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This article proposes a new method for word translation disambiguation, one that uses a machine-
learning technique called bilingual bootstrapping. In learning to disambiguate words to be trans-
lated, bilingual bootstrapping makes use of a small amount of classified data and a large amount
of unclassified data in both the source and the target languages. It repeatedly constructs classi-
fiers in the two languages in parallel and boosts the performance of the classifiers by classifying
unclassified data in the two languages and by exchanging information regarding classified data
between the two languages. Experimental results indicate that word translation disambiguation
based on bilingual bootstrapping consistently and significantly outperforms existing methods
that are based on monolingual bootstrapping.

1. Introduction

We address here the problem of word translation disambiguation. If, for example, we
were to attempt to translate the English noun plant, which could refer either to a type
of factory or to a form of flora (i.e., in Chinese, either to [gongchang] or to
[zhiwu]), our goal would be to determine the correct Chinese translation. That is, word
translation disambiguation is essentially a special case of word sense disambiguation
(in the above example, gongchang would correspond to the sense of factory and zhiwu
to the sense of flora).1

We could view word translation disambiguation as a problem of classification. To
perform the task, we could employ a supervised learning method, but since to do
so would require human labeling of data, which would be expensive, bootstrapping
would be a better choice.

Yarowsky (1995) has proposed a bootstrapping method for word sense disam-
biguation. When applied to translation from English to Chinese, his method starts
learning with a small number of English sentences that contain ambiguous English
words and that are labeled with correct Chinese translations of those words. It then
uses these classified sentences as training data to create a classifier (e.g., a decision list),
which it uses to classify unclassified sentences containing the same ambiguous words.
The output of this process is then used as additional training data. It also adopts the
one-sense-per-discourse heuristic (Gale, Church, and Yarowsky 1992b) in classifying
unclassified sentences. By repeating the above process, an accurate classifier for word
translation disambiguation can be created. Because this method uses data in a single
language (i.e., the source language in translation), we refer to it here as monolingual
bootstrapping (MB).

∗ 5F Sigma Center, No. 49 Zhichun Road, Haidian, Beijing, China, 100080. E-mail:{hangli,i-congl}@
microsoft.com.

1 In this article, we take English-Chinese translation as an example; but the ideas and methods described
here can be applied to any pair of languages.
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In this paper, we propose a new method of bootstrapping, one that we refer to as
bilingual bootstrapping (BB). Instead of using data in one language, BB uses data in
two languages. In translation from English to Chinese, for example, BB makes use of
unclassified data from both languages. It also uses a small number of classified data
in English and, optionally, a small number of classified data in Chinese. The data in
the two languages should be from the same domain but are not required to be exactly
in parallel.

BB constructs classifiers for English-to-Chinese translation disambiguation by re-
peating the following two steps: (1) Construct a classifier for each of the languages
on the basis of classified data in both languages, and (2) use the constructed classifier
for each language to classify unclassified data, which are then added to the classified
data of the language. We can use classified data in both languages in step (1), because
words in one language have translations in the other, and we can transform data from
one language into the other.

We have experimentally evaluated the performance of BB in word translation
disambiguation, and all of our results indicate that BB consistently and significantly
outperforms MB. The higher performance of BB can be attributed to its effective use
of the asymmetric relationship between the ambiguous words in the two languages.

Our study is organized as follows. In Section 2, we describe related work. Specifi-
cally, we formalize the problem of word translation disambiguation as that of classifi-
cation based on statistical learning. As examples, we describe two such methods: one
using decision lists and the other using naive Bayes. We also explain the Yarowsky
disambiguation method, which is based on Monolingual Bootstrapping. In Section 3,
we describe bilingual bootstrapping, comparing BB with MB, and discussing the re-
lationship between BB and co-training. In Section 4, we describe our experimental
results, and finally, in Section 5, we give some concluding remarks.

2. Related Work

2.1 Word Translation Disambiguation
Word translation disambiguation (in general, word sense disambiguation) can be
viewed as a problem of classification and can be addressed by employing various
supervised learning methods. For example, with such a learning method, an English
sentence containing an ambiguous English word corresponds to an instance, and the
Chinese translation of the word in the context (i.e., the word sense) corresponds to a
classification decision (a label).

Many methods for word sense disambiguation based on supervised learning tech-
nique have been proposed. They include those using naive Bayes (Gale, Church, and
Yarowsky 1992a), decision lists (Yarowsky 1994), nearest neighbor (Ng and Lee 1996),
transformation-based learning (Mangu and Brill 1997), neural networks (Towell and
Voorhees 1998), Winnow (Golding and Roth 1999), boosting (Escudero, Marquez, and
Rigau 2000), and naive Bayesian ensemble (Pedersen 2000). The assumption behind
these methods is that it is nearly always possible to determine the sense of an ambigu-
ous word by referring to its context, and thus all of the methods build a classifier (i.e.,
a classification program) using features representing context information (e.g., sur-
rounding context words). For other related work on translation disambiguation, see
Brown et al. (1991), Bruce and Weibe (1994), Dagan and Itai (1994), Lin (1997), Ped-
ersen and Bruce (1997), Schutze (1998), Kikui (1999), Mihalcea and Moldovan (1999),
Koehn and Knight (2000), and Zhou, Ding, and Huang (2001).

