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The Disambiguation of Nominalizations
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This article addresses the interpretation of nominalizations, a particular class of compound nouns
whose head noun is derived from a verb and whose modifier is interpreted as an argument of this
verb. Any attempt to automatically interpret nominalizations needs to take into account: (a) the
selectional constraints imposed by the nominalized compound head, (b) the fact that the relation
of the modifier and the head noun can be ambiguous, and (c) the fact that these constraints can
be easily overridden by contextual or pragmatic factors. The interpretation of nominalizations
poses a further challenge for probabilistic approaches since the argument relations between a head
and its modifier are not readily available in the corpus. Even an approximation that maps the
compound head to its underlying verb provides insufficient evidence. We present an approach
that treats the interpretation task as a disambiguation problem and show how we can “re-create”
the missing distributional evidence by exploiting partial parsing, smoothing techniques, and
contextual information. We combine these distinct information sources using Ripper, a system
that learns sets of rules from data, and achieve an accuracy of 86.1% (over a baseline of 61.5%)
on the British National Corpus.

1. Introduction

The automatic interpretation of compound nouns has been a long-standing problem
for natural language processing (NLP). Compound nouns in English have three basic
properties that present difficulties for their interpretation: (a) the compounding process
is extremely productive (this means that a hypothetical system would have to interpret
previously unseen instances), (b) the semantic relationship between the compound
head and its modifier is implicit (this means that it cannot be easily recovered from
syntactic or morphological analysis), and (c) the interpretation can be influenced by a
variety of contextual and pragmatic factors.

A considerable amount of effort has gone into specifying the set of semantic rela-
tions that hold between a compound head and its modifier (Levi 1978; Warren 1978;
Finin 1980; Isabelle 1984). Levi (1978), for example, distinguishes two types of com-
pound nouns: (a) compounds consisting of two nouns that are related by one of nine
recoverably deletable predicates (e.g., cause relates onion tears, for relates pet spray;
see the examples in (1)) and (b) nominalizations, that is, compounds whose heads are
nouns derived from a verb and whose modifiers are interpreted as arguments of the
related verb (e.g., a car lover loves cars; see the examples in (2)–(4)). The prenominal
modifier can be either a noun or an adjective (see the examples in (2)). The nominal-
ized verb can take a subject (see (3a)), a direct object (see (3b)) or a prepositional object
(see (3c)).

(1) a. onion tears cause
b. vegetable soup have
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c. music box make

d. steam iron use

e. pine tree be

f. night flight in

g. pet spray for

h. peanut butter from

i. abortion problem about

(2) a. parental refusal subj

b. cardiac massage obj

c. heart massage obj

d. sound synthesizer obj

(3) a. child behavior subj

b. car lover obj

c. soccer competition at|in

(4) a. government promotion subj|obj

b. satellite observation subj|obj

Besides Levi (1978), a fair number of researchers (Warren 1978; Finin 1980; Isabelle
1984; Leonard 1984) agree that there is a limited number of regularly recurring relations
between a compound head and its modifier. There is far less agreement when it comes
to the type and number of these relations. The relations vary from Levi’s (1978) recov-
erably deletable predicates to Warren’s (1978) paraphrases and Finin’s (1980) role nom-
inals. Leonard (1984) proposes eight relations, and Warren (1978) proposes six basic re-
lations, whereas the number of relations proposed by Finin (1980) is potentially infinite.

The attempt to restrict the semantic relations between the compound head and its
modifier to a prespecified number and type has been criticized by Downing (1977),
who has shown (through a series of psycholinguistic experiments) that the underlying
relations can be influenced by a variety of pragmatic factors and cannot therefore be
presumed to be easily enumerable. Sparck Jones (1983, page 4) further notes “that
observations about the semantic relation holding between the compound head and its
modifier can only be remarks about tendencies and not about absolutes.” Consider,
for instance, the compound onion tears (see (1a)). The relationship cause is one of
the possible interpretations the compound may receive. One could easily imagine a
context in which the tears are for or about the onion. Consider example1 (5a), taken
from Downing (1977, page 818). Here apple-juice seat refers to the situation in which
someone is instructed to sit in a seat in front of which a glass of apple juice has been
placed. Given this particular state of affairs, none of the relations in (1) can be used
to successfully interpret apple-juice seat. Such considerations have led Selkirk (1982) to

1 Unless stated otherwise the example sentences were taken from the British National Corpus and in
some cases simplified for purposes of clarity.
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claim that only nominalizations are amenable to linguistic characterization, leaving all
other compounds to be explained by pragmatics or discourse. A similar approach is put
forward by Hobbs et al. (1993) for all types of compounds, including nominalizations:
any two nouns can be combined, and the relation between these nouns is entirely
underspecified, to be resolved pragmatically.

(5) a. A friend of mine was once instructed to sit in the apple-juice seat.

b. By the end of the 1920s, government promotion of agricultural
development in Niger was limited, consisting mainly of crop trials and
model sheep and ostrich farms.

Less controversy arises with regard to nominalizations, perhaps because of the
small number of allowable relations. Most approaches follow Levi (1978) in distin-
guishing nominalizations as a separate class of compounds, the exception being Finin
(1980), who claims that most compounds are nominalizations, even in cases in which
the head noun is not morphologically derived from a verb (see the examples in (1)).
Under Finin’s analysis the head book in the compound recipe book is a role nominal, that
is, a noun that refers to a particular thematic role of another concept. This means that
book refers to the object role of write, which is filled by recipe. It is not clear, however,
how the implicit verb is to be recovered or why write is more appropriate than read in
this example.

Despite the small number of relations between the nominalized head and its mod-
ifier, the interpretation of nominalizations can readily change in different contexts. In
some cases, the relation of the modifier and the nominalized verb (e.g., subject or
object) can be predicted either from the subcategorization properties of the verb or
from the semantics of the nominalization suffix of the head noun. Consider (3a), for
example. Here child can be only the subject of behavior, since the verb behave is intran-
sitive. In (3b) the agentive suffix -er of the head noun lover indicates that the modifier
car is the object of the verb love. In other cases, the relation of the modifier and the
head noun is genuinely ambiguous. Out of context the compounds government promo-
tion and satellite observation (see example (4)) can receive either a subject or an object
interpretation. One might argue that the preferred analysis for government promotion is
“government that is promoted by someone.” This interpretation can be easily overrid-
den in context, however, as shown in Example (5b): here it is the government that is
doing the promotion.

The automatic interpretation of compound nouns poses a challenge for empirical
approaches, since the relations between a head and its modifier are not readily avail-
able in a corpus, and therefore they have to be somehow retrieved and approximated.
Given the data sparseness and the parameter estimation difficulties, it is not surprising
that a far greater number of symbolic than probabilistic solutions have been proposed
for the automatic interpretation of compound nouns. With the exception of Wu (1993)
and Lauer (1995), who use probabilistic models for compound noun interpretation (see
Section 7 for details), most algorithms rely on hand-crafted knowledge bases or dic-
tionaries that contain detailed semantic information for each noun; a sequence of rules
exploit a knowledge base to choose the correct interpretation for a given compound
(Finin 1980; McDonald 1982; Leonard 1984; Vanderwende 1994).

In what follows we develop a probabilistic model for the interpretation of nominal-
izations. We focus on nominalizations whose prenominal modifier is either the under-
lying subject or direct object of the verb corresponding to the nominalized compound
head. In other words, we focus on examples like (3a, 3b) and ignore for the moment
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nominalizations whose heads correspond to verbs taking prepositional complements
(see example (3c)). Nominalizations are attractive from an empirical perspective: the
amount of relations is small (i.e., subject or object, at least if one focuses on direct
objects only) and fairly uncontroversial (see the discussion above). Although the rela-
tions are not attested in the corpus, they can be retrieved and approximated through
parsing. The probabilistic interpretation of nominalizations can provide a lower bound
for the difficulty of the compound interpretation task: if we cannot interpret nominal-
izations successfully, there is little hope for modeling more complex semantic relations
stochastically (see the examples in (1)).

We present a probabilistic algorithm that treats the interpretation task as a dis-
ambiguation problem. Our approach relies on the simplifying assumption that the
relation of the nominalized head and its modifier noun can be approximated by the
relation of the latter and the verb from which the head is derived. This approach works
insofar as the verb-argument relations from which the nominalizations are derived are
attested in the corpus. We show that a large number of verb-argument configurations
do not occur in the corpus, something that is perhaps not surprising considering the
ease with which novel compounds are created (Levi 1978). We estimate the frequen-
cies of unseen verb-argument pairs by experimenting with three types of smoothing
techniques proposed in the literature (back-off smoothing, class-based smoothing, and
distance-weighted averaging) and show that their combination achieves good perfor-
mance. Furthermore, we explore the contribution of context to the disambiguation task
and show that performance is increased by taking contextual features into account.
Our best results are achieved by combining the predictions of our probabilistic model
with contextual information.

The remainder of this article is organized as follows: in Section 2 we present
a simple statistical model for the interpretation of nominalizations and describe the
procedure used to collect the data for our experiments. Section 3 presents details on
how the parameters of the model were estimated and gives a brief overview on the
smoothing methods with which we experimented. Section 4 describes the algorithm
used for the interpretation of nominalizations, and Section 5 reports the results of
several experiments that achieve a combined accuracy of 86.1% on the British National
Corpus (BNC). Section 6 discusses the findings. In Section 7 we review related work,
and we conclude in Section 8.

2. The Model

2.1 Guessing Argument Relations
As explained in Section 1, nominalizations are compounds whose head noun is a nom-
inalized verb and whose prenominal modifier is derived from either the underlying
subject or the underlying object of that verb (Levi 1978). Our goal, given a nominaliza-
tion, is to develop a procedure for inferring whether the modifier stands in a subject
or object relation with respect to the head noun. In other words, we need to assign
probabilities to the two different relations (subj, obj). For each relation rel we calculate
the simple expression P(rel | n1, n2) given in (6).

P(rel | n1, n2) =
f (n1, rel , n2)

f (n1, n2)
(6)

Since we have a choice between two outcomes we will use a likelihood ratio to
compare the two relation probabilities (Mosteller and Wallace 1964; Hindle and Rooth
1993). In particular we will compute the log of the ratio of the probability P(obj | n1, n2)



361

Lapata The Disambiguation of Nominalizations

to the probability P(subj | n1, n2). We will call this log-likelihood ratio the argument
relation (RA) score.

