passive: outlaw([subj],p). The annotation algorithm’s accuracy in recognizing
passive constructions is reflected by the f-score of 96% reported in Table 3 for the
PASSIVE feature.

The syntactic functions COMP and XCOMP refer to clausal complements with
different predicate control patterns as described in Section 2. However, as it stands,
neither of these functions betrays anything about the syntactic nature of the constructs
in question. Many lexicons, both automatically acquired and manually created, are
more fine grained in their approaches to subcategorized clausal arguments, differ-
entiating, for example, between a that-clause and a to + infinitive clause (Ushioda
et al. 1993). With only a slight modification, our system, along with the details
provided by the automatically generated f-structures, allows us to extract frames
with an equivalent level of detail. For example, to identify a that-clause, we use

Figure 5
Automatically generated f-structure for the Penn-II Treebank string wsj 0003 23. By 1997, almost
all remaining uses of cancer-causing asbestos will be outlawed.
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Table 5
Semantic forms for the verb accept.

Semantic form Occurrences Conditional probability

accept([subj, obj]) 122 0.813
accept ([subj]) 11 0.073
accept([subj, comp]) 5 0.033
accept([subj, obl:as]) 3 0.020
accept([subj, obj, obl:as]) 3 0.020
accept([subj, obj, obl:from]) 3 0.020
accept([subj, obj, obl:at]) 1 0.007
accept([subj, obj, obl:for]) 1 0.007
accept([subj, obj, xcomp]) 1 0.007

the feature-value pair that:+ at f-structure level to read off the following subcate-
gorization frame for the verb add: add([subj,comp(that)]). Using the feature-value pair
to inf:+, we can identify to + infinitive clauses, resulting in the following frame for
the verb want: want([subj,xcomp(to inf)]). We can also derive control information about
open complements. In Figure 5, the reentrant XCOMP subject is identical to the subject
of will in the matrix clause, which allows us to induce information about the nature
of the external control of the XCOMP (i.e., whether it is subject or object control).

In order to estimate the likelihood of the co-occurrence of a predicate with a partic-
ular argument list, we compute conditional probabilities for subcategorization frames
based on the number of token occurrences in the corpus:

P (ArgList|Π) =
count(Π〈ArgList〉)

∑n
i=1 count(Π〈ArgListi〉)

where ArgList1... ArgListn are the possible argument lists which can occur for Π. Be-
cause of variations in verbal subcategorization across domains, probabilities are also
useful for predicting the way in which verbs behave in certain contexts. In Section 6,
we use the conditional probabilities to filter possible error judgments by our system.
Tables 5–7 show, with varying levels of analysis, the attested semantic forms for the
verb accept with their associated conditional probabilities. The effect of differentiating
between the active and passive occurrences of verbs can be seen in the different con-
ditional probabilities associated with the intransitive frame ([subj]) of the verb accept
(shown in boldface type) in Tables 5 and 6.4 Table 7 shows the joint grammatical-
function/syntactic-category-based subcategorization frames.

5. Results

We extract semantic forms for 4,362 verb lemmas from Penn-III. Table 8 shows the
number of distinct semantic form types (i.e., lemma and argument list combination)

4 Given these, it is possible to condition frames on both lemma (Π) and voice (v: active/passive):

P (ArgList|Π, v) =
count(Π〈ArgList, v〉)

∑n
i=1 count(Π〈ArgListi, v〉)
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Table 6
Semantic forms for the verb accept marked with p for passive use.

Semantic form Occurrences Conditional probability

accept([subj, obj]) 122 0.813
accept ([subj],p) 9 0.060
accept([subj, comp]) 5 0.033
accept([subj, obl:as],p) 3 0.020
accept([subj, obj, obl:as]) 3 0.020
accept([subj, obj, obl:from]) 3 0.020
accept ([subj]) 2 0.013
accept([subj, obj, obl:at]) 1 0.007
accept([subj, obj, obl:for]) 1 0.007
accept([subj, obj, xcomp]) 1 0.007

Table 7
Semantic forms for the verb accept including syntactic category for each grammatical function.

Semantic form Occurrences Conditional probability

accept([subj(n), obj(n)]) 116 0.773
accept([subj(n)]) 11 0.073
accept([subj(n), comp(that)]) 4 0.027
accept([subj(n), obj(n), obl:from]) 3 0.020
accept([subj(n), obl:as]) 3 0.020
Other 13 0.087

extracted. Discriminating obliques by associated preposition and recording particle
information, the algorithm finds a total of 21,005 semantic form types, 16,000 occurring
in active voice and 5,005 in passive voice. When the obliques are parameterized for
prepositions and particles are included for particle verbs, we find an average of 4.82
semantic form types per verb. Without the inclusion of details for individual preposi-
tions or particles, there was an average of 3.45 semantic form types per verb. Unlike
many of the researchers whose work is reviewed in Section 3, we do not predefine the
frames extracted by our system. Table 9 shows the numbers of distinct frame types
extracted from Penn-II, ignoring PRED values.5 We provide two columns of statistics,
one in which all oblique (PP) arguments are condensed into one OBL function and
all particle arguments are condensed into part, and the other in which we differen-
tiate among obl:to (e.g., give), obl:on (e.g., rely), obl:for (e.g., compensate), etc., and
likewise for particles. Collapsing obliques and particles into simple functions, we extract
38 frame types. Discriminating particles and obliques by preposition, we extract 577
frame types. Table 10 shows the same results for Penn-III, with 50 simple frame types
and 1,084 types when parameterized for prepositions and particles. We also show the
result of applying absolute thresholding techniques to the semantic forms induced.
Applying an absolute threshold of five occurrences, we still generate 162 frame types

5 To recap, if two verbs have the same subcategorization requirements (e.g., give([subj, obj, obj2]),
send([subj, obj, obj2])), then that frame [subj, obj, obj2] is counted only once.
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Table 8
Number of semantic form types for Penn-III.