Let us formulate the problem of word sense (translation) disambiguation as fol-
lows. Let E denote a set of words. Let ε denote an ambiguous word in E, and let e
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denote a context word in E. (Throughout this article, we use Greek letters to represent
ambiguous words and italic letters to represent context words.) Let Tε denote the set
of senses of ε, and let tε denote a sense in Tε. Let eε stand for an instance representing
a context of ε, that is, a sequence of context words surrounding ε:

eε = (eε,1, eε,2, . . . , (ε), . . . , eε,m), eε,i ∈ E, (i = 1, . . . , m)

For the example presented earlier, we have ε = plant, Tε = {1, 2}, where 1 represents
the sense factory and 2 the sense flora. From the phrase “. . . computer manufacturing
plant and adjacent. . . ” we obtain eε = (. . . computer, manufacturing, (plant), and,
adjacent, . . . ).

For a specific ε, we define a binary classifier for resolving each of its ambiguities
in Tε in a general form as2

P(tε | eε), tε ∈ Tε and P(̄tε | eε), t̄ε = Tε − {tε}

where eε denotes an instance representing a context of ε. All of the supervised learning
methods mentioned previously can automatically create such a classifier. To construct
classifiers using supervised methods, we need classified data such as those in Figure 1.

2.2 Decision Lists
Let us first consider the use of decision lists, as proposed in Yarowsky (1994). Let fε
denote a feature of the context of ε. A feature can be, for example, a word’s occurrence
immediately to the left of ε. We define many such features. For each feature fε, we
use the classified data to calculate the posterior probability ratio of each sense tε with
respect to the feature as

λ(tε | fε) =
P(tε | fε)
P(̄tε | fε)

For each feature fε, we create a rule consisting of the feature, the sense

arg max
tε∈Tε

λ(tε | fε)

and the score
max
tε∈Tε

λ(tε | fε)

We sort the rules in descending order with respect to their scores, provided that the
scores of the rules are larger than the default

max
tε∈Tε

P(tε)
P(̄tε)

The sorted rules form an if-then-else type of rule sequence, that is, a decision list.3 For
a new instance eε, we use the decision list to determine its sense. The rule in the list
whose feature is first satisfied in the context of eε is applied in sense disambiguation.

2 In this article we always employ binary classifiers even there are multiple classes.
3 We note that there are two types of decision lists. One is defined as here; the other is defined as a

conditional distribution over a partition of the feature space (cf. Li and Yamanishi 2002).
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P1 . . .Nissan car and truck plant. . . (1)
P2 . . . computer manufacturing plant and adjacent. . . (1)
P3 . . . automated manufacturing plant in Fremont. . . (1)
P4 . . .divide life into plant and animal kingdom. . . (2)
P5 . . . thousands of plant and animal species. . . (2)
P6 . . . zonal distribution of plant life. . . (2)
. . .
. . .

Figure 1
Examples of classified data (ε = plant).

2.3 Naive Bayesian Ensemble
Let us next consider the use of naive Bayesian classifiers. Given an instance eε, we can
calculate

λ∗(eε) = max
tε∈Tε

P(tε | eε)

P(̄tε | eε)
= max

tε∈Tε

P(tε)P(eε | tε)
P(̄tε)P(eε | t̄ε)

(1)

according to Bayes’ rule and select the sense

t∗(eε) = arg max
tε∈Tε

P(tε)P(eε | tε)
P(̄tε)P(eε | t̄ε)

(2)

In a naive Bayesian classifier, we assume that the words in eε with a fixed tε are
independently generated from P(eε | tε) and calculate

P(eε | tε) =

m∏
i=1

P(eε,i | tε)

Here P(eε | tε) represents the conditional probability of e in the context of ε given tε.
We calculate P(eε | t̄ε) similarly. We can then calculate (1) and (2) with the obtained
P(eε | tε) and P(eε | t̄ε).

The naive Bayesian ensemble method for word sense disambiguation, as proposed
in Pedersen (2000), employs a linear combination of several naive Bayesian classifiers
constructed on the basis of a number of nested surrounding contexts4

P(tε | eε) =
1
h

h∑
i=1

P(tε | e′
ε,i)

e′ε,1 ⊂ · · · ⊂ e′
ε,i · · · ⊂ e′

ε,h = e′
ε (i = 1, . . . , h)

The naive Bayesian ensemble is reported to perform the best for word sense disam-
biguation with respect to a benchmark data set (Pedersen 2000).

2.4 Monolingual Bootstrapping
Since data preparation for supervised learning is expensive, it is desirable to develop
bootstrapping methods. Yarowsky (1995) proposed such a method for word sense
disambiguation, which we refer to as monolingual bootstrapping.

4 Here u ⊂ v denotes that u is a sub-sequence of v.
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Let Lε denote a set of classified instances (labeled data) in English, each represent-
ing one context of ε:

Lε = {(eε,1, tε,1), (eε,2, tε,2), . . . , (eε,k, tε,k)}
tε,i ∈ Tε (i = 1, 2, . . . , k)

and Uε a set of unclassified instances (unlabeled data) in English, each representing
one context of ε:

Uε = {eε,1, eε,2, . . . , eε,l}

The instances in Figure 1 can be considered examples of Lε. Furthermore, we have

LE =
⋃
ε∈E

Lε, UE =
⋃
ε∈E

Uε, T =
⋃
ε∈E

Tε,

An algorithm for monolingual bootstrapping is presented in Figure 2. For a better
comparison with bilingual bootstrapping, we have extended the method so that it

Input: E, T, LE, UE, Parameter: b, θ
Repeat the following processes until unable to continue

1. 1 for each (ε ∈ E) {
2 for each (t ∈ Tε) {
3 use Lε to create classifier:

P(t | eε), t ∈ Tε and P(̄t | eε), t̄ ∈ Tε − {t}; }}

2. 4 for each (ε ∈ E) {
5 NU← {}; NL← {};
6 for each (t ∈ Tε) {
7 St ← {};
8 Qt ← {};}
9 for each (eε ∈ Uε){

10 calculate λ∗(eε) = max
t∈Tε

P(t | eε)

P(̄t | eε)
;

11 let t∗(eε) = arg max
t∈Tε

P(t | eε)

P(̄t | eε)
;

12 if (λ∗(eε) > θ & t∗(eε) = t)
13 put eε into St;}
14 for each (t ∈ Tε){
15 sort eε ∈ St in descending order of λ∗(eε) and put the top b

elements into Qt;}
16 for each (eε ∈

⋃
t Qt){

17 put eε into NU and put (eε, t∗(eε)) into NL;}
18 Lε ← Lε

⋃
NL;

19 Uε ← Uε −NU;}

Figure 2
Monolingual bootstrapping.
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performs disambiguation for all the words in E. Note that we can employ any kind
of classifier here.

At step 1, for each ambiguous word ε we create binary classifiers for resolving its
ambiguities (cf. lines 1–3 of Figure 2). At step 2, we use the classifiers for each word
ε to select some unclassified instances from Uε, classify them, and add them to Lε (cf.
lines 4–19). We repeat the process until all the data are classified.

Lines 9–13 show that for each unclassified instance eε, we classify it as having
sense t if t’s posterior odds are the largest among the possible senses and are larger
than a threshold θ. For each class t, we store the classified instances in St. Lines 14–15
show that for each class t, we only choose the top b classified instances in terms of the
posterior odds. For each class t, we store the selected top b classified instances in Qt.
Lines 16–17 show that we create the classified instances by combining the instances
with their classification labels.

After line 17, we can employ the one-sense-per-discourse heuristic to further clas-
sify unclassified data, as proposed in Yarowsky (1995). This heuristic is based on the
observation that when an ambiguous word appears in the same text several times, its
tokens usually refer to the same sense. In the bootstrapping process, for each newly
classified instance, we automatically assign its class label to those unclassified instances
that also contain the same ambiguous word and co-occur with it in the same text.

Hereafter, we will refer to this method as monolingual bootstrapping with one
sense per discourse. This method can be viewed as a special case of co-training (Blum
and Mitchell 1998).

2.5 Co-training
Monolingual bootstrapping augmented with the one-sense-per-discourse heuristic can
be viewed as a special case of co-training, as proposed by Blum and Mitchell (1998)
(see also Collins and Singer 1999; Nigam et al. 2000; and Nigam and Ghani 2000). Co-
training conducts two bootstrapping processes in parallel and makes them collaborate
with each other. More specifically, co-training begins with a small number of classified
data and a large number of unclassified data. It trains two classifiers from the classified
data, uses each of the two classifiers to classify some unclassified data, makes the two
classifiers exchange their classified data, and repeats the process.

3. Bilingual Bootstrapping

3.1 Basic Algorithm
Bilingual bootstrapping makes use of a small amount of classified data and a large
amount of unclassified data in both the source and the target languages in translation.
It repeatedly constructs classifiers in the two languages in parallel and boosts the
performance of the classifiers by classifying data in each of the languages and by
exchanging information regarding the classified data between the two languages.

Figures 3 and 4 illustrate the process of bilingual bootstrapping. Figure 5 shows
the translation relationship among the ambiguous words plant, zhiwu, and gongchang.
There is a classifier for plant in English. There are also two classifiers, one each for
zhiwu and gongchang, respectively, in Chinese. Sentences containing plant in English
and sentences containing zhiwu and gongchang in Chinese are used.

In the beginning, sentences P1 and P4 on the English side are assigned labels 1 and
2, respectively (Figure 3). On the Chinese side, sentences G1 and G3 are assigned labels
1 and 3, respectively, and sentences Z1 and Z3 are assigned labels 2 and 4, respectively.
The four labels here correspond to the four links in Figure 5. For example, label 1
represents the sense factory and label 2 represents the sense flora. Other sentences are
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Figure 3
Bilingual bootstrapping (1).