RA(rel , n1, n2) = log2
P(obj | n1, n2)

P(subj | n1, n2)
(7)

Notice, however, that we cannot read off f (n1, rel , n2) directly from the corpus.
What we can obtain from a corpus (through parsing) is the number of times a noun is
the object or the subject of a given verb. By making the simplifying assumption that
the relation of the nominalized head and its modifier noun is the same as the relation
between the latter and the verb from which the head is derived, we can rewrite (6) as
follows:

P(rel | n1, n2) ≈
f (vn2 , rel , n1)∑

i
f (vn2 , rel i, n1)

(8)

where f (vn2 , rel , n1) is the frequency with which the modifier noun n1 is found in the
corpus as the subject or object of vn2 , the verb from which the head noun is derived.
The sum

∑
i f (vn2 , rel i, n1) is a normalization factor.

2.2 Parameter Estimation

2.2.1 Verb-Argument Tuples. We estimated the parameters of the model outlined
in the previous section from a part-of-speech-tagged and lemmatized version of the
BNC, a 100-million-word collection of samples of written and spoken language from a
wide range of sources designed to represent current British English (Burnard 1995). To
estimate the term f (vn2 , rel , n1), the corpus was automatically parsed by Cass (Abney
1996), a robust chunk parser designed for the shallow analysis of noisy text. The main
feature of Cass is its finite-state cascade technique. A finite-state cascade is a sequence
of nonrecursive levels: phrases at one level are built on phrases at the previous level
without containing same-level or higher-level phrases. We used the parser’s built-in
function to extract tuples of verb subjects and verb objects (see (9)).

(9) a. change situation subj
b. come off heroin obj
c. deal with situation obj

(10) a. isolated people subj
b. smile good subj

The tuples obtained from the parser’s output are an imperfect source of infor-
mation about argument relations. Bracketing errors, as well as errors in identifying
chunk categories accurately, result in tuples whose lexical items do not stand in a
verb-argument relationship. For example, inspection of the original BNC sentences
from which (10a) and (10b) were derived revealed that the verb is missing from the
former and the noun is missing from the latter (see the sentences in (11)).

(11) a. Wenger found that more than half the childless old people in her
study of rural Wales saw a relative, a sibling, niece, nephew or cousin
at least once a week, though in inner city London there were more
isolated old people.

b. I smiled my best smile down the line.
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Table 1
Tuples extracted from the BNC.

Tokens Types

Relation Parser Filtering Tuples Verbs Nouns

subj 4,491,386 4,095,578 588,333 10,852 41,336
obj 2,631,752 2,598,069 615,328 9,490 35,846

Table 2
Deverbal suffixes.

Suffix Nominalization

-er drink → drinker
-or direct → director
-ant disinfect → disinfectant
-ee employ → employee
-ation educate → education
-ment arrange → arrangement
-al refuse → refusal
-ing hire → hiring

Table 3
Conversion.

Verb → Noun

release → release
arrest → arrest
compromise → compromise
attempt → attempt

To compile a comprehensive count of verb-argument relations, we tried to elimi-
nate from the parser’s output tuples containing erroneous verbs and nouns like those
in (10). We did this by matching the verbs contained in the tuples against a list of all
words tagged as verbs and nouns in the BNC. Tuples containing words not included in
the list were discarded. Furthermore, we discarded tuples containing verbs or nouns
attested in a verb-argument relationship only once. This resulted in 588,333 distinct
verb-subject pairs and 615,328 distinct verb-object pairs (see Table 1, which contains
information about the tuples extracted from the corpus before and after the filtering
described earlier in the paragraph).

2.2.2 The Data. So far we have been using the term nominalization to refer to two-word
compounds whose head is derived from a verb. Morphologically speaking, nominal-
ization is a word formation process by which a noun is derived from a verb, usually
by means of suffixation (Quirk et al. 1985). A list of deverbal suffixes (i.e., suffixes that
form nouns when attached to verb bases) is given in Table 2. Nominalizations can also
be created by conversion, the word formation process whereby “an item is adapted
or converted to a new word-class without the addition of an affix” (Quirk et al. 1985,
page 1009). Examples of conversion are shown in Table 3.

It is beyond the scope of the present study to develop an algorithm that auto-
matically detects nominalizations in a corpus. In the experiments described in the
subsequent sections compounds with deverbal heads were obtained as follows:

1. Two-word compound nouns were extracted from the BNC using a
heuristic that looks for consecutive pairs of nouns that are neither
preceded nor succeeded by a noun (Lauer 1995).

2. A dictionary of deverbal nouns was created using two sources:
(a) nomlex (Macleod et al. 1998), a dictionary of nominalizations
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containing 827 lexical entries, and (b) celex (Burnage 1990), a general
morphological dictionary that contains 5,111 nominalizations; both
dictionaries list the verbs from which the nouns are derived. Sample
dictionary entries are given in Tables 2 and 3.

3. Candidate nominalizations were obtained from the compounds acquired
from the BNC by selecting noun-noun sequences whose head (i.e.,
rightmost noun) was one of the deverbal nouns contained in either
celex or nomlex. The procedure resulted in 172,797 potential types of
nominalizations.

From these candidate nominalizations a random sample of 1,277 tokens was selected.
The sample was manually inspected, and compounds with modifiers whose relation
to the head noun was other than subject or object were discarded. In particular nom-
inalizations were discarded if: (a) the relation between the head and the modifier
was any of the semantic relations listed in (1) (e.g., cause, have, make); these com-
pounds represented 28.0% of the sample; (b) the head was derived from verbs taking
prepositional objects (see example (3c)); these nominalizations represented 9.2% of the
sample. After manual inspection the sample contained 796 nominalizations (62.8%
of the initial sample). These tokens were used for the experiments described in Sec-
tion 5.

2.2.3 Mapping. To estimate the frequency, f (vn2 , rel , n1), the nominalized heads were
mapped to their corresponding verbs. Inspection of the frequencies of the verb-argu-
ment tuples contained in our data (796 tokens) revealed that 480 verb-noun pairs
(60.3%) had a verb-object frequency of zero in the corpus. Similarly, 503 verb-noun
pairs (63.2%) had a verb-subject frequency of zero. Furthermore, a total of 373 tuples
(46.9%) were not attested at all in the BNC either in a verb-object or verb-subject
relation. This finding is not entirely unexpected, considering that compounds are typ-
ically used as a text compression device (Marsh 1984), that is, to pack meaning into
a minimal amount of linguistic structure. If a nominalization is chosen over a more
elaborate structure (i.e., a sentence), then it is not surprising that some verb-argument
configurations will not occur in the corpus. Furthermore, some nominalizations are
conventionalized (e.g., business administration, health organization) and are therefore at-
tested more frequently than their verb-subject or verb-object counterparts.

We re-created the frequencies of unseen verb-argument pairs by experimenting
with three types of smoothing techniques proposed in the literature: back-off smooth-
ing (Katz 1987), class-based smoothing (Resnik 1993; Lauer 1995), and distance-
weighted averaging (Grishman and Sterling 1994; Dagan, Lee, and Pereira 1999). We
present these three smoothing variants and their underlying assumptions in the fol-
lowing section.

3. Smoothing

Smoothing techniques have been used in a variety of statistical NLP applications as a
means of addressing data sparseness, an inherent problem for statistical methods that
rely on the relative frequencies of word combinations. The problem arises when the
probability of word combinations that do not occur in the training data needs to be
estimated. The smoothing methods proposed in the literature (overviews are provided
by Dagan, Lee, and Pereira (1999) and Lee (1999)) can be generally divided into three
types: discounting (Katz 1987), class-based smoothing (Resnik 1993; Brown et al. 1992;
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Pereira, Tishby, and Lee 1993), and distance-weighted averaging (Grishman and Sterling
1994; Dagan, Lee, and Pereira 1999).

Discounting methods decrease the probability of previously seen events so that the
total probability of observed word co-occurrences is less than one, leaving some prob-
ability mass to be redistributed among unseen co-occurrences. Class-based smoothing
and distance-weighted averaging both rely on an intuitively simple idea: interword
dependencies are modeled by relying on the corpus evidence available for words that
are similar to the words of interest. The two approaches differ in the way they measure
word similarity. Distance-weighted averaging estimates word similarity from lexical
co-occurrence information; namely, it finds similar words by taking into account the
linguistic contexts in which they occur: two words are similar if they occur in similar
contexts. In class-based smoothing, classes are used as the basis according to which the
co-occurrence probability of unseen word combinations is estimated. Classes can be
induced directly from the corpus using distributional clustering (Pereira, Tishby, and
Lee 1993; Brown et al. 1992; Lee and Pereira 1999) or taken from a manually crafted
taxonomy (Resnik 1993). In the latter case the taxonomy is used to provide a mapping
from words to conceptual classes.

Distance-weighted averaging differs from distributional clustering in that it does
not explicitly cluster words. Although both methods make use of the evidence of
words similar to the words of interest, distributional clustering assigns to each word
a probability distribution over clusters to which it may belong; co-occurrence proba-
bilities can then be estimated on the basis of the average of the clusters to which the
words in the co-occurrence belong. This means that word co-occurrences are modeled
by taking general word clusters into account and that the same set of clusters is used
for different co-occurrences. Distance-weighted averaging does not explicitly create
general word clusters. Instead, unseen co-occurrences are estimated by averaging the
set of co-occurrences most similar to the target unseen co-occurrence, and a differ-
ent set of similar neighbors (i.e., distributionally similar words) is used for different
co-occurrences.

In language modeling, smoothing techniques are typically evaluated by showing
that a language model that uses smoothed estimates incurs a reduction in perplexity
on test data over a model that does not employ smoothed estimates (Katz 1987).
Dagan, Lee, and Pereira (1999) use perplexity to compare back-off smoothing against
distance-weighted averaging methods within the context of language modeling for
speech recognition and show that the latter outperform the former. They also compare
different distance-weighted averaging methods on a pseudoword disambiguation task
in which the language model decides which of two verbs v1 and v2 is more likely to
take a noun n as its object. The method being tested must reconstruct which of the
unseen (v1, n) and (v2, n) is a valid verb-object combination. The same task is used by
Lee and Pereira (1999) in a detailed comparison between distributional clustering and
distance-weighted averaging that demonstrates that the two methods yield comparable
results.