Without prepositions and particles With prepositions and particles

Semantic form types 15,166 21,005
Active 11,038 16,000
Passive 4,128 5,005

Table 9
Number of frame types for verbs for Penn-II.

Without prepositions With prepositions
and particles and particles

Number of frame types 38 577
Number of singletons 1 243
Number occurring twice 1 84
Number occurring five or fewer times 7 415
Number occurring more than five times 31 162

from Penn-II and 221 from Penn-III. Briscoe and Carroll (1997), by comparison, employ
163 distinct predefined frames.

6. Evaluation

Most of the previous approaches discussed in Section 3 have been evaluated to
different degrees. In general, a small number of frequently occurring verbs is selected,
and the subcategorization frames extracted for these verbs (from some quantity of
unseen test data) are compared to a gold standard. The gold standard is either manually
custom-made based on the test data or adapted from an existing external resource
such as the OALD (Hornby 1980) or COMLEX (MacLeod, Grishman, and Meyers
1994). There are advantages and disadvantages to both types of gold standard. While
it is time-consuming to manually construct a custom-made standard, the resulting
standard has the advantage of containing only the subcategorization frames exhibited
in the test data. Using an existing externally produced resource is quicker, but the gold

Table 10
Number of frame types for verbs for Penn-III.

Without prepositions With prepositions
and particles and particles

Number of frame types 50 1,084
Number of singletons 6 544
Number occurring twice 2 147
Number occurring five or fewer times 12 863
Number occurring more than five times 38 221
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standard may contain many more frames than those which occur in the data from which
the test lexicon is induced or, indeed, may omit relevant correct frames contained in
the data. As a result, systems generally score better against custom-made, manually
established gold standards.

Carroll and Rooth (1998) achieve an F-score of 77% against the OALD when they
evaluate a selection of 100 verbs with absolute frequency of greater than 500 each.
Their system recognizes 15 frames, and these do not contain details of subcategorized-
for prepositions. Still, to date this is the largest number of verbs used in any of the
evaluations of the systems for English described in Section 3. Sarkar and Zeman (2000)
evaluate 914 Czech verbs against a custom-made gold standard and record a token
recall of 88%. However, their evaluation does not examine the extracted subcatego-
rization frames but rather the argument–adjunct distinctions posited by their sys-
tem. The largest lexical evaluation we know of is that of Schulte im Walde (2002b)
for German. She evaluates 3,000 German verbs with a token frequency between
10 and 2,000 against the Duden (Dudenredaktion 2001). We will refer to this work
and the methods and results presented by Schulte im Walde again in Sections 6.2
and 6.3.

We carried out a large-scale evaluation of our automatically induced lexicon (2,993
active verb lemmas for Penn-II and 3,529 for Penn-III, as well as 1,422 passive verb
lemmas from Penn-II) against the COMLEX resource. To our knowledge this is the most
extensive evaluation ever carried out for English lexical extraction. We conducted a
number of experiments on the subcategorization frames extracted from Penn-II and
Penn-III which are described and discussed in Sections 6.2, 6.3, and 6.4. Finding a
common format for the gold standard and induced lexical entries is a nontrivial task.
To ensure that we did not bias the evaluation in favor of either resource, we carried
out two different mappings for the frames from Penn-II and Penn-III: COMLEX-LFG
Mapping I and COMLEX-LFG Mapping II. For each mapping we carried out six basic
experiments (and two additional ones for COMLEX-LFG Mapping II) for the active
subcategorization frames extracted. Within each experiment, the following factors were
varied: level of prepositional phrase detail, level of particle detail, relative threshold
(1% or 5%), and incorporation of an expanded set of directional prepositions. Using
the second mapping we also evaluated the automatically extracted passive frames and
experimented with absolute thresholds. Direct comparison of subcategorization frame
acquisition systems is difficult because of variations in the number of frames extracted,
the number of test verbs, the gold standards used, the size of the test data, and the
level of detail in the subcategorization frames (e.g., whether they are parameterized
for specific prepositions). Therefore, in order to establish a baseline against which to
compare our results, following Schulte in Walde (2002b), we assigned the two most
frequent frame types (transitive and intransitive) by default to each verb and compared
this “artificial” lexicon to the gold standard. The section concludes with a full discussion
of the reported results.

6.1 COMLEX

We evaluate our induced semantic forms against COMLEX (MacLeod, Grishman, and
Meyers 1994), a computational machine-readable lexicon containing syntactic infor-
mation for approximately 38,000 English headwords. Its creators paid particular
attention to the encoding of more detailed subcategorization information than is avail-
able in either the OALD or the LDOCE (Proctor 1978), both for verbs and for nouns
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Figure 6
Intersection between active-verb lemma types in COMLEX and the Penn-II-induced lexicon.

and adjectives which take complements (Grishman, MacLeod, and Meyers 1994). By
choosing to evaluate against COMLEX, we set our sights high: Our extracted semantic
forms are fine-grained, and COMLEX is considerably more detailed than the OALD
or LDOCE used for earlier evaluations. While our system can generate semantic forms
for any lemma (regardless of part of speech) which induces a PRED value, we have
thus far evaluated the automatic generation of subcategorization frames for verbs
only. COMLEX defines 138 distinct verb frame types without the inclusion of specific
prepositions or particles.

As COMLEX contains information other than subcategorization details, it was
necessary for us to extract the subcategorization frames associated with each verbal
lexicon entry. The following is a sample entry for the verb reimburse:

(VERB :ORTH “reimburse” :SUBC ((NP-NP)
(NP-PP :PVAL (“for”))
(NP)))

Each entry is organized as a nested set of typed feature-value lists. The first symbol
(i.e., VERB) gives the part of speech. The value of the :ORTH feature is the base form
of the verb. Any entry with irregular morphological behavior will also include the
features :PLURAL, :PAST, and so on, with the relevant values. All verbs have a :SUBC
feature, and for our purposes, this is the most interesting feature. In the case of the
example above, the subcategorization values specify that reimburse can occur with two
object noun phrases (NP-NP), an object noun phrase followed by a prepositional phrase
headed by for (NP-PP :PVAL (“for”)) or just an object noun phrase (NP). (Note that the
details of the subject are not included in COMLEX frames.) What makes the COMLEX
resource particularly suitable for our evaluation is that each of the complement types
(NP-NP, NP-PP, and NP) which make up the value of the :SUBC feature is associated with
a formal frame definition which looks like the following:

(vp-frame np-np :cs ((np 2)(np 3))
:gs (:subject 1 :obj 2 :obj2 3)
:ex “she asked him his name”)

The value of the :cs feature is the constituent structure of the subcategorization
frame, which lists the syntactic CF-PSG constituents in sequence (omitting the sub-
ject, again). The value of the :gs feature is the grammatical structure which indicates
the functional role played by each of the CF-PSG constituents. The elements of the
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Figure 7
Intersection between active-verb lemma types in COMLEX and the Penn-III-induced lexicon.

constituent structure are indexed, and these indices are referenced in the :gs field.
The index 1 always refers to the surface subject of the verb. This mapping between
constituent structure and functional structure makes the information contained in
COMLEX particularly suitable as an evaluation standard for the LFG semantic forms
which we induce.

We present the evaluation for the verbs which occur in an active context in the
treebank. COMLEX does not provide passive frames. For Penn-II, there are 2,993
verb lemmas (used actively) that both resources have in common. 2,669 verb lemmas
appear in COMLEX but not in the induced lexicon, and 416 verb lemmas (used actively)
appear in the induced lexicon but not in COMLEX (Figure 6). For Penn-III, COMLEX
and the induced lexicon share 3,529 verb lemmas (used actively). This is shown in
Figure 7. 6

6.2 COMLEX-LFG Mapping I and Penn-II

In order to carry out the evaluation, we have to find a common format for the expression
of subcategorization information between our induced LFG-style subcategorization
frames and those contained in COMLEX. The following are the common syntactic
functions: SUBJ, OBJ, OBJi, COMP, and PART. Unlike our system, COMLEX does not
distinguish an OBL from an OBJi, so we converted all the obliques in the induced frames
to OBJi. As in COMLEX, the value of i depends on the number of objects/obliques
already present in the semantic form. COMLEX does not differentiate between COMPs
and XCOMPs as our system does (control information is expressed in a different way:
see Section 6.3), so we conflate our two LFG categories to that of COMP. The process is
summarized in Table 11.

The manually constructed COMLEX entries provide a gold standard against which
we evaluate the automatically induced frames. We calculate the number of true pos-
itives (tps) (where our semantic forms and those from COMLEX are the same), the
number of false negatives ( fns) (those frames which appeared in COMLEX but were not
produced by our system), and the number of false positives ( fps) (those frames

6 Given these figures, one might begin to wonder about the value of automatic induction. First, COMLEX
does not rank frames by probabilities, which are essential in disambiguation. Second, the coverage of
COMLEX is not complete: 518 lemmas “discovered” by the induction experiment are not listed in
COMLEX; see the error analysis in Section 6.5.
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Table 11
Mapping I: Merging of COMLEX and LFG syntactic functions.

Our syntactic functions COMLEX syntactic functions Merged function

SUBJ Subject SUBJ
OBJ Object OBJ
OBJ2 Obj2 OBJi
OBL Obj3
OBL2 Obj4

COMP Comp COMP
XCOMP

PART Part PART

produced by our system which do not appear in COMLEX). We calculate precision,
recall, and F-score using the following standard equations:

recall =
tp

tp + fn

precision =
tp

tp + fp

f-score =
2 × recall × precision

recall + precision

We use the frequencies associated with each of our semantic forms in order to set
a relative threshold to filter the selection of semantic forms. For a threshold of 1% we
disregard any semantic forms with a conditional probability (i.e., given a lemma) of
less than or equal to 0.01. As some verbs occur less frequently than others, we think it
is important to use a relative rather than absolute threshold (as in Carroll and Rooth
[1998], for instance) in this way. We carried out the evaluation in a similar way to
Schulte im Walde’s (2002b) for German, the only experiment comparable in scale to
ours. Despite the obvious differences in approach and language, this allows us to make
some tentative comparisons between our respective results. The statistics shown in
Table 12 give the results of three different experiments with the relative threshold set
to 1%. As for all the results tables, the baseline statistics (simply assigning the most
frequent frames, in this case transitive and intransitive, to each lemma by default) are
in each case shown in the left column, and the results achieved by our induced lexicon
are presented in the right column. Distinguishing between complement and adjunct
prepositional phrases is a notoriously difficult aspect of automatic subcategorization
frame acquisition. For this reason, following the evaluation setup in Schulte im Walde
(2002b), the three experiments vary with respect to the amount of prepositional infor-
mation contained in the subcategorization frames.

Experiment 1. Here we excluded subcategorized prepositional-phrase arguments en-
tirely from the comparison. In a manner similar to that of Schulte im Walde (2002b), any
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Table 12
Results of Penn-II evaluation of active frames against COMLEX (relative threshold of 1%).