Figure 4
Bilingual bootstrapping (2).
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Figure 5
Example of translation dictionary.

not labeled. Bilingual bootstrapping uses labeled sentences P1, P4, G1, and Z1 to create
a classifier for plant disambiguation (between label 1 and label 2). It also uses labeled
sentences Z1, Z3, and P4 to create a classifier for zhiwu and uses labeled sentences G1,
G3, and P1 to create a classifier for gongzhang. Bilingual bootstrapping next uses the
classifier for plant to label sentences P2 and P5 (Figure 4). It uses the classifier for zhiwu
to label sentences Z2 and Z4, and uses the classifier for gongchang to label sentences
G2 and G4. The process is repeated until we cannot continue.

To describe this process formally, let E denote a set of words in English, C a set of
words in Chinese, and T a set of senses (links) in a translation dictionary as shown in
Figure 5. (Any two linked words can be translations of each other.) Mathematically,
T is defined as a relation between E and C, that is, T ⊆ E × C. Let ε stand for an
ambiguous word in E, and γ an ambiguous word in C. Also let e stand for a context
word in E, c a context word in C, and t a sense in T.

For an English word ε, Tε = {t | t = (ε, γ′), t ∈ T} represents the set of ε’s possible
senses (i.e., its links), and Cε = {γ′ | (ε, γ′) ∈ T} represents the Chinese words that can
be translations of ε (i.e., Chinese words to which ε is linked). Similarly, for a Chinese
word γ, let Tγ = {t | t = (ε′, γ), t ∈ T} and Eγ = {ε′ | (ε′, γ) ∈ T}.

For the example in Figure 5, when ε = plant, we have Tε = {1, 2} and Cε =
{gongchang, zhiwu}. When γ = gongchang, Tγ = {1, 3} and Eγ = {plant, mill}. When
γ = zhiwu, Tγ = {2, 4} and Eγ = {plant, vegetable}. Note that gongchang and zhiwu
share the senses {1, 2} with plant.

Let eε denote an instance (a sequence of context words surrounding ε) in English:

eε = (eε,1, eε,2, . . . , eε,m), eε,i ∈ E (i = 1, 2, . . . , m)

Let cγ denote an instance (a sequence of context words surrounding γ) in Chinese:

cγ = (cγ,1, cγ,2, . . . , cγ,n, cγ,i ∈ C (i = 1, 2, . . . , n)

For an English word ε, a binary classifier for resolving each of the ambiguities in Tε is
defined as

P(tε | eε), tε ∈ Tε and P(̄tε | eε), t̄ε = Tε − {tε}
Similarly, for a Chinese word γ, a binary classifier is defined as

P(tγ | cγ), tγ ∈ Tγ and P(̄tγ | cγ), t̄ = Tγ − {tγ}

Let Lε denote a set of classified instances in English, each representing one context
of ε:

Lε = {(eε,1, tε,1), (eε,2, tε,2), . . . , (eε,k, tε,k)}, tε,i ∈ Tε (i = 1, 2, . . . , k)
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and Uε a set of unclassified instances in English, each representing one context of ε:

Uε = {eε,1, eε,2, . . . , eε,l}

Similarly, we denote the sets of classified and unclassified instances with respect to γ
in Chinese as Lγ and Uγ , respectively. Furthermore, we have

LE =
⋃
ε∈E

Lε, LC =
⋃
γ∈C

Lγ , UE =
⋃
ε∈E

Uε, UC =
⋃
γ∈C

Uγ

We also have
T =

⋃
ε∈E

Tε =
⋃
γ∈C

Tγ

Sentences P1 and P4 in Figure 3 are examples of Lε. Sentences Z1, Z3 and G1, G3 are
examples of Lγ .

We perform bilingual bootstrapping as described in Figure 6. Note that we can,
in principle, employ any kind of classifier here.

The figure explains the process for English (left-hand side); the process for Chinese
(right-hand side) behaves similarly. At step 1, for each ambiguous word ε, we create
binary classifiers for resolving its ambiguities (cf. lines 1–3). The main point here is
that we use classified data from both languages to construct classifiers, as we describe
in Section 3.2. For the example in Figure 3, we use both Lε (sentences P1 and P4) and
Lγ , γ ∈ Cε (sentences Z1 and G1) to construct a classifier resolving ambiguities in
Tε = {1, 2}. Note that not only P1 and P4, but also Z1 and G1, are related to {1, 2}.
At step 2, for each word ε, we use its classifiers to select some unclassified instances
from Uε, classify them, and add them to Lε (cf. lines 4–19). We repeat the process until
we cannot continue.

Lines 9–13 show that for each unclassified instance eε, we use the classifiers to
classify it into the class (sense) t if t’s posterior odds are the largest among the possible
classes and are larger than a threshold θ. For each class t, we store the classified
instances in St. Lines 14–15 show that for each class t, we choose only the top b
classified instances (in terms of the posterior odds), which are then stored in Qt. Lines
16–17 show that we create the classified instances by combining the instances with
their classification labels. We note that after line 17 we can also employ the one-sense-
per-discourse heuristic.

3.2 An Implementation
Although we can in principle employ any kind of classifier in BB, we use here naive
Bayes (or naive Bayesian ensemble). We also use the EM algorithm in classified data
transformation between languages. As will be made clear, this implementation of BB
can naturally combine the features of naive Bayes (or naive Bayesian ensemble) and
the features of EM. Hereafter, when we refer to BB, we mean this implementation of
BB.

We explain the process for English (left-hand side of Figure 6); the process for
Chinese (right-hand side of figure) behaves similarly. At step 1 in BB, we construct a
naive Bayesian classifier as described in Figure 7. At step 2, for each instance eε, we
use the classifier to calculate

λ∗(eε) = max
tε∈Tε

P(tε | eε)

P(̄tε | eε)
= max

tε∈Tε

P(tε)P(eε | tε)
P(̄tε)P(eε | t̄ε)
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Figure 6
Bilingual bootstrapping.

We estimate

P(eε | tε) =

m∏
i=1

P(eε,i | tε)

We estimate P(eε | t̄ε) similarly. We estimate P(eε | tε) by linearly combining P(E)(eε | tε)
estimated from English and P(C)(eε | tε) estimated from Chinese:

P(eε | tε) = (1− α− β)P(E)(eε | tε) + αP(C)(eε | tε) + βP(U)(eε) (3)

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, α + β ≤ 1, and P(U)(eε) is a uniform distribution over E,
which is used for avoiding zero probability. In this way, we estimate P(eε | tε) using
information from not only English, but also Chinese.

We estimate P(E)(eε | tε) with maximum-likelihood estimation (MLE) using Lε as
data. The estimation of P(C)(eε | tε) proceeds as follows.

For the sake of readability, we rewrite P(C)(eε | tε) as P(e | t). We define a finite-
mixture model of the form P(c | t) =

∑
e∈E P(c | e, t)P(e | t), and for a specific ε we

assume that the data in

Lγ = {(cγ,1, tγ,1), (cγ,2, tγ,2), . . . , (cγ,h, tγ,h)}, tγ,i ∈ Tγ (i = 1, . . . , h), ∀γ ∈ Cε
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estimate P(E)(eε | tε) with MLE using Lε as data;
estimate P(C)(eε | tε) with EM algorithm using Lγ for each γ ∈ Cε as data;
calculate P(eε | tε) as a linear combination of P(E)(eε | tε) and P(C)(eε | tε);
estimate P(tε) with MLE using Lε;
calculate P(eε | t̄ε) and P(̄tε) similarly.

Figure 7
Creating a naive Bayesian classifier.

are generated independently from the model. We can therefore employ the expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) to estimate the pa-
rameters of the model, including P(e | t). Note that e and c represent context words.

Recall that E is a set of words in English, C is a set of words in Chinese, and T
is a set of senses. For a specific English word e, Ce = {c′ | (e, c′) ∈ T} represents the
Chinese words that are its possible translations.

Initially, we set

P(c | e, t) =




1
|Ce|

, if c ∈ Ce

0, if c 
∈ Ce

P(e | t) =
1
|E| , e ∈ E

We next estimate the parameters by iteratively updating them, as described in Figure 8,
until they converge. Here f (c, t) stands for the frequency of c in the instances which
have sense t. The context information in Chinese f (c, tε) is then “transformed” into the
English version P(C)(eε | tε) through the links in T.

Figure 9 shows an example of estimating P(eε | tε) with respect to the factory sense
(i.e., sense 1). We first use sentences such as P1 in Figure 3 to estimate P(E)(eε | tε) with
MLE as described above. We next use sentences such as G1 to estimate P(C)(eε | tε) as
described above. Specifically, with the frequency data f (c, tε) and EM we can estimate
P(C)(eε | tε). Finally, we linearly combine P(E)(eε | tε) and P(C)(eε | tε) to obtain P(eε | tε).

3.3 Comparison of BB and MB
We note that monolingual bootstrapping is a special case of bilingual bootstrapping
(consider the situation in which α = 0 in formula (3)).

BB can always perform better than MB. The asymmetric relationship between the
ambiguous words in the two languages stands out as the key to the higher performance

E-step: P(e | c, t)← P(c | e, t)P(e | t)∑
e∈E P(c | e, t)P(e | t)

M-step: P(c | e, t)← f (c, t)P(e | c, t)∑
c∈C f (c, t)P(e | c, t)

P(e | t)←
∑

c∈C f (c, t)P(e | c, t)∑
c∈C f (c, t)

Figure 8
The EM algorithm.
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Figure 9
Parameter estimation.

Figure 10
Example application of BB.

of BB. By asymmetric relationship we mean the many-to-many mapping relationship
between the words in the two languages, as shown in Figure 10.

Suppose that the classifier with respect to plant has two classes (denoted as A
and B in Figure 10). Further suppose that the classifiers with respect to gongchang and
zhiwu in Chinese each have two classes (C and D) and (E and F), respectively. A and
D are equivalent to one another (i.e., they represent the same sense), and so are B and
E.

Assume that instances are classified after several iterations of BB as depicted in
Figure 10. Here, circles denote the instances that are correctly classified and crosses
denote the instances that are incorrectly classified.

Since A and D are equivalent to one another, we can transform the instances with D
and use them to boost the performance of classification to A, because the misclassified
instances (crosses) with D are those mistakenly classified from C, and they will not
have much negative effect on classification to A, even though the translation from
Chinese into English can introduce some noise. Similar explanations can be given for
other classification decisions.

In contrast, MB uses only the instances in A and B to construct a classifier. When
the number of misclassified instances increases (as is inevitable in bootstrapping), its
performance will stop improving. This phenomenon has also been observed when MB
is applied to other tasks (cf. Banko and Brill 2001; Pierce and Cardie 2001).
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3.4 Relationship between BB and Co-training
We note that there are similarities between BB and co-training. Both BB and co-training
execute two bootstrapping processes in parallel and make the two processes collabo-
rate with one another in order to improve their performance. The two processes look at
different types of information in data and exchange the information in learning. How-
ever, there are also significant differences between BB and co-training. In co-training,
the two processes use different features, whereas in BB, the two processes use different
classes. In BB, although the features used by the two classifiers are transformed from
one language into the other, they belong to the same space. In co-training, on the other
hand, the features used by the two classifiers belong to two different spaces.

4. Experimental Results

We have conducted two experiments on English-Chinese translation disambiguation.
In this section, we will first describe the experimental settings and then present the
results. We will also discuss the results of several follow-on experiments.

4.1 Translation Disambiguation Using BB
Although it is possible to straightforwardly apply the algorithm of BB described in
Section 3 to word translation disambiguation, here we use a variant of it better adapted
to the task and for fairer comparison with existing technologies. The variant of BB we
use has four modifications:

1. It actually employs naive Bayesian ensemble rather than naive Bayes,
because naive Bayesian ensemble generally performs better than naive
Bayes (Pedersen 2000).

2. It employs the one-sense-per-discourse heuristic. It turns out that in BB
with one sense per discourse, there are two layers of bootstrapping. On
the top level, bilingual bootstrapping is performed between the two
languages, and on the second level, co-training is performed within each
language. (Recall that MB with one sense per discourse can be viewed as
co-training.)

3. It uses only classified data in English at the beginning. That is to say, it
requires exactly the same human labeling efforts as MB does.

4. It individually resolves ambiguities on selected English words such as
plant and interest. (Note that the basic algorithm of BB performs
disambiguation on all the words in English and Chinese.) As a result, in
the case of plant, for example, the classifiers with respect to gongchang
and zhiwu make classification decisions only on D and E and not C and
F (in Figure 10), because it is not necessary to make classification
decisions on C and F. In particular, it calculates λ∗(c) as λ∗(c) = P(c | t)
and sets θ = 0 in the right-hand side of step 2.

4.2 Translation Disambiguation Using MB
We consider here two implementations of MB for word translation disambiguation.
In the first implementation, in addition to the basic algorithm of MB, we also use
(1) naive Bayesian ensemble, (2) one sense per discourse, and (3) a small amount of
classified data in English at the beginning. (We will denote this implementation as MB-
B hereafter.) The second implementation is different from the first one only in (1). That
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Table 1
Data descriptions in Experiment 1.

'��
�
������
 !����
������
� 8��
�
� 8��������
�
� �������

������������������� 
����
� ������	�������������
����������� �����

 � � ��
�����������	���������
���

� ��
��
������
��

� ��������� ���������������������� ����
����
 � � ��������
�)��
����;���� ����
 � � �����������
	�.�����)�� ������

� ��
�	���������������� ��
�	�����
 � � �������������	��	
����������
� �����
 � � ������������
�����
���� ��������


����

 � � 	������� 	�������

is, it employs a decision list as the classifier. This implementation is exactly the one
proposed in Yarowsky (1995). (We will denote it as MB-D hereafter.) MB-B and MB-D
can be viewed as the state-of-the-art methods for word translation disambiguation
using bootstrapping.

4.3 Experiment 1: WSD Benchmark Data
We first applied BB, MB-B, and MB-D to translation disambiguation on the English
words line and interest using a benchmark data set.5 The data set consists mainly
of articles from the Wall Street Journal and is prepared for conducting word sense
disambiguation (WSD) on the two words (e.g., Pedersen 2000).

We collected from the HIT dictionary6 the Chinese words that can be translations
of the two English words; these are listed in Table 1. One sense of an English word
links to one group of Chinese words. (For the word interest, we used only its four
major senses, because the remaining two minor senses occur in only 3.3% of the data.)

