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We examine how differences in language models, learned by different data-driven systems per- 
forming the same NLP task, can be exploited to yield a higher accuracy than the best individual 
system. We do this by means of experiments involving the task of morphosyntactic word class 
tagging, on the basis of three different tagged corpora. Four well-known tagger generators (hidden 
Markov model, memory-based, transformation rules, and maximum entropy) are trained on the 
same corpus data. After comparison, their outputs are combined using several voting strategies 
and second-stage classifiers. All combination taggers outperform their best component. The re- 
duction in error rate varies with the material in question, but can be as high as 24.3% with the 
LOB corpus. 

1. Introduction 

In all natural language processing (NLP) systems, we find one or more language 
models that are used to predict, classify, or interpret language-related observations. 
Because most real-world NLP tasks require something that approaches full language 
understanding in order to be perfect, but automatic systems only have access to limited 
(and often superficial) information, as well as limited resources for reasoning with that 
information, such language models tend to make errors when the system is tested on 
new material. The engineering task in NLP is to design systems that make as few errors 
as possible with as little effort as possible. Common ways to reduce the error rate are to 
devise better representations of the problem, to spend more time on encoding language 
knowledge (in the case of hand-crafted systems), or to find more training data (in the 
case of data-driven systems). However, given limited resources, these options are not 
always available. 

Rather than devising a new representation for our task, in this paper, we combine 
different systems employing known representations. The observation that suggests 
this approach is that systems that are designed differently, either because they use a 
different formalism or because they contain different knowledge, will typically produce 
different errors. We hope to make use of this fact and reduce the number of errors with 

* P.O. Box 9103, 6500 HD Nijmegen, The Netherlands. E-mail: hvh@let.kun.nl. 
t Universiteitsplein 1, 2610 Wilrijk, Belgium. E-mail: zavrel@textkerneLnl. 
:~ Universiteitsplein 1, 2610 Wilrijk, Belgium. E-mail: daelem@uia.ua.ac.be. 

Q 2001 Association for Computational Linguistics 



Computational Linguistics Volume 27, Number 2 

very little additional effort by exploiting the disagreement between different language 
models. Although the approach is applicable to any type of language model, we focus 
on the case of statistical disambiguators that are trained on annotated corpora. The 
examples of the task that are present in the corpus and its annotation are fed into a 
learning algorithm, which induces a model of the desired input-output mapping in the 
form of a classifier. We use a number of different learning algorithms simultaneously 
on the same training corpus. Each type of learning method brings its own "inductive 
bias" to the task and will produce a classifier with slightly different characteristics, so 
that different methods will tend to produce different errors. 

We investigate two ways of exploiting these differences. First, we make use of 
the gang effect. Simply by using more than one classifier, and voting between their 
outputs, we expect to eliminate the quirks, and hence errors, that are due to the 
bias of one particular learner. However, there is also a way to make better use of 
the differences: we can create an arbiter effect. We can train a second-level classifier 
to select its output on the basis of the patterns of co-occurrence of the outputs of 
the various classifiers. In this way, we not only counter the bias of each component, 
but actually exploit it in the identification of the correct output. This method even 
admits the possibility of correcting collective errors. The hypothesis is that both types 
of approaches can yield a more accurate model from the same training data than the 
most accurate component of the combination, and that given enough training data the 
arbiter type of method will be able to outperform the gang type. 1 

In the machine learning literature there has been much interest recently in the the- 
oretical aspects of classifier combination, both of the gang effect type and of the arbiter 
type (see Section 2). In general, it has been shown that, when the errors are uncorre- 
lated to a sufficient degree, the resulting combined classifier will often perform better 
than any of the individual systems. In this paper we wish to take a more empirical 
approach and examine whether these methods result in substantial accuracy improve- 
ments in a situation typical for statistical NLP, namely, learning morphosyntactic word 
class tagging (also known as part-of-speech or POS tagging) from an annotated corpus 
of several hundred thousand words. 

Morphosyntactic word class tagging entails the classification (tagging) of each 
token of a natural language text in terms of an element of a finite palette (tagset) of 
word class descriptors (tags). The reasons for this choice of task are several. First of 
all, tagging is a widely researched and well-understood task (see van Halteren [1999]). 
Second, current performance levels on this task still leave room for improvement: 
"state-of-the-art" performance for data-driven automatic word class taggers on the 
usual type of material (e.g., tagging English text with single tags from a low-detail 
tagset) is at 96-97% correctly tagged words, but accuracy levels for specific classes 
of ambiguous words are much lower. Finally, a number of rather different methods 
that automatically generate a fully functional tagging system from annotated text are 
available off-the-shelf. First experiments (van Halteren, Zavrel, and Daelemans 1998; 
Brill and Wu 1998) demonstrated the basic validity of the approach for tagging, with 
the error rate of the best combiner being 19.1% lower than that of the best individual 
tagger (van Halteren, Zavrel, and Daelemans 1998). However, these experiments were 
restricted to a single language, a single tagset and, more importantly, a limited amount 
of training data for the combiners. This led us to perform further, more extensive, 

1 In previous work (van Halteren, Zavrel, and Daelemans 1998), we were unable to confirm the latter 
half of the hypothesis unequivocally. As we judged this to be due to insufficient training data for 
proper training of the second-level classifiers, we greatly increase the amount of training data in the 
present work through the use of cross-validation. 
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tagging experiments before moving on to other tasks. Since then the method has also 
been applied to other NLP tasks with good results (see Section 6). 

In the remaining sections, we first introduce classifier combination on the basis of 
previous work in the machine learning literature and present the combination meth- 
ods we use in our experiments (Section 2). Then we explain our experimental setup 
(Section 3), also describing the corpora (3.1) and tagger generators (3.2) used in the 
experiments. In Section 4, we go on to report the overall results of the experiments, 
starting with a comparison between the component taggers (and hence between the 
underlying tagger generators) and continuing with a comparison of the combination 
methods. The results are examined in more detail in Section 5, where we discuss such 
aspects as accuracy on specific words or tags, the influence of inconsistent training 
data, training set size, the contribution of individual component taggers, and tagset 
granularity. In Section 6, we discuss the results in the light of related work, after 
which we conclude (Section 7) with a summary of the most important observations 
and interesting directions for future research. 

2. Combination Methods 

In recent years there has been an explosion of research in machine learning on finding 
ways to improve the accuracy of supervised classifier learning methods. An important 
finding is that a set of classifiers whose individual decisions are combined in some 
way (an ensemble) can be more accurate than any of its component classifiers if the 
errors of the individual classifiers are sufficiently uncorrelated (see Dietterich [1997], 
Chan, Stolfo, and Wolpert [1999] for overviews). There are several ways in which an 
ensemble can be created, both in the selection of the individual classifiers and in the 
way they are combined. 

One way to create multiple classifiers is to use subsamples of the training exam- 
ples. In bagging, the training set for each individual classifier is created by randomly 
drawing training examples with replacement from the initial training set (Breiman 
1996a). In boosting, the errors made by a classifier learned from a training set are 
used to construct a new training set in which the misclassified examples get more 
weight. By sequentially performing this operation, an ensemble is constructed (e.g., 
ADABOOST, [Freund and Schapire 1996]). This class of methods is also called arcing 
(for adaptive resampling and combining). In general, boosting obtains better results 
than bagging, except when the data is noisy (Dietterich 1997). Another way to cre- 
ate multiple classifiers is to train classifiers on different sources of information about 
the task by giving them access to different subsets of the available input features 
(Cherkauer 1996). Still other ways are to represent the output classes as bit strings 
where each bit is predicted by a different component classifier (error correcting output 
coding [Dietterich and Bakiri 1995]) or to develop learning-method-specific methods 
for ensuring (random) variation in the way the different classifiers of an ensemble are 
constructed (Dietterich 1997). 

In this paper we take a multistrategy approach, in which an ensemble is con- 
structed by classifiers resulting from training different learning methods on the same 
data (see also Alpaydin [1998]). 

Methods to combine the outputs of component classifiers in an ensemble include 
simple voting where each component classifier gets an equal vote, and weighted 
voting, in which each component classifier's vote is weighted by its accuracy (see, for 
example, Golding and Roth [1999]). More sophisticated weighting methods have been 
designed as well. Ali and Pazzani (1996) apply the Naive Bayes' algorithm to learn 
weights for classifiers. Voting methods lead to the gang effect discussed earlier. The 
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Let Ti be the component taggers, Si(tok) the most probable tag for a token tok as suggested by Ti, and let 
the quality of tagger T i be measured by 

• the precision of Ti for tag tag: Prec(Ti, tag) 

• the recall of T i for tag tag: Rec(Ti, tag) 
• the overall precision of Ti: Prec(Ti) 

Then the vote V(tag, tok) for tagging token tok with tag tag is given by: 

• Majority: 

• TotPrecision: 

• TagPrecision: 

• Precision-Recall: 

~ _ I F  Si(tok)= tag THEN 1 ELSE 0 
i 

~ _ I F  Si(tok)= tag THEN Prec(Ti) ELSE 0 
i 

~__IF Si(tok ) = tag THEN Prec(Ti, tag) ELSE 0 
i 

~_.IF Si(tok ) =tag THEN Prec(Ti, tag) ELSE 1-Rec(Ti ,  tag) 
i 

Figure 1 
Simple algorithms for voting between component taggers. 

most  interesting approach to combinat ion is s tacking in which a classifier is t rained 
to predict  the correct ou tpu t  class when  given as input  the outputs  of the ensemble 
classifiers, and possibly additional information (Wolpert 1992; Breiman 1996b; Ting and 
Witten 1997a, 1997b). Stacking can lead to an arbiter effect. In this paper  we compare  
voting and stacking approaches on the tagging problem. 

In the remainder  of this section, we describe the combinat ion methods  we use 
in our  experiments.  We start with variations based on weighted voting. Then we go 
on to several types of stacked classifiers, which model  the disagreement  situations 
observed in the training data in more detail. The input  to the second-stage classifier 
can be limited to the first-level outputs  or can contain addit ional  information from the 
original input  pattern. We will consider a number  of different second-level learners. 
Apart  f rom using three wel l -known machine learning methods,  memory-based  learn- 
ing, ma x im um entropy, and decision trees, we also introduce a new method,  based on 
grouped voting. 

2.1 Simple Voting 
The most  s traightforward me thod  to combine the results of multiple taggers is to do 
an n-way vote. Each tagger is al lowed to vote for the tag of its choice, and the tag with 
the highest  number  of votes is selected. 2 The quest ion is h o w  large a vote we allow 
each tagger (Figure 1). The most  democratic opt ion is to give each tagger one vote 
(Majority). This does not  require any tuning of the voting mechanism on training data. 

However ,  the component  taggers can be dist inguished by  several figures of merit,  
and it appears  more  useful to give more  weight  to taggers that have p roved  their 
quality. For this purpose  we use precis ion and recall, two wel l -known measures,  which 

2 In all our  exper iments ,  any ties are resolved by  a r a n d o m  selection from a m o n g  the w i n n i n g  tags. 
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can be applied to the evaluation of tagger output as well. For any tag X, precision 
measures which percentage of the tokens tagged X by the tagger are also tagged X 
in the benchmark. Recall measures which percentage of the tokens tagged X in the 
benchmark are also tagged X by the tagger. When abstracting away from individual 
tags, precision and recall are equal (at least if the tagger produces exactly one tag per 
token) and measure how many tokens are tagged correctly; in this case we also use 
the more generic term accuracy. We will call the voting method where each tagger is 
weighted by its general quality TotPrecision, i.e., each tagger votes its overall precision. 
To allow for more detailed interactions, each tagger is weighted by the quality in 
relation to the current situation, i.e., each tagger votes its precision on the tag it suggests 
(TagPrecision). This way, taggers that are accurate for a particular type of ambiguity 
can act as specialized experts. The information about each tagger's quality is derived 
from a cross-validation of its results on the combiner training set. The precise setup 
for deriving the training data is described in more detail below, in Section 3. 

We have access to even more information on how well the taggers perform. We 
not only know whether we should believe what they propose (precision) but know as 
well how often they fail to recognize the correct tag (1 - recall). This information can 
be used by forcing each tagger to add to the vote for tags suggested by the opposition 
too, by an amount equal to 1 minus the recall on the opposing tag (Precision-Recall). 
As an example, suppose that the MXPOST tagger suggests DT and the HMM tagger 
TnT suggests CS (two possible tags in the LOB tagset for the token that). If MXPOST 
has a precision on DT of 0.9658 and a recall on CS of 0.8927, and TnT has a precision on 
CS of 0.9044 and a recall on DT of 0.9767, then DT receives a 0.9658 + 0.0233 = 0.9991 
vote and CS a 0.9044 + 0.1073 = 1.0117 vote. 

Note that simple voting combiners can never return a tag that was not suggested 
by a (weighted) majority of the component taggers. As a result, they are restricted 
to the combination of taggers that all use the same tagset. This is not the case for 
all the following (arbiter type) combination methods, a fact which we have recently 
exploited in bootstrapping a word class tagger for a new corpus from existing taggers 
with completely different tagsets (Zavrel and Daelemans 2000). 

2.2 Stacked Probabilistic Voting 
One of the best methods for tagger combination in (van Halteren, Zavrel, and Daele- 
mans 1998) is the TagPair method. It looks at all situations where one tagger suggests 
tag 1 and the other tag 2 and estimates the probability that in this situation the tag 
should actually be tag x. Although it is presented as a variant of voting in that paper, 
it is in fact also a stacked classifier, because it does not necessarily select one of the 
tags suggested by the component taggers. Taking the same example as in the voting 
section above, if tagger MXPOST suggests DT and tagger TnT suggests CS, we find 
that the probabilities for the appropriate tag are: 

CS 
CS22 
DT 
QL 
WPR 

subordinating conjunction 0.4623 
second half of a two-token subordinating conjunction, e.g., so that 0.0171 
determiner 0.4966 
quantifier 0.0103 
wh-pronoun 0.0137 

When combining the taggers, every tagger pair is taken in turn and allowed to 
vote (with a weight equal to the probability P(tag x I tag1, tag2) as described above) 
for each possible tag (Figure 2). If a tag pair tagl-tag 2 has never been observed in the 
training data, we fall back on information on the individual taggers, i.e., P(tag x I tag1) 
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Let Ti be the component taggers and Si(tok) the most probable tag for a token tok as suggested by Ti. Then 
the vote V(tag, tok) for tagging token tok with tag tag is given by: 

V(tag, tok) = ~_~ Vi,j(tag , tok) 
i,jliKj 

where Vial(tag, tok) is given by 

IF frequency(Si(tokx) = Si(tok), Sj(tokx) = Sj(tok) ) > 0 

THEN Vial(tag, tok) = P(tag l Si(tok~) = Si(tok), Sj(tokx) = Sj(tok) ) 

Vi,j(tag, tok) = ~P(tag ] Si(tokx) = Si(tok) ) + ~P(tag I Sj(tokx) = Sj(tok) ) ELSE 

Figure 2 
The TagPair algorithm for voting between component taggers. 

If the case to be classified corresponds to the feature-value pair set 

Fcase = {0Cl = V l }  . . . . .  {fn  = V n } }  

then estimate the probability of each class Cx for Fcase as a weighted sum over all possible subsets Fsu b of 
Fcase: 

~(Cx) ~_, Wr~.bP(CK I Esub) 
Fsub C Fcase 

with the weight WG, b for an Fsub containing n elements equal to n---L-r' where Wnorm is a normalizing Wnor m i 
constant so that ~cx  P(Cx) = 1. 

Figure 3 
The Weighted Probability Distribution Voting classification algorithm, as used in the 
combination experiments. 

and  P ( t a g  x I tag2). Note  that  wi th  this m e t hod  (and all of the following), a tag sugges ted  
by  a minor i ty  (or even none) of the taggers  actual ly has a chance to win,  a l though in 
practice the chance to beat  a majori ty  is still ve ry  slight. 

Seeing the success of TagPair in the earlier exper iments ,  we  decided to t ry to 
generalize this s tacked probabilist ic vot ing approach  to combinat ions  larger than  pairs.  
A m o n g  other things, this wou ld  let us include word  and  context features here as well. 
The me thod  that  was  eventual ly  deve loped  we  have  called Weighted Probability 
Distribution Voting (henceforth WPDV). 

A WPDV classification mode l  is not  l imited to pairs  of features (such as the pairs  
of tagger  outputs  for TagPair), bu t  can use the probabi l i ty  distr ibutions for all feature 
combinat ions  observed  in the training data  (Figure 3). Dur ing  voting,  we  do not  use a 
fallback s t rategy (as TagPair does) but  use weights  to p reven t  the lower-order  combi-  
nat ions f rom excessively influencing the final results w h e n  a h igher-order  combinat ion  
(i.e., more  exact information) is present.  The original system, as used  for this paper ,  
weights  a combinat ion  of order  n wi th  a factor n!, a n u m b e r  based  on the observat ion  
that  a combinat ion  of order  m contains m combinat ions  of order  (m - 1) that  have  to 
be  compe ted  with. Its only  pa rame te r  is a threshold for the n u m b e r  of t imes a combi-  
nat ion mus t  be  observed  in the training data in order  to be used, which  helps p reven t  
a combinator ia l  explosion w h e n  there are too m a n y  atomic features. 3 

3 In our experiments, this parameter is always set to 5. WPDV has since evolved, using more parameters 
and more involved weighting schemes, and also been tested on tasks other than tagger combination 
(van Halteren 2000a, 2000b). 
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• Tags suggested by the base taggers, used by all systems: 

TagTBL = JJ T a g M B T  = V B N  T a g M X P  = V B D  T a g H M M  = JJ 

• The focus token, used by stacked classifiers at level Tags+Word: 

Word = restored 

• Full form tags suggested by the base tagger for the previous and next token, used by stacked 
classifiers at level Tags+Context, except for WPDV: 

PrevTBL = JJ P r e v M B T  = N N  P r e v M X P  = N N  P r e v H M M  = J] 

N e x t T B L  = N N  N e x t M B T  = N N  N e x t M X P  = N N  N e x t H M M  = N N  

• Compressed form of the context tags, used by WPDV(Tags+Context), because the system was 
unable to cope with the large number of features: 

Prev ~- JJ + N N  + N N  + JJ N e x t  = N N  + N N  + N N  + N N  

• Target feature, used by all systems: 
Tag = V B D  

Figure 4 
Features used by the combination systems. Examples are taken from the LOB material. 

In contrast to voting, stacking classifiers allows the combination of the outputs  of 
component  systems with additional information about  the decision's context. We in- 
vestigated several versions of this approach. In the basic version (Tags), each training 
case for the second-level learner consists of the tags suggested by  the component  tag- 
gers and the correct tag (Figure 4). In the more  advanced versions, we add information 
about  the word  in quest ion (Tags+Word) and the tags suggested by  all taggers for the 
previous and the next  position (Tags+Context). These types of extended second-level 
features can be exploited by  WPDV, as well as by  a wide selection of other machine 
learning algorithms. 

2.3 Memory-based Combination 
Our first choice from these other algorithms is a memory-based  second-level learner, 
implemented  in TiMBL (Daelemans et al. 1999), a package developed at Tilburg Uni- 
versi ty and Antwerp  University. 4 

Memory-based learning is a learning method  that is based on storing all examples 
of a task in m e m o r y  and then classifying new examples by  similarity-based reasoning 
from these stored examples. Each example is represented by  a fixed-length vector of 
feature values, called a case. If the case to be classified has been observed before, 
that is, if it is found among the stored cases (in the case base), the most  frequent  
corresponding ou tpu t  is used. If the case is not  found in the case base, k nearest  
neighbors are de termined with some similarity metric, and the output  is based on the 
observed outputs  for those neighbors. Both the value of k and the similarity metric 
used can be selected by  parameters  of the system. For the Tags version, the similarity 
metric used is Over lap  (a count  of the number  of matching feature values be tween a 
test and a training item) and k is kept  at 1. For the other two versions (Tags+Word and 
Tags+Context), a value of k = 3 is used, and each over lapping feature is weighted by  
its Information Gain (Daelemans, Van den Bosch, and Weijters 1997). The Information 

4 TiMBL is available from http://ilk.kub.nl/. 
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Gain of a feature is defined as the difference between the entropy of the a priori class 
distribution and the conditional entropy of the classes given the value of the feature. ~ 

2.4 Maximum Entropy Combination 
The second machine learning method,  max imum entropy modeling, implemented in 
the Maccent system (Dehaspe 1997), does the classification task by selecting the most 
probable class given a max imum entropy model. 6 This type of model represents ex- 
amples of the task (Cases) as sets of binary indicator features, for the task at hand  
conjunctions of a particular tag and a particular set of feature values. The model has 
the form of an exponential model: 

1 e Y~i ~i~(ca~,~g) 
pA(tag l Case) -- Za(Case) 

where i indexes all the binary features, fi is a binary indicator function for feature i, 
ZA is a normalizing constant, and )~i is a weight  for feature i. The model  is trained by 
iteratively adding binary features with the largest gain in the probability of the train- 
ing data, and estimating the weights using a numerical optimization method called 
improved iterafive scaling. The model  is constrained by the observed distribution of 
the features in the training data and has the property of having the max imum en- 
tropy of all models that fit the constraints, i.e., all distributions that are not directly 
constrained by the data are left as uniform as possible. 7 

The max imum entropy combiner takes the same information as the memory-based 
learner as input, but  internally translates all mult ivalued features to binary indicator 
functions. The improved iterative scaling algorithm is then applied, wi th  a max imum 
of one hundred  iterations. This algorithm is the same as the one used in the M X P O S T  
tagger described in Section 3.2.3, but  wi thout  the beam search used in the tagging 
application. 

2.5 Decision Tree Combination 
The third machine learning method we used is c5.0 (Quinlan 1993), an example of 
top-down induction of decision trees. 8 A decision tree is constructed by recursively 
partitioning the training set, selecting, at each step, the feature that most  reduces the 
uncertainty about the class in each partition, and using it as a split, c5.0 uses Gain 
Ratio as an estimate of the utility of splitting on a feature. Gain Ratio corresponds to 
the Information Gain measure of a feature, as described above, except that the measure 
is normalized for the number  of values of the feature, by  dividing by the entropy of the 
feature's values. After the decision tree is constructed, it is pruned to avoid overfitting, 
using a method described in detail in Quinlan (1993). A classification for a test case 
is made by traversing the tree until either a leaf node is found or all further branches 
do not match the test case, and returning the most frequent class at the last node. The 
case representation uses exactly the same features as the memory-based learner. 

3. Experimental Setup 

In order to test the potential of system combination, we obviously need systems to 
combine, i.e., a number  of different taggers. As we are primarily interested in the 

5 This is also sometimes referred to as mutual information in the computational linguistics literature. 
6 Maccent is available from http://www.cs.kuleuven.ac.be/~ldh. 
7 For a more detailed discussion, see Berger, Della Pietra, and Della Pietra (1996) and Ratnaparkhi (1996). 
8 c5.0 is commercially available from http://www.rulequest.com/. Its predecessor, c4.5, can be 

downloaded from http://www.cse.unsw.edu.au/~quinlan/. 

206 



van Halteren, Zavrel, and Daelemans Combination of Machine Learning Systems 

combination of classifiers trained on the same data sets, we are in fact looking for 
data sets (in this case, tagged corpora) and systems that can automatically gener- 
ate a tagger on the basis of those data sets. For the current  experiments,  we have 
selected three tagged corpora and four tagger generators. Before giving a detailed 
description of each of these, we first describe ho w  the ingredients are used in the 
experiments.  

Each corpus is used in the same way  to test tagger and combiner  performance.  
First of all, it is split into a 90% training set and a 10% test set. We can evaluate 
the base taggers by  using the whole training set to train the tagger generators and 
the test set to test the resulting tagger. For the combiners,  a more  complex strategy 
must  be followed, since combiner  training must  be done on material unseen by  the 
base taggers involved. Rather than setting apart  a fixed combiner  training set, we use 
a ninefold training strategy? The 90% trai1~ing set is split into nine equal parts. Each 
par t  is tagged with component  taggers that have been trained on the other eight parts. 
All results are then concatenated for use in combiner  training, so that, in contrast to 
our  earlier work,  all of the training set is effectively available for the training of the 
combiner. Finally, the resulting combiners are tested on the test set. Since the test set 
is identical for all methods,  we can compute  the statistical significance of the results 
using McNemar ' s  chi-squared test (Dietterich 1998). 

As we will see, the increase in combiner  training set size (90% of the corpus versus 
the fixed 10% tune set in the earlier experiments) indeed results in better performance.  
On the other hand,  the increased amount  of data also increases t ime and space require- 
ments  for some systems to such a degree that we had to exclude them from (some 
parts of) the experiments.  

The data in the training set is the only information used in tagger and combiner  
construction: all components  of all taggers and combiners (lexicon, context statistics, 
etc.) are entirely data driven, and no manual  adjustments are made.  If any tagger or 
combiner  construction method  is parametr ized,  we use default  settings where  avail- 
able. If there is no default, we choose intuitively appropriate  values wi thout  prelimi- 
nary  testing. In these cases, we report  such parameter  settings in the introduction to 
the system. 

3.1 Data 
In the current  experiments  we make use of three corpora. The first is the LOB corpus 
(Johansson 1986), which we used in the earlier experiments as well (van Halteren, 
Zavrel, and Daelemans 1998) and which has p roved  to be a good testing ground.  We 
then switch to Wall Street Journal material (WSJ), tagged with the Penn Treebank II 
tagset (Marcus, Santorini, and Marcinkiewicz 1993). Like LOB, it consists of approx- 
imately 1M words,  but  unlike LOB, it is American English. Furthermore,  it is of a 
different structure (only newspaper  text) and tagged with a rather different tagset. 
The experiments  with WSJ will also let us compare  our  results with those repor ted by  
Brill and Wu (1998), which show a much  less p ronounced  accuracy increase than ours 
with LOB. The final corpus is the slightly smaller (750K words) Eindhoven corpus (Uit 
den Boogaart 1975) tagged with the Wotan tagset (Berghmans 1994). This will let us 
examine the tagging of a language other than English (namely, Dutch). Furthermore,  
the Wotan tagset is a very  detailed one, so that the error rate of the individual  taggers 

9 Compare this to the "tune" set in van Halteren, Zavrel, and Daelemans (1998). This consisted of 114K 
tokens, but, because of a 92.5% agreement over all four taggers, it yielded less than 9K tokens of useful 
training material to resolve disagreements. This was suspected to be the main reason for the relative 
lack of performance by the more sophisticated combiners. 
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t ends  to be  higher.  Moreover ,  w e  can m o r e  easi ly use  project ions  of  the tagset  and  
thus  s t u d y  the effects of  levels of granular i ty.  

3.1.1 LOB. The first da ta  set w e  use  for ou r  exper imen t s  consists  of the t agged  
Lancas te r -Os lo /Bergen  co rpus  (LOB [Johansson  1986]). The  co rpus  compr i ses  abou t  
one  mil l ion w o r d s  of  British Engl i sh  text, d i v ided  over  500 samples  of 2,000 w o r d s  
f rom 15 text types.  

The t agg ing  of  the LOB corpus ,  w h i c h  w a s  m a n u a l l y  checked  a n d  corrected,  is 
genera l ly  accep ted  to be  qui te  accurate.  Here  w e  use  a sl ight a d a p t a t i o n  of  the tagset.  
The  changes  are m a i n l y  cosmet ic ,  e.g., nona lphabe t i c  characters  such  as "$" in tag  
n a m e s  h a v e  b e e n  replaced.  H o w e v e r ,  there  has  also b e e n  s o m e  re tokeniza t ion:  geni t ive  
marke r s  have  b e e n  split  off a nd  the nega t ive  m a r k e r  n't has  b e e n  rea t tached.  

A n  example  sentence  t a g g e d  wi th  the resul t ing  tagset  is: 

The ATI singular or plural article 
Lord NPT singular titular noun 
Major NPT singular titular noun 
extended VBD past tense of verb 
an AT singular article 
invitation NN singular common noun 
to IN preposition 
all ABN pre-quantifier 
the ATI singular or plural article 
parliamentary JJ adjective 
candidates NNS plural common noun 

SPER period 

The tagset  consists  of  170 different  tags  ( inc luding di t to tags), a n d  has  an  ave rage  
a m b i g u i t y  of  2.82 tags  pe r  w o r d f o r m  over  the corpus .  1° A n  impress ion  of  the diff iculty 
of the t agg ing  task can be  ga ined  f r o m  the t w o  basel ine  m e a s u r e m e n t s  in Table 2 (in 
Section 4.1 below),  r epresen t ing  a comple t e ly  r a n d o m  choice f r o m  the poten t ia l  tags  
for each token  (Random)  a n d  select ion of  the lexically m o s t  l ikely tag  (LexProb)J  1 

The t r a in ing / t e s t  separa t ion  of  the co rpus  is d o n e  at u t t e rance  b o u n d a r i e s  (each 1st 
to 9th u t te rance  is t ra in ing  a nd  each  10th is test) and  leads to a 1,046K token  t ra in ing  
set and  a 115K token  test set. A r o u n d  2.14% of the test set are tokens  u n s e e n  in the 
t ra in ing  set and  a fur ther  0.37% are k n o w n  tokens  b u t  w i th  u n s e e n  tags. 12 

3.1.2 WSJ.  The second  da ta  set consists  of  1M w o r d s  of  Wall Street Journal material .  
It differs f r o m  LOB in tha t  it is A m e r i c a n  Engl i sh  and,  m o r e  impor tan t ly ,  in  tha t  it is 
comple te ly  m a d e  u p  of  n e w s p a p e r  text. The  mater ia l  is t agged  wi th  the P e n n  Treebank 
tagset  (Marcus,  Santorini ,  a n d  Marc ink iewicz  1993), w h i c h  is m u c h  smal ler  t han  the 
LOB one. It consists  of  on ly  48 tags. 13 There  is no  a t t emp t  to anno ta t e  c o m p o u n d  
words ,  so there  are no  di t to tags. 

10 Ditto tags are used for the components of multitoken units, e.g. if as well as is taken to be a coordinating 
conjunction, it is tagged "as_CC-1 well_CC-2 as_CC-3", using three related but different ditto tags. 

11 These numbers are calculated on the basis of a lexicon derived from the whole corpus. An actual 
tagger will have to deal with unknown words in the test set, which will tend to increase the ambiguity 
and decrease Random and LexProb. Note that all actual taggers and combiners in this paper do have 
to cope with unknown words as their lexicons are based purely on their training sets. 

12 Because of the way in which the tagger generators treat their input, we do count tokens as different 
even though they are the same underlying token, but differ in capitalization of one or more characters. 

13 In the material we have available, quotes are represented slightly differently, so that there are only 45 
different tags. In addition, the corpus contains a limited number of instances of 38 "indeterminate" 
tags, e.g., JJ]VBD indicates a choice between adjective and past participle which cannot be decided or 
about which the annotator was unsure. 
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An example sentence is: 

By IN preposition/subordinating conjunction 
10 CD cardinal number 
a.m. RB adverb 
Tokyo NNP singular proper noun 
time NN singular common noun 

comma 
the E)T determiner 
index NN singular common noun 
was VBD past tense verb 
up RB adverb 
435.11 CD cardinal number 
points NNS plural common noun 

comma 
t o  ,,to,, 

34903.80 CD cardinal number 
as IN preposition/subordinating conjunction 
investors NNS plural common noun 
hailed VBD past tense verb 
New NNP singular proper noun 
York NNP singular proper noun 
's POS possessive ending 
overnight JJ adjective 
rally NN singular common noun 

sentence-final punctuation 

Mostly because of the less detailed tagset, the average ambigui ty  of the tags is 
lower than LOB's, at 2.34 tags per token in the corpus. This means that the tagging 
task should be an easier one than that for LOB. This is suppor ted  by  the values for 
Random and LexProb in Table 2. On the other hand,  the less detailed tagset also means  
that the taggers have less detailed information to base their decisions on. Another  
factor that influences the quality of automatic tagging is the consistency of the tagging 
over  the corpus. The WSJ material has not  been checked as extensively as the LOB 
corpus and is expected to have a much  lower consistency level (see Section 5.3 below 
for a closer examination). 

The t raining/ test  separation of the corpus is again done at utterance boundar ies  
and leads to a 1,160K token training set and a 129K token test set. Around  1.86% of 
the test set are unseen tokens and a further  0.44% are known  tokens with previously  
unseen tags. 

3.1.3 Eindhoven.  The final two data sets are both based on the Eindhoven corpus 
(Uit den Boogaart 1975). This is slightly smaller than LOB and WSJ. The writ ten part,  
which we use in our  experiments,  consists of about  750K words,  in samples ranging 
from 53 to 451 words.  In variety, it lies between LOB and WSJ, containing 150K words  
each of samples from Dutch newspapers  (subcorpus CDB), weeklies (OBL), magazines 
(GBL), popular  scientific writings (PWE), and novels (RNO). 

The tagging of the corpus, as used here, was created in 1994 as par t  of a mas- 
ter 's  thesis project (Berghmans 1994). It employs the Wotan tagset for Dutch, newly  
designed dur ing  the project. It is based on the classification used in the most  popular  
descriptive grammar  of Dutch, the Algemene Nederlandse Spraakkunst (ANS [Geerts et 
al. 1984]). The actual distinctions encoded in the tagset were selected on the basis of 
their importance to the potential  users, as est imated from a number  of in-depth inter- 
views with interested parties in the Netherlands.  The Wotan tagset is not  only very  
large (233 base tags, leading to 341 tags when  counting each ditto tag separately), but  
fur thermore  contains distinctions that are very  difficult for automatic taggers, such as 
verb transitivity, syntactic use of adjectives, and the recognition of mult i token units. 
It has an average ambigui ty  of 7.46 tags per  token in the corpus. For our  experiments,  

209 



Computational Linguistics Volume 27, Number 2 

w e  also des igned  a s implif icat ion of  the tagset,  d u b b e d  WotanLite ,  w h i c h  no  longer  
conta ins  the m o s t  p rob lemat ic  dist inct ions.  WotanLi te  has  129 tags  (with  a c o m p l e m e n t  
of  di t to tags  lead ing  to a total  of 173) a nd  an  ave rage  a m b i g u i t y  of 3.46 tags  per  token.  

A n  example  of Wotan  t agg ing  is g iven  be low (only u n d e r l i n e d  par t s  r ema in  in 
WotanLite):  14 

Mr. (Master, t i t l e )  N(eigen,ev, neut):l/2 
Rijpstra N(eigen,ev, neut):2/2 

heeft (has) V(hulp,ott,3,ev) 
de (the) Art(bep,zijd-of-mv, neut) 
Commissarispost N(soort,ev, neut) 

(post of Commissioner) 
in (in) Prep(voor) 
Friesland N(eigen,ev, neut) 
geambieerd (aspired to) V(trans,verl-dw, onverv) 
en (and) Conj(neven) 
hij (he) Pron(per,3,ev, nom) 

moet (should) V(hulp,ott,3,ev) 
dus (therefore) Adv(gew, aanw) 
alle ( a l l )  Pron(onbep,neut,attr) 

kans (opportunity) N_~(soort,ev, neut) 
hebben (have) V__((trans,inf) 
er (there) Adv(pron,er) 
het (the) Art(bep,onzijd,neut) 
beste (best) Adj (zelfst,over tr,verv-neut) 

van (of) Adv(deel-adv) 
te (to) Prep(voor-inf) 
maken (make) V(trans,inf) 

Punc(punt) 

first part of singular neutral case proper noun 
second part of singular neutral case proper 

noun 
3rd person singular present tense auxiliary verb 
neutral case non-neuter or plural definite article 
singular neutral case common noun 

adposition used as preposition 
singular neutral case proper noun 
base form of past participle of transitive verb 
coordinating conjunction 
3rd person singular nominative personal 

pronoun 
3rd person singular present tense auxiliary verb 
demonstrative non-pronominal adverb 
attributively used neutral case indefinite 

pronoun 
singular neutral case common noun 
infinitive of transitive verb 
pronominal adverb "er" 
neutral case neuter definite article 
nominally used inflected superlative 

form of adjective 
particle adverb 
infinitival "te" 
infinitive of transitive verb 
period 

The  anno ta t ion  of  the co rpus  w a s  real ized b y  a s emiau toma t i c  u p g r a d e  of  the 
t agg ing  inher i ted  f r o m  an  earlier project.  The  resul t ing  cons i s tency  has  neve r  b e e n  
exhaus t ive ly  m e a s u r e d  for ei ther  the Wotan  or  the or iginal  tagging.  

The  t r a in ing / t e s t  separa t ion  of the co rpus  is d o n e  at s ample  b o u n d a r i e s  (each 1st 
to 9th sample  is t ra in ing  a nd  each 10th is test). This is a m u c h  stricter sepa ra t ion  than  
app l ied  for LOB a nd  WSJ, as for  those  t wo  co rpo ra  our  test u t te rances  are re la ted to 
the t ra in ing ones  b y  be ing  in the same  samples .  Par t ly  as a resul t  of  this, bu t  also v e r y  
m u c h  because  of w o r d  c o m p o u n d i n g  in Dutch ,  w e  see a m u c h  h igher  pe rcen tage  of 
n e w  tokens - -6 .24% tokens  u n s e e n  in the t ra in ing  set. A fur ther  1.45% k n o w n  tokens  
h a v e  n e w  tags for Wotan,  a n d  0.45% for WotanLite .  The t ra in ing  set consists  of  640K 
tokens  and  the test set of  72K tokens.  

3.2 Tagger Generators 
The second  ingred ien t  for  ou r  expe r imen t s  is a set of  four  t agger  gene ra to r  sys tems,  
selected on  the basis  of  va r ie ty  a n d  availability, is Each  of  the sys t ems  represents  a 

14 The example sentence could be rendered in English as Master Rijpstra has aspired to the post of 
Commissioner in Friesland and he should therefore be given every opportunity to make the most of it. 

15 The systems have to differ as much as possible in their learning strategies and biases, as otherwise 
there will be insufficient differences of opinion for the combiners to make use of. This was shown 
clearly in early experiments in 1992, where only n-gram taggers were used, and which produced only a 
very limited improvement in accuracy (van Ha|teren 1996). 
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Table 1 
The features available to the four taggers in our study. Except for MXPOST, all systems use 
different models (and hence features) for known (k) and unknown (u) words. However, Brill's 
transformation-based learning system (TBL) applies its two models in sequence when faced 
with unknown words, thus giving the unknown-word tagger access to the features used by 
the known-word model as well. The first five columns in the table show features of the focus 
word: capitalization (C), hyphen (H), or digit (D) present, and number of suffix (S) or prefix 
(P) letters of the word. Brill's TBL system (for unknown words) also takes into account 
whether the addition or deletion of a suffix results in a known lexicon entry (indicated by an 
L). The next three columns represent access to the actual word (W) and any range of words to 
the left (Wleft) o r  right (Wright). The last three columns show access to tag information for the 
word itself (T) and any range of words left (Tleft) or right (Tright). Note that the expressive 
power of a method is not purely determined by the features it has access to, but also by its 
algorithm, and what combinations of the available features this allows it to consider. 

Features 
System C D N S P W Wtedt Wright T Tteft Zright 
TBL (k) x 1-2 1-2 x 1-3 1-3 
TBL (u) x x x 4,L 4,L 1-2 1-2 1-3 1-3 
MBT (k) x x 1-2 1-2 
MBT (u) x x x 3 1 1 
MXP (all) x x x 4 4 x 1-2 1-2 1-2 
TNT (k) x x x 1-2 
TNT (u) x 10 1-2 

popular  type of learning method,  each uses slightly different features of the text (see 
Table 1), and each has a completely different representation for its language model. 
All publicly available systems are used with the default settings that are suggested in 
their documentation.  

3.2.1 Error-driven Transformation-based Learning. This learning method finds a set 
of rules that transforms the corpus from a baseline annotation so as to minimize the 
number  of errors (we will refer to this system as TBL below). A tagger generator using 
this learning method is described in Brill (1992, 1994). The implementat ion that we 
use is Eric Brill's publicly available set of C programs and Perl scripts. 16 

When training, this system starts with a baseline corpus annotation A0. In A0, 
each known word  is tagged with its most  likely tag in the training set, and each 
unknown  word  is tagged as a noun  (or proper  noun  if capitalized). The system then 
searches through a space of transformation rules (defined by rule templates) in order 
to reduce the discrepancy between its current annotation and the provided  correct 
one. There are separate templates for known  words  (mainly based on local word  
and tag context), and for u n k n o w n  words  (based on suffix, prefix, and other lexical 
information). The exact features used by this tagger are shown in Table 1. The learner 
for the unknown  words  is trained and applied first. Based on its output,  the rules for 
context disambiguation are learned. In each learning step, all instantiations of the rule 
templates that are present in the corpus are generated and receive a score. The rule that 
corrects the highest number  of errors at step n is selected and applied to the corpus to 
yield an annotation A,,  which is then used as the basis for step n + 1. The process stops 
when no rule reaches a score above a predefined threshold. In our experiments this 
has usually yielded several hundreds  of rules. Of the four systems, TBL has access to 

16 Brill's system can be downloaded from 
ftp : / /  ftp.cs.jhu.edu /pub /brill /Programs / R ULE_B ASED_TA GG ER_V.1.14.tar.Z. 
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the most features: contextual information (the words and tags in a window spanning 
three positions before and after the focus word) as well as lexical information (the 
existence of words formed by the addition or deletion of a suffix or prefix). However, 
the conjunctions of these features are not all available in order to keep the search space 
manageable. Even with this restriction, the search is computationally very costly. The 
most important rule templates are of the form 

i f  context = x change tag i t o  tagj 

where context is some condition on the tags of the neighbouring words. Hence learning 
speed is roughly cubic in the tagset size. 17 

When tagging, the system again starts with a baseline annotation for the new 
text, and then applies all rules that were derived during training, in the sequence in 
which they were derived. This means that application of the rules is fully deterministic. 
Corpus statistics have been at the basis of selecting the rule sequence, but the resulting 
tagger does not explicitly use a probabilistic model. 

3.2.2 Memory-Based Learning. Another learning method that does not explicitly ma- 
nipulate probabilities is machine-based learning. However, rather than extracting a 
concise set of rules, memory-based learning focuses on storing all examples of a task 
in memory in an efficient way (see Section 2.3). New examples are then classified by 
similarity-based reasoning from these stored examples. A tagger using this learning 
method, MBT, was proposed by Daelemans et al. (1996). TM 

During the training phase, the training corpus is transformed into two case bases, 
one which is to be used for known words and one for unknown words. The cases are 
stored in an IGTree (a heuristically indexed version of a case memory [Daelemans, 
Van den Bosch, and Weijters 1997]), and during tagging, new cases are classified by 
matching cases with those in memory going from the most important feature to the 
least important. The order of feature relevance is determined by Information Gain. 

For known words, the system used here has access to information about the focus 
word and its potential tags, the disambiguated tags in the two preceding positions, 
and the undisambiguated tags in the two following positions. For unknown words, 
only one preceding and following position, three suffix letters and information about 
capitalization and presence of a hyphen or a digit are used as features. The case base 
for unknown words is constructed from only those words in the training set that occur 
five times or less. 

3.2.3 Maximum Entropy Modeling. Tagging can also be done using maximum en- 
tropy modeling (see Section 2.4): a maximum entropy tagger, called MXPOST, was 
developed by Ratnaparkhi (1996) (we will refer to this tagger as MXP below). 19 This 
system uses a number of word and context features rather similar to system MBT, and 
trains a maximum entropy model using the improved iterative scaling algorithm for 
one hundred iterations. The final model has a weighting parameter for each feature 
value that is relevant to the estimation of the probability P(tag I features),  and com- 
bines the evidence from diverse features in an explicit probability model. In contrast 
to the other taggers, both known and unknown words are processed by the same 

17 Because of the computational complexity, we have had to exclude the system from the experiments 
with the very large Wotan tagset. 

18 An on-line version of the tagger is available at http://ilk.kub.nl/. 
19 Ratnaparkhi's Java implementation of this system is freely available for noncommercial research 

purposes at ftp://ftp.cis.upenn.edu/pub/adwait/jmx/. 
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model. Another striking difference is that this tagger does not have a separate storage 
mechanism for lexical information about the focus word (i.e., the possible tags). The 
word is merely another feature in the probability model. As a result, no generaliza- 
tions over groups of words with the same set of potential tags are possible. In the 
tagging phase, a beam search is used to find the highest probability tag sequence for 
the whole sentence. 

3.2.4 Hidden Markov Models. In a Hidden Markov Model, the tagging task is viewed 
as finding the maximum probability sequence of states in a stochastic finite-state ma- 
chine. The transitions between states emit the words of a sentence with a probability 
P(w [ St), the states St themselves model tags or sequences of tags. The transitions are 
controlled by Markovian state transition probabilities P(Stl ] Sti_l ). Because a sentence 
could have been generated by a number of different state sequences, the states are 
considered to be "Hidden." Although methods for unsupervised training of HMM's 
do exist, training is usually done in a supervised way by estimation of the above prob- 
abilities from relative frequencies in the training data. The HMM approach to tagging 
is by far the most studied and applied (Church 1988; DeRose 1988; Charniak 1993). 

In van Halteren, Zavrel, and Daelemans (1998) we used a straightforward im- 
plementation of HMM's, which turned out to have the worst accuracy of the four 
competing methods. In the present work, we have replaced this by the TnT system 
(we will refer to this tagger as HMM below). 2° TnT is a trigram tagger (Brants 2000), 
which means that it considers the previous two tags as features for deciding on the 
current tag. Moreover, it considers the capitalization of the previous word as well in 
its state representation. The lexical probabilities depend on the identity of the current 
word for known words and on a suffix tree smoothed with successive abstraction 
(Samuelsson 1996) for guessing the tags of unknown words. As we will see below, it 
shows a surprisingly higher accuracy than our previous HMM implementation. When 
we compare it with the other taggers used in this paper, we see that a trigram HMM 
tagger uses a very limited set of features (Table 1). o n  the other hand, it is able to 
access some information about the rest of the sentence indirectly, through its use of 
the Viterbi algorithm. 

4. Overall Results 

The first set of results from our experiments is the measurement of overall accuracy 
for the base taggers. In addition, we can observe the agreement between the systems, 
from which we can estimate how much gain we can possibly expect from combination. 
The application of the various combination systems, finally, shows us how much of 
the projected gain is actually realized. 

4.1 Base Tagger Quality 
An additional benefit of training four popular tagging systems under controlled con- 
ditions on several corpora is an experimental comparison of their accuracy. Table 2 
lists the accuracies as measured on the test set. 21 We see that TBL achieves the lowest 
accuracy on all data sets. MBT is always better than TBL, but is outperformed by both 
MXP and HMM. On two data sets (LOB and Wotan) the Hidden Markov Model sys- 
tem (TnT) is better than the maximum entropy system (MXPOST). On the other two 

20 The TnT system can be obtained from its author through http://www.coli.uni-sb.de/~thorsten/tnt/. 
21 In this and several following tables, the best performance is indicated with bold type. 
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Table 2 
Baseline and individual tagger test set accuracy for each of our four data sets. The bottom four 
rows show the accuracies of the four tagging systems on the various data sets. In addition, we 
list two baselines: the selection of a completely random tag from among the potential tags for 
the token (Random) and the selection of the lexically most likely tag (LexProb). 

LOB WSJ Wotan WotanLite 
Baseline 
Random 61.46 63 .91  42.99 54.36 
LexProb 93.22 94.57 89.48 93.40 
Single Tagger 
TBL 96.37 96.28 -* 94.63 
MBT 97.06 96 .41  89.78 94.92 
MXP 97.52 96.88 91.72 95.56 
HMM 97.55 96.63 92.06 95.26 
*The training of TBL on the large Wotan tagset was 
aborted after several weeks of training failed to pro- 
duce any useful results. 

Table 3 
Pairwise agreement between the base taggers. For each base tagger pair and data set, we list 
the percentage of tokens in the test set on which the two taggers select the same tag. 

Tagger Pair 

MXP MXP MXP HMM HMM MBT 
Data Set HMM MBT TBL MBT TBL TBL 
LOB 97.56 96.70 96.27 97.27 96.96 96.78 
WSJ 97.41 96.85 96.90 97.18 97.39 97.21 
Wotan 93.02 90.81 - 92.06 - - 
WotanLite 95.74 95.12 95.00 95.48 95.36 95.52 

(WSJ and WotanLite) MXPOST is the bet ter  system. In all cases, except the difference 
be tween  MXP and H M M  on LOB, the differences are statistically significant (p K 0.05, 
M c N e m a r ' s  chi-squared test). 

We can also see f rom these results that  WSJ, a l though it is about  the same size as 
LOB, and  has a smaller  tagset, has a higher  difficulty level than LOB. We suspect  that 
an impor tan t  reason for this is the inconsistency in the WSJ annota t ion (cf. Ra tnaparkhi  
1996). We examine  this effect in more  detail  below. The E indhoven  corpus,  bo th  wi th  
Wotan and  WotanLite tagsets, is yet  more  difficult, bu t  here the difficulty lies main ly  
in the complexi ty  of the tagset  and  the large percentage  of u n k n o w n  words  in the 
test sets. We see that  the reduct ion in the complexi ty  of the tagset  f rom Wotan to 
WotanLite leads to an eno rm ous  i m p r o v e m e n t  in accuracy. This granular i ty  effect is 
also examined  in more  detail  below. 

4.2 Base Tagger Agreement 
On the basis of the ou tpu t  of the single taggers  we  can also examine the feasibility 
of combinat ion,  as combinat ion  is dependen t  on different sys tems p roduc ing  different 
errors. As expected,  a large par t  of the errors  are indeed uncorrelated:  the agreement  
be tween  the sys tems (Table 3) is at about  the same level as their ag reement  wi th  
the b e n c h m a r k  tagging. A more  detai led v iew of in ter tagger  agreement  is shown  
in Table 4, which  lists the (groups of) pa t terns  of (dis)agreement  for the four  data 
sets. 
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Table  4 
The presence of various tagger (dis)agreeement patterns for the four data sets. In addi t ion to 
the percentage of the test sets for which the pattern is observed (%), we list the cumulative 
percentage (%Cum). 

LOB WSJ Wotan WotanLite 
Pattern % %Cum % %Cure % %Cure % %Cum 
All taggers 93.93 93.93 93.80 93.80 85.68 85.68 90.50 90.50 
agree and 
are correct. 
A majority is 3.30 97.23 2.64 96.44 6.54 92.22 4.73 95.23 
correct. 
Correct tag is 1.08 98.31 1.07 97.51 0.82 93.04 1.59 96.82 
present but  is 
tied. 
A minori ty is 0.91 99.22 1.12 98.63 2.62 95.66 1.42 98.24 
correct. 
The taggers 0.21 99.43 0.26 98.89 1.53 97.19 0.46 98.70 
vary, but  
are all wrong. 
All taggers 0.57 100.00 1.11 100.00 2.81 100.00 1.30 100.00 
agree but  
are wrong. 

It is i n t e r e s t i n g  to see  tha t  a l t h o u g h  the  g e n e r a l  a c c u r a c y  for  WSJ is l o w e r  t h a n  
for  LOB, the  i n t e r t a g g e r  a g r e e m e n t  for  WSJ is on  a v e r a g e  h igher .  It w o u l d  s e e m  tha t  
the  less  cons i s t en t  t a g g i n g  for  WSJ m a k e s  i t  eas ie r  for  al l  s y s t e m s  to fal l  in to  the  s a m e  
t raps .  This  b e c o m e s  e v e n  c lea re r  w h e n  w e  e x a m i n e  the  p a t t e r n s  of  a g r e e m e n t  a n d  
see, for  e x a m p l e ,  t ha t  the  n u m b e r  of  t o k e n s  w h e r e  al l  t a g g e r s  a g r e e  on  a w r o n g  t ag  is 
p r a c t i c a l l y  d o u b l e d .  

The  a g r e e m e n t  p a t t e r n  d i s t r i b u t i o n  enab l e s  us  to d e t e r m i n e  l eve l s  of  c o m b i n a t i o n  
qual i ty .  Table 5 l ists  b o t h  the  accu rac i e s  of  s eve ra l  i dea l  c o m b i n e r s  (%) a n d  the  e r ro r  
r e d u c t i o n  in  r e l a t i on  to the  be s t  b a s e  t a g g e r  for  the  d a t a  set  in  q u e s t i o n  (/~Err). 22 
For  e x a m p l e ,  o n  LOB, "Al l  t ies co r rec t "  p r o d u c e s  1,941 e r ro r s  ( c o r r e s p o n d i n g  to a n  
a c c u r a c y  of  98.31%), w h i c h  is 31.3% less  t han  H M M ' s  2,824 er rors .  A m i n i m a l  l eve l  of 
c o m b i n a t i o n  a c h i e v e m e n t  is tha t  a m a j o r i t y  or  be t t e r  w i l l  l e a d  to the  cor rec t  t ag  a n d  
tha t  t ies a re  h a n d l e d  a p p r o p r i a t e l y  a b o u t  50% of  the  t ime  for  the  (2-2) p a t t e r n  a n d  
25% for the  ( 1 - 1 - 1 - 1 )  p a t t e r n  (or 33.3% for the  (1 -1-1)  p a t t e r n  for  Wotan) .  In  m o r e  
op t i m i s t i c  scenar ios ,  a c o m b i n e r  is ab le  to se lec t  the  cor rec t  t ag  in  all  t i ed  cases,  o r  
e v e n  in  cases  w h e r e  a t w o -  or  t h r e e - t a g g e r  m a j o r i t y  m u s t  be  ove rcome .  A l t h o u g h  the  
p o s s i b i l i t y  of  o v e r c o m i n g  a m a j o r i t y  is p r e s e n t  w i t h  the  a rb i t e r  t y p e  c o m b i n e r s ,  the  
s i t u a t i o n  is r a t h e r  i m p r o b a b l e .  A s  a resul t ,  w e  o u g h t  to be  m o r e  t h a n  sa t i s f i ed  if a n y  
c o m b i n e r s  a p p r o a c h  the  leve l  c o r r e s p o n d i n g  to the  p r o j e c t e d  c o m b i n e r  w h i c h  r e so lves  
al l  t ies correct ly.  23 

22 We express the error reduction in the form of a percentage, i.e., a relative measure, instead of by an 
absolute value, because we feel this is the more informative of the two. After all, there is a vast 
difference between an accuracy improvement of 0.5% from 50% to 50.5% (a /KEr r of 1%) and one of 
0.5% from 99% to 99.5% (a /KErr of 50%). 

23 The bottom rows of Table 5 might be viewed in the light of potential future extremely intelligent 
combination systems. For the moment, however, it is better to view them as containing recall values for 
n-best versions of the combination taggers, e.g., an n-best combination tagger for LOB, which simply 
provides all tags suggested by its four components, will have a recall score of 99.22%. 
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Table 5 
Projected accuracies for increasingly successful levels of combination achievement. For each 
level we list the accuracy (%) and the percentage of errors made by the best individual tagger 
that can be corrected by combination (AEFr). 

LOB WSJ Wotan WotanLite 
Pattern % AEr r % AEr r % AEr r % AEr r 
Best Single Tagger HMM MXP HMM MXP 

97.55 - 96.88 - 92.06 - 95.56 - 
Ties randomly 97.77 9.0 96.97 2.8 92.49 5.5 96.01 10.1 
correct. 

All ties correct. 98.31 31.3 97.50 19.9 93.04 12.4 96.82 28.3 
Minority vs. two-tagger 98.48 48.5 97.67 25.4 95.66 45.3 97.09 34.3 
correct. 

Minority vs three-tagger 99.22 68.4 98.63 56.0 - - 98.24 60.3 
correct. 

Table 6 
Accuracies of the combination systems on all four corpora. For each system we list its 
accuracy (%) and the percentage of errors made by the best individual  tagger that is corrected 
by the combination system (A~,). 

LOB WSJ Wotan WotanLite 
% AErr % AErr % AErr % AErr 

Best Single Tagger HMM MXP HMM MXP 
97.55 - 96.88 - 92.06 - 95.56 

Voting 
Majority 97.76 9.0 96.98 3.1 92.51 5.7 96.01 10.1 
TotPrecision 97.95 16.2 97.07 6.1 92.58 6.5 96.14 12.9 
TagPrecision 97.82 11.2 96.99 3.4 92.51 5.7 95.98 9.5 
Precision-Recall 97.94 16.1 97.05 5.6 92.50 5.6 96.22 14.8 
TagPair 97.98 17.8 97.11 7.2 92.72 8.4 96.28 16.2 
Stacked Classifiers 
WPDV(Tags) 98.06 20.8 97.15 8.7 92.86 10.1 96.33 17.2 
WPDV(Tags+Word) 98.07 21.4 97.17 9.3 92.85 10.0 96.34 17.5 
WPDV(Tags+Context) 98.14 24.3 97.23 11.3 93.03 12.2 96.42 19.3 
MBL(Tags) 98.05 20.5 97.14 8.5 92.72 8.4 96.30 16.7 
MBL(Tags+Word) 98.02 19.2 97.12 7.6 92.45 5.0 96.30 16.6 
MBL(Tags+Context) 98.10 22.6 97.11 7.2 92.75 8.7 96.31 16.8 
DecTrees(Tags) 98.01 18.9 97.14 8.3 92.63 7.2 96.31 16.8 
DecTrees(Tags+Word) -* . . . . . . .  
DecTrees(Tags+Context) 98.03 19.7 97.12 7.7 - - 96.26 15.7 
Maccent(Tags) 98.03 19.6 97.10 7.1 92.76 8.9 96.29 16.4 
Maccent(Tags+Word) 98.02 19.3 97.09 6.6 92.63 7.2 96.27 16.0 
Maccent(Tags+Context) 98.12 23.5 97.10 7.0 93.25 15.0 96.37 18.2 
c5.0 was not able to cope with the large amount  of data involved in all Tags+Word 

experiments and the Tags+Context experiment with Wotan. 

4.3 Resul ts  of  C o m b i n a t i o n  
In  Table 6 the resul ts  of ou r  e x p e r i m e n t s  w i t h  the v a r i o u s  c o m b i n a t i o n  m e t h o d s  are 
shown .  A g a i n  w e  list b o t h  the accuracies  of the c o m b i n e r s  (%) a n d  the error  r e d u c t i o n  
in  re la t ion  to the bes t  base  tagger  (AEr~). For  example ,  o n  LOB, TagPair  p r o d u c e s  
2,321 errors  ( c o r r e s p o n d i n g  to a n  accuracy  of 97.98%), w h i c h  is 17.8% less t h a n  H M M ' s  
2,824 errors.  
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Although the combiners generally fall short of the "All ties correct" level (cf. 
Table 5), even the most trivial voting system (Majority), significantly outperforms the 
best individual tagger on all data sets. Within the simple voting systems, it appears 
that use of more detailed voting weights does not necessarily lead to better results. 
TagPrecision is clearly inferior to TotPrecision. On closer examination, this could have 
been expected. Looking at the actual tag precision values (see Table 9 below), we 
see that the precision is generally more dependent on the tag than on the tagger, so 
that TagPrecision always tends to select the easier tag. In other words, it uses less 
specific rather than more specific information. Precision-Recall is meant to correct this 
behavior by the involvement of recall values. As intended, Precision-Recall generally 
has a higher accuracy than TagPrecision, but does not always improve on TotPrecision. 

Our previously unconfirmed hypothesis, that arbiter-type combiners would be able 
to outperform the gang-type ones, is now confirmed. With the exception of several of 
the Tags+Word versions and the Tags+Context version for WSJ, the more sophisticated 
modeling systems have a significantly better accuracy than the simple voting systems 
on all four data sets. TagPair, being somewhere between simple voting and stacking, 
also falls in the middle where accuracy is concerned. In general, it can at most be 
said to stay close to the real stacking systems, except for the cleanest data set, LOB, 
where it is clearly being outperformed. This is a fundamental change from our earlier 
experiments, where TagPair was significantly better than MBL and Decision Trees. Our 
explanation at the time, that the stacked systems suffered from a lack of training data, 
appears to be correct. A closer investigation below shows at which amount of training 
data the crossover point in quality occurs (for LOB). 

Another unresolved issue from the earlier experiments is the effect of making word 
or context information available to the stacked classifiers. With LOB and a single 114K 
tune set (van Halteren, Zavrel, and Daelemans 1998), both MBL and Decision Trees 
degraded significantly when adding context, and MBL degraded when adding the 
w o r d .  24 With the increased amount of training material, addition of the context gener- 
ally leads to better results. For MBL, there is a degradation only for the WSJ data, and 
of a much less pronounced nature. With the other data sets there is an improvement, 
significantly so for LOB. For Decision Trees, there is also a limited degradation for WSJ 
and WotanLite, and a slight improvement for LOB. The other two systems appear to be 
able to use the context more effectively. WPDV shows a relatively constant significant 
improvement over all data sets. Maccent shows more variation, with a comparable 
improvement on LOB and WotanLite, a very slight degradation on WSJ, and a spec- 
tacular improvement on Wotan, where it even yields an accuracy higher than the "All 
ties correct" level. 25 Addition of the word is still generally counterproductive. Only 
WPDV sometimes manages to translate the extra information into an improvement in 
accuracy, and even then a very small one. It would seem that vastly larger amounts 
of training data are necessary if the word information is to become useful. 

5. Combinat ion  in Detail  

The observations about the overall accuracies, although the most important, are not 
the only interesting ones. We can also examine the results of the experiments above 
in more detail, evaluating the results of combination for specific words and tags, and 

24 Just  as in the current  exper iments ,  the Decision Tree sys t em could  not  cope wi th  the a m o u n t  of da ta  
w h e n  the word  was  added.  

25 We have  no clear explanat ion for this exceptional  behavior,  bu t  conjecture that  Maccent  is able to m a k e  
opt imal  use  of the tagging  differences caused  by the  h igh  error rate of all four  taggers.  
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Table 7 
Error rates for the most confusing words. For each word, we list the total number of instances 
in the test set (n), the number of tags associated with the word (tags), and then, for each base 
tagger and WPDV(Tags+Context), the rank in the error list (rank), the absolute number of 
errors (err), and the percentage of instances that is mistagged (%). 

MXP HMM MBT TBL WPDV(T+C) 
Word n/tags ra"k:err % rank:err % rank:err % rank:err % rank:err % 
as 719/17 1:102 14.19 1:130 18.08 3:120 16.69 1:167 23.23 1:82 11.40 
that 1,108/6 2:98 8.84 2:105 9.48 1:130 11.73 2:134 12.09 2:80 7.22 
to 2,645/9 3:81 2.76 3:59 2.23 2:122 4.61 3:131 4.27 3:40 1.51 
more 224/4 4:52 23.21 4:42 18.75 4:46 20.54 5:53 23.76 5:30 13.39 
so 247/10 6:32 12.96 6:40 16.19 6:40 16.19 4:63 25.51 4:31 12.55 
in 2,102/14 11:22 1.05 7:35 1.67 5:43 2.46 6:48 2.28 6:25 1.19 
about 177/3 5:37 20.90 5:41 23.16 7:30 16.95 17:23 12.99 7:22 12.43 
much 117/2 7:30 25.64 l° :27 23.08 s:27 23.08 9:35 29.91 9:20 17.09 
her 373/3 lS:13 3.49 21:10 2.68 17:18 4.83 7:39 10.46 25:7 1.88 

trying to discover w h y  such disappoint ing results are found for WSJ. Furthermore,  we 
can run  addit ional  experiments,  to determine the effects of the size of the training set, 
the number  of base tagger components  involved,  and the granular i ty  of the tagset. 

5.1 Specific Words  
The overall accuracy of the various tagging systems gives a good impression of relative 
performance,  but  it is also useful to have a more  detailed look at the tagging results. 
Most important ly  for this paper, the details give a better  feel for the differences be tween 
the base taggers and for how well a combiner  can exploit these differences. More 
generally, users of taggers or tagged corpora are rarely interested in the whole corpus. 
They focus rather on specific words  or word  classes, for which the accuracy of tagging 
may  differ greatly from the overall accuracy. 

We start our  detailed examinat ion with the words  that are most  often mistagged. 
We use the LOB corpus for this evaluation, as it is the cleanest data set and hence 
the best example. For each base tagger, and for WPDV(Tags+Context), we list the top 
seven mistagged words,  in terms of absolute numbers  of errors, in Table 7. Al though 
the base taggers have been shown (in Section 4.2) to p roduce  different errors, we see 
that they do tend to make errors on the same words,  as the five top-sevens together  
contain only nine words.  

A high number  of errors for a word  is due  to a combination of tagging difficulty 
and frequency. Examples of pr imari ly difficult words  are much and more. Even though  
they have relatively low frequencies, they are ranked high on the error lists. Words 
whose  high error rate stems from their difficulty can be recognized by  their high 
error percentage scores. Examples of words  whose  high error rate stems f rom their 
f requency are to and in. The error percentages show that these two words  are actually 
tagged surprisingly well, as to is usually quoted as a tough case and for in the taggers 
have to choose be tween 14 possible tags. The first place on the list is taken by  as, which 
has both  a high frequency and a high difficulty level (it is also the most  ambiguous  
word  with 17 possible tags in LOB). 

Table 7 shows yet  again that there are clear differences be tween the base taggers, 
providing the oppor tuni ty  for effective combination. For all bu t  one word,  in, the 
combiner  manages  to improve on the best tagger for that specific word.  If we compare  
to the overall best tagger, HMM, the improvements  are sometimes spectacular. This is 
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Table 8 
Confusion rates for the tag pairs most often confused. For each pair  (tagger, correct), we first 
take the two possible confusion directions separately and list the corresponding error list 
ranks (rank) and absolute number  of errors (err) for the four base taggers and for 
WPDV(Tags+Context). Then we list the same information for the pair  as a whole, i~e., for the 
two directions together. 

MXP HMM MBT TBL WPDV(T+C) 
Tagger Correct rank err rank err rank err rank err rank err 
VBN VBD 6 92 1 154 1 205 1 236 3 102 
VBD VBN 3 118 3 117 3 152 3 149 4 100 

pair  210 271 357 385 202 
JJ NN 2 132 2 150 2 168 2 205 2 109 
NN JJ 1 153 6 75 4 148 4 148 1 110 

pair  285 225 316 353 219 
IN CS 4 105 4 93 5 122 s 97 5 79 
CS IN 10 55 7 70 10 64 6 122 8 48 

pair  160 163 186 219 127 
NN VB 5 98 5 78 6 116 5 132 6 59 
VB NN 25 28 14 45 12 60 7 100 15 35 

pair  126 123 176 232 94 
IN RP 7 59 10 61 7 99 12 83 7 50 
RP 1N 24 30 18 38 27 34 21 42 18 30 

pair  89 99 133 125 80 

of  cou r se  e s p e c i a l l y  the  case  w h e r e  H M M  h a s  p a r t i c u l a r  d i f f icul t ies  w i t h  a w o r d ,  e.g.,  
about w i t h  a 46.3% r e d u c t i o n  in  e r ro r  rate ,  b u t  in  o t h e r  cases  as  wel l ,  e.g.,  to w i t h  a 
32.2% r e d u c t i o n ,  w h i c h  is st i l l  we l l  a b o v e  the  ove ra l l  e r ro r  ra te  r e d u c t i o n  of  24.3%. 

5.2 Specific Tags 
We can  a lso  abs t r ac t  a w a y  f r o m  the  w o r d s  a n d  s i m p l y  l ook  at  c o m m o n  w o r d  class  
confus ions ,  e.g.,  a t o k e n  tha t  s h o u l d  be  t a g g e d  VBD (pas t  t ense  ve rb )  is a c t u a l l y  t a g g e d  
VBN (pas t  p a r t i c i p l e  verb) .  Table  8 s h o w s  the  t ag  c o n f u s i o n s  tha t  a re  p r e s e n t  in  the  
t o p  s e v e n  c o n f u s i o n  l ist  of  a t  l eas t  one  of  the  s y s t e m s  ( aga in  the  fou r  ba se  t a g g e r s  
a n d  W P D V ( T a g s + C o n t e x t )  u s e d  on  LOB). The  n u m b e r  on  the  r i g h t  in  each  s y s t e m  
c o l u m n  is the  n u m b e r  of  t imes  the  e r ro r  w a s  m a d e  a n d  the  n u m b e r  o n  the  lef t  is the  
p o s i t i o n  in  the  c o n f u s i o n  list. The  r o w s  m a r k e d  w i t h  t ag  v a l u e s  s h o w  the  i n d i v i d u a l  
er rors .  26 In  a d d i t i o n ,  the  " p a i r "  r o w s  s h o w  the  c o m b i n e d  v a l u e  of  the  t w o  i n v e r s e  
e r ro r s  p r e c e d i n g  i t .  27 

A s  w i t h  the  w o r d  e r ro r s  above ,  w e  see s u b s t a n t i a l  d i f fe rences  b e t w e e n  the  b a s e  
t aggers .  U n l i k e  the  s i t u a t i o n  w i t h  w o r d s ,  the re  a re  n o w  a n u m b e r  of  cases  w h e r e  
b a s e  t a g g e r s  p e r f o r m  be t t e r  t han  the  combine r .  Part ly ,  th is  is b e c a u s e  the  ba se  t a g g e r  
is o u t v o t e d  to  such  a d e g r e e  tha t  i ts q u a l i t y  c a n n o t  be  m a i n t a i n e d ,  e.g.,  N N  ---, JJ. 
F u r t h e r m o r e ,  i t  is p r o b a b l y  u n f a i r  to l ook  at  o n l y  one  ha l f  of  a pair .  A n y  a t t e m p t  to 
d e c r e a s e  the  n u m b e r  of  e r ro r s  of  t y p e  X --~ Y wi l l  t e n d  to  inc rease  the  n u m b e r  of  e r ro r s  
of  t y p e  Y --* X. The  b a l a n c e  b e t w e e n  the  t w o  is be s t  s h o w n  in the  " p a i r "  rows ,  a n d  

26 The tags are: CS = subord ina t ing  conjunct ion,  IN  = prepos i t ion ,  JJ = adjective, N N  = s ingu la r  
c o m m o n  n o u n ,  RP = adverbia l  particle,  VB = base  fo rm of verb,  VBD = pas t  tense  of verb,  VBN = 
pas t  part iciple.  

27 RP --~ IN  is n o t  actually in any  top  seven,  b u t  has  been  a d d e d  to comple te  the last pa i r  of inverse  
errors.  
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Table 9 
Precision and recall for tags involved in the tag pairs most often confused. For each tag, we 
list the percentage of tokens in the test set that are tagged with that tag (%test), followed by 
the precision (Prec) and recall (Rec) values for each of the systems. 

MXP HMM MBT TBL WPDV(T+C) 
Tag %test Prec/Rec Prec/Rec Prec/Rec Prec/Rec Prec/Rec 
CS 1.48 
IN 10.57 
JJ 5.58 
NN 13.11 
RP 0.79 
VB 2.77 
VBD 2.17 
VBN 2.30 

92.69/90.69 
97.58/98.95 
94.52/94.55 
96.68/97.85 
95.74/91.82 
98.04/95.55 
94.20/95.22 
94.07/93.29 

90.14/91.10 
97.83/98.59 
94.07/95.61 
97.91/97.24 
94.78/92.27 
97.95/95.99 
94.23/93.06 
90.93/93.37 

89.46/89.05 
97.14/98.17 
92.79/94.38 
96.59/97.22 
95.26/88.84 
96.79/94.55 
92.48/90.29 
89.59/90.54 

84.85/91.51 93.11193.38 
97.33/97.62 98.37199.03 
90.66/94.06 95.64196.00 
96.00/96.31 97.66/98.25 
93.05/90.28 95.95/94.14 
95.09/93.36 98.13197.06 
91.74/87.40 95.26/95.14 
87.09/90.99 94.25194.50 

Table 10 
A comparison of benchmark consistency on a small sample of WSJ and LOB. We list the 
reasons for differences between WPDV(Tags+Context) output and the benchmark tagging, 
both in terms of absolute numbers and percentages of the whole test set. 

WSJ LOB 
tokens % tokens % 

Tagger wrong, benchmark right 250 1.97 200 1.75 
Benchmark wrong, tagger right 90 0.71 11 0.10 
Both wrong 7 0.06 1 0.01 
Benchmark left ambiguous, tagger right 2 0.02 - - 

here the combiner  is again performing excellently, in all cases improving on the best 
base tagger for the pair. 

For an additional point  of view, we show the precision and recall values of the 
systems on the same tags in Table 9, as well as the percentage of the test set that 
should be tagged with each specific tag. The differences be tween the taggers are again 
present,  and in all but  two cases the combiner  produces  the best score for bo th  preci- 
sion and recall. Furthermore,  as precision and recall form yet  another  balanced pair, 
that is, as improvements  in recall tend to decrease precision and vice versa, the re- 
maining two cases (NN and VBD), can be considered to be handled  quite adequately  
as well. 

5.3 Effects of  Inconsistency 
Seeing the rather bad overall per formance  of the combiners  on WSJ, we feel the need  
to identify a p roper ty  of the WSJ material  that can explain this relative lack of success. 
A pr ime candidate  for this p roper ty  is the allegedly very  low degree of consistency 
of the WSJ material. We can investigate the effects of the low consistency by  way  of 
compar ison with the LOB data set, which is known  to be very  consistent. 

We have taken one-tenth of the test sets of both  WSJ and LOB and manual ly  
examined each token where  the WPDV(Tags+Context) tagging differs f rom the bench- 
mark tagging. The first indication that consistency is a major factor in performance is 
found in the basic correctness information, given in Table 10. For WSJ, there is a m u ch  
higher  percentage where  the difference in tagging is due  to an erroneous tag in the 
benchmark.  This does not  mean, however,  that the tagger should be given a higher  
accuracy score, as it may  well be that the par t  of the benchmark  where  tagger and 
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b e n c h m a r k  do agree contains a similar percentage of b e n c h m a r k  errors. It does imply, 
though,  that the WSJ tagging contains m a n y  more  errors than the LOB tagging, which  
is likely to be detr imental  to the der ivat ion of automat ic  taggers. 

The cases where  the tagger is found to be wrong  p rov ide  interesting informat ion 
as well. Our  examinat ion  shows that 109 of the 250 erroneous  tags occur in situations 
that  are hand led  rather  inconsistently in the corpus.  

In some of these situations we  only have  to look at the word  itself. The mos t  
n u m e r o u s  type  of problemat ic  word  (21 errors) is the p roper  noun  ending in s. It 
appears  to be unclear whe ther  such a word  should  be tagged N N P  or NNPS. When  
taking the words  leading to errors in our  1% test set and  examining  them in the 
training data, we  see a near  even split for practically every  word.  The mos t  frequent  
ones are Securities (146 N N P  vs. 160 NNPS) and  Airlines (72 N N P  vs. 83 NNPS). There 
are only  two very  unbalanced cases: Times (78 N N P  vs. 6 NNPS) and  Savings (76 N N P  
vs. 21 NNPS). A similar si tuation occurs, a l though less frequently, for c o m m o n  nouns,  
for example ,  headquarters gets 67 N N  and 21 NNS tags. 

In other cases, difficult words  are hand led  inