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We examine how differences in language models, learned by different data-driven systems per-
forming the same NLP task, can be exploited to yield a higher accuracy than the best individual
system. We do this by means of experiments involving the task of morphosyntactic word class
tagging, on the basis of three different tagged corpora. Four well-known tagger generators (hidden
Markov model, memory-based, transformation rules, and maximum entropy) are trained on the
same corpus data. After comparison, their outputs are combined using several voting strategies
and second-stage classifiers. All combination taggers outperform their best component. The re-
duction in error rate varies with the material in question, but can be as high as 24.3% with the
LOB corpus.

1. Introduction

In all natural language processing (NLP) systems, we find one or more language
models that are used to predict, classify, or interpret language-related observations.
Because most real-world NLP tasks require something that approaches full language
understanding in order to be perfect, but automatic systems only have access to limited
(and often superficial) information, as well as limited resources for reasoning with that
information, such language models tend to make errors when the system is tested on
new material. The engineering task in NLP is to design systems that make as few errors
as possible with as little effort as possible. Common ways to reduce the error rate are to
devise better representations of the problem, to spend more time on encoding language
knowledge (in the case of hand-crafted systems), or to find more training data (in the
case of data-driven systems). However, given limited resources, these options are not
always available.

Rather than devising a new representation for our task, in this paper, we combine
different systems employing known representations. The observation that suggests
this approach is that systems that are designed differently, either because they use a
different formalism or because they contain different knowledge, will typically produce
different errors. We hope to make use of this fact and reduce the number of errors with
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very little additional effort by exploiting the disagreement between different language
models. Although the approach is applicable to any type of language model, we focus
on the case of statistical disambiguators that are trained on annotated corpora. The
examples of the task that are present in the corpus and its annotation are fed into a
learning algorithm, which induces a model of the desired input-output mapping in the
form of a classifier. We use a number of different learning algorithms simultaneously
on the same training corpus. Each type of learning method brings its own “inductive
bias” to the task and will produce a classifier with slightly different characteristics, so
that different methods will tend to produce different errors.

We investigate two ways of exploiting these differences. First, we make use of
the gang effect. Simply by using more than one classifier, and voting between their
outputs, we expect to eliminate the quirks, and hence errors, that are due to the
bias of one particular learner. However, there is also a way to make better use of
the differences: we can create an arbiter effect. We can train a second-level classifier
to select its output on the basis of the patterns of co-occurrence of the outputs of
the various classifiers. In this way, we not only counter the bias of each component,
but actually exploit it in the identification of the correct output. This method even
admits the possibility of correcting collective errors. The hypothesis is that both types
of approaches can yield a more accurate model from the same training data than the
most accurate component of the combination, and that given enough training data the
arbiter type of method will be able to outperform the gang type.!

In the machine learning literature there has been much interest recently in the the-
oretical aspects of classifier combination, both of the gang effect type and of the arbiter
type (see Section 2). In general, it has been shown that, when the errors are uncorre-
lated to a sufficient degree, the resulting combined classifier will often perform better
than any of the individual systems. In this paper we wish to take a more empirical
approach and examine whether these methods result in substantial accuracy improve-
ments in a situation typical for statistical NLP, namely, learning morphosyntactic word
class tagging (also known as part-of-speech or POS tagging) from an annotated corpus
of several hundred thousand words.

Morphosyntactic word class tagging entails the classification (tagging) of each
token of a natural language text in terms of an element of a finite palette (tagset) of
word class descriptors (tags). The reasons for this choice of task are several. First of
all, tagging is a widely researched and well-understood task (see van Halteren [1999]).
Second, current performance levels on this task still leave room for improvement:
“state-of-the-art” performance for data-driven automatic word class taggers on the
usual type of material (e.g., tagging English text with single tags from a low-detail
tagset) is at 96-97% correctly tagged words, but accuracy levels for specific classes
of ambiguous words are much lower. Finally, a number of rather different methods
that automatically generate a fully functional tagging system from annotated text are
available off-the-shelf. First experiments (van Halteren, Zavrel, and Daelemans 1998;
Brill and Wu 1998) demonstrated the basic validity of the approach for tagging, with
the error rate of the best combiner being 19.1% lower than that of the best individual
tagger (van Halteren, Zavrel, and Daelemans 1998). However, these experiments were
restricted to a single language, a single tagset and, more importantly, a limited amount
of training data for the combiners. This led us to perform further, more extensive,

1 In previous work (van Halteren, Zavrel, and Daelemans 1998), we were unable to confirm the latter
half of the hypothesis unequivocally. As we judged this to be due to insufficient training data for
proper training of the second-level classifiers, we greatly increase the amount of training data in the
present work through the use of cross-validation.
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tagging experiments before moving on to other tasks. Since then the method has also
been applied to other NLP tasks with good results (see Section 6).

In the remaining sections, we first introduce classifier combination on the basis of
previous work in the machine learning literature and present the combination meth-
ods we use in our experiments (Section 2). Then we explain our experimental setup
(Section 3), also describing the corpora (3.1) and tagger generators (3.2) used in the
experiments. In Section 4, we go on to report the overall results of the experiments,
starting with a comparison between the component taggers (and hence between the
underlying tagger generators) and continuing with a comparison of the combination
methods. The results are examined in more detail in Section 5, where we discuss such
aspects as accuracy on specific words or tags, the influence of inconsistent training
data, training set size, the contribution of individual component taggers, and tagset
granularity. In Section 6, we discuss the results in the light of related work, after
which we conclude (Section 7) with a summary of the most important observations
and interesting directions for future research.

2. Combination Methods

In recent years there has been an explosion of research in machine learning on finding
ways to improve the accuracy of supervised classifier learning methods. An important
finding is that a set of classifiers whose individual decisions are combined in some
way (an ensemble) can be more accurate than any of its component classifiers if the
errors of the individual classifiers are sufficiently uncorrelated (see Dietterich [1997],
Chan, Stolfo, and Wolpert [1999] for overviews). There are several ways in which an
ensemble can be created, both in the selection of the individual classifiers and in the
way they are combined.

One way to create multiple classifiers is to use subsamples of the training exam-
ples. In bagging, the training set for each individual classifier is created by randomly
drawing training examples with replacement from the initial training set (Breiman
1996a). In boosting, the errors made by a classifier learned from a training set are
used to construct a new training set in which the misclassified examples get more
weight. By sequentially performing this operation, an ensemble is constructed (e.g.,
ADABOOsT, [Freund and Schapire 1996]). This class of methods is also called arcing
(for adaptive resampling and combining). In general, boosting obtains better results
than bagging, except when the data is noisy (Dietterich 1997). Another way to cre-
ate multiple classifiers is to train classifiers on different sources of information about
the task by giving them access to different subsets of the available input features
(Cherkauer 1996). Still other ways are to represent the output classes as bit strings
where each bit is predicted by a different component classifier (error correcting output
coding [Dietterich and Bakiri 1995]) or to develop learning-method-specific methods
for ensuring (random) variation in the way the different classifiers of an ensemble are
constructed (Dietterich 1997).

In this paper we take a multistrategy approach, in which an ensemble is con-
structed by classifiers resulting from training different learning methods on the same
data (see also Alpaydin {1998]).

Methods to combine the outputs of component classifiers in an ensemble include
simple voting where each component classifier gets an equal vote, and weighted
voting, in which each component classifier’s vote is weighted by its accuracy (see, for
example, Golding and Roth [1999]). More sophisticated weighting methods have been
designed as well. Ali and Pazzani (1996) apply the Naive Bayes’ algorithm to learn
weights for classifiers. Voting methods lead to the gang effect discussed earlier. The
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Let T; be the component taggers, S;(tok) the most probable tag for a token fok as suggested by T;, and let
the quality of tagger T; be measured by

o the precision of T; for tag tag: Prec(T;, tag)
o the recall of T; for tag tag: Rec(T;, tag)
o the overall precision of T;: Prec(T;)
Then the vote V(tag, tok) for tagging token tok with tag tag is given by:
o Majority:
Z IF Si(tok) = tag THEN 1 ELSE 0
i

o TotPrecision:
ZIF Si(tok) = tag THEN Prec(T;) ELSE 0
1
e TagPrecision:
ZIF Si(tok) = tag THEN Prec(T;,tag) ELSE 0
1

e Precision-Recall:

D IF S(tok) = tag THEN Prec(T; tag) ELSE 1— Rec(T;,tag)
i

Figure 1
Simple algorithms for voting between component taggers.

most interesting approach to combination is stacking in which a classifier is trained
to predict the correct output class when given as input the outputs of the ensemble
classifiers, and possibly additional information (Wolpert 1992; Breiman 1996b; Ting and
Witten 1997a, 1997b). Stacking can lead to an arbiter effect. In this paper we compare
voting and stacking approaches on the tagging problem.

In the remainder of this section, we describe the combination methods we use
in our experiments. We start with variations based on weighted voting. Then we go
on to several types of stacked classifiers, which model the disagreement situations
observed in the training data in more detail. The input to the second-stage classifier
can be limited to the first-level outputs or can contain additional information from the
original input pattern. We will consider a number of different second-level learners.
Apart from using three well-known machine learning methods, memory-based learn-
ing, maximum entropy, and decision trees, we also introduce a new method, based on
grouped voting.

2.1 Simple Voting
The most straightforward method to combine the results of multiple taggers is to do
an n-way vote. Each tagger is allowed to vote for the tag of its choice, and the tag with
the highest number of votes is selected.? The question is how large a vote we allow
each tagger (Figure 1). The most democratic option is to give each tagger one vote
(Majority). This does not require any tuning of the voting mechanism on training data.
However, the component taggers can be distinguished by several figures of merit,
and it appears more useful to give more weight to taggers that have proved their
quality. For this purpose we use precision and recall, two well-known measures, which

2 In all our experiments, any ties are resolved by a random selection from among the winning tags.
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can be applied to the evaluation of tagger output as well. For any tag X, precision
measures which percentage of the tokens tagged X by the tagger are also tagged X
in the benchmark. Recall measures which percentage of the tokens tagged X in the
benchmark are also tagged X by the tagger. When abstracting away from individual
tags, precision and recall are equal (at least if the tagger produces exactly one tag per
token) and measure how many tokens are tagged correctly; in this case we also use
the more generic term accuracy. We will call the voting method where each tagger is
weighted by its general quality TotPrecision, i.e., each tagger votes its overall precision.
To allow for more detailed interactions, each tagger is weighted by the quality in
relation to the current situation, i.e., each tagger votes its precision on the tag it suggests
(TagPrecision). This way, taggers that are accurate for a particular type of ambiguity
can act as specialized experts. The information about each tagger’s quality is derived
from a cross-validation of its results on the combiner training set. The precise setup
for deriving the training data is described in more detail below, in Section 3.