In our experiments we re-created co-occurrence frequencies for unseen verb-sub-
ject and verb-object pairs using three maximally different approaches: back-off smooth-
ing, class-based smoothing using a predefined taxonomy, and distance-weighted av-
eraging. We preferred taxonomic class-based methods over distributional clustering
mainly because we wanted to compare directly methods that use distributional infor-
mation inherent in the corpus without making external assumptions with regard to
how concepts and their similarity are represented with methods that quantify sim-
ilarity relationships based on information present in a hand-crafted taxonomy. Fur-
thermore, as Lee and Pereira’s (1999) results indicate that distributional clustering
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and distance-weighted averaging obtain similar levels of performance, we restricted
ourselves to the latter.

We evaluated the contribution of the different smoothing methods on the nomi-
nalization task by exploring how each method and their combination influences dis-
ambiguation performance. Sections 3.1–3.3 review discounting, class-based smooth-
ing, and distance-weighted averaging. Section 4 introduces an algorithm that uses
smoothed verb-argument tuples to arrive at the interpretation of nominalizations.

3.1 Back-Off Smoothing
Back-off n-gram models were initially proposed by Katz (1987) for speech recognition
but have also been successfully used to disambiguate the attachment site of struc-
turally ambiguous prepositional phrases (Collins and Brooks 1995). The main idea
behind back-off smoothing is to adjust maximum likelihood estimates like (8) so that
the total probability of observed word co-occurrences is less than one, leaving some
probability mass to be redistributed among unseen co-occurrences. In general the fre-
quency of observed word sequences is discounted using the Good-Turing estimate (see
Katz (1987) and Church and Gale (1991) for details on Good-Turing estimation), and
the probability of unseen sequences is estimated by using lower-level conditional dis-
tributions. Assuming that the numerator f (vn2 , rel , n1) in (8) is zero we can approximate
P(rel | n1, n2) by backing off to P(rel | n1):

P(rel | n1, n2) = α
f (rel , n1)

f (n1)
(12)

where α is a normalization constant that ensures that the probabilities sum to one. If
the frequency f (rel , n1) is also zero, backing off continues by making use of P(rel).

3.2 Class-Based Smoothing
Generally speaking, taxonomic class-based smoothing re-creates co-occurrence fre-
quencies based on information provided by lexical resources such as WordNet (Miller
et al. 1990) or Roget’s publicly available thesaurus. In the case of verb-argument tuples,
we use taxonomic information to estimate the frequencies f (vn2 , rel , n1) by substituting
for the word n1 occurring in an argument position the concept with which it is repre-
sented in the taxonomy (Resnik 1993). So f (vn2 , rel , n1) can be estimated by counting
the number of times the concept corresponding to n1 was observed as the argument
of the verb vn2 in the corpus.

This would be a straightforward task if each word was always represented in
the taxonomy by a single concept or if we had a corpus of verb-argument tuples
labeled explicitly with taxonomic information. Lacking such a corpus we need to take
into consideration the fact that words in a taxonomy may belong to more than one
conceptual class: counts of verb-argument configurations are reconstructed for each
conceptual class by dividing the contribution from the argument by the number of
classes to which it belongs (Resnik 1993; Lauer 1995):

f (vn2 , rel , c) ≈
∑
n′

1∈c

f (vn2 , rel , n′
1)

|classes(n′
1)|

(13)

where f (vn2 , rel , n′
1) is the number of times the verb vn2 was observed with concept

c ∈ classes(n′
1) bearing the argument relation rel (i.e., subject or object) and |classes(n′

1)|
is the number of conceptual classes to which n′

1 belongs.
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Table 4
Frequency estimation for group registration using WordNet.

Verb Class f (vn2 ,obj, n1) f (vn2 ,subj, n1)

register 〈abstraction〉 16.26 7.28
register 〈entity〉 14.10 4.50
register 〈object〉 8.02 1.56
register 〈set〉 .65 .07
register 〈substance〉 .70 .08

Consider, for example, the tuple register group (derived from the compound group
registration), which is not attested in the BNC. The word group has two senses in
WordNet and belongs to five conceptual classes (〈abstraction〉, 〈entity〉, 〈object〉,
〈set〉, and 〈substance〉). This means that the frequency f (vn2 , rel , c) will be constructed
for each of the five classes, as shown in Table 4. Suppose now that we see the tuple
register patient in the corpus. The word patient has two senses in WordNet and belongs
to seven conceptual classes (〈case〉, 〈person〉, 〈life form〉, 〈entity〉, 〈causal agent〉,
〈sick person〉, 〈unfortunate〉), one of which is 〈entity〉. This means that we will
increment the observed co-occurrence count of register and 〈entity〉 by 1

7 . Since we
do not know which is the actual class of the noun group in the corpus, we weight the
contribution of each class by taking the average of the constructed frequencies for all
five classes:

f (vn2 , rel , n1) =

∑
c∈classes(n1)

∑
n′

1∈c

f (vn2 ,rel ,n′
1)

|classes(n′
1)|

|classes(n1)|
(14)

Following (14) the frequencies f (register , obj, group) and f (register , subj, group) are
39.73

5 and 13.49
5 , respectively. Note that the estimation of the frequency f (vn2 , rel , n1) (see

equations (13) and (14)) crucially relies on the simplifying assumption that the argu-
ment of a verb is distributed evenly across its conceptual classes. This simplification
is necessary unless we have a corpus of verb-argument pairs labeled explicitly with
taxonomic information. The task of finding the right class for representing the argu-
ment of a given predicate is a research issue on its own (Clark and Weir 2001; Li and
Abe 1998; Carroll and McCarthy 2000), and a detailed comparison between different
methods for accomplishing this task is beyond the scope of the present study.

3.3 Distance-Weighted Averaging
Distance-weighted averaging induces classes of similar words from word co-occur-
rences without making reference to a taxonomy. Instead, it is based on the assumption
that if a word w′

1 is similar to word w1, then w′
1 can provide information about the

frequency of unseen word pairs involving w1 (Dagan, Lee, and Pereira 1999). A key
feature of this type of smoothing is the function that measures distributional similarity
from co-occurrence frequencies.

Several measures of distributional similarity have been proposed in the literature
(Dagan, Lee, and Pereira 1999; Lee 1999). We used two measures, the Jensen-Shannon
divergence and the confusion probability. The choice of these two measures was mo-
tivated by work described in Dagan, Lee, and Pereira (1999), in which the Jensen-
Shannon divergence outperforms related similarity measures (such as the confusion
probability or the L1 norm) on a pseudodisambiguation task that uses verb-object
pairs. The confusion probability has been used by several authors to smooth word co-
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occurrence probabilities (Essen and Steinbiss 1992; Grishman and Sterling 1994) and
shown to give promising performance. Grishman and Sterling (1994) in particular em-
ploy the confusion probability to re-create the frequencies of verb-noun co-occurrences
in which the noun is the object or the subject of the verb in question. In the following
we describe these two similarity measures and show how they can be used to re-create
the frequencies for unseen verb-argument tuples (for a more detailed description see
Dagan, Lee, and Pereira (1999)).

3.3.1 Confusion Probability. The confusion probability PC is an estimate of the prob-
ability that a word w1 can be substituted for a word w′

1, in the sense of being found
in the same contexts. In other words, the metric expresses how probable it is for word
w′

1 to occur in contexts in which word w1 occurs. A large confusion probability value
indicates that the two words w′

1 and w1 appear in similar contexts. PC is estimated as
follows:

PC(w1 | w′
1) =

∑
s

P(w1 | s)P(s | w′
1) (15)

where PC(w1 | w′
1) is the probability that word w′

1 occurs in the same contexts s as word
w1, averaged over these contexts. Given a tuple of the form w1, rel , w2, we can either
treat w1, rel as context and smooth over the noun w2 or rel , w2 as context and smooth
over the verb w1. We opted for the latter for two reasons. Theoretically speaking, it is
the verb that imposes the semantic restrictions on its arguments and not vice versa. The
idea that semantically similar verbs have similar subcategorizational and selectional
patterns is by no means new and has been extensively argued for by Levin (1993).
Computational efficiency considerations also favor an approach that treats rel , w2 as
context: the nouns w2 outnumber the verbs w1 by a factor of four (see Table 1). When
verb-argument tuples are taken into consideration, (8) can be rewritten as follows:

PC(w1 | w′
1) =

∑
rel ,w2

P(w1 | rel , w2)P(rel , w2 | w′
1)

=
∑

rel ,w2

f (w1,rel ,w2)
f (rel ,w2)

f (w′
1,rel ,w2)
f (w′

1)

(16)

The confusion probability can be computed efficiently, since it involves summation
only over the common contexts rel , w2.

3.3.2 Jensen-Shannon Divergence. The Jensen-Shannon divergence J is an informa-
tion-theoretic measure. It recasts the concept of distributional similarity into a mea-
sure of the “distance” between two probability distributions. The value of the Jensen-
Shannon divergence ranges from zero for identical distributions to log 2 for maximally
different distributions. J is defined as:

J(w1, w′
1) =

1
2

[
D
(

w1

∥∥∥∥w1 + w′
1

2

)
+ D

(
w′

1

∥∥∥∥w1 + w′
1

2

)]
(17)

D(w1‖w′
1) =

∑
rel ,w2

P(rel , w2 | w1) log
P(rel , w2 | w1)

P(rel , w2 | w′
1)

(18)

where w1 is a shorthand for P(rel , w2 | w1) and w′
1 for P(rel , w2 | w′

1); D in (17) is
the Kullback-Leibler divergence, a measure of the dissimilarity between two proba-
bility distributions (see equation (18)) and (w1 + w′

1)/2 is a shorthand for the average
distribution:

1
2
(P(rel , w2 | w1) + P(rel , w2 | w′

1)) (19)
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Given a set of nominalizations n1 n2:

1. map the head noun n2 to the verb vn2 from which it is derived;

2. retrieve frequencies f (vn2 , obj, n1) and f (vn2 , subj, n1) from the BNC;

3. if f (vn2 , obj, n1) < k then re-create fs(vn2 , obj, n1);

4. if f (vn2 , subj, n1) < k then re-create fs(vn2 , subj, n1);

5. calculate probabilities P(obj | n1, n2) and P(subj | n1, n2);

6. compute RA(rel, n1, n2);

7. if RA ≥ j then n1 is the object of n2;

8. else n1 is the subject of n2.