Precision Recall F-score

Mapping I Baseline Induced Baseline Induced Baseline Induced

Experiment 1 66.1% 75.2% 65.8% 69.1% 66.0% 72.0%
Experiment 2 71.5% 65.5% 64.3% 63.1% 67.7% 64.3%
Experiment 3 64.7% 71.8% 11.9% 16.8% 20.1% 27.3%

frames containing an OBL were mapped to the same frame type minus that argument.
For example, the frame [subj,obl:for] becomes [subj]. Using a relative threshold of
1% (Table 12), our results (precision of 75.2%, recall of 69.1%, and F-score of 72.0%)
are remarkably similar to those of Schulte im Walde (2002b), who reports precision of
74.53%, recall of 69.74%, and an f-score of 72.05%.

Experiment 2. Here we include subcategorized prepositional phrase arguments but
only in their simplest form; that is, they were not parameterized for particular prepo-
sitions. For example, the frame [subj,obl:for] is rewritten as [subj,obl]. Using a
relative threshold of 1% (Table 12), our results (precision of 65.5%, recall of 63.1%, and
F-score of 64.3%) compare favorably to those of Schulte im Walde (2002b), who recorded
precision of 60.76%, recall of 63.91%, and an F-score of 62.30%.

Experiment 3. Here we used semantic forms which contain details of specific prepo-
sitions for any subcategorized prepositional phrase (e.g., [subj,obl:for]). Using a rela-
tive threshold of 1% (Table 12), our precision figure (71.8%) is quite high (in comparison
to 65.52% as recorded by Schulte im Walde [2002b]). However our recall (16.8%) is very
low (compared to the 50.83% that Schulte im Walde [2002b] reports). Consequently our
F-score (27.3%) is also low (Schulte im Walde [2002b] records an F-score of 57.24%). The
reason for this is discussed in Section 6.2.1.

The statistics in Table 13 are the result of the second experiment, in which the
relative threshold was increased to 5%. The effect of such an increase is obvious in
that precision goes up (by as much as 5%) for each of the three evaluations while
recall goes down (by as much as 5.5%). This is to be expected, as a greater threshold
means that there are fewer semantic forms associated with each verb in the induced
lexicon, but they are more likely to be correct because of their greater frequency of
occurrence. The conditional probabilities we associate with each semantic form together
with thresholding can be used to customize the induced lexicon to the task for which
it is required, that is, whether a very precise lexicon is preferred to one with broader

Table 13
Results of Penn-II evaluation of active frames against COMLEX (relative threshold of 5%).

Precision Recall F-score

Mapping I Baseline Induced Baseline Induced Baseline Induced

Experiment 1 66.1% 80.2% 65.8% 63.6% 66.0% 70.9%
Experiment 2 71.5% 69.6% 64.3% 56.9% 67.7% 62.7%
Experiment 3 64.7% 76.7% 11.9% 13.9% 20.1% 23.5%
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coverage. In Tables 12 and 13, the baseline is exceeded in all experiments with the
exception of Experiment 2. This can be attributed to Mapping I, in which OBLi becomes
OBJi (Table 11). Experiment 2 includes obliques without the specific preposition, mean-
ing that in this mapping, the frame [subj,obj:with] becomes [subj,obj]. Therefore,
the transitive baseline frame scores better than it should against the gold standard. A
more fine-grained LFG-COMLEX mapping in which this effect disappears is presented
in Section 6.3.

6.2.1 Directional Prepositions. Our recall statistic was particularly low in the case of
evaluation using details of prepositions (Experiment 3, Tables 12 and 13). This can be
accounted for by the fact that the creators of COMLEX have chosen to err on the side
of overgeneration in regard to the list of prepositions which may occur with a verb and
a subcategorization frame containing a prepositional phrase. This is particularly true
of directional prepositions. For COMLEX, a list of 31 directional prepositions (Table 14)
was prepared and assigned in its entirety by default to any verb which can potentially
appear with any directional preposition in order to save time and avoid the risk of
missing prepositions. Grishman, MacLeod, and Meyers (1994) acknowledge that this
can lead to a preposition list which is “a little rich” for a particular verb, but this is
the approach they have chosen to take. In a subsequent experiment, we incorporated
this list of directional prepositions by default into our semantic form induction process
in the same way as the creators of COMLEX have done. Table 15 shows that doing
so results in a significant improvement in the recall statistic (45.1%), as would be
expected, with the new statistic being almost three times as good as the result re-
ported in Table 12 for Experiment 3 (16.8%). There is also an improvement in the
precision figure (from 71.8% to 86.9%). This is due to a substantial increase in the
number of true positives (from 5,612 to 14,675) compared with a stationary false pos-
itive figure (2,205 in both cases). The f-score increases from 27.3% to 59.4%.

6.3 COMLEX-LFG Mapping II and Penn-II

The COMLEX-LFG Mapping I presented above establishes a “least common denomi-
nator” for the COMLEX and our LFG-inspired resources. More-fine-grained mappings
are possible: in order to ensure that the mapping from our semantic forms to the
COMLEX frames did not oversimplify the information in the automatically extracted
subcategorization frames, we conducted a further set of experiments in which we
converted the information in the COMLEX entries to the format of our extracted
semantic forms. We explicitly differentiated between OBLs and OBJs by automatically

Table 14
COMLEX directional prepositions.

about across along around
behind below beneath between
beyond by down from
in inside into off
on onto out out of
outside over past through
throughout to toward toward
up up to via
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Table 15
Penn-II evaluation of active frames against COMLEX using p-dir list (relative threshold of 1%).

Mapping I Precision Recall F-score

Experiment 3 86.9% 45.1% 59.4%

deducing whether a COMLEX OBJi was coindexed with an NP or a PP. Furthermore, as
can be seen in the following example, COMLEX frame definitions contain details of the
control patterns of sentential complements, encoded using the :features attribute. This
allows for automatic discrimination between COMPs and XCOMPs.