We have access to even more information on how well the taggers perform. We
not only know whether we should believe what they propose (precision) but know as
well how often they fail to recognize the correct tag (1 — recall). This information can
be used by forcing each tagger to add to the vote for tags suggested by the opposition
too, by an amount equal to 1 minus the recall on the opposing tag (Precision-Recall).
As an example, suppose that the MXPOST tagger suggests DT and the HMM tagger
TnT suggests CS (two possible tags in the LOB tagset for the token that). If MXPOST
has a precision on DT of 0.9658 and a recall on CS of 0.8927, and TnT has a precision on
CS of 0.9044 and a recall on DT of 0.9767, then DT receives a 0.9658 + 0.0233 = 0.9991
vote and CS a 0.9044 + 0.1073 = 1.0117 vote.

Note that simple voting combiners can never return a tag that was not suggested
by a (weighted) majority of the component taggers. As a result, they are restricted
to the combination of taggers that all use the same tagset. This is not the case for
all the following (arbiter type) combination methods, a fact which we have recently
exploited in bootstrapping a word class tagger for a new corpus from existing taggers
with completely different tagsets (Zavrel and Daelemans 2000).

2.2 Stacked Probabilistic Voting

One of the best methods for tagger combination in (van Halteren, Zavrel, and Daele-
mans 1998) is the TagPair method. It looks at all situations where one tagger suggests
tag, and the other tag, and estimates the probability that in this situation the tag
should actually be tag,. Although it is presented as a variant of voting in that paper,
it is in fact also a stacked classifier, because it does not necessarily select one of the
tags suggested by the component taggers. Taking the same example as in the voting
section above, if tagger MXPOST suggests DT and tagger TnT suggests CS, we find
that the probabilities for the appropriate tag are:

Cs subordinating conjunction 0.4623
522 second half of a two-token subordinating conjunction, e.g., so that 0.0171
DT determiner 0.4966
QL quantifier 0.0103
WPR wh-pronoun 0.0137

When combining the taggers, every tagger pair is taken in turn and allowed to
vote (with a weight equal to the probability P(tag, | tag,,tag,) as described above)
for each possible tag (Figure 2). If a tag pair tag,-tag, has never been observed in the
training data, we fall back on information on the individual taggers, i.e., P(tag, | tag,)
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Let T; be the component taggers and S;(tok) the most probable tag for a token fok as suggested by T;. Then
the vote V(tag, tok) for tagging token tok with tag tag is given by:

V(tag, tok) = Z V;(tag, tok)
i/j|i<j
where V;(tag, tok) is given by
IF frequency( S;(tokx) = S;(tok), S;(toky) = Sj(tok) ) >0
THEN V,-,j(tag, tOk) = P(tag | S{(tokx) = Si(tok), S/‘(tokx) = S](tok) )

1
ELSE V;j(tag, tok) = EP(tag | Si(toky) = S;(tok) ) + %P(tag | Sj(toky) = S;(tok) )

Figure 2
The TagPair algorithm for voting between component taggers.

If the case to be classified corresponds to the feature-value pair set

Fease = {{fl zvl}r-~-/{fn = vn}}

then estimate the probability of each class Cx for Fese as a weighted sum over all possible subsets Fg,, of

Fease: )
P(Cy) = § WFS,,‘,P(CX | Fsup)
F sub CFease
with the weight Wpsub for an Fg,;, containing n elements equal to W:a!m.’ where Wy is a normalizing
constant so that Z ~ P(Cy) =1

Figure 3
The Weighted Probability Distribution Voting classification algorithm, as used in the
combination experiments.

and P(tag, | tag,). Note that with this method (and all of the following), a tag suggested
by a minority (or even none) of the taggers actually has a chance to win, although in
practice the chance to beat a majority is still very slight.

Seeing the success of TagPair in the earlier experiments, we decided to try to
generalize this stacked probabilistic voting approach to combinations larger than pairs.
Among other things, this would let us include word and context features here as well.
The method that was eventually developed we have called Weighted Probability
Distribution Voting (henceforth WPDV).

A WPDV classification model is not limited to pairs of features (such as the pairs
of tagger outputs for TagPair), but can use the probability distributions for all feature
combinations observed in the training data (Figure 3). During voting, we do not use a
fallback strategy (as TagPair does) but use weights to prevent the lower-order combi-
nations from excessively influencing the final results when a higher-order combination
(i.e., more exact information) is present. The original system, as used for this paper,
weights a combination of order n with a factor n!, a number based on the observation
that a combination of order m contains m combinations of order (m — 1) that have to
be competed with. Its only parameter is a threshold for the number of times a combi-
nation must be observed in the training data in order to be used, which helps prevent
a combinatorial explosion when there are too many atomic features.’

3 In our experiments, this parameter is always set to 5. WPDV has since evolved, using more parameters
and more involved weighting schemes, and also been tested on tasks other than tagger combination
(van Halteren 2000a, 2000b).
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Tags suggested by the base taggers, used by all systems:
TugTBL =]J]  TagMBT = VBN  TagMXP =VBD  TagHMM =]J
e The focus token, used by stacked classifiers at level Tags+Word:

Word = restored

e Full form tags suggested by the base tagger for the previous and next token, used by stacked
classifiers at level Tags+Context, except for WPDV:

PrevTBL = J] PrevMBT = NN PrevMXP = NN PrevHMM = J]
NextTBL = NN NextMBT = NN NextMXP = NN NextHMM = NN

¢ Compressed form of the context tags, used by WPDV(Tags+Context), because the system was
unable to cope with the large number of features:

Prev =]+ NN+NN+J]  Next=NN+NN+NN + NN

o Target feature, used by all systems:
Tag = VBD

Figure 4
Features used by the combination systems. Examples are taken from the LOB material.

In contrast to voting, stacking classifiers allows the combination of the outputs of
component systems with additional information about the decision’s context. We in-
vestigated several versions of this approach. In the basic version (Tags), each training
case for the second-level learner consists of the tags suggested by the component tag-
gers and the correct tag (Figure 4). In the more advanced versions, we add information
about the word in question (Tags+Word) and the tags suggested by all taggers for the
previous and the next position (Tags+Context). These types of extended second-level
features can be exploited by WPDV, as well as by a wide selection of other machine
learning algorithms.

2.3 Memory-based Combination
Our first choice from these other algorithms is a memory-based second-level learner,
implemented in TiIMBL (Daelemans et al. 1999), a package developed at Tilburg Uni-
versity and Antwerp University.*

Memory-based learning is a learning method that is based on storing all examples
of a task in memory and then classifying new examples by similarity-based reasoning
from these stored examples. Each example is represented by a fixed-length vector of
feature values, called a case. If the case to be classified has been observed before,
that is, if it is found among the stored cases (in the case base), the most frequent
corresponding output is used. If the case is not found in the case base, k nearest
neighbors are determined with some similarity metric, and the output is based on the
observed outputs for those neighbors. Both the value of k and the similarity metric
used can be selected by parameters of the system. For the Tags version, the similarity
metric used is Overlap (a count of the number of matching feature values between a
test and a training item) and k is kept at 1. For the other two versions (Tags+Word and
Tags+Context), a value of k = 3 is used, and each overlapping feature is weighted by
its Information Gain (Daelemans, Van den Bosch, and Weijters 1997). The Information

4 TiMBL is available from http://ilk.kub.nl/.
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Gain of a feature is defined as the difference between the entropy of the a priori class
distribution and the conditional entropy of the classes given the value of the feature.®

2.4 Maximum Entropy Combination

The second machine learning method, maximum entropy modeling, implemented in
the Maccent system (Dehaspe 1997), does the classification task by selecting the most
probable class given a maximum entropy model.® This type of model represents ex-
amples of the task (Cases) as sets of binary indicator features, for the task at hand
conjunctions of a particular tag and a particular set of feature values. The model has
the form of an exponential model:

e Zi Aifi(Case,tag)

pa(tag | Case) = Zn(Case)

where i indexes all the binary features, f; is a binary indicator function for feature i,
Z, is a normalizing constant, and ); is a weight for feature i. The model is trained by
iteratively adding binary features with the largest gain in the probability of the train-
ing data, and estimating the weights using a numerical optimization method called
improved iterative scaling. The model is constrained by the observed distribution of
the features in the training data and has the property of having the maximum en-
tropy of all models that fit the constraints, i.e., all distributions that are not directly
constrained by the data are left as uniform as possible.”

The maximum entropy combiner takes the same information as the memory-based
learner as input, but internally translates all multivalued features to binary indicator
functions. The improved iterative scaling algorithm is then applied, with a maximum
of one hundred iterations. This algorithm is the same as the one used in the MXPOST
tagger described in Section 3.2.3, but without the beam search used in the tagging
application.

2.5 Decision Tree Combination

The third machine learning method we used is ¢5.0 (Quinlan 1993), an example of
top-down induction of decision trees® A decision tree is constructed by recursively
partitioning the training set, selecting, at each step, the feature that most reduces the
uncertainty about the class in each partition, and using it as a split. ¢5.0 uses Gain
Ratio as an estimate of the utility of splitting on a feature. Gain Ratio corresponds to
the Information Gain measure of a feature, as described above, except that the measure
is normalized for the number of values of the feature, by dividing by the entropy of the
feature’s values. After the decision tree is constructed, it is pruned to avoid overfitting,
using a method described in detail in Quinlan (1993). A classification for a test case
is made by traversing the tree until either a leaf node is found or all further branches
do not match the test case, and returning the most frequent class at the last node. The
case representation uses exactly the same features as the memory-based learner.

3. Experimental Setup

In order to test the potential of system combination, we obviously need systems to
combine, i.e.,, a number of different taggers. As we are primarily interested in the

5 This is also sometimes referred to as mutual information in the computational linguistics literature.

6 Maccent is available from http: //www.cs.kuleuven.ac.be/~ldh.

7 For a more detailed discussion, see Berger, Della Pietra, and Della Pietra (1996) and Ratnaparkhi (1996).

8 ¢5.0 is commercially available from http://www.rulequest.com/. Its predecessor, c4.5, can be
downloaded from http://www.cse.unsw.edu.au/~quinlan/.
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combination of classifiers trained on the same data sets, we are in fact looking for
data sets (in this case, tagged corpora) and systems that can automatically gener-
ate a tagger on the basis of those data sets. For the current experiments, we have
selected three tagged corpora and four tagger generators. Before giving a detailed
description of each of these, we first describe how the ingredients are used in the
experiments.

Each corpus is used in the same way to test tagger and combiner performance.
First of all, it is split into a 90% training set and a 10% test set. We can evaluate
the base taggers by using the whole training set to train the tagger generators and
the test set to test the resulting tagger. For the combiners, a more complex strategy
must be followed, since combiner training must be done on material unseen by the
base taggers involved. Rather than setting apart a fixed combiner training set, we use
a ninefold training strategy.” The 90% training set is split into nine equal parts. Each
part is tagged with component taggers that have been trained on the other eight parts.
All results are then concatenated for use in combiner training, so that, in contrast to
our earlier work, all of the training set is effectively available for the training of the
combiner. Finally, the resulting combiners are tested on the test set. Since the test set
is identical for all methods, we can compute the statistical significance of the results
using McNemar's chi-squared test (Dietterich 1998).

As we will see, the increase in combiner training set size (90% of the corpus versus
the fixed 10% tune set in the earlier experiments) indeed results in better performance.
On the other hand, the increased amount of data also increases time and space require-
ments for some systems to such a degree that we had to exclude them from (some
parts of) the experiments.

The data in the training set is the only information used in tagger and combiner
construction: all components of all taggers and combiners (lexicon, context statistics,
etc.) are entirely data driven, and no manual adjustments are made. If any tagger or
combiner construction method is parametrized, we use default settings where avail-
able. If there is no default, we choose intuitively appropriate values without prelimi-
nary testing. In these cases, we report such parameter settings in the introduction to
the system.

3.1 Data

In the current experiments we make use of three corpora. The first is the LOB corpus
(Johansson 1986), which we used in the earlier experiments as well (van Halteren,
Zavrel, and Daelemans 1998) and which has proved to be a good testing ground. We
then switch to Wall Street Journal material (WS]), tagged with the Penn Treebank II
tagset (Marcus, Santorini, and Marcinkiewicz 1993). Like LOB, it consists of approx-
imately 1M words, but unlike LOB, it is American English. Furthermore, it is of a
different structure (only newspaper text) and tagged with a rather different tagset.
The experiments with WSJ will also let us compare our results with those reported by
Brill and Wu (1998), which show a much less pronounced accuracy increase than ours
with LOB. The final corpus is the slightly smaller (750K words) Eindhoven corpus (Uit
den Boogaart 1975) tagged with the Wotan tagset (Berghmans 1994). This will let us
examine the tagging of a language other than English (namely, Dutch). Furthermore,
the Wotan tagset is a very detailed one, so that the error rate of the individual taggers

9 Compare this to the “tune” set in van Halteren, Zavrel, and Daelemans (1998). This consisted of 114K
tokens, but, because of a 92.5% agreement over all four taggers, it yielded less than 9K tokens of useful
training material to resolve disagreements. This was suspected to be the main reason for the relative
lack of performance by the more sophisticated combiners.
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tends to be higher. Moreover, we can more easily use projections of the tagset and
thus study the effects of levels of granularity.

3.1.1 LOB. The first data set we use for our experiments consists of the tagged
Lancaster-Oslo/Bergen corpus (LOB [Johansson 1986}). The corpus comprises about
one million words of British English text, divided over 500 samples of 2,000 words
from 15 text types.

The tagging of the LOB corpus, which was manually checked and corrected, is
generally accepted to be quite accurate. Here we use a slight adaptation of the tagset.
The changes are mainly cosmetic, e.g., nonalphabetic characters such as “$” in tag
names have been replaced. However, there has also been some retokenization: genitive
markers have been split off and the negative marker #n't has been reattached.

An example sentence tagged with the resulting tagset is:

The ATI singular or plural article
Lord NPT singular titular noun
Major NPT singular titular noun
extended VBD past tense of verb

an AT singular article
invitation NN singular common noun
to IN preposition

all ABN pre-quantifier

the ATI singular or plural article
parliamentary ] adjective

candidates NNS plural common noun

SPER period

The tagset consists of 170 different tags (including ditto tags), and has an average
ambiguity of 2.82 tags per wordform over the corpus.’” An impression of the difficulty
of the tagging task can be gained from the two baseline measurements in Table 2 (in
Section 4.1 below), representing a completely random choice from the potential tags
for each token (Random) and selection of the lexically most likely tag (LexProb)."

The training/test separation of the corpus is done at utterance boundaries (each 1st
to 9th utterance is training and each 10th is test) and leads to a 1,046K token training
set and a 115K token test set. Around 2.14% of the test set are tokens unseen in the
training set and a further 0.37% are known tokens but with unseen tags."

3.1.2 WS]J. The second data set consists of 1M words of Wall Street Journal material.
It differs from LOB in that it is American English and, more importantly, in that it is
completely made up of newspaper text. The material is tagged with the Penn Treebank
tagset (Marcus, Santorini, and Marcinkiewicz 1993), which is much smaller than the
LOB one. It consists of only 48 tags."” There is no attempt to annotate compound
words, so there are no ditto tags.

10 Ditto tags are used for the components of multitoken units, e.g. if as well as is taken to be a coordinating
conjunction, it is tagged “as CC-1 well CC-2 as CC-3”, using three related but different ditto tags.

11 These numbers are calculated on the basis of a lexicon derived from the whole corpus. An actual
tagger will have to deal with unknown words in the test set, which will tend to increase the ambiguity
and decrease Random and LexProb. Note that all actual taggers and combiners in this paper do have
to cope with unknown words as their lexicons are based purely on their training sets.

12 Because of the way in which the tagger generators treat their input, we do count tokens as different
even though they are the same underlying token, but differ in capitalization of one or more characters.

13 In the material we have available, quotes are represented slightly differently, so that there are only 45
different tags. In addition, the corpus contains a limited number of instances of 38 “indeterminate”
tags, e.g., JJ[VBD indicates a choice between adjective and past participle which cannot be decided or
about which the annotator was unsure.
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An example sentence is:

By IN preposition/subordinating conjunction
10 CD cardinal number

a.m. RB adverb

Tokyo NNP  singular proper noun
time NN singular common noun
, p comma

the DT determiner

index NN singular common noun
was VBD past tense verb

up RB adverb

435.11 CD cardinal number
points NNS plural common noun

. , comma

to TO "to”

34903.80 CD cardinal number

as IN preposition/subordinating conjunction
investors NNS plural common noun
hailed VBD  past tense verb

New NNP  singular proper noun
York NNP  singular proper noun
’s POS possessive ending
overnight JJ adjective

rally NN singular common noun
. sentence-final punctuation

Mostly because of the less detailed tagset, the average ambiguity of the tags is
lower than LOB’s, at 2.34 tags per token in the corpus. This means that the tagging
task should be an easier one than that for LOB. This is supported by the values for
Random and LexProb in Table 2. On the other hand, the less detailed tagset also means
that the taggers have less detailed information to base their decisions on. Another
factor that influences the quality of automatic tagging is the consistency of the tagging
over the corpus. The WSJ material has not been checked as extensively as the LOB
corpus and is expected to have a much lower consistency level (see Section 5.3 below
for a closer examination).

The training/test separation of the corpus is again done at utterance boundaries
and leads to a 1,160K token training set and a 129K token test set. Around 1.86% of
the test set are unseen tokens and a further 0.44% are known tokens with previously
unseen tags.

3.1.3 Eindhoven. The final two data sets are both based on the Eindhoven corpus
(Uit den Boogaart 1975). This is slightly smaller than LOB and WS]J. The written part,
which we use in our experiments, consists of about 750K words, in samples ranging
from 53 to 451 words. In variety, it lies between LOB and WS]J, containing 150K words
each of samples from Dutch newspapers (subcorpus CDB), weeklies (OBL), magazines
(GBL), popular scientific writings (PWE), and novels (RNO).

The tagging of the corpus, as used here, was created in 1994 as part of a mas-
ter’s thesis project (Berghmans 1994). It employs the Wotan tagset for Dutch, newly
designed during the project. It is based on the classification used in the most popular
descriptive grammar of Dutch, the Algemene Nederlandse Spraakkunst (ANS [Geerts et
al. 1984]). The actual distinctions encoded in the tagset were selected on the basis of
their importance to the potential users, as estimated from a number of in-depth inter-
views with interested parties in the Netherlands. The Wotan tagset is not only very
large (233 base tags, leading to 341 tags when counting each ditto tag separately), but
furthermore contains distinctions that are very difficult for automatic taggers, such as
verb transitivity, syntactic use of adjectives, and the recognition of multitoken units.
It has an average ambiguity of 7.46 tags per token in the corpus. For our experiments,
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we also designed a simplification of the tagset, dubbed WotanLite, which no longer
contains the most problematic distinctions. WotanLite has 129 tags (with a complement
of ditto tags leading to a total of 173) and an average ambiguity of 3.46 tags per token.