Figure 1
Disambiguation algorithm for nominalizations.

Similarly to the confusion probability, the computation of J depends only on the
common contexts rel , w2. Recall that the Jensen-Shannon divergence is a dissimilarity
measure. The dissimilarity measure is transformed into a similarity measure using a
weight function WJ(w, w′

1):

WJ(w1, w′
1) = 10−βJ(w1,w′

1) (20)

The parameter β controls the relative influence of the neighbors (i.e., distributionally
similar words) closest to w1: if β is high, only neighbors extremely close to w1 con-
tribute to the estimate, whereas if β is low, distant neighbors also contribute to the
estimate.

We estimate the frequency of an unseen verb-argument tuple by taking into ac-
count the similar w1s and the contexts in which they occur (Grishman and Sterling
1994):

fs(w1, rel , w2) =
∑
w′

1

sim(w1, w′
1)f (w

′
1, rel , w2) (21)

where sim(w1, w′
1) is a function of the similarity between w1 and w′

1. In our experiments
the confusion probability PC(w1 | w′

1) and the Jensen-Shannon divergence WJ(w1, w1
′)

were substituted for sim(w1, w′
1).

4. The Disambiguation Algorithm

The disambiguation algorithm for nominalizations is summarized in Figure 1. The al-
gorithm uses verb-argument tuples to infer the relation holding between the modifier
and its nominalized head. When the co-occurrence frequency of the verb-argument re-
lations is zero, verb-argument tuples are smoothed using one of the methods described
in Section 3.

Once frequencies (either actual or reconstructed through smoothing) for verb-argu-
ment relations have been obtained, the RA score determines the relation between the
head n1 and its modifier n2 (see Section 2). The sign of the RA score indicates which
relation, subject or object, is more likely: a positive RA score indicates an object relation,
whereas a negative score indicates a subject relation. Depending on the task and the
data at hand, we can require that an object or subject analysis be preferred only if RA
exceeds a certain threshold j (see steps 7 and 8 in Figure 1). We can also impose a
threshold k on the type of verb-argument tuples we smooth. If, for instance, we know
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Table 5
RA score for verb-argument tuples extracted from the BNC.

Verb-noun f (vn2,obj, n1) f (vn2,subj, n1) RA

administer student 0 0 .96
establish unit 22 1 .55
promote government 3 10 −1.73

that the parser’s output is noisy, then we might choose to smooth not only unseen verb-
argument pairs but also pairs with nonzero corpus frequencies (e.g., f (verbn2 , rel , n1)
≥ 1; see steps 3 and 4 in Figure 1).

Consider, for example, the compound student administration: its corresponding
verb-noun configuration (e.g., administer student) is not attested in the BNC. This is
a case in which we need smoothed estimates for both f (vn2, obj, n1) and f (vn2, subj,
n1). The re-created frequencies using the class-based smoothing method described in
Section 3.2 are 5.06 and 2.59, respectively, yielding an RA score of .96 (see Table 5),
which means that it is more likely that student is the object of administration. Consider
now the compound unit establishment: here, we have very little evidence in the corpus
with respect to the verb-subject relation (see Table 5, where f (establish , subj, unit) = 1).
Assuming we have set the threshold k to 2 (see steps 4 and 5 in Figure 1) we need only
re-create the frequency for the subject relation (e.g., 14.99 using class-based smooth-
ing). The resulting RA score is again positive (see Table 5), which indicates that there
is a greater probability for unit to be the object of establishment than for it to be the
subject. Finally, consider the compound government promotion: counts for both subject
and object relations are found in the BNC (see Table 5), in which case no smoothing
is involved; we need only calculate the RA score (see step 6 in Figure 1), which is
negative, indicating that government is more likely to be the subject of promotion than
its object.

5. Experiments

5.1 Methodology
The algorithm described in the previous section and the smoothing variants were
evaluated on the task of disambiguating nominalizations. As detailed above, the
Jensen-Shannon divergence and confusion probability measures are parameterized.
This means that we need to establish empirically the best parameter values for the
size of the vocabulary (i.e., number of verbs used to find the nearest neighbors)
and, for the Jensen-Shannon divergence, the effect of the β parameter. Recall from
Section 2.2.2 that we obtained 796 nominalizations from the BNC. From these, 596
were used as training data for finding the optimal parameters for the two variants of
distance-weighted averaging. The 596 nominalizations were also used to find the op-
timal thresholds for the interpretation algorithm. The remaining 200 nominalizations
were retained as test data and also to evaluate whether human judges can reliably
disambiguate the argument relation between the nominalized head and its modifier
(see Experiment 1).

In Experiment 2 we investigate how the different smoothing techniques detailed
in Section 3 influence the disambiguation task. As far as class-based smoothing is con-
cerned, we experiment with two concept hierarchies, Roget’s thesaurus and WordNet.
Although no parameter tuning is necessary for class-based and back-off smoothing, we
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maintain the train/test data distinction also for these methods to facilitate comparisons
with distance-weighted averaging.

We also examine whether knowledge of the semantics of the suffix of the nominal-
ized head can improve performance. We run two versions of the algorithm presented
in Section 4: in one version the algorithm assumes no prior knowledge about the se-
mantics of the nominalization suffix (see Figure 1); in the other version the algorithm
estimates the probabilities P(obj | n1, n2) and P(subj | n1, n2) only for compounds with
nominalization suffixes other than -er, -or, -ant, or -ee. For compounds with suffixes -er,
-or and -ant (e.g., datum holder, car collector, water disinfectant), the algorithm defaults
to an object interpretation, and it defaults to a subject analysis for compounds with
the suffix -ee (e.g., university employee). Compounds with heads ending in these four
suffixes represented 13.6% of the compounds contained in the train set and 10.8% of
the compounds in the test set.

In Experiment 3 we explore how the combination of the different smoothing meth-
ods influences disambiguation performance; we also consider context as an additional
predictor of the argument relation of a deverbal head and its modifier and combine
these distinct information sources using Ripper (Cohen 1996), a machine learning sys-
tem that induces sets of rules from preclassified examples.

In what follows we briefly describe our study on assessing how well humans
agree on disambiguating nominalizations. This study establishes an upper bound for
the task against which our automatic methods will be compared. Sections 5.3 and 5.4
present our results on the disambiguation task.

5.2 Experiment 1: Agreement
Two graduate students in linguistics decided whether modifiers were the subject or
object of a given nominalized head. The judges were given a page of guidelines but no
prior training. The nominalizations were disambiguated in context: the judges were
given the corpus sentence in which the nominalization occurred together with the
previous and following sentence. We measured the judges’ agreement using the kappa
coefficient (Siegel and Castellan 1988), which is the ratio of the proportion of times P(A)
that k raters agree (corrected by chance agreement P(E)) to the maximum proportion
of times the raters would agree (corrected for chance agreement):

K =
P(A) − P(E)

1 − P(E)
(22)

If there is a complete agreement among the raters, then K = 1, whereas if there is
no agreement among the raters (other than the agreement that would be expected to
occur by chance), then K = 0.

The judges’ agreement on the disambiguation task was K = .78 (N = 200, k = 2).
This translates into a percentage agreement of 89.7%. Although the Kappa coefficient
has a number of advantages over percentage agreement (e.g., it takes into account the
expected chance interrater agreement; see Carletta (1996) for details), we also report
percentage agreement as it allows us to compare straightforwardly the human perfor-
mance and the automatic methods described below, whose performance will also be
reported in terms of percentage agreement. Furthermore, percentage agreement estab-
lishes an intuitive upper bound for the task (i.e., 89.7%), allowing us to interpret how
well our empirical models are doing in relation to humans.

Finally, note that the level of agreement was good, given that the judges were
provided with minimal instructions and no prior training. Even though context was
provided to aid the disambiguation task, however, the judges were not in complete
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Figure 2
Disambiguation accuracy as the number of similar neighbors (i.e., number of verbs over which
the similarity function is calculated) is varied for PC and J.

agreement. This points to the intrinsic difficulty of the task at hand. Argument re-
lations and consequently selectional restrictions are influenced by several pragmatic
factors that may not be readily inferred from the immediate context (see Section 6 for
discussion).

5.3 Experiment 2: Comparison of Smoothing Variants
Before reporting the results of the disambiguation task, we describe our initial ex-
periments on finding the optimal parameter settings for the two distance-weighted
averaging smoothing methods.

Figure 2 shows how performance on the disambiguation task varies with respect
to the number and frequency of verbs over which the similarity function is calculated.
The y-axis in Figure 2 shows how performance on the training set varies (for both PC

and J divergence) when verb-argument pairs are selected for the 1,000 most frequent
verbs in the corpus, the 2,000 most frequent verbs in the corpus, etc. (x-axis). The best
performance for both similarity functions is achieved with the 2,000 most frequent
verbs. Furthermore, J and PC yield comparable performances (68.0% and 68.3%, re-
spectively under that condition). Another important observation is that performance
deteriorates less severely for PC than for J as the number of verbs increases: when
all verbs for which verb-argument tuples are extracted from the BNC are used, the
accuracy for PC is 66.9%, whereas the accuracy for J is 62.8%. These results are perhaps
unsurprising: verb-argument pairs with low-frequency verbs introduce noise due to
the errors inherent in the partial parser. Table 6 shows the 10 closest words to the
verb accept according to PC as the number of verbs is varied: the quality of the closest
neighbors deteriorates with the inclusion of less frequent verbs.

Finally, we analyzed the role of the parameter β. Recall that β appears in the weight
function for the Jensen-Shannon divergence and controls the influence of the most
similar words: the contribution of the closest neighbors increases with a high value
for β. Figure 3 shows how the value of β affects performance on the disambiguation
task when the similarity function is computed for the 1,000 and 2,000 most frequent
verbs in the corpus. It is clear that performance is low with high or very low β values
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Table 6
Ten closest words to verb accept for PC.

Number of Most Frequent Verbs

1,000 2,000 3,000 4,000 5,000 >5,000

accept decline decline decline decline incl
refuse accept tender tender re-issued decline
reject refuse accept abdicate co-manage re-issued
submit delegate table accept tender co-manage
endorse reject disclaim table oversubscribe tender
approve repudiate plate wangle backdate goodwill
issue hitch shirk disclaim abdicate oversubscribe
implement shoulder refuse plate accept pre-arrange
acknowledge delegate proffer shirk table backdate
incur ratify apportion disdain wangle abdicate

Figure 3
Disambiguation accuracy for J as β is varied for the 1,000 and 2,000 most frequent verbs in the
BNC.

(e.g., β ∈ {2, 9}). We chose to set the parameter β to five, and the results shown in
Figure 2 have been produced for this value for all verb frequency classes.

Table 7 shows how the three types of smoothing, back-off (B), class-based (using
WordNet (Wn) and Roget (Ro)), and distance-weighted averaging (using confusion
probability (PC) and the Jensen-Shannon divergence (J)), influence performance in
predicting the relation between a modifier and its nominalized head. For the distance-
weighted averaging methods we report the results obtained with the optimal param-
eter settings (β = 5; 2,000 most frequent verbs). The results in Table 7 were obtained
without taking the semantics of the nominalization suffix (-er, -or, -ant, -ee) into account
(see Section 5.1).

Let us concentrate on the training set first. The back-off method is outperformed
by all other methods, although its performance is comparable to that of class-based
smoothing using Roget’s thesaurus (63.1% and 65.1%, respectively). Distance-weighted
averaging methods outperform concept-based methods, although not considerably
(accuracy on the training set was 68.3% for PC and 68.0% for class-based smoothing
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Table 7
Disambiguation performance without
nominalization suffixes.

Methods Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
B 63.1 ± 1.98 69.6 ± 3.31
PC 68.3 ± 1.90 75.8 ± 3.08
J 68.0 ± 1.91 69.1 ± 3.33
Wn 68.0 ± 1.91 72.7 ± 3.20
Ro 65.1 ± 1.95 68.6 ± 3.34

Table 8
Disambiguation performance with
nominalization suffixes.

Methods Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
B 67.5 ± 1.92 69.6 ± 3.31
PC 70.6 ± 1.87 76.3 ± 3.06
J 69.0 ± 1.89 69.6 ± 3.31
Wn 70.5 ± 1.87 74.2 ± 3.15
Ro 67.5 ± 1.92 69.6 ± 3.31

using WordNet). Furthermore, the particular concept hierarchy used for class-based
smoothing seems to have an effect on disambiguation performance: an increase of
approximately 3.0% is obtained by using WordNet instead of Roget’s thesaurus. One
explanation might be that Roget’s thesaurus is too coarse-grained a taxonomy for
the task at hand. We used the chi-square statistic to examine whether the observed
performance is better than the simple default strategy of always choosing an object
relation, which yields an accuracy of 59.0% in the training data (see D in Table 7). The
proportion of nominalizations classified correctly was significantly greater than 59.0%
(p < .01) for all methods but back-off (B) and Roget (Ro).

Similar results are observed on the test set. Again PC outperforms all other meth-
ods, achieving an accuracy of 75.8% (see Table 7). The portion of nominalizations
classified correctly by PC is significantly greater than 61.5% (χ2 = 9.37, p < .01), which
is the percentage of object relations in the test set. The second-best method is class-
based smoothing using WordNet (see Table 7). WordNet’s performance is also signif-
icantly better (χ2 = 5.64, p < .05) than the baseline. The back-off method, class-based
smoothing using Roget’s thesaurus, and J yield comparable results (see Table 7).

Table 8 shows how each method performs when knowledge about the semantics of
the nominalization suffix is taken into account. Recall that compounds with agentive
and passive suffixes (i.e., -er, -or, -ant, and -ee) represent 13.6% of the training data and
10.8% of the test data. A general observation is that knowledge of the semantics of the
nominalization suffix does not dramatically influence accuracy. Performance on the test
data increases 1.5% for Wn , 1.0% for Ro and 0.5% for distance-weighted averaging (see
J and PC in Table 8). We observe no increase in performance for back-off smoothing
(see Tables 7 and 8). These results suggest that the nominalization suffixes do not
contribute much additional information to the interpretation task, as their meaning
can be successfully retrieved from the corpus.

An interesting question is the extent to which any of the different methods agree
in their assignments of subject and object relations. We investigated this by calculating
the methods’ agreement on the training set using the Kappa coefficient. We calculated
the Kappa coefficient for all pairwise combinations of the five smoothing variants.
The results are reported in Table 9. The highest agreement is observed for PC and the
class-based smoothing using the WordNet taxonomy (K = .75). Agreement between J
and PC as well as agreement between Wn and Ro is rather low (K = .53 and K = .46,
respectively). Note that generally low agreement is observed when B is paired with
J, PC, Wn, or Ro. This is not entirely unexpected, given the assumptions underlying
the different smoothing techniques. Both class-based and distance-weighted averaging
methods recreate the frequency of unseen word combinations by relying on corpus
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Table 9
Agreement between smoothing methods.

B J PC Wn

J .31
PC .26 .53
Wn .01 .37 .75
Ro .25 .26 .49 .46

Table 10
Performance at predicting argument
relations.

Train (%) Test (%)

Methods subj obj subj obj

B 41.6 78.1 38.0 87.8
PC 47.4 82.9 54.9 87.8
J 34.7 91.2 35.2 88.6
Wn 47.8 82.1 49.3 86.2
Ro 50.6 74.4 46.5 81.3

evidence for words that are distributionally similar to the words of interest. In distance-
weighted averaging smoothing, word similarity is estimated from lexical co-occurrence
information, whereas in taxonomic class-based smoothing, similarity emerges from
the hierarchical organization of conceptual information. Back-off smoothing, however,
incorporates no notion of similarity: unseen sequences are estimated using not similar
conditional distributions, but lower-level ones. This also relates to the fact that B’s
performance is lower than Wn and PC (see Table 7), which suggests that smoothing
methods that incorporate linguistic hypotheses (i.e., the notion of similarity) perform
better than methods relying simply on co-occurrence distributions. To summarize, the
agreement values in Table 9 suggest that methods inducing similarity relationships
from corpus co-occurrence statistics are not necessarily incompatible with methods that
quantify similarity using manually crafted taxonomies and that different smoothing
techniques may be appropriate for different tasks.

Table 10 shows how the different methods compare for the task of predicting
the individual argument relations for the training and test sets. A general observa-
tion is that all methods are fairly good at predicting object relations. Predicting sub-
ject relations is considerably harder: no method exceeds an accuracy of 54.9% (see
Table 10). One explanation for this is that selectional constraints imposed on sub-
jects can be more easily overridden by pragmatic and contextual factors than those
imposed on objects. Furthermore, selectional constraints on subjects are normally
weaker than on objects. J is particularly good at predicting object relations, whereas
PC yields the best performance when it comes to predicting subject relations (see
Table 10).

5.4 Experiment 3: Using Ripper to Disambiguate Nominalizations
An obvious question is whether a better performance can be achieved by combining
the five smoothing variants, given that they seem to provide complementary infor-
mation for predicting argument relations. For example, Wn , Ro, and PC are relatively
good for the prediction of subject relations , whereas J is best for the prediction of ob-
ject relations (see Table 10). Furthermore, note that the probabilistic model introduced
in Section 2 and the algorithm based on it (see Section 4) ignore contextual informa-
tion that can provide important cues for disambiguating nominalizations. Consider the
nominalization government promotion in (23a), which was assigned an object (instead
of a subject) interpretation by all smoothing variants except Wn. Contextual informa-
tion could help assign the correct interpretation in cases in which the head of the
compound is followed by prepositions such as of (see (23a)) or into (see (23b)).
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(23) a. It was not felt necessary to take account of government promotion of
unionism.

b. But politicians are calling for the Republic’s Government to start a
Court inquiry into Ross’ alleged links with firms in Eire.

In the following we first examine whether combination of the five smoothing vari-
ants improves performance at predicting the argument relations for nominalizations
(see Section 5.4.1). We then proceed to study the influence of context on the inter-
pretation task; we explore the contribution of context alone (see Section 5.4.2) and in
combination with the different smoothing variants (see Section 5.4.3). The different
information sources are combined using Ripper (Cohen 1996), a system that induces
classification rules from a set of preclassified examples. Ripper takes as input the
classes to be learned (in our case the classification is binary, i.e., subject or object), the
names and possible values of a set of features, and training data specifying the class
and feature values for each training example. In our experiments the features are the
smoothing variants and the tokens surrounding the nominalizations in question. The
feature vector in (24a) represents the individual predictions of B, Wn , Ro, J, and PC

for the interpretation of government promotion (see (23a)). We encode the context sur-
rounding nominalizations using two distinct representations: (a) parts of speech and
(b) lemmas. In both cases we encode the position of the tokens with respect to the
nominalization in question. The feature vector in (24b) consists of the nominalization
court inquiry (see (23b)), represented by its parts of speech (nn1 and nn1, respectively)
and a context of five words to its right and five words to its left, also reduced to their
parts of speech. In (24c) the same tokens are represented by their lemmas.

(24) a. [obj, subj, obj, obj, obj]

b. [pos, nn0, to0, vvi, aj0, nn1, nn1, prp, pos, aj0, nn2, prp]

c. [’s government to start a court inquiry into Ross ’s alleged link]

Ripper is trained on vectors of values like the ones presented in (24) and out-
puts a classification model for classifying future examples. The model is learned using
greedy search guided by an information gain metric and is expressed as an ordered
set of if-then rules. For our experiments Ripper was trained on the 596 nominaliza-
tions on which the smoothing methods were compared and tested on the 200 unseen
nominalizations for which the interjudge agreement was previously calculated (see
Section 5.2).