(vp-frame to-inf-sc :cs (vp 2 :mood to-infinitive :subject 1)
:features (:control subject)
:gs (:subject 1 :comp 2)
:ex “I wanted to come”)

The mapping is summarized in Table 16. The results of the subsequent evaluation are
presented in Tables 17 and 18. We have added Experiments 2a and 3a. These are the
same as Experiments 2 and 3, except that they additionally include the specific particle
with each PART function. While the recall figures in Tables 17 and 18 are slightly lower
than those in Tables 12 and 13, changing the mapping in this way results in an increase
in precision in each case (by as much as 11.6%). The results of the lexical evaluation
are consistently better than the baseline, in some cases by almost 16% (Experiment 2,
threshold 5%). Notice that in contrast to Tables 12 and 13, in the more-fine-grained
COMLEX-LFG Mapping II presented here, all experiments exceed the baseline.

6.3.1 Directional Prepositions. The recall figures for Experiments 3 and 3a in Table 17
(24.0% and 21.5%) and Table 18 (19.7% and 17.4%) drop in a similar fashion to the results
seen in Tables 12 and 13. For this reason, we again incorporated the list of 31 directional
prepositions (Table 14) by default and reran Experiments 3 and 3a for a threshold of
1%. The results are presented in Table 19. The effect was as expected: The recall scores
for the two experiments increased to 40.8% and 35.4% (from 24.0% and 22.5%), and the
F-scores increased to 54.4% and 49.7% (from 35.9% and 33.0%).

6.3.2 Passive Evaluation. Table 20 presents the results of evaluating the extracted pas-
sive semantic forms for 1,422 verb lemmas shared by the induced lexicon and COMLEX.

Table 16
Mapping II: Merging of COMLEX and LFG syntactic functions.

Our syntactic functions COMLEX syntactic functions Merged function

SUBJ Subject SUBJ
OBJ Object OBJ
OBJ2 Obj2 OBJ2
OBL Obj3 OBL
OBL2 Obj4 OBL2
COMP Comp COMP
XCOMP Comp XCOMP
PART Part PART
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Table 17
Results of Penn-II evaluation of active frames against COMLEX (relative threshold of 1%).

Precision Recall F-score

Mapping II Baseline Induced Baseline Induced Baseline Induced

Experiment 1 72.1% 79.0% 58.5% 59.6% 64.6% 68.0%
Experiment 2 65.2% 77.1% 37.4% 50.4% 47.5% 61.0%
Experiment 2a 65.2% 76.4% 32.7% 44.5% 43.6% 56.3%
Experiment 3 65.2% 75.9% 15.2% 24.0% 24.7% 35.9%
Experiment 3a 65.2% 71.0% 13.6% 21.5% 22.5% 33.0%

Table 18
Results of Penn-II evaluation of active frames against COMLEX (relative threshold of 5%).

Precision Recall F-score

Mapping II Baseline Induced Baseline Induced Baseline Induced

Experiment 1 72.1% 83.5% 58.5% 54.7% 64.6% 66.1%
Experiment 2 65.2% 81.4% 37.4% 44.8% 47.5% 57.8%
Experiment 2a 65.2% 80.9% 32.7% 39.0% 43.6% 52.6%
Experiment 3 65.2% 75.9% 15.2% 19.7% 24.7% 31.3%
Experiment 3a 65.2% 75.5% 13.6% 17.4% 22.5% 28.3%

We applied lexical-redundancy rules (Kaplan and Bresnan 1982) to automatically con-
vert the active COMLEX frames to their passive counterparts: For example, subjects are
demoted to optional by oblique agents, and direct objects become subjects. The resulting
precision was very high (from 72.3% to 80.2%), and there was the expected drop in recall
when prepositional details were included (from 54.7% to 29.3%).

Table 19
Penn-II evaluation of active frames against COMLEX using p-dir list (relative threshold of 1%).

Mapping II Precision Recall F-score

Experiment 3 81.7% 40.8% 54.4%
Experiment 3a 83.1% 35.4% 49.7%

Table 20
Results of Penn-II evaluation of passive frames (relative threshold of 1%).

Passive Precision Recall F-score

Experiment 2 80.2% 54.7% 65.1%
Experiment 2a 79.7% 46.2% 58.5%
Experiment 3 72.6% 33.4% 45.8%
Experiment 3a 72.3% 29.3% 41.7%
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6.3.3 Absolute Thresholds. Many of the previous approaches discussed in Section 3 use
a limited number of verbs for evaluation, based on the verbs’ absolute frequency in the
corpus. We carried out a similar experiment. Table 21 shows the results of Experiment
2 for all verbs, for the verb lemmas with an absolute frequency greater than 100, and
for verbs with a frequency greater than 200. The use of an absolute threshold results
in an increase in precision (from 77.1% to 82.3% and 81.7%), an increase in recall (from
50.4% to 60.8% to 58.7%), and an overall increase in F-score (from 61.0% to 69.9%
and 68.4%).