An example of Wotan tagging is given below (only underlined parts remain in

WotanlLite):"

Mr. (Master, title)
Rijpstra

heeft (has)
de (the)
Commissarispost

(post of Commissioner)
in (in)
Friesland
geambieerd (aspired to)
en (and)
hij (he)

moet (should)

dus (therefore)
alle (all)

kans (opportunity)
hebben (have)

er (there)

het (the)

beste (best)

van (of)
te (to)

maken (make)

N{eigen,evneut):1/2
N(eigen,ev,neut):2/2

Vhulp,ott,3,ev)
Art(bep,zijd-of-mv,neut)

first part of singular neutral case proper noun
second part of singular neutral case proper

noun
3rd person singular present tense auxiliary verb

neutral case non-neuter or plural definite article

N(soort,ev,neut)

Prep(voor)
N_Ggen,ev,neut)
V(trans,verl-dw,onverv)
Conj(neven)
Pron(per,3,ev,nom)

V(hulp,ott,3,ev)
Adv(gew,aanw)
Pron(onbep,neut,attr)

N{soort,ev,neut)
V(trans,inf)
Adv(pron,er)
Art(bep,onzijd,neut)

Adj(zelfst,overtr,verv-neut)

Adv(deel-adv)
Prep(voor-inf)
V(trans,inf)
Punc(punt)

singular neutral case common noun

adposition used as preposition

singular neutral case proper noun

base form of past participle of transitive verb

coordinating conjunction

3rd person singular nominative personal
pronoun

3rd person singular present tense auxiliary verb

demonstrative non-pronominal adverb

attributively used neutral case indefinite
pronoun

singular neutral case common noun

infinitive of transitive verb

pronominal adverb “er”

neutral case neuter definite article

nominally used inflected superlative
form of adjective

particle adverb

infinitival “te”

infinitive of transitive verb

period

The annotation of the corpus was realized by a semiautomatic upgrade of the
tagging inherited from an earlier project. The resulting consistency has never been
exhaustively measured for either the Wotan or the original tagging.

The training/test separation of the corpus is done at sample boundaries (each 1st
to 9th sample is training and each 10th is test). This is a much stricter separation than
applied for LOB and WSJ, as for those two corpora our test utterances are related to
the training ones by being in the same samples. Partly as a result of this, but also very
much because of word compounding in Dutch, we see a much higher percentage of
new tokens—6.24% tokens unseen in the training set. A further 1.45% known tokens
have new tags for Wotan, and 0.45% for WotanLite. The training set consists of 640K
tokens and the test set of 72K tokens.

3.2 Tagger Generators
The second ingredient for our experiments is a set of four tagger generator systems,
selected on the basis of variety and availability."” Each of the systems represents a

14 The example sentence could be rendered in English as Master Rijpstra has aspired to the post of
Commissioner in Friesland and he should therefore be given every opportunity to make the most of it.

15 The systems have to differ as much as possible in their learning strategies and biases, as otherwise
there will be insufficient differences of opinion for the combiners to make use of. This was shown
clearly in early experiments in 1992, where only n-gram taggers were used, and which produced only a
very limited improvement in accuracy (van Halteren 1996).
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Table 1

The features available to the four taggers in our study. Except for MXPOST, all systems use
different models (and hence features) for known (k) and unknown (u) words. However, Brill's
transformation-based learning system (TBL) applies its two models in sequence when faced
with unknown words, thus giving the unknown-word tagger access to the features used by
the known-word model as well. The first five columns in the table show features of the focus
word: capitalization (C), hyphen (H), or digit (D) present, and number of suffix (S) or prefix
(P) letters of the word. Brill’s TBL system (for unknown words) also takes into account
whether the addition or deletion of a suffix results in a known lexicon entry (indicated by an
L). The next three columns represent access to the actual word (W) and any range of words to
the left (W) or right (Wyep,). The last three columns show access to tag information for the

word itself (T) and any range of words left (Tleft) or right (Tjgn). Note that the expressive
power of a method is not purely determined by the features it has access to, but also by its
algorithm, and what combinations of the available features this allows it to consider.

Features

System C D N S P W Wleft Wright T Tlg[t Tright
TBL (k) X 1-2 1-2 x 13 1-3
TBL (u) X x x 4L 4L 1-2 1-2 1-3 1-3
MBT (k) X x 12 1-2
MBT (u) X x X 3 1 1
MXP (@ll) x x x 4 4 X 1-2 1-2 1-2

TNT (k) X X x 12

TNT (u) X 10 1-2

popular type of learning method, each uses slightly different features of the text (see
Table 1), and each has a completely different representation for its language model.
All publicly available systems are used with the default settings that are suggested in
their documentation.

3.2.1 Error-driven Transformation-based Learning. This learning method finds a set
of rules that transforms the corpus from a baseline annotation so as to minimize the
number of errors (we will refer to this system as TBL below). A tagger generator using
this learning method is described in Brill (1992, 1994). The implementation that we
use is Eric Brill’s publicly available set of C programs and Per] scripts.'®

When training, this system starts with a baseline corpus annotation Ag. In A,
each known word is tagged with its most likely tag in the training set, and each
unknown word is tagged as a noun (or proper noun if capitalized). The system then
searches through a space of transformation rules (defined by rule templates) in order
to reduce the discrepancy between its current annotation and the provided correct
one. There are separate templates for known words (mainly based on local word
and tag context), and for unknown words (based on suffix, prefix, and other lexical
information). The exact features used by this tagger are shown in Table 1. The learner
for the unknown words is trained and applied first. Based on its output, the rules for
context disambiguation are learned. In each learning step, all instantiations of the rule
templates that are present in the corpus are generated and receive a score. The rule that
corrects the highest number of errors at step 7 is selected and applied to the corpus to
yield an annotation A,, which is then used as the basis for step n+1. The process stops
when no rule reaches a score above a predefined threshold. In our experiments this
has usually yielded several hundreds of rules. Of the four systems, TBL has access to

16 Brill's system can be downloaded from
ftp: // ftp.cs.jhu.edu/pub/brill /Programs/RULE_BASED_TAGGER.V.1.14.tar.Z.
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the most features: contextual information (the words and tags in a window spanning
three positions before and after the focus word) as well as lexical information (the
existence of words formed by the addition or deletion of a suffix or prefix). However,
the conjunctions of these features are not all available in order to keep the search space
manageable. Even with this restriction, the search is computationally very costly. The
most important rule templates are of the form

if context = x change tag; to fag;

where context is some condition on the tags of the neighbouring words. Hence learning
speed is roughly cubic in the tagset size.”

When tagging, the system again starts with a baseline annotation for the new
text, and then applies all rules that were derived during training, in the sequence in
which they were derived. This means that application of the rules is fully deterministic.
Corpus statistics have been at the basis of selecting the rule sequence, but the resulting
tagger does not explicitly use a probabilistic model.

3.2.2 Memory-Based Learning. Another learning method that does not explicitly ma-
nipulate probabilities is machine-based learning. However, rather than extracting a
concise set of rules, memory-based learning focuses on storing all examples of a task
in memory in an efficient way (see Section 2.3). New examples are then classified by
similarity-based reasoning from these stored examples. A tagger using this learning
method, MBT, was proposed by Daelemans et al. (1996)."

During the training phase, the training corpus is transformed into two case bases,
one which is to be used for known words and one for unknown words. The cases are
stored in an IGTree (a heuristically indexed version of a case memory [Daelemans,
Van den Bosch, and Weijters 1997]), and during tagging, new cases are classified by
matching cases with those in memory going from the most important feature to the
least important. The order of feature relevance is determined by Information Gain.

For known words, the system used here has access to information about the focus
word and its potential tags, the disambiguated tags in the two preceding positions,
and the undisambiguated tags in the two following positions. For unknown words,
only one preceding and following position, three suffix letters and information about
capitalization and presence of a hyphen or a digit are used as features. The case base
for unknown words is constructed from only those words in the training set that occur
five times or less.

3.2.3 Maximum Entropy Modeling. Tagging can also be done using maximum en-
tropy modeling (see Section 2.4): a maximum entropy tagger, called MXPOST, was
developed by Ratnaparkhi (1996) (we will refer to this tagger as MXP below).” This
system uses a number of word and context features rather similar to system MBT, and
trains a maximum entropy model using the improved iterative scaling algorithm for
one hundred iterations. The final model has a weighting parameter for each feature
value that is relevant to the estimation of the probability P(tag | features), and com-
bines the evidence from diverse features in an explicit probability model. In contrast
to the other taggers, both known and unknown words are processed by the same

17 Because of the computational complexity, we have had to exclude the system from the experiments
with the very large Wotan tagset.

18 An on-line version of the tagger is available at http://ilk.kub.nl/.

19 Ratnaparkhi’s Java implementation of this system is freely available for noncommercial research
purposes at ftp:// ftp.cis.upenn.edu/pub/adwait/jmx/.
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model. Another striking difference is that this tagger does not have a separate storage
mechanism for lexical information about the focus word (i.e., the possible tags). The
word is merely another feature in the probability model. As a result, no generaliza-
tions over groups of words with the same set of potential tags are possible. In the
tagging phase, a beam search is used to find the highest probability tag sequence for
the whole sentence.

3.2.4 Hidden Markov Models. In a Hidden Markov Model, the tagging task is viewed
as finding the maximum probability sequence of states in a stochastic finite-state ma-
chine. The transitions between states emit the words of a sentence with a probability
P(w | S¢), the states S; themselves model tags or sequences of tags. The transitions are
controlled by Markovian state transition probabilities P(S;, | S;,_,). Because a sentence
could have been generated by a number of different state sequences, the states are
considered to be “Hidden.” Although methods for unsupervised training of HMM’s
do exist, training is usually done in a supervised way by estimation of the above prob-
abilities from relative frequencies in the training data. The HMM approach to tagging
is by far the most studied and applied (Church 1988; DeRose 1988; Charniak 1993).

In van Halteren, Zavrel, and Daelemans (1998) we used a straightforward im-
plementation of HMM'’s, which turned out to have the worst accuracy of the four
competing methods. In the present work, we have replaced this by the TnT system
(we will refer to this tagger as HMM below).”” TnT is a trigram tagger (Brants 2000),
which means that it considers the previous two tags as features for deciding on the
current tag. Moreover, it considers the capitalization of the previous word as well in
its state representation. The lexical probabilities depend on the identity of the current
word for known words and on a suffix tree smoothed with successive abstraction
(Samuelsson 1996) for guessing the tags of unknown words. As we will see below, it
shows a surprisingly higher accuracy than our previous HMM implementation. When
we compare it with the other taggers used in this paper, we see that a trigram HMM
tagger uses a very limited set of features (Table 1). On the other hand, it is able to
access some information about the rest of the sentence indirectly, through its use of
the Viterbi algorithm.

4, Overall Results

The first set of results from our experiments is the measurement of overall accuracy
for the base taggers. In addition, we can observe the agreement between the systems,
from which we can estimate how much gain we can possibly expect from combination.
The application of the various combination systems, finally, shows us how much of
the projected gain is actually realized.

4.1 Base Tagger Quality

An additional benefit of training four popular tagging systems under controlled con-
ditions on several corpora is an experimental comparison of their accuracy. Table 2
lists the accuracies as measured on the test set.”> We see that TBL achieves the lowest
accuracy on all data sets. MBT is always better than TBL, but is outperformed by both
MXP and HMM. On two data sets (LOB and Wotan) the Hidden Markov Model sys-
tem (TnT) is better than the maximum entropy system (MXPOST). On the other two

20 The TnT system can be obtained from its author through http: //www.coli.uni-sb.de/~thorsten/nt/.
21 In this and several following tables, the best performance is indicated with bold type.
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Table 2

Baseline and individual tagger test set accuracy for each of our four data sets. The bottom four
rows show the accuracies of the four tagging systems on the various data sets. In addition, we
list two baselines: the selection of a completely random tag from among the potential tags for
the token (Random) and the selection of the lexically most likely tag (LexProb).

LOB WSJ] Wotan WotanlLite

Baseline

Random 6146 6391 4299 54.36
LexProb 9322 9457 89.48 93.40
Single Tagger

TBL 96.37 96.28 = 94.63
MBT 97.06 9641 89.78 94.92
MXP 9752 96.88 91.72 95.56
HMM 9755 96.63 92.06 95.26

*The training of TBL on the large Wotan tagset was
aborted after several weeks of training failed to pro-
duce any useful results.

Table 3
Pairwise agreement between the base taggers. For each base tagger pair and data set, we list
the percentage of tokens in the test set on which the two taggers select the same tag.

Tagger Pair

MXPp MXP MXP HMM HMM MBT
Data Set HMM MBT TBL MBT TBL TBL

LOB 9756 9670 9627 9727 9696 96.78
W§J 9741 9685 9690 9718 9739 9721
Wotan 93.02 90.81 92.06

WotanLite 9574 9512 95.00 9548 9536 9552

(WS] and WotanLite) MXPOST is the better system. In all cases, except the difference
between MXP and HMM on LOB, the differences are statistically significant (p < 0.05,
McNemar’s chi-squared test).

We can also see from these results that WSJ, although it is about the same size as
LOB, and has a smaller tagset, has a higher difficulty level than LOB. We suspect that
an important reason for this is the inconsistency in the WSJ annotation (cf. Ratnaparkhi
1996). We examine this effect in more detail below. The Eindhoven corpus, both with
Wotan and WotanLite tagsets, is yet more difficult, but here the difficulty lies mainly
in the complexity of the tagset and the large percentage of unknown words in the
test sets. We see that the reduction in the complexity of the tagset from Wotan to
Wotanlite leads to an enormous improvement in accuracy. This granularity effect is
also examined in more detail below.

4.2 Base Tagger Agreement

On the basis of the output of the single taggers we can also examine the feasibility
of combination, as combination is dependent on different systems producing different
errors. As expected, a large part of the errors are indeed uncorrelated: the agreement
between the systems (Table 3) is at about the same level as their agreement with
the benchmark tagging. A more detailed view of intertagger agreement is shown
in Table 4, which lists the (groups of) patterns of (dis)agreement for the four data
sets.
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Table 4

The presence of various tagger (dis)agreeement patterns for the four data sets. In addition to
the percentage of the test sets for which the pattern is observed (%), we list the cumulative
percentage (%Cum).

LOB WSJ Wotan WotanlLite
Pattern % %Cum % %Cum % %Cum % %Cum
All taggers 93.93 93.93 93.80 93.80 85.68 85.68 90.50 90.50

agree and
are correct.

A majority is 3.30 97.23 2.64 96.44 6.54 92.22 4.73 95.23
correct.

Correct tag is 1.08 98.31 1.07 9751 0.82 93.04 1.59 96.82
present but is
tied.

A minority is 0.91 99.22 1.12 98.63 2.62 95.66 1.42 98.24
correct.

The taggers 021 9943 026 9889 153 9719 046  98.70
vary, but
are all wrong.

All taggers 0.57 100.00  1.11 100.00 281 100.00 130 100.00
agree but
are wrong.

It is interesting to see that although the general accuracy for WSJ is lower than
for LOB, the intertagger agreement for WSJ is on average higher. It would seem that
the less consistent tagging for WS] makes it easier for all systems to fall into the same
traps. This becomes even clearer when we examine the patterns of agreement and
see, for example, that the number of tokens where all taggers agree on a wrong tag is
practically doubled.

The agreement pattern distribution enables us to determine levels of combination
quality. Table 5 lists both the accuracies of several ideal combiners (%) and the error
reduction in relation to the best base tagger for the data set in question (Ag,.).”
For example, on LOB, “All ties correct” produces 1,941 errors (corresponding to an
accuracy of 98.31%), which is 31.3% less than HMM's 2,824 errors. A minimal level of
combination achievement is that a majority or better will lead to the correct tag and
that ties are handled appropriately about 50% of the time for the (2-2) pattern and
25% for the (1-1-1-1) pattern (or 33.3% for the (1-1-1) pattern for Wotan). In more
optimistic scenarios, a combiner is able to select the correct tag in all tied cases, or
even in cases where a two- or three-tagger majority must be overcome. Although the
possibility of overcoming a majority is present with the arbiter type combiners, the
situation is rather improbable. As a result, we ought to be more than satisfied if any
combiners approach the level corresponding to the projected combiner which resolves
all ties correctly.”

22 We express the error reduction in the form of a percentage, i.e., a relative measure, instead of by an
absolute value, because we feel this is the more informative of the two. After all, there is a vast
difference between an accuracy improvement of 0.5% from 50% to 50.5% (a Ag,, of 1%) and one of
0.5% from 99% to 99.5% (a Ag,, of 50%).

23 The bottom rows of Table 5 might be viewed in the light of potential future extremely intelligent
combination systems. For the moment, however, it is better to view them as containing recall values for
n-best versions of the combination taggers, e.g., an n-best combination tagger for LOB, which simply
provides all tags suggested by its four components, will have a recall score of 99.22%.
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Table 5

Projected accuracies for increasingly successful levels of combination achievement. For each
level we list the accuracy (%) and the percentage of errors made by the best individual tagger
that can be corrected by combination (Ag,.).

LOB WSJ Wotan WotanlLite
Pattern % Agy, % Ager % Ag, % Agn
Best Single Tagger HMM MXP HMM MXP
97.55 - 9%.88 - 92.06 - 9556 -
Ties randomly 97.77 90 9697 28 9249 55 96.01 10.1
correct.
All ties correct. 9831 313 9750 199 93.04 124 9682 283

Minority vs. two-tagger 98.48 485 9767 254 95.66 453 97.09 343
correct.

Minority vs three—tagger 99.22 684 98.63 56.0 - - 9824 60.3
correct.

Table 6

Accuracies of the combination systems on all four corpora. For each system we list its
accuracy (%) and the percentage of errors made by the best individual tagger that is corrected
by the combination system (Agy).

LOB WSJ Wotan WotanlLite

0/0 A Err 0/0 A Err 0/0 AEyr o/o AErr

Best Single Tagger HMM MXP HMM MXP
97.55 - 96.88 - 92.06 - 95.56 -

Voting
Majority 97.76 90 9698 31 9251 57 96.01 10.1
TotPrecision 9795 162 97.07 6.1 9258 65 9614 129
TagPrecision 9782 112 9699 34 9251 57 9598 95
Precision-Recall 9794 16.1 97.05 56 9250 56 9622 1438
TagPair 9798 178 97.11 72 9272 84 9628 162
Stacked Classifiers
WPDV(Tags) 98.06 208 97.15 87 9286 101 9633 172
WPDV (Tags+Word) 98.07 214 9717 93 9285 10.0 9634 175
WPDV(Tags+Context) 98.14 243 9723 113 93.03 122 9642 19.3
MBL(Tags) 98.06 205 97.14 85 9272 84 9630 16.7
MBI (Tags+Word) 98.02 192 97.12 76 9245 50 9630 16.6
MBL(Tags+Context) 98.10 226 9711 72 9275 87 9631 168
DecTrees(Tags) 98.01 189 9714 83 92.63 72 9631 168
DecTrees(Tags+Word) = - - - - - - -
DecTrees(Tags+Context) 98.03 197 97.12 7.7 - - 96.26 157
Maccent(Tags) 98.03 19.6 97.10 71 9276 89 9629 164
Maccent(Tags+Word) 98.02 193 9709 6.6 9263 72 9627 160
Maccent(Tags+Context) 98.12 235 97.10 70 9325 150 9637 182

*c5.0 was not able to cope with the large amount of data involved in all Tags+Word
experiments and the Tags+Context experiment with Wotan.

4.3 Results of Combination

In Table 6 the results of our experiments with the various combination methods are
shown. Again we list both the accuracies of the combiners (%) and the error reduction
in relation to the best base tagger (Ag,.). For example, on LOB, TagPair produces
2,321 errors (corresponding to an accuracy of 97.98%), which is 17.8% less than HMM's
2,824 errors.
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Although the combiners generally fall short of the “All ties correct” level (cf.
Table 5), even the most trivial voting system (Majority), significantly outperforms the
best individual tagger on all data sets. Within the simple voting systems, it appears
that use of more detailed voting weights does not necessarily lead to better results.
TagPrecision is clearly inferior to TotPrecision. On closer examination, this could have
been expected. Looking at the actual tag precision values (see Table 9 below), we
see that the precision is generally more dependent on the tag than on the tagger, so
that TagPrecision always tends to select the easier tag. In other words, it uses less
specific rather than more specific information. Precision-Recall is meant to correct this
behavior by the involvement of recall values. As intended, Precision-Recall generally
has a higher accuracy than TagPrecision, but does not always improve on TotPrecision.