5.4.1 Combination of Smoothing Variants. Table 11 shows Ripper’s performance
when different combinations of smoothing variants (i.e., features) are used without
taking context into account. All results in Table 11 were obtained using the version of
the interpretation algorithm that takes suffix semantics into account (see Section 5.3).
As shown in Table 11, the combination of all five smoothing variants achieves a per-
formance of 80.4%.2 Table 11 further reports the accuracy achieved when removing

2 An anonymous reviewer pointed out that suffix information could be alternatively exploited by
including the ending suffix of the nominalization head as an additional feature for the classification
task. The latter approach yields comparable performance to our original idea of defaulting to the
argument structure denoted by the nominalization suffix. When B, J, PC, Ro , and Wn are used as
features together with nominalization suffixes (-age, -ion, -ment, etc.), Ripper’s performance is 79.9%
± 1.65 on the training data and 80.3% ± 2.95% on the test data.
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Table 11
Disambiguation performance using the
smoothing variants as features.

Features Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
B, J, PC, Ro, Wn 80.2 ± 1.63 80.4 ± 2.86
B, J, PC, Wn 80.2 ± 1.68 80.4 ± 2.88
B, J, PC, Ro 78.5 ± 1.68 79.9 ± 2.88
B, J, Wn, Ro 80.7 ± 1.62 79.9 ± 2.88
J, PC, Ro, Wn 80.7 ± 1.62 78.4 ± 2.96
B, PC, Wn, Ro 79.8 ± 1.64 74.7 ± 3.13

Table 12
Ripper’s performance at predicting
argument relations.

Train (%) Test (%)

Features subj obj subj obj

B, J, PC, Ro, Wn 66.5 89.7 73.2 84.6
B, J, PC, Wn 66.5 89.7 73.2 84.6
B, J, Wn, Ro 71.4 87.2 78.9 80.5
B, J, PC, Ro 71.4 87.2 78.9 80.5
J, PC, Ro, Wn 69.4 88.6 71.8 82.1
B, PC, Wn, Ro 63.3 91.5 50.7 88.6

a single feature. Evaluation on subsets of features allows us to explore the contribu-
tion of individual features to the classification task by comparing the subsets to the
full feature set. We see that removal of Ro has no effect on the results, whereas re-
moval of J produces a 5.7% performance decrease. Removing Wn or PC yields the
same decrease in performance (i.e., 0.5%). This is not surprising, since PC and Wn
tend to agree in their assignments of subject and object relations (see the methods’
agreement in Table 9), and therefore their combination is not expected to be very in-
formative. Absence of J from the feature set yields the most dramatic performance
decrease. This is not unexpected, given that J is the best predictor for object relations
and that PC and WordNet behave similarly with respect to their interpretation deci-
sions. In general we observe that the combination of smoothing variants outperforms
their individual performances (compare Tables 11 and 8). Comparison of Ripper’s
best performance (80.4%) against the individual smoothing methods reveals a 10.8%
accuracy increase over B, J, and Ro, a 4.1% increase over PC, and a 6.2% increase
over Wn .

We further analyzed Ripper’s performance at predicting object and subject rela-
tions. This information is displayed in Table 12, in which we show how performance
varies on the full set of n size features (i.e., five) and each of its n−1 size subsets. As can
be seen in Table 12, accuracy at predicting subject relations increases when smoothing
variants are combined (compare Tables 12 and 10). In fact, combination of B, J, Wn ,
and Ro (or B, J, PC, and Ro) performs best at predicting subject relations, achieving
an increase of 24% over PC, the best individual predictor for subject relations (see Ta-
ble 10). In sum, our results show that combination of the different smoothing variants
(using Ripper) achieves better results than each individual method. Our overall perfor-
mance (i.e., 80.4%) outperforms the default baseline significantly, by 18.9% (χ2 = 17.33,
p < .05) and is 9.3% lower than the upper bound established in our agreement study
(see Section 5.2). In what follows we first examine the independent contribution of
context to the disambiguation performance and then turn to its combination with our
five smoothing variants.

5.4.2 The Contribution of Context. We evaluated the influence of context by varying
both the position and the size of the window of tokens (i.e., lemmas or parts of speech)
surrounding the nominalization. We varied the window size parameter between one
and five words before and after the nominalization target. We use the symbols l and
r for left and right context, respectively, subscripts to denote the context encoding
(i.e., lemmas or parts of speech), and numbers to express the size of the window
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Table 13
Disambiguation performance using right
context encoded as lemmas.

Features Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
rl = 1 70.8 ± 1.86 68.0 ± 3.36
rl = 2 70.1 ± 1.88 68.6 ± 3.34
rl = 3 68.8 ± 1.90 67.5 ± 3.37
rl = 4 68.8 ± 1.90 67.5 ± 3.37
rl = 5 68.8 ± 1.90 67.5 ± 3.37

Table 14
Disambiguation performance using left
content encoded as lemmas.

Features Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
ll = 1 66.9 ± 1.93 64.9 ± 3.43
ll = 2 70.5 ± 1.87 67.5 ± 3.37
ll = 3 70.6 ± 1.87 67.0 ± 3.83
ll = 4 67.8 ± 1.92 65.5 ± 3.42
ll = 5 65.3 ± 1.95 63.9 ± 3.46

Table 15
Disambiguation performance using right
context encoded as POS tags.

Features Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
rp = 1 64.9 ± 1.96 65.5 ± 3.42
rp = 2 65.8 ± 1.95 62.4 ± 3.49
rp = 3 64.4 ± 1.96 63.4 ± 3.47
rp = 4 65.3 ± 1.95 63.4 ± 3.47
rp = 5 65.9 ± 1.94 62.9 ± 3.48

Table 16
Disambiguation performance using left
content encoded as POS tags.

Features Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
lp = 1 63.9 ± 1.97 66.0 ± 3.41
lp = 2 68.1 ± 1.91 64.4 ± 3.45
lp = 3 67.1 ± 1.93 66.5 ± 3.40
lp = 4 65.6 ± 1.95 65.0 ± 3.43
lp = 5 66.6 ± 1.93 61.9 ± 3.50

surrounding the candidate compound. For example, ll = 5 represents a window of
five tokens, encoded as lemmas, to the left of the candidate compound.

Tables 13 and 14 show the influence of right and left context, respectively, repre-
sented as lemmas. The best peformances are achieved with a window of two words
to the right or left of the candidate nominalization (see the features rl = 2 and ll = 2 in
Tables 13 and 14, respectively). Combination of the best left and right features (rl = 2,
ll = 2) does not increase the disambiguation performance (70.4% ± 1.86% on the train-
ing and 66.5% ± 3.41% on the test data). Note that the disambiguation performance
simply using contextual features is not considerably worse than the performance of
some smoothing variants (see Table 7). Contextual features encoded as lemmas out-
perform part-of-speech (POS) tags, for which the best performance is achieved with a
window of one token to the right or a window of three tokens to the left of the can-
didate nominalization (see Tables 15 and 16). As in the case of lemmas, combination
of the best left and right features (rp = 1, lp = 3) does not yield better results (66.3% ±
1.94% on the training data and 66.5% ± 3.40% on the test data). The lower performance
of POS tags is not entirely unexpected: lemmas capture lexical dependencies that are
somewhat lost when a more general level of representation is introduced. For example,
Ripper assigns a subject interpretation when for immediately follows a nominalization
head (e.g., staff requirement for reconnaissance). This rule cannot be induced when for is
represented by its part of speech (e.g., PRP), as there are a number of prepositions
that can follow the nominalization head, but only a few of them provide cues for its
argument structure.

Table 17 shows the performance of the best contextual features for the task of
predicting the individual argument relations. The contextual features are consistently
better at predicting object than subject relations. This is not surprising, given that ob-
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Table 17
Performance at predicting argument relations using context.

Train (%) Test (%)

Methods subj obj subj obj

rl = 2 28.0 99.2 20.8 96.7
ll = 2 36.2 94.1 13.8 97.5
lp = 3 33.7 90.1 29.1 88.5
rp = 1 22.6 94.1 20.8 91.8

ject relations represent the majority in both the training and test data; furthermore,
identifying superficial features that are good predictors for subject relations is a rel-
atively hard task. For example, even though Ripper identifies prepositions (e.g., of,
to) following the nominalization head and certain frequent nominalization heads (e.g.,
behavior) as indicators of subject relations, it has no means of guessing the transitivity
of deverbal heads in the absense of syntactic cues. Consider example (25a), in which
neither left nor right context is informative with regard to the fact that intervene is
intransitive.

Finally, there are some cases in which the syntactic cues can be misleading, as
adjacency to the nominalization target does not necessarily indicate argument struc-
ture. This is shown in (25b), in which youth is classified as the subject of manager.
Although on the surface youth manager at is analogous to nominalizations followed
by of (e.g., government promotion of), the prepositional phrase at Wimbledon in (25b) is
simply locative and not the argument of manager.

(25) a. If the second reminder produces no result or the reply to either
reminder seems to indicate the need for court intervention the matter
will be referred to a master or district judge.

b. He was youth manager at Wimbledon when I held a similar position
at Palace.

5.4.3 Combination of Context with Smoothing Variants. In this section we investi-
gate whether the combination of surface contextual features with the predictions of
the different smoothing methods has an effect on the disambiguation performance.
Although context is good at predicting object relations, it performs poorly at guessing
subject relations (see Table 17). We expect the combination of context with smoothing
variants (some of which, e.g., Wn , Ro, and PC, perform relatively well at the predicting
subject relations) to improve performance. Recall that the probabilistic model intro-
duced in Section 2.1 and the interpretation algorithm that makes use of it attempt the
interpretation of nominalizations without taking contextual cues into account. Here,
we examine how well the different smoothing variants perform in the presence of
contextual information. Table 18 shows Ripper’s performance when the best context
(i.e., rl = 2) is combined with a single smoothing method and with all five variants.
For the smoothing variants, we used the version of the interpretation algorithm that
takes suffix semantics into account (see Table 8).

Comparison between Tables 8 and 18 reveals that the inclusion of context generally
increases performance. Combination of B with the best context yields a 6.7% increase
over B; an increase of 8.8% (over J) and 7.7% (over Ro) is observed when J and Ro
are combined with context, respectively. No increase in performance is observed when
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Table 18
Disambiguation performance using context and smoothing variants.

Methods Train (%) Test (%)

D 59.0 ± 2.01 61.5 ± 3.50
rl = 2, B 78.2 ± 1.69 76.3 ± 3.06
rl = 2, PC 75.0 ± 1.78 76.3 ± 3.06
rl = 2, J 81.5 ± 1.59 78.4 ± 2.96
rl = 2, Wn 88.9 ± 1.29 86.1 ± 2.49
rl = 2, Ro 78.5 ± 1.68 77.3 ± 3.00

B, J, PC, Ro, Wn, rl = 2 84.4 ± 1.49 85.1 ± 2.57

Table 19
Argument relations using context and smoothing variants.