6.4 Penn-III (Mapping-II)

Recently we have applied our methodology to the Penn-III Treebank, a more balanced
corpus resource with a number of text genres. Penn-III consists of the WSJ section from
Penn-II as well as a parse-annotated subset of the Brown corpus. The Brown corpus
comprises 24,242 trees compiled from a variety of text genres including popular lore,
general fiction, science fiction, mystery and detective fiction, and humor. It has been
shown (Roland and Jurafsky 1998) that the subcategorization tendencies of verbs vary
across linguistic domains. Our aim, therefore, is to increase the scope of the induced
lexicon not only in terms of the verb lemmas for which there are entries, but also in
terms of the frames with which they co-occur. The f-structure annotation algorithm was
extended with only minor amendments to cover the parsed Brown corpus. The most
important of these was the way in which we distinguish between oblique and adjunct.
We noted in Section 4 that our method of assigning an oblique annotation in Penn-II
was precise, albeit conservative. Because of a change of annotation policy in Penn-III,
the -CLR tag (indicating a close relationship between a PP and the local syntactic head),
information which we had previously exploited, is no longer used. For Penn-III the
algorithm annotates all PPs which do not carry a Penn adverbial functional tag (such
as -TMP or -LOC) and occur as the sisters of the verbal head of a VP as obliques.
In addition, the algorithm annotates as obliques PPs associated with -PUT (locative
complements of the verb put) or -DTV (second object in ditransitives) tags.

When evaluating the application of the lexical extraction system on Penn-III, we
carried out two sets of experiments, identical in each case to those described for Penn-II
in Section 6.3, including the use of relative (1% and 5%) rather than absolute thresholds.
For the first set of experiments we evaluated the lexicon induced from the parse-
annotated Brown corpus only. This evaluation was performed for 2,713 active-verb
lemmas using the more fine-grained Mapping-II. Tables 22 and 23 show that the results
generally exceed the baseline, in some cases by almost 10%, similar to those recorded
for Penn-II (Tables 17 and 18). While the precision is slightly lower than that re-
ported for the experiments in Tables 17 and 18, in particular for Experiments 2, 2a, 3,

Table 21
Penn-II evaluation of active frames against COMLEX using absolute thresholds (Experiment 2).

Threshold Precision Recall F-score

All 77.1% 50.4% 61.0%
Threshold 100 82.3% 60.8% 69.9%
Threshold 200 81.7% 58.7% 68.4%
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Table 22
Results of Penn-III active frames (Brown Corpus only) COMLEX comparison (relative threshold
of 1%).

Precision Recall F-Score

Mapping II Baseline Induced Baseline Induced Baseline Induced

Experiment 1 73.2% 79.2% 60.1% 60.0% 66.0% 68.2%
Experiment 2 66.0% 70.5% 37.5% 50.5% 47.8% 58.9%
Experiment 2a 66.0% 71.3% 32.7% 44.5% 43.7% 54.8%
Experiment 3 66.0% 64.3% 15.2% 23.1% 24.8% 34.0%
Experiment 3a 66.0% 64.1% 13.5% 20.7% 22.4% 31.3%

and 3a, in which details of obliques are included, the recall in each of these experi-
ments is slightly higher than that recorded for Penn-II. We conjecture that the main
reason for this is that the amended approach to the annotation of obliques is slightly
less precise and conservative than the largely -CLR-tag-driven approach taken for
Penn-II. Consequently we record an increase in recall and a drop in precision. This
trend is repeated in the second set of experiments. In this instance, we combined the
lexicon extracted from the WSJ with that extracted from the parse-annotated Brown
corpus, and evaluated the resulting resource for 3,529 active-verb lemmas. The results
are shown in Tables 24 and 25. The results compare very positively against the baseline.
The precision scores are lower (by between 1.5% and 9.7%) than those reported for
Penn-II (Tables 17 and 18). There has however been a significant increase in recall (up to
8.7%) and an overall increase in F-score (by up to 4.4%).

6.5 Error Analysis and Discussion

The work presented in this section highlights a number of issues associated with the
evaluation of automatically induced subcategorization frames against an existing exter-
nal gold standard, in this case COMLEX. While this evaluation approach is arguably
less labor-intensive than the manual construction of a custom-made gold standard,
it does introduce a number of difficulties into the evaluation procedure. It is a
nontrivial task to convert both the gold standard and the induced resource to a common

Table 23
Results of Penn-III active frames (Brown corpus only) COMLEX comparison (relative threshold
of 5%).

Precision Recall F-score

Mapping II Baseline Induced Baseline Induced Baseline Induced

Experiment 1 73.2% 82.7% 60.1% 56.4% 66.0% 67.0%
Experiment 2 66.0% 74.6% 37.5% 46.1% 47.8% 57.0%
Experiment 2a 66.0% 76.0% 32.7% 40.0% 43.7% 52.4%
Experiment 3 66.0% 69.2% 15.2% 18.7% 24.8% 29.5%
Experiment 3a 66.0% 69.0% 13.5% 16.6% 22.4% 26.7%
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Table 24
Results of Penn-III active frames (Brown and WSJ) COMLEX comparison (relative threshold of
1%).

Precision Recall F-score

Mapping II Baseline Induced Baseline Induced Baseline Induced

Experiment 1 71.2% 77.4% 62.9% 66.2% 66.8% 71.4%
Experiment 2 64.5% 70.4% 40.0% 58.0% 49.3% 63.6%
Experiment 2a 64.5% 71.5% 35.1% 51.9% 45.5% 60.2%
Experiment 3 64.5% 66.2% 17.0% 27.4% 26.8% 38.8%
Experiment 3a 64.5% 66.0% 15.1% 24.8% 24.5% 36.0%

format in order to facilitate evaluation. In addition, as our results show, the choice
of common format and mapping to it can affect the results. In COMLEX-LFG Map-
ping I (Section 6.2), we found that mapping from the induced lexicon to COMLEX
resulted in higher recall scores than those achieved when we (effectively) reversed the
mapping (COMLEX-LFG Mapping II [Section 6.3]). The first mapping is essentially a
conflation of our more fine-grained LFG grammatical functions with the more generic
COMLEX functions, while the second mapping tries to maintain as many distinctions
as possible.