Our previously unconfirmed hypothesis, that arbiter-type combiners would be able
to outperform the gang-type ones, is now confirmed. With the exception of several of
the Tags+Word versions and the Tags+Context version for W], the more sophisticated
modeling systems have a significantly better accuracy than the simple voting systems
on all four data sets. TagPair, being somewhere between simple voting and stacking,
also falls in the middle where accuracy is concerned. In general, it can at most be
said to stay close to the real stacking systems, except for the cleanest data set, LOB,
where it is clearly being outperformed. This is a fundamental change from our earlier
experiments, where TagPair was significantly better than MBL and Decision Trees. Our
explanation at the time, that the stacked systems suffered from a lack of training data,
appears to be correct. A closer investigation below shows at which amount of training
data the crossover point in quality occurs (for LOB).

Another unresolved issue from the earlier experiments is the effect of making word
or context information available to the stacked classifiers. With LOB and a single 114K
tune set (van Halteren, Zavrel, and Daelemans 1998), both MBL and Decision Trees
degraded significantly when adding context, and MBL degraded when adding the
word.” With the increased amount of training material, addition of the context gener-
ally leads to better results. For MBL, there is a degradation only for the WSJ data, and
of a much less pronounced nature. With the other data sets there is an improvement,
significantly so for LOB. For Decision Trees, there is also a limited degradation for WSJ
and WotanlLite, and a slight improvement for LOB. The other two systems appear to be
able to use the context more effectively. WPDV shows a relatively constant significant
improvement over all data sets. Maccent shows more variation, with a comparable
improvement on LOB and WotanLite, a very slight degradation on W§], and a spec-
tacular improvement on Wotan, where it even yields an accuracy higher than the “All
ties correct” level.” Addition of the word is still generally counterproductive. Only
WPDYV sometimes manages to translate the extra information into an improvement in
accuracy, and even then a very small one. It would seem that vastly larger amounts
of training data are necessary if the word information is to become useful.

5. Combination in Detail
The observations about the overall accuracies, although the most important, are not

the only interesting ones. We can also examine the results of the experiments above
in more detail, evaluating the results of combination for specific words and tags, and

24 Just as in the current experiments, the Decision Tree system could not cope with the amount of data
when the word was added.

25 We have no clear explanation for this exceptional behavior, but conjecture that Maccent is able to make
optimal use of the tagging differences caused by the high error rate of all four taggers.
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Table 7

Error rates for the most confusing words. For each word, we list the total number of instances
in the test set (n), the number of tags associated with the word (tags), and then, for each base
tagger and WPDV(Tags+Context), the rank in the error list (rank), the absolute number of
errors (err), and the percentage of instances that is mistagged (%).

MXP HMM MBT TBL WPDV(T+C)
Word n/tags “Ferr % err % mEerr % "Kerr % herr %

as 719/17  T102 1419 T130 18.08 120 16.69 Y167 2323 82 11.40
that 1,108/6 Z9g 884 %105 948 130 11.73 %134 1209 %80 7.22
to 2,645/9 %81 276 %59 223 %122 461 ¥131 427 %40 151
more  224/4 %52 2321 42 1875 %46 20.54 53 2376 %30 13.39
S0 247/10 632 1296 540 16.19 %40 16.19 Y63 2551 %31 1255

in 2,102/14 Y22 1.05 735 1.67 %43 246 G648 228 %25 119
about 177/3 537 20.90 541 23.16 730 1695 723 1299 722 1243
much  117/2 730 2564 %27 2308 827 2308 %35 2991 %20 17.09
her 373/3 1813 349 0 268 18 4.83 739 1046 7 188

trying to discover why such disappointing results are found for WSJ. Furthermore, we
can run additional experiments, to determine the effects of the size of the training set,
the number of base tagger components involved, and the granularity of the tagset.

5.1 Specific Words

The overall accuracy of the various tagging systems gives a good impression of relative
performance, but it is also useful to have a more detailed look at the tagging results.
Most importantly for this paper, the details give a better feel for the differences between
the base taggers and for how well a combiner can exploit these differences. More
generally, users of taggers or tagged corpora are rarely interested in the whole corpus.
They focus rather on specific words or word classes, for which the accuracy of tagging
may differ greatly from the overall accuracy.

We start our detailed examination with the words that are most often mistagged.
We use the LOB corpus for this evaluation, as it is the cleanest data set and hence
the best example. For each base tagger, and for WPDV(Tags+Context), we list the top
seven mistagged words, in terms of absolute numbers of errors, in Table 7. Although
the base taggers have been shown (in Section 4.2) to produce different errors, we see
that they do tend to make errors on the same words, as the five top-sevens together
contain only nine words.

A high number of errors for a word is due to a combination of tagging difficulty
and frequency. Examples of primarily difficult words are much and more. Even though
they have relatively low frequencies, they are ranked high on the error lists. Words
whose high error rate stems from their difficulty can be recognized by their high
error percentage scores. Examples of words whose high error rate stems from their
frequency are to and in. The error percentages show that these two words are actually
tagged surprisingly well, as to is usually quoted as a tough case and for in the taggers
have to choose between 14 possible tags. The first place on the list is taken by as, which
has both a high frequency and a high difficulty level (it is also the most ambiguous
word with 17 possible tags in LOB).

Table 7 shows yet again that there are clear differences between the base taggers,
providing the opportunity for effective combination. For all but one word, in, the
combiner manages to improve on the best tagger for that specific word. If we compare
to the overall best tagger, HMM, the improvements are sometimes spectacular. This is
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Table 8

Confusion rates for the tag pairs most often confused. For each pair (tagger, correct), we first
take the two possible confusion directions separately and list the corresponding error list
ranks (rank) and absolute number of errors (err) for the four base taggers and for
WPDV(Tags+Context). Then we list the same information for the pair as a whole, i.e., for the
two directions together.

MXP HMM MBT TBL WPDV(T+C)
Tagger Correct rank err rank err rank err rank err rank  err
VBN  VBD E 92 T 154 T 205 T 23 % 102
VBD VBN 5 118 o117 5152 5149 4 100
pair 210 271 357 385 202
i NN 213 2150 2 168 2 205 2 109
NN 7 T 153 6 75 4 148 4148 1 110
pair 285 225 316 353 219
IN Cs 105 4 93 5122 8 97 5 79
Cs IN 10 55 7 70 10 64 6 122 8 48
pair 160 163 186 219 127
NN VB 5 98 5 78 6 116 5132 6 59
VB NN % 28 M 45 P 60 7100 B 35
pair 126 123 176 232 94
IN RP 7 59 10 61 7 99 12 83 7 50
RP IN 2 30 B 38 ¥ 34 A 9 B 30
pair 89 99 133 125 80

of course especially the case where HMM has particular difficulties with a word, e.g.,
about with a 46.3% reduction in error rate, but in other cases as well, e.g., fo with a
32.2% reduction, which is still well above the overall error rate reduction of 24.3%.

5.2 Specific Tags

We can also abstract away from the words and simply look at common word class
confusions, e.g., a token that should be tagged VBD (past tense verb) is actually tagged
VBN (past participle verb). Table 8 shows the tag confusions that are present in the
top seven confusion list of at least one of the systems (again the four base taggers
and WPDV(Tags+Context) used on LOB). The number on the right in each system
column is the number of times the error was made and the number on the left is the
position in the confusion list. The rows marked with tag values show the individual
errors.”® In addition, the “pair” rows show the combined value of the two inverse
errors preceding it.”

As with the word errors above, we see substantial differences between the base
taggers. Unlike the situation with words, there are now a number of cases where
base taggers perform better than the combiner. Partly, this is because the base tagger
is outvoted to such a degree that its quality cannot be maintained, e.g., NN — ]JJ.
Furthermore, it is probably unfair to look at only one half of a pair. Any attempt to
decrease the number of errors of type X — Y will tend to increase the number of errors
of type Y — X. The balance between the two is best shown in the “pair” rows, and

26 The tags are: CS = subordinating conjunction, IN = preposition, JJ] = adjective, NN = singular
common noun, RP = adverbial particle, VB = base form of verb, VBD = past tense of verb, VBN =
past participle.

27 RP — IN is not actually in any top seven, but has been added to complete the last pair of inverse
errors.
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Table 9

Precision and recall for tags involved in the tag pairs most often confused. For each tag, we
list the percentage of tokens in the test set that are tagged with that tag (%test), followed by
the precision (Prec) and recall (Rec) values for each of the systems.

MXP HMM MBT TBL WPDV(T+C)
Tag  %test  Prec/Rec Prec/Rec Prec/Rec Prec/Rec Prec/Rec
s 148 92.69/90.69 90.14/91.10 89.46/89.05 84.85/91.51  93.11/93.38
IN 1057 97.58/98.95 97.83/9859 97.14/98.17 97.33/97.62  98.37/99.03
n 558 94.52/9455 94.07/95.61 92.79/9438 90.66/94.06  95.64/96.00

NN 13.11  96.68/97.85 97.91/97.24 96.59/97.22 96.00/96.31 97.66/98.25
RP 0.79 95.74/91.82 94.78/92.27 95.26/88.84 93.05/90.28  95.95/94.14
VB 277 98.04/95.55 97.95/95.99 96.79/9455 95.09/93.36  98.13/97.06
VBD 217 94.20/95.22 94.23/93.06 92.48/9029 91.74/87.40 95.26/95.14
VBN 230 94.07/9329 90.93/93.37 89.59/90.54 87.09/90.99  94.25/94.50

Table 10

A comparison of benchmark consistency on a small sample of WSJ and LOB. We list the
reasons for differences between WPDV(Tags+Context) output and the benchmark tagging,
both in terms of absolute numbers and percentages of the whole test set.