For each sense, we selected an English word that is strongly associated with the
sense according to our own intuition (cf. Table 1). We refer to this word as a seed
word. For example, for the sense of money paid for the use of money, we selected the
word rate. We viewed the seed word as a classified “sentence,” following a similar
proposal in Yarowsky (1995). In this way, for each sense we had a classified instance
in English. As unclassified data in English, we collected sentences in news articles
from a Web site (www.news.com), and as unclassified data in Chinese, we collected
sentences in news articles from another Web site (news.cn.tom.com). Note that we
need to use only the sentences containing the words in Table 1. We observed that the
distribution of the senses in the unclassified data was balanced. As test data, we used
the entire benchmark data set.

Table 2 shows the sizes of the data sets. Note that there are in general more
unclassified sentences (and texts) in Chinese than in English, because one English
word usually can link to several Chinese words (cf. Figure 5).

As the translation dictionary, we used the HIT dictionary, which contains about
76,000 Chinese words, 60,000 English words, and 118,000 senses (links). We then used
the data to conduct translation disambiguation with BB, MB-B, and MB-D, as described
in Sections 4.1 and Section 4.2.

5 http://www.d.umn.edu/∼tpederse/data.html.
6 This dictionary was created by Harbin Institute of Technology.
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Table 2
Data set sizes in Experiment 1.

Unclassified sentences (texts)

Words English Chinese Test sentences

interest 1,927 (1,072) 8,811 (2,704) 2,291
line 3,666 (1,570) 5,398 (2,894) 4,148

For both BB and MB-B, we used an ensemble of five naive Bayesian classifiers
with window sizes of ±1,±3,±5,±7, and ±9 words, and we set the parameters β, b,
and θ to 0.2, 15, and 1.5, respectively. The parameters were tuned on the basis of our
preliminary experimental results on MB-B; they were not tuned, however, for BB. We
set the BB-specific parameter α to 0.4, which meant that we weighted information
from English and Chinese equally.

Table 3 shows the translation disambiguation accuracies of the three methods as
well as that of a baseline method in which we always choose the most frequent sense.
Figures 11 and 12 show the learning curves of MB-D, MB-B, and BB. Figure 13 shows
the accuracies of BB with different α values. From the results, we see that BB consistently
and significantly outperforms both MB-D and MB-B. The results from the sign test are
statistically significant (p-value < 0.001). (For the sign test method, see, for example,
Yang and Liu [1999]).

Table 4 shows the results achieved by some existing supervised learning methods
with respect to the benchmark data (cf. Pedersen 2000). Although BB is a method nearly
equivalent to one based on unsupervised learning, it still performs favorably when
compared with the supervised methods (note that since the experimental settings are
different, the results cannot be directly compared).

4.4 Experiment 2: Yarowsky’s Words
We also conducted translation on seven of the twelve English words studied in Yarowsky
(1995). Table 5 lists the words we used.

Table 3
Accuracies of disambiguation in Experiment 1.

Words Major (%) MB-D (%) MB-B (%) BB (%)

interest 54.6 54.7 69.3 75.5
line 53.5 55.6 54.1 62.7

Table 4
Accuracies of supervised methods.

interest (%) line (%)

Naive Bayesian ensemble 89 88
Naive Bayes 74 72
Decision tree 78 —
Neural network — 76
Nearest neighbor 87 —
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Figure 11
Learning curves with interest.

Figure 12
Learning curves with line.

Figure 13
Accuracies of BB with different α values.
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Table 5
Data set descriptions in Experiment 2.
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Table 6
Data set sizes in Experiment 2.

Unclassified sentences (texts) Test
Words English Chinese sentences

bass 142 (106) 8,811 (4,407) 200
drug 3,053 (1,048) 5,398 (3,143) 197
duty 1,428 (875) 4,338 (2,714) 197
palm 366 (267) 465 (382) 197
plant 7,542 (2,919) 24,977 (13,211) 197
space 3,897(1,494) 14,178 (8,779) 197
tank 417 (245) 1,400 (683) 199
Total 16,845 (6,954) 59,567 (33,319) 1,384

For each of the English words, we extracted about 200 sentences containing the
word from the Encarta7 English corpus and hand-labeled those sentences using our
own Chinese translations. We used the labeled sentences as test data and the unlabeled
sentences as unclassified data in English. Table 6 shows the data set sizes. We also
used the sentences in the Great Encyclopedia8 Chinese corpus as unclassified data in
Chinese. We defined, for each sense, a seed word in English as a classified instance in
English (cf. Table 5). We did not, however, conduct translation disambiguation on the
words crane, sake, poach, axes, and motion, because the first four words do not frequently
occur in the Encarta corpus, and the accuracy of choosing the major translation for
the last word already exceeds 98%.

We next applied BB, MB-B, and MB-D to word translation disambiguation. The
parameter settings were the same as those in Experiment 1. Table 7 shows the dis-
ambiguation accuracies, and Figures 14–20 show the learning curves for the seven
words.

From the results, we see again that BB significantly outperforms MB-D and MB-B.
Note that the results of MB-D here cannot be directly compared with those in Yarowsky
(1995), because the data used are different. Naive Bayesian ensemble did not perform
well on the word duty, causing the accuracies of both MB-B and BB to deteriorate.

7 http://encarta.msn.com/default.asp.
8 http://www.whlib.ac.cn/sjk/bkqs.htm.
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Figure 14 Figure 15
Learning curves with bass. Learning curves with drug.

Figure 16 Figure 17
Learning curves with duty. Learning curves with palm.

Figure 18 Figure 19
Learning curves with plant. Learning curves with space.

Figure 20
Learning curves with tank.
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Table 7
Accuracies of disambiguation in Experiment 2.

Words Major (%) MB-D (%) MB-B (%) BB (%)

bass 61.0 57.0 89.0 92.0
drug 77.7 78.7 79.7 86.8
duty 86.3 86.8 72.0 75.1
palm 82.2 80.7 83.3 92.4
plant 71.6 89.3 95.4 95.9
space 64.5 83.3 84.3 87.8
tank 60.3 76.4 76.9 84.4
Total 71.9 78.8 82.9 87.8

Table 8
Top words for interest rate sense of interest.

MB-B BB

payment saving
cut payment

earn benchmark
short whose

short-term base
yield prefer
u.s. fixed

margin debt
benchmark annual

regard dividend

4.5 Discussion
We investigated the reason for BB’s outperforming MB and found that the explanation
in Section 3.3 appears to be valid according to the following observations.

1. In a naive Bayesian classifier, words with large values of likelihood ratio P(e|t)
P(e|̄t)

will have strong influences on classification. We collected the words having the largest
likelihood ratio with respect to each sense t in both BB and MB-B and found that BB
obviously has more “relevant words” than MB-B. Here words relevant to a particular
sense refer to the words that are strongly indicative of that sense according to human
judgments.

Table 8 shows the top 10 words in terms of likelihood ratio with respect to the
interest rate sense in both BB and MB-B. The relevant words are italicized. Figure 21
shows the numbers of relevant words with respect to the four senses of interest in BB
and MB-B.

2. From Figure 13, we see that the performance of BB remains high or gets higher
even when α becomes larger than 0.4 (recall that β was fixed at 0.2). This result strongly
indicates that the information from Chinese has positive effects.

3. One might argue that the higher performance of BB can be attributed to the
larger amount of unclassified data it uses, and thus if we increase the amount of
unclassified data for MB, it is likely that MB can perform as well as BB. We conducted
an additional experiment and found that this is not the case. Figure 22 shows the
accuracies achieved by MB-B as the amount of unclassified data increases. The plot
shows that the accuracy of MB-B does not improve when the amount of unclassified
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Figure 21
Number of relevant words.

Figure 22
When more unclassified data available.

data increases. Figure 22 plots again the results of BB as well as those of a method
referred to as MB-C. In MB-C, we linearly combined two MB-B classifiers constructed
with two different unclassified data sets, and we found that although the accuracies
are improved in MB-C, they are still much lower than those of BB.

4. We have noticed that a key to BB’s performance is the asymmetric relationship
between the classes in the two languages. Therefore, we tested the performance of
MB and BB when the classes in the two languages are symmetric (i.e., one-to-one
mapping).

We performed two experiments on text classification in which the categories were
finance and industry, and finance and trade, respectively. We collected Chinese texts
from the People’s Daily in 1998 that had already been assigned class labels. We used
half of them as unclassified training data in Chinese and the remaining as test data in
Chinese. We also collected English texts from the Wall Street Journal. We used them as
unlabeled training data in English. We used the class names (i.e., finance, industry, and
trade, as seed data (classified data)). Table 9 shows the accuracies of text classification.
From the results we see that when the classes are symmetric, BB cannot outperform
MB.

5. We also investigated the effect of the one-sense-per-discourse heuristic. Table 10
shows the performance of MB and BB on the word interest with and without the heuris-
tic. We see that with the heuristic, the performance of both MB and BB is improved.
Even without the heuristic, BB still performs better than MB with the heuristic.
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Table 9
Accuracy of text classification.

Classes MB-B (%) BB (%)

Finance and industry 93.2 92.9
Finance and trade 78.4 78.6

Table 10
Accuracy of disambiguation.

MB-D (%) MB-B (%) BB (%)

With one sense per discourse 54.7 69.3 75.5
Without one sense per discourse 54.6 66.4 71.6

5. Conclusion

We have addressed here the problem of classification across two languages. Specifically
we have considered the problem of bootstrapping. We find that when the task is word
translation disambiguation between two languages, we can use the asymmetric rela-
tionship between the ambiguous words in the two languages to significantly boost the
performance of bootstrapping. We refer to this approach as bilingual bootstrapping.
We have developed a method for implementing this bootstrapping approach that nat-
urally combines the use of naive Bayes and the EM algorithm. Future work includes a
theoretical analysis of bilingual bootstrapping (generalization error of BB, relationship
between BB and co-training, etc.) and extensions of bilingual bootstrapping to more
complicated machine translation tasks.
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