Another drawback to using an existing external gold standard such as COMLEX
to evaluate an automatically induced subcategorization lexicon is that the resources
are not necessarily constructed from the same source data. As noted above, it is well doc-
umented (Roland and Jurafsky 1998) that subcategorization frames (and their frequen-
cies) vary across domains. We have extracted frames from two sources (the WSJ and the
Brown corpus), whereas COMLEX was built using examples from the San Jose Mercury
News, the Brown corpus, several literary works from the Library of America, scientific
abstracts from the U.S. Department of Energy, and the WSJ. For this reason, it is likely
to contain a greater variety of subcategorization frames than our induced lexicon. It is
also possible that because of human error, COMLEX contains subcategorization frames
the validity of which are in doubt, for example, the overgeneration of subcategorized-for
directional prepositional phrases. This is because the aim of the COMLEX project was to
construct as complete a set of subcategorization frames as possible, even for infrequent
verbs. Lexicographers were allowed to extrapolate from the citations found, a procedure

Table 25
Results of Penn-III active frames (Brown and WSJ) COMLEX comparison (relative threshold of
5%).

Precision Recall F-score

Mapping II Baseline Induced Baseline Induced Baseline Induced

Experiment 1 71.2% 82.0% 62.9% 61.0% 66.8% 69.9%
Experiment 2 64.5% 74.3% 40.0% 53.5% 49.3% 62.2%
Experiment 2a 64.5% 76.4% 35.1% 45.1% 45.5% 56.7%
Experiment 3 64.5% 71.1% 17.0% 21.5% 26.8% 33.0%
Experiment 3a 64.5% 70.8% 15.1% 19.2% 24.5% 30.2%
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which is bound to be less certain than the assignment of frames based entirely on exist-
ing examples. As a generalization, Briscoe (2001) notes that lexicons such as COMLEX
tend to demonstrate high precision but low recall. Briscoe and Carroll (1997) report
on manually analyzing an open-class vocabulary of 35,000 head words for predicate
subcategorization information and comparing the results against the subcategorization
details in COMLEX. Precision was quite high (95%), but recall was low (84%). This has
an effect on both the precision and recall scores of our system against COMLEX. In order
to ascertain the effect of using COMLEX as a gold standard for our induced lexicon,
we carried out some more-detailed error analysis, the results of which are summarized
in Table 26. We randomly selected 80 false negatives (fn) and 80 false positives (fp)
across a range of active frame types containing prepositional and particle detail taken
from Penn-III and manually examined them in order to classify them as “correct” or
“incorrect.” Of the 80 fps, 33 were manually judged to be legitimate subcategorization
frames. For example, as Table 26 shows, there are a number of correct transitive verbs
([subj,obj]) in our automatically induced lexicon which are not included in COMLEX.
This examination was also useful in highlighting to us the frame types on which
the lexical extraction procedure was performing poorly, in our case, those containing
XCOMPs and those containing OBJ2S. Out of 80 fns, 14 were judged to be incorrect when
manually examined. These can be broken down as follows: one intransitive frame, three
ditransitive frames, three frames containing a COMP, and seven frames containing an
oblique were found to be invalid.

7. Lexical Accession Rates

In addition to evaluating the quality of our extracted semantic forms, we also examined
the rate at which they are induced. This can be expressed as a measure of the coverage
of the induced lexicon on new data. Following Hockenmaier, Bierner, and Baldridge
(2002), Xia (1999), and Miyao, Ninomiya, and Tsujii (2004), we extract a reference
lexicon from Sections 02–21 of the WSJ. We then compare this to a test lexicon from
Section 23. Table 27 shows the results of the evaluation of the coverage of an induced
lexicon for verbs only. There is a corresponding semantic form in the reference lexicon
for 89.89% of the verbs in Section 23. 10.11% of the entries in the test lexicon did not
appear in the reference lexicon. Within this group, we can distinguish between known
words, which have an entry in the reference lexicon, and unknown words, which do
not exist at all in the reference lexicon. In the same way we make the distinction

Table 26
Error analysis.

Frame type COMLEX: False negatives Induced: False positives

Correct Incorrect Correct Incorrect

[subj] 9 1 4 6
[subj, obj] 10 0 9 1
[subj, obj, obj2] 7 3 1 9
[.., xcomp, ..] 10 0 1 10
[.., comp, ..] 7 3 4 5
[.., obl, ..] 23 7 14 16
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Table 27
Coverage of induced lexicon (WSJ 02–21) on unseen data (WSJ 23) (verbs only).

Entries also in reference lexicon 89.89%
Entries not in reference lexicon 10.11%
Known words 7.85%

Known words, known frames 7.85%
Known words, unknown frames 0

Unknown words 2.32%
Unknown words, known frames 2.32%
Unknown words, unknown frames 0

between known frames and unknown frames. There are, therefore, four different cases
in which an entry may not appear in the reference lexicon. Table 27 shows that the
most common case is that of known verbs occurring with a different, although known,
subcategorization frame (7.85%).