WSJ LOB
tokens %  tokens %
Tagger wrong, benchmark right 250 1.97 200 1.75
Benchmark wrong, tagger right 90 0.71 11 0.10
Both wrong 7 0.06 1 0.01
Benchmark left ambiguous, tagger right 2 002 - -

here the combiner is again performing excellently, in all cases improving on the best
base tagger for the pair.

For an additional point of view, we show the precision and recall values of the
systems on the same tags in Table 9, as well as the percentage of the test set that
should be tagged with each specific tag. The differences between the taggers are again
present, and in all but two cases the combiner produces the best score for both preci-
sion and recall. Furthermore, as precision and recall form yet another balanced pair,
that is, as improvements in recall tend to decrease precision and vice versa, the re-
maining two cases (NN and VBD), can be considered to be handled quite adequately
as well.

5.3 Effects of Inconsistency

Seeing the rather bad overall performance of the combiners on WSJ, we feel the need
to identify a property of the WSJ material that can explain this relative lack of success.
A prime candidate for this property is the allegedly very low degree of consistency
of the WS] material. We can investigate the effects of the low consistency by way of
comparison with the LOB data set, which is known to be very consistent.

We have taken one-tenth of the test sets of both WS] and LOB and manually
examined each token where the WPDV(Tags+Context) tagging differs from the bench-
mark tagging. The first indication that consistency is a major factor in performance is
found in the basic correctness information, given in Table 10. For WS]J, there is a much
higher percentage where the difference in tagging is due to an erroneous tag in the
benchmark. This does not mean, however, that the tagger should be given a higher
accuracy score, as it may well be that the part of the benchmark where tagger and
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benchmark do agree contains a similar percentage of benchmark errors. It does imply,
though, that the WS] tagging contains many more errors than the LOB tagging, which
is likely to be detrimental to the derivation of automatic taggers.

The cases where the tagger is found to be wrong provide interesting information
as well. Our examination shows that 109 of the 250 erroneous tags occur in situations
that are handled rather inconsistently in the corpus.

In some of these situations we only have to look at the word itself. The most
numerous type of problematic word (21 errors) is the proper noun ending in s. It
appears to be unclear whether such a word should be tagged NNP or NNPS. When
taking the words leading to errors in our 1% test set and examining them in the
training data, we see a near even split for practically every word. The most frequent
ones are Securities (146 NNP vs. 160 NNPS) and Airlines (72 NNP vs. 83 NNPS). There
are only two very unbalanced cases: Times (78 NNP vs. 6 NNPS) and Savings (76 NNP
vs. 21 NNPS). A similar situation occurs, although less frequently, for common nouns,
for example, headquarters gets 67 NN and 21 NNS tags.

In other cases, difficult words are handled inconsistently in specific contexts. Ex-
amples here are about in cases such as about 20 (405 IN vs. 385 RB) or about $20 (243
IN vs. 227 RB), ago in cases such as years ago (152 IN vs. 410 RB) and more in more than
(558 JIR vs. 197 RBR).

Finally, there are more general word class confusions, such as adjective/particle
or noun/adjective in noun premodifying positions. Here it is much harder to provide
numerical examples, as the problematic situation must first be recognized. We therefore
limit ourselves to a few sample phrases. The first is stock-index, which leads to several
errors in combinations like stock-index futures or stock-index arbitrage. In the training set,
stock-index in premodifying position is tagged JJ 64 times and NN 69 times. The second
phrase chief executive officer has three words so that we have four choices of tagging:
JJ-JJ-NN is chosen 90 times, JJ]-NN-NN 63 times, NN-JJ-NN 33 times, and NN-NN-NN
30 times.

Admittedly, all of these are problematic cases and many other cases are han-
dled quite consistently. However, the inconsistently handled cases do account for 44%
of the errors found for our best tagging system. Under the circumstances, we feel
quite justified in assuming that inconsistency is the main cause of the low accuracy
scores.”

5.4 Size of the Training Set

The most important result that has undergone a change between van Halteren, Zavrel,
and Daelemans (1998) and our current experiments is the relative accuracy of TagPair
and stacked systems such as MBL. Where TagPair used to be significantly better than
MBL, the roles are now well reversed. It appears that our hypothesis at the time, that
the stacked systems were plagued by a lack of training data, is correct, since they
can now hold their own. In order to see at which point TagPair is overtaken, we
have trained several systems on increasing amounts of training data from LOB.” Each
increment is one of the 10% training corpus parts described above. The results are
shown in Figure 5.

28 Another property that might contribute to the relatively low scores for the WS] material is the use of a
very small tagset. This makes annotation easier for human annotators, but it provides much less
information to the automatic taggers and combiners. It may well be that the remaining information is
insufficient for the systems to discover useful disambiguation patterns in. Although we cannot measure
this effect for WSJ, because of the many differences with the LOB data set, we feel that it has much less
influence than the inconsistency of the WSJ material.

29 Only combination uses a variable number of parts. The base taggers are always trained on the full 90%.
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Figure 5
The accuracy of combiner methods on LOB as a function of the number of tokens of training
material.

TagPair is only best when a single part is used (as in the earlier experiments).
After that it is overtaken and quickly left behind, as it is increasingly unable to use
the additional training data to its advantage.

The three systems using only base tagger outputs have comparable accuracy
growth curves, although the initial growth is much higher for WPDV. The curves
for WPDV and Maccent appear to be leveling out towards the right end of the graph.
For MBL, this is much less clear. However, it would seem that the accuracy level at
1M words is a good approximation of the eventual ceiling.

The advantage of the use of context information becomes clear at 500K words.
Here the tags-only systems start to level out, but WPDV(Tags+Context) keeps show-
ing a constant growth. Even at 1M words, there is no indication that the accuracy is
approaching a ceiling. The model seems to be getting increasingly accurate in correct-
ing very specific contexts of mistagging.

5.5 Interaction of Components

Another way in which the amount of input data can be varied is by taking subsets
of the set of component taggers. The relation between the accuracy of combinations
for LOB (using WPDV(Tags+Context)) and that of the individual taggers is shown
in Table 11. The first three columns show the combination, the accuracy, and the
improvement in relation to the best component. The other four columns show the
further improvement gained when adding yet another component.

The most important observation is that every combination outperforms the com-
bination of any strict subset of its components. The difference is always significant, ex-
cept in the cases MXP+HMM+MBT+TBL vs. MXP+HMM+MBT and HMM+MBT+TBL
vs. HMM+MBT.

We can also recognize the quality of the best component as a major factor in the
quality of the combination results. HMM and MXP always add more gain than MBT,
which always adds more gain than TBL. Another major factor is the difference in
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Table 11

WPDV(Tags+Context) accuracy measurements for various component tagger combinations.
For each combination, we list the tagging accuracy (Test), the error reduction expressed as a
percentage of the error count for the best component base tagger (Ag,r(best)) and any
subsequent error reductions when adding further components (Gain).

Gain  Gain Gain Gain
Combination Test Agy, (best) +TBL +MBT +MXP +HMM
TBL 96.37 - - 29.1 40.2 389
MBT 97.06 - 125 - 284 26.0
MBT+TBL 9743  12.5 (MBT) - - 20.6 17.2
MXP 97.52 - 123 15.0 - 16.2
HMM 97.55 - 9.5 11.3 15.3 -
HMM+TBL 9778 9.5 (HMM) - 4.0 11.8 -
HMM+MBT 97.82 11.3 (HMM) 2.0 - 13.7 -
MXP+TBL 97.83  12.3 (MXP) - 6.0 - 9.9
HMM+MBT+TBL 97.87 131 (HMM) - - 12.9 -
MXP+MBT 97.89  15.0 (MXP) 3.0 - - 10.8
MXP+HMM 9792 15.3 (HMM) 5.7 9.6 - -
MXP+MBT+TBL 9796  17.6 (MXP) - - ~ 9.1
MXP+HMM+TBL 98.04 20.1 (HMM) - 5.2 - -
MXP+HMM+MBT 98.12 234 (HMM) 1.1 - - -

MXP+HMM+MBT+TBL 98.14 24.3 (HMM) - - - -

language model. MXP, although having a lower accuracy by itself than HMM, yet
leads to better combination results, again witnessed by the Gain columns. In some
cases, MXP is even able to outperform pairs of components in combination: both
MXP+MBT and MXP+HMM are better than HMM+MBT+TBL.

5.6 Effects of Granularity
The final influence on combination that we measure is that of the granularity of the
tagset, which can be examined with the highly structured Wotan tagset. Part of the
examination has already taken place above, as we have added the WotanLite tagset, a
less granular projection of Wotan. As we have seen, the WotanLite taggers undeniably
have a much higher accuracy than the Wotan ones. However, this is hardly surprising,
as they have a much easier task to perform. In order to make a fair comparison, we
now measure them at their performance of the same task, namely, the prediction of
WotanLite tags. We do this by projecting the output of the Wotan taggers (i.e., the base
taggers, WPDV(Tags), and WPDV(Tags+Context)) to WotanLite tags. Additionally, we
measure all taggers at the main word class level, i.e., after the removal of all attributes
and ditto tag markers.

All results are listed in Table 12. The three major horizontal blocks each represent
a level at which the correctness of the final output is measured. Within the lower two
blocks, the three rows represent the type of tags used by the base taggers. The rows
for Wotan and WotanLite represent the actual taggers, as described above. The row for
BestLite does not represent a real tagger, but rather a virtual tagger that corresponds
to the best tagger from among Wotan (with its output projected to WotanLite format)
and WotanLite. This choice for the best granularity is taken once for each system
as a whole, not per individual token. This leads to BestLite being always equal to
WotanLite for TBL and MBT, and to projected Wotan for MXP and HMM.

The three major vertical blocks represent combination strategies: no combination,
combination using only the tags, and combination using tags and direct context. The
two combination blocks are divided into three columns, representing the tag level
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Table 12

Accuracy for base taggers and different levels combiners, as measured at various levels of
granularity. The rows are divided into blocks, each listing accuracies for a different comparison
granularity. Within a block, the individual rows list which base taggers are used as ingredients
in the combination. The columns contain, from left to right, the accuracies for the base taggers,
the combination accuracies when using only tags (WPDV(Tags)) at three different levels of
combination granularity (Full, Lite, and Main) and the combination accuracies when adding
context (WPDV(Tags+Context)), at the same three levels of combination granularity.