Train (%) Test (%)

Methods subj obj subj obj

rl = 2, B 69.9 83.6 61.3 85.7
rl = 2, PC 63.9 82.2 54.9 88.6
rl = 2, J 72.9 87.2 66.7 85.7
rl = 2, Wn 87.3 90.0 74.7 93.3
rl = 2, Ro 69.1 84.7 64.0 85.7

B, J, PC, Ro, Wn, rl = 2 75.0 90.6 72.0 93.3

context is combined with PC (see Table 18), whereas combination of Wn with context
yields a 11.9% increase over Wn alone. Combining all five smoothing variants with
context yields an increase of 4.7% over just the combination of B, J, PC, Ro, and Wn
(see Table 12). Our best performance (i.e., 86.1%) is achieved when Wn is combined
with right context (rl = 2); this performance is significantly better than the simple
strategy of always defaulting to a subject classification, which yields an accuracy of
61.5% (χ2 = 30.64, p < .05), and only 3.6% lower than the upper bound of 89.7%.

As shown in Table 19, the inclusion of context increases accuracy when it comes to
the prediction of subject relations (with the exception of PC, which is relatively good
at predicting subject relations, and therefore in that case the inclusion of context does
not add much useful information). The combination of Wn with rl = 2 achieves the
highest accuracy (87.3%) at predicting subject relations.

6. Discussion

We have described an empirical approach for the automatic interpretation of nominal-
izations. We cast the interpretation task as a disambiguation problem and proposed
a statistical model for inferring the argument relations holding between a deverbal
head and its modifier. Our experiments revealed that the interpretation task suffers
from data sparseness: even an approximation that maps the nominalized head to its
underlying verb does not provide sufficient evidence for quantifying the argument
relation of a modifier noun and its nominalized head.

We showed how the argument relations (which are not readily available in the cor-
pus) can be retrieved by using partial parsing and smoothing techniques that exploit
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distributional and taxonomic information. We compensated for the lack of sufficient
distributional information using either methods that directly recreate the frequencies
of word combinations or contextual features whose distribution in the corpus indi-
rectly provides information about nominalizations. We compared and contrasted a
variety of smoothing approaches proposed in the literature and demonstrated that
their combination yields satisfactory results for the demanding task of semantic dis-
ambiguation. We also explored the contribution of context and showed that it is use-
ful for the disambiguation task. Our approach is applicable to domain-independent
unrestricted text and does not require the hand coding of semantic information. In
the following sections we discuss our results and their potential usefulness for NLP
applications. We also address the limitations of our approach and sketch potential
extensions.

6.1 The Interpretation of Nominalizations
Our results indicate that a simple probabilistic model that uses smoothed counts (see
the interpretation algorithm in Section 4) yields a significant increase over the base-
line without taking context into account. Distance-weighted smoothing using PC and
class-based smoothing using WordNet achieve the best results (76.3% and 74.2%, re-
spectively). Combination of different smoothing methods (using Ripper) yields an
overall performance of 80.4%, again without taking context into consideration. Con-
text alone achieves a disambiguation performance of 68.6%, approximating the per-
formance of some of the smoothing variants (see Tables 9 and 13). This result suggests
that simple features that can be easily retrieved and estimated from the corpus contain
enough information to capture generalizations about the behavior of nominalizations.
As expected, the combination of smoothed probabilities with context outperforms the
accuracy of individual smoothing variants. The combination of WordNet with a right
context of size two achieves an accuracy of 86.1%, compared to an upper bound for
the task (i.e., intersubject agreement) of 89.7%. This is an important result considering
the simplifications in the system and the sparse data problems encountered in the
estimation of the model probabilities. The second-best performance is achieved when
J is combined with context (78.4%; see Table 18). This result shows that information
inherent in the corpus can make up for the lack of distributional evidence and further-
more that it is possible to extract semantic information from corpora (even if they are
not semantically annotated in any way) without recourse to pre-existing taxonomies
such as WordNet.

6.2 Limitations and Extensions
To a certain extent the difficulty of interpreting nominalizations is due to their context
dependence. Although the approach presented in the previous sections takes immedi-
ate context into account, it does so in a shallow manner, without having access to the
meaning of the words surrounding the nominalization target, their syntactic depen-
dencies, or the general discourse context within which the compound is embedded.
Consider example (26a), in which the compound computer guidance receives a subject
interpretation (e.g., the computer guides the chef). Our approach cannot detect that the
computer here is ascribed animate qualities and opts for the most likely interpretation
(i.e., an object analysis). In some cases the modifier stands in a metonymic relation to
its head. Consider the examples in sentences (26b, 26c), in which the nominalizations
industry reception and market acceptance can be thought of as instances of the metonymic
schema “whole for part” (Lakoff and Johnson 1980). In example (26b) it is the indus-
try as a whole that receives the guests rather than lasmo, which is one of its parts,
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whereas in (26c) the modifier market in market acceptance refers to the opinion leaders,
who are part of the market.

(26) a. Of course, none of this means that the equipment is taking anything
away from the chef’s own individual skills which are irreplaceable.
What it does ensure is that the chef has complete control over some of
the most vital tools of his trade, with computer guidance as an
important aid.

b. The final evening saw more than 300 guests attend an industry
reception, hosted by lasmo.

c. Marketers interested in the development and introduction of new
products will be particularly interested in the attitude of opinion
leaders to these products, for their general market acceptance can
be slowed down or speeded up by the views of such people.

Consider now sentence (27a). The nominalization student briefing is ambiguous,
even though it is presented within its immediate context. Taking more context into ac-
count (see (27a)) does not provide enough disambiguation information either, although
perhaps it introduces a slight bias in favor of an object interpretation (i.e., someone is
briefing the students). For this particular example, we would have to know what the
document within which student briefing occurs is about (i.e., a list of teaching guide-
lines for university lecturers). The sentences in (27) are taken from a document section
entitled “Work Experience” that emphasizes the importance of work experience for
students. Given all this background information, it becomes apparent that it is not the
students who are doing the briefing in (27b).

(27) a. Explain to both students and organisations the role of work experience
in personal development and its part in the planned programme.

b. Provide comprehensive guidelines on the work experience which
includes a student briefing, an employer briefing and a student work
checklist.

The observation that discourse or pragmatic context may influence interpretations
is by no means new or particular to nominalisations. Sparck Jones (1983) observes that
a variety of factors can potentially influence the interpretation of compound nouns in
general. These factors range from syntactic analysis (e.g., to arrive at an interpretation
of the compound onion tears, it is necessary to identify that tears is a noun and not the
third-person singular of the verb tear) to semantic information (e.g., for interpreting
onion tears, it is important to know that onions cannot be tears or that tears are not
made of onions) and pragmatic information. Pragmatic inference may be called for in
cases in which syntactic or semantic information is straightforwardly supplied, even
where the local text context provides rich information bearing on the interpretation of
the compound. Copestake and Lascarides (1997) and Lascarides and Copestake (1998)
make the same observation for a variety of constructions such as compound nouns,
adjective-noun combinations and verb-argument relations. Consider the sentences in
(28)–(30). The discourse in (28) favors the interpretation “bag for cotton clothes” for
cotton bag over the more likely interpretation “bag made of cotton.” Although fast
programmer is typically a programmer who programs fast, when the adjective-noun
combination is embedded in a context like (29a, 29b), the less likely meaning “a
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programmer who runs fast” is triggered. Finally, although it is more likely to enjoy
reading a book rather than eating it, the context in (30) triggers the latter interpreta-
tion.

(28) a. Mary sorted her clothes into various bags made from plastic.

b. She put her skirt into the cotton bag.

(29) a. All the office personnel took part in the company sports day last week.

b. One of the programmers was a good athlete, but the other was
struggling to finish the courses.

c. The fast programmer came first in the 100m.

(30) a. My goat eats anything.

b. He really enjoyed your book.

Pragmatic context may be particularly important for the interpretation of com-
pound nouns. Because compounds can be used as a text compression device (Marsh
1984), it is plausible that pragmatic inference is required to supply the compound’s in-
terpretation. This observation is somewhat supported by our interannotator agreement
experiment (see Section 5.2). Even though our participants were provided with some
context, the agreement among them was not complete (they reached a K of .78, when
absolute agreement is 1). Although our approach takes explicit contextual information
into account, it is agnostic to discourse or pragmatic information. Encoding pragmatic
information would involve considerable manual effort. Furthermore, a hypothetical
statistical learner that takes pragmatic information into account would have not only
to deal with data sparseness but furthermore to detect cases in which conflicts arise
between discourse information and the likelihood of a given interpretation.

Our experiments focused on nominalizations derived from verbs specifically sub-
categorizing for direct objects. Although nominalizations whose verbs take prepo-
sitional frames (e.g., oil painting, soccer competition) represent a small fraction of the
nominalizations found in the corpus (9.2%), a more general approach would have
to take those verbs into account. This task is harder than interpreting direct objects,
since to estimate the frequency f (vn2 , rel , n1), one needs first to determine with some
degree of accuracy the attachment site of the prepositional phrase. Taking into account
prepositional phrases and their attachment sites can also be useful for the interpreta-
tion of compounds other than nominalizations. Consider the compound noun pet spray
from (1). Assuming that pet spray can be “spray for pets,” “spray in pets,” “spray about
pets,” or “spray from pets,” we can derive the most likely interpretation by looking at
which types of prepositional phrases (e.g., for pets, about pets) are most likely to attach
to spray. Note that in cases in which the expressions spray for pets and spray in pets are
not attested in the corpus, their respective co-occurrence frequencies can be re-created
using the techniques presented in Section 3.