The rate of accession may also be represented graphically. In Charniak (1996) and
Krotov et al. (1998), it was observed that treebank grammars (CFGs extracted from
treebanks) are very large and grow with the size of the treebank. We were interested in
discovering whether the acquisition of lexical material from the same data displayed a
similar propensity. Figure 8 graphs the rate of induction of semantic form and CFG rule
types from Penn-III (the WSJ and parse-annotated Brown corpus combined). Because
of the variation in the size of sections between the Brown and the WSJ, we plotted
accession against word count. The first part of the graph (up to 1,004,414 words)

Figure 8
Comparison of accession rates for semantic form and CFG rule types for Penn-III (nonempty
frames) (WSJ followed by Brown).
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represents the rate of accession from the WSJ, and the final 384,646 words are those
of the Brown corpus. The seven curves represent the following: The acquisition of
semantic form types (nonempty) for all syntactic categories with and without specific
preposition and particle information, the acquisition of semantic form types (non-
empty) for all verbs with and without specific preposition and particle information,
the number of lemmas associated with the extract semantic forms, and the acqui-
sition of CFG rule types. The curve representing the growth in the overall size of
the lexicon is similar in shape to that of the PCFG, while the rate of increase in
the number of verbal semantic forms (particularly when obliques and particles are
excluded) appears to slow more quickly. Figure 8 shows the effect of domain di-
versity from the Brown section in terms of increased growth rates for 1e+06 words
upward. Figure 9 depicts the same information, this time extracted from the Brown
section first followed by the WSJ. The curves are different, but similar trends are
represented. This time the effects of domain diversity for the Brown section are
discernible by comparing the absolute accession rate for the 0.4e+06 mark between
Figures 8 and 9.

Figure 10 shows the result when we abstract away from semantic forms (verb
frame combinations) to subcategorization frames and plot their rate of acces-
sion. The graph represents the growth rate of frame types for Penn-III (WSJ fol-
lowed by Brown and Brown followed by WSJ). The curve rises sharply initially
but gradually levels, practically flattening out, despite the increase in the number
of words. This reflects the information about Section 23 in Table 27, where we demon-
strate that although new verb frame combinations occur, all of the frame types in
Section 23 have been seen by the lexical extraction program in previous sections.

Figure 9
Comparison of accession rates for semantic form and CFG rule types for Penn-III (nonempty
frames) (Brown followed by WSJ).
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Figure 10
Accession rates for frame types (without prepositions and particles) for Penn-III.

Figure 11 shows that including information about prepositions and particles in the
frames results in an accession rate which continues to grow, albeit ever more slowly,
with the increase in size of the extraction data. This emphasizes the advantage of our
approach, which extracts frames containing such information without the limitation
of predefinition.

Figure 11
Accession rates for frame types for Penn-III.
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8. Conclusions and Further Work

We have presented an algorithm for the extraction of semantic forms (or subcatego-
rization frames) from the Penn-II and Penn-III Treebanks, automatically annotated with
LFG f-structures. In contrast to many other approaches, ours does not predefine the sub-
categorization frames we extract. We have applied the algorithm to the WSJ sections of
Penn-II (50,000 trees) (O’Donovan et al. 2004) and to the parse-annotated Brown corpus
of Penn-III (almost 25,000 additional trees). We extract syntactic-function-based subcat-
egorization frames (LFG semantic forms) and traditional CFG category-based frames, as
well as mixed-function-category-based frames. Unlike many other approaches to sub-
categorization frame extraction, our system properly reflects the effects of long-distance
dependencies. Also unlike many approaches, our method distinguishes between active
and passive frames. Finally, our system associates conditional probabilities with the
frames we extract. Making the distinction between the behavior of verbs in active and
passive contexts is particularly important for the accurate assignment of probabilities
to semantic forms. We carried out an extensive evaluation of the complete induced
lexicon against the full COMLEX resource. To our knowledge, this is the most extensive
qualitative evaluation of subcategorization extraction in English. The only evaluation of
a similar scale is that carried out by Schulte im Walde (2002b) for German. The results
reported here for Penn-II compare favorably against the baseline and, in fact, are an
improvement on those reported in O’Donovan et al. (2004). The results for the larger,
more domain-diverse Penn-III lexicon are very encouraging, in some cases almost 15%
above the baseline. We believe our semantic forms are fine-grained, and by choosing
to evaluate against COMLEX, we set our sights high: COMLEX is considerably more
detailed than the OALD or LDOCE used for other earlier evaluations. Our error analysis
also revealed some interesting issues associated with using an external standard such as
COMLEX. In the future, we hope to evaluate the automatic annotations and extracted
lexicon against Propbank (Kingsbury and Palmer 2002).

Apart from the related approach of Miyao, Ninomiya, and Tsujii (2004), which
does not distinguish between argument and adjunct prepositional phrases, our
treebank and automatic f-structure annotation-based architecture for the automatic
acquisition of detailed subcategorization frames is quite unlike any of the architec-
tures presented in the literature. Subcategorization frames are reverse-engineered and
almost a byproduct of the automatic f-structure annotation algorithm. It is important
to realize that the induction of lexical resources is part of a larger project on the
acquisition of wide-coverage, robust, probabilistic, deep unification grammar resources
from treebanks Burke, Cahill, et al. (2004b). We are already using the extracted seman-
tic forms in parsing new text with robust, wide-coverage probabilistic LFG grammar
approximations automatically acquired from the f-structure-annotated Penn-II tree-
bank, specifically in the resolution of LDDs, as described in Cahill, Burke, et al. (2004).
We hope to be able to apply our lexical acquisition methodology beyond existing
parse-annotated corpora (Penn-II and Penn-III): New text is parsed by our probabilistic
LFG approximations into f-structures from which we can then extract further seman-
tic forms. The work reported here is part of the core components for bootstrapping
this approach.

In the shorter term, we intend to make the extracted subcategorization lexicons from
Penn-II and Penn-III available as a downloadable public-domain research resource.

We have also applied our more general unification grammar acquisition meth-
odology to the TIGER Treebank (Brants et al. 2002) and Penn Chinese Treebank
(Xue, Chiou, and Palmer 2002), extracting wide-coverage, probabilistic LFG grammar

361



Computational Linguistics Volume 31, Number 3

approximations and lexical resources for German (Cahill et al. 2003) and Chinese
(Burke, Lam, et al. 2004). The lexical resources, however, have not yet been evaluated.
This, and much else, has to await further research.
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