Base Taggers WPDV(Tags) WPDV(Tags+Context)

TBL MBT MXP HMM | Ful Lite Main| Full Lite Main
Measured as Wotan Tags

Wotan - 8978 9172 9206 | 9283 - - | 903 - -
Measured as WotanLite Tags

Wotan - 9456 9571 9598 | 9650 9649 - | 9653 9654 -

WotanLite | 94.63 9492 9556 9526 | - 9632 - - 942 -

BestLite | 9463 9492 9571 9598 | - 9658 - - 9664 -

Measured as Main Word Class Tags
Wotan ] - 96.55 9723 9754 | 9788 9787 97.85 | 97.88 97.89 9791
96.37

WotanLite 9676 9712  96.96 - 97.69 97.71 - 9776  97.77
BestLite 96.37 9676 9723 9754 - 9791  97.90 - 9794 9793

at which combination is performed, for example, for the Lite column the output of
the base taggers is projected to WotanLite tags, which are then used as input for the
combiner.

We hypothesized beforehand that, in general, the more information a system can
use, the better its results are. Unfortunately, even for the base taggers, reality is not that
simple. For both MXP and HMM, the Wotan tagger indeed yields a better WotanLite
tagging than the WotanLite tagger itself, thus supporting the hypothesis. On the other
hand, the results for MBT do not confirm this, as here the WotanLite tagger is more ac-
curate. However, we have already seen that MBT has severe problems in dealing with
the complex Wotan data. Furthermore, the lowered accuracy of the MBL combiners
when provided with words (see Section 4.3) also indicate that memory-based learning
sometimes has problems in coping with a surplus of information. This means that we
have to adjust our hypothesis: more information is better, but only up to the point
where the wealth of information overwhelms the machine learning system. Where this
point is found obviously differs for each system.

For the combiners, the situation is rather inconclusive. In some cases, especially
for WPDV(Tags), combining at a higher granularity (i.e., using more information) pro-
duces better results. In others, combining at a lower granularity works better. In all
cases, the difference in scores between the columns is extremely small and hardly
supports any conclusions either way. What is obviously much more important for the
combiners is the quality of the information they can work with. Here, higher granular-
ity on the part of the ingredients is preferable, as combiners based on Wotan taggers
perform better than those based on WotanLite taggers,® and ingredient performance
seems to be even more useful, as BestLite yields yet better results in all cases.

30 However, this comparison is not perfect, as the combination of Wotan tags does not include TBL. On
the one hand, this means the combination has less information to go on and we should hence be even
more impressed with the better performance. On the other hand, TBL is the lowest scoring base tagger,
so maybe the better performance is due to not having to cope with a flawed ingredient.
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Table 13
A comparison of our results for WSJ with those by Brill and Wu (1998).

Brill and Wu Our Experiments
Training/Test Split 80/20 Training /Test Split 90/10
Unigram 93.26 LexProb 94.57
Trigram 96.36 TnT 96.63
- MBT 96.41
Transformation 96.61 Transformation 96.28
Maximum Entropy 96.83 Maximum Entropy 96.88
Transformation-based combination 97.16 WPDV(Tags+Context) 97.23
Error rate reduction 10.4% Error rate reduction 11.3%

6. Related Research

Combination of ensembles of classifiers, although well-established in the machine
learning literature, has only recently been applied as a method for increasing accuracy
in natural language processing tasks. There has of course always been a lot of research
on the combination of different methods (e.g., knowledge-based and statistical) in hy-
brid systems, or on the combination of different information sources. Some of that
work even explicitly uses voting and could therefore also be counted as an ensemble
approach. For example, Rigau, Atserias, and Agirre (1997) combine different heuris-
tics for word sense disambiguation by voting, and Agirre et al. (1998) do the same
for spelling correction evaluation heuristics. The difference between single classifiers
learning to combine information sources, i.e., their input features (see Roth [1998] for a
general framework), and the combination of ensembles of classifiers trained on subsets
of those features is not always very clear anyway.

For part-of-speech tagging, a significant increase in accuracy through combining
the output of different taggers was first demonstrated in van Halteren, Zavrel, and
Daelemans (1998) and Brill and Wu (1998). In both approaches, different tagger gen-
erators were applied to the same training data and their predictions combined using
different combination methods, including stacking. Yet the latter paper reported much
lower accuracy improvement figures. As we now apply the methods of van Halteren,
Zavrel, and Daelemans (1998) to WS] as well, it is easier to make a comparison. An
exact comparison is still impossible, as we have not used the exact same data prepara-
tion and taggers, but we can put roughly corresponding figures side by side (Table 13).
As for base taggers, the first two differences are easily explained: Unigram has to deal
with unknown words, while LexProb does not, and TnT is a more advanced trigram
system. The slight difference for Maximum Entropy might be explained by the dif-
ference in training/test split. What is more puzzling is the substantial difference for
the transformation-based tagger. Possible explanations are that Brill and Wu used a
much better parametrization of this system or that they used a different version of the
WSJ material. Be that as it may, the final results are comparable and it is clear that
the lower numbers in relation to LOB are caused by the choice of test material (WS])
rather than by the methods used.

In Tufis (1999), a single tagger generator is trained on different corpora repre-
senting different language registers. For the combination, a method called credibility
profiles worked best. In such a profile, for each component tagger, information is
kept about its overall accuracy, its accuracy for each tag, etc. In another recent study,
Marquez et al. (1999) investigate several types of ensemble construction in a decision
tree learning framework for tagging specific classes of ambiguous words (as opposed
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to tagging all words). The construction of ensembles was based on bagging, selection
of different subsets of features (e.g., context and lexical features) in decision tree con-
struction, and selection of different splitting criteria in decision tree construction. In
all experiments, simple voting was used to combine component tagger decisions. All
combination approaches resulted in a better accuracy (an error reduction between 8%
and 12% on average compared to the basic decision tree trained on the same data). But
as these error reductions refer to only part of the tagging task (18 ambiguity classes),
they are hard to compare with our own results.

In Abney, Schapire, and Singer (1999), ADABOOST variants are used for tagging
WSJ material. Component classifiers here are based on different information sources
(subsets of features), e.g., capitalization of current word, and the triple “string, cap-
italization, and tag” of the word to the left of the current word are the basis for
the training of some of their component classifiers. Resulting accuracy is comparable
to, but not better than, that of the maximum entropy tagger. Their approach is also
demonstrated for prepositional phrase attachment, again with results comparable to
but not better than state-of-the-art single classifier systems. High accuracy on the same
task is claimed by Alegre, Sopena, and Lloberas (1999) for combining ensembles of
neural networks. ADAB0OST has also been applied to text filtering (Schapire, Singer,
and Singhal 1998) and text categorization (Schapire and Singer 1998).

In Chen, Bangalore, and Vijay-Shanker (1999), classifier combination is used to
overcome the sparse data problem when using more contextual information in super-
tagging, an approach in which parsing is reduced to tagging with a complex tagset
(consisting of partial parse trees associated with lexical items). When using pairwise
voting on models trained using different contextual information, an error reduction
of 5% is achieved over the best component model. Parsing is also the task to which
Henderson and Brill (1999) apply combination methods with reductions of up to 30%
precision error and 6% recall error compared to the best previously published results
of single statistical parsers.

This recent research shows that the combination approach is potentially useful for
many NLP tasks apart from tagging,.

7. Conclusion

Our experiments have shown that, at least for the word class tagging task, combina-
tion of several different systems enables us to raise the performance ceiling that can be
observed when using data-driven systems. For all tested data sets, combination pro-
vides a significant improvement over the accuracy of the best component tagger. The
amount of improvement varies from 11.3% error reduction for WSJ to 24.3% for LOB.
The data set that is used appears to be the primary factor in the variation, especially
the data set’s consistency. '

As for the type of combiner, all stacked systems using only the set of proposed
tags as features reach about the same performance. They are clearly better than sim-
ple voting systems, at least as long as there is sufficient training data. In the absence
of sufficient data, one has to fall back to less sophisticated combination strategies.
Addition of word information does not lead to improved accuracy, at least with the
current training set size. However, it might still be possible to get a positive effect by
restricting the word information to the most frequent and ambiguous words only. Ad-
dition of context information does lead to improvements for most systems. WPDV
and Maccent make the best use of the extra information, with WPDV having an
edge for less consistent data (WSJ) and Maccent for material with a high error rate
(Wotan).
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Although the results reported in this paper are very positive, many directions for
research remain to be explored in this area. In particular, we have high expectations for
the following two directions. First, there is reason to believe that better results can be
obtained by using the probability distributions generated by the component systems,
rather than just their best guesses (see, for example, Ting and Witten [1997a]). Second,
in the present paper we have used disagreement between a fixed set of component
classifiers. However, there exist a number of dimensions of disagreement (inductive
bias, feature set, data partitions, and target category encoding) that might fruitfully
be searched to yield large ensembles of modular components that are evolved to
cooperate for optimal accuracy.

Another open question is whether and, if so, when, combination is a worthwile
technique in actual NLP applications. After all, the natural language text at hand has to
be processed by each of the base systems, and then by the combiner. Now none of these
is especially bothersome at run-time (most of the computational difficulties being expe-
rienced during training), but when combining N systems, the time needed to process
the text can be expected to be at least a factor N+1 more than when using a single sys-
tem. Whether this is worth the improvement that is achieved, which is as yet expressed
in percents rather than in factors, will depend very much on the amount of text that has
to be processed and the use that is made of the results. There are a few clear-cut cases,
such as a corpus annotation project where the CPU time for tagging is negligible in
relation to the time needed for manual correction afterwards (i.e., do use combination),
or information retrieval on very large text collections where the accuracy improvement
does not have enough impact to justify the enormous amount of extra CPU time (i.e.,
do not use combination). However, most of the time, the choice between combining or
not combining will have to be based on evidence from carefully designed pilot experi-
ments, for which this paper can only hope to provide suggestions and encouragement.
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