Finally, the approach advocated here can be straightforwardly extended to nomi-
nalizations with adjectival modifiers (e.g., parental refusal; see the examples in (2)). In
most cases the adjective in question is derived from a noun, and any inference process
on the argument relations between the head noun and the adjectival modifier could
take advantage of this information.
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6.3 Relevance for NLP Applications
Robust semantic ambiguity resolution is challenging for current NLP systems. Al-
though general-purpose taxonomies like WordNet or Roget’s thesaurus are useful for
certain interpretation tasks, such resources are not exhaustive or generally available for
languages other than English. Furthermore, the compound noun interpretation task
involves acquiring semantic information that is linguistically implicit and therefore
not directly available in corpora or taxonomic resources. Indeed, interpreting com-
pound nouns is often analyzed in the linguistics literature in terms of (impractical)
general-purpose reasoning with pragmatic information such as real-world knowledge
(e.g., Hobbs et al. 1993; see Section 7 for details). We show that it is feasible to learn
implicit semantic information automatically from the corpus by utilizing linguistically
principled approximations, surface syntactic cues, and (when available) taxonomic
information.

The interpretation of compound nouns is important for several NLP tasks, notably
machine translation. Consider the nominalization satellite observation (taken from (4a)),
which may mean “observation by satellite” or “observation of satellites.” To translate
satellite observation into Spanish, we have to work out whether satellite is the subject or
object of the verb observe. In the first case satellite observation translates as observación
por satelite (observation by satellite), whereas in the latter it translates as observación de
satelites (observation of satellites). In this case the implicit linguistic information has
to be retrieved and disambiguated to obtain a meaningful translation. Information
retrieval is another relevant application in which again the underlying meaning must
be rendered explicit. Consider a search engine faced with the query cancer treatment.
Presumably one would not like to obtain information about cancer or treatment in
general, but about methods or medicines that help treat cancer. So knowledge about
the fact that cancer is the object of treatment could help rank relevant documents (i.e.,
documents in which cancer is the object of the verb treat) before nonrelevant ones or
restrict the number of retrieved documents.

7. Related Work

In this section we review previous work on the interpretation of compound nouns and
compare it to our own work. Despite the differences among them, most approaches
require large amounts of hand-crafted knowledge, place emphasis on the recovery of
relations other than nominalizations (see the examples in (1)), contain no quantitative
evaluation (the exceptions are Leonard (1984), Vanderwende (1994), and Lauer (1995)),
and generally assume that context dependence is either negligible or of little impact.
Most symbolic approaches are limited to a specific domain because of the large effort
involved in hand-coding semantic information and are distinguished in two main
types: concept-based and rule-based.

Under the concept-based approach, each noun in the compound is associated with
a concept and various slots. Compound interpretation reduces to slot filling, that is,
evaluating how appropriate concepts are as fillers of particular slots. A scoring sys-
tem evaluates each possible interpretation and selects the highest-scoring analysis.
Examples of the approach are Finin (1980) and McDonald (1982). As no qualitative
evaluation is reported in these studies, it is difficult to assess how their methods per-
form, although it is clear that considerable effort needs to be invested in the encoding
of the appropriate semantic knowledge.

Under the rule-based approach, interpretation is performed by sequential rule
application. A fixed set of rules is applied in a fixed order, and the first rule that is
semantically compatible with the nouns forming the compound results in the most
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plausible interpretation. The approach was introduced by Leonard (1984), was based
on a hand-crafted lexicon, and achieved an accuracy of 76.0% (on the training set).
Vanderwende (1994) further developed a rule-based algorithm that does not rely on
a hand-crafted lexicon but extracts the required semantic information from an on-line
dictionary instead. The system achieved an accuracy of 52.0%.

A variant of the concept-based approach uses unification to constrain the seman-
tic relations between nouns represented as feature structures. Jones (1995) used a
typed graph–based unification formalism and default inheritance to specify features
for nouns whose combination results in different interpretations. Again no evaluation
is reported, although Jones points out that ambiguity can be a problem, as all possible
interpretations are produced for a given compound. Wu (1993) provides a statistical
framework for the unification-based approach and develops an algorithm for approx-
imating the probabilities of different possible interpretations using the maximum-
entropy principle. No evaluation of the algorithm’s performance is given. The ap-
proach remains knowledge intensive, however, as it requires manual construction of
the feature structures.

Lauer (1995) provides a probabilistic model of compound noun paraphrasing
(e.g., state laws are “the laws of the state,” war story is “a story about war”) that assigns
probabilities to different paraphrases using a corpus in conjunction with Roget’s the-
saurus. Lauer does not address the interpretation of nominalizations or compounds
with hyponymic relations (see example (1e)) and takes into account only prepositional
paraphrases of compounds (e.g., of, for, in, at, etc.). Lauer’s model makes predictions
about the meaning of compound nouns on the basis of observations about preposi-
tional phrases. The model combines the probability of the modifier given a certain
preposition with the probability of the head given the same preposition and assumes
that these two probabilities are independent.

Consider, for instance, the compound war story. To derive the intended interpre-
tation (i.e., “story about war”), the model takes into account the frequency of story
about and about war. For the modifier and head noun are substituted the concepts with
which they are represented in Roget’s thesaurus, and the frequency of a concept and a
preposition is calculated accordingly (see Section 3.2). Lauer’s (1995) model achieves
an accuracy of 47.0%. The result is difficult to interpret, given that no experiments
with humans are performed and therefore the optimal performance on the task is un-
known. Lauer acknowledges that data sparseness can be a problem for the estimation
of the model parameters and also that the assumption of independence between the
head and its modifier is unrealistic and leads to errors in some cases.

Although it is generally acknowledged that context, both intra- and intersentential,
may influence the interpretation task, contextual factors are typically ignored, with the
exception of Hobbs et al. (1993), who propose that the interpretation of a compound
can be achieved via abductive inference. To interpret a compound one must prove
the logical form of its constituent parts from what is mutually known. The amount
of world knowledge required to work out what is mutually known, however, renders
such an approach infeasible in practice. Furthermore, Hobbs et al.’s approach does
not capture linguistic constraints on compound noun formation and as a result cannot
predict that a noun-noun sequence like cancer lung (under the interpretation “cancer
in the lung”) is odd.

Unlike previous work, we did not attempt to recover the semantic relations holding
between a head and its modifier (see (1)). Instead, we focused on the less ambitious
task of interpreting nominalizations, that is, compounds whose heads are derived
from a verb and whose modifiers are interpreted as its arguments. Similarly to Lauer
(1995), we have proposed a simple probabilistic model that uses information about
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the distributional properties of words and domain-independent symbolic knowledge
(i.e., WordNet, Roget’s thesaurus). Unlike Lauer, we have addressed the sparse-data
problem by directly comparing and contrasting a variety of smoothing approaches pro-
posed in the literature and have shown that these methods yield satisfactory results
for the demanding task of semantic disambiguation. Furthermore, we have shown
that the combination of different sources of taxonomic and nontaxonomic information
(using Ripper) is effective for tasks facing data sparseness. In contrast to previous
approaches, we explored the effect of context on the interpretation task and showed
that its inclusion generally improves disambiguation performance. We combined dif-
ferent information sources (e.g., contextual features and smoothing variants) using
Ripper. Although the use of classifiers has been widespread in studies concerning dis-
course segmentation (Passonneau and Litman 1997), the disambiguation of discourse
cues (Siegel and McKeown 1994), the acquisition of lexical semantic classes (Merlo
and Stevenson 1999; Siegel 1999), the automatic identification of user corrections in
spoken dialogue systems (Hirschberg, Litman, and Swerts 2001), and word sense dis-
ambiguation (Pedersen 2001), the treatment of the interpretation of compound nouns
as a classification task is, to our knowledge, novel.

Our approach can be easily adapted to account for Lauer’s (1995) paraphras-
ing task. Instead of assuming that the probability of the compound modifier given
a preposition is independent from the probability of the compound head given the
same preposition, a more straightforward model would take into account the joint
probability of the head, the preposition, and the modifier. In cases in which a certain
head, preposition, and modifier combination is not attested in the corpus (e.g., story
about war), the methodology put forward in Experiments 2 and 3 could be used to
re-create its frequency (see also the discussion in Section 6).

Unlike previous approaches, we provide an upper bound for the task. Recall from
Section 5.2 that an experiment with humans was performed to evaluate whether the
task can be performed reliably. In doing so we took context into account, and as
a result we established a higher upper bound for the task than would have been
the case if context was not taken into account. Furthermore, it is not clear whether
subjects could arrive at consistent interpretations for nominalizations out of context.
Downing’s (1977) experiments show that, when asked to interpret compounds out of
context, participants tend to come up with a variety of interpretations that are not
always compatible. For example, for the compound bullet hole, the interpretations “a
hole made by a bullet,” “a hole shaped like a bullet,” “a fast-moving hole,” “a hole
in which to hide bullets,” and “a hole into which to throw (bullet) casings” were
provided.

8. Conclusions

In this article we presented work on the automatic interpretation of nominalizations
(i.e., compounds whose heads are derived from a verb and whose modifiers are inter-
preted as its arguments). Nominalizations pose a challenge for empirical approaches,
as the argument relations between a head and its modifier are not readily available in a
corpus, and therefore they have to be somehow retrieved and approximated. Approx-
imating the nominalized head to its corresponding verb and estimating the frequency
of verb-noun relations instead of noun-noun relations accounts for only half of the
nominalizations attested in the corpus.

Our experiments revealed that data sparseness can be overcome by taking ad-
vantage of smoothing methods and surface contextual information. We have directly
compared and contrasted a variety of smoothing approaches proposed in the literature
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and have shown that these methods yield satisfactory results for the demanding task of
semantic disambiguation, especially when coupled with contextual information. Our
experiments have shown that contextual information that is easily obtainable from
a corpus and computationally cheap is good at predicting object relations, whereas
the computationally more expensive smoothing variants are better at guessing subject
relations. Combination of context with smoothing variants yields better performance
over either context or smoothing alone.

We combined different information sources (i.e., contextual features and smoothing
variants) using Ripper. Although a considerable body of previous research has treated
several linguistic phenomena as classification tasks, the interpretation of compound
nouns has so far been based on the availability of symbolic knowledge. We show that
the application of probabilistic learning to the interpretation of compound nouns is
novel and promising. Finally, our experiments revealed that information inherent in
the corpus can make up for the lack of distributional evidence by taking advantage of
smoothing methods that rely simply on verb-argument tuples extracted from a large
corpus and surface contextual information without strictly presupposing the existence
of annotated data or taxonomic information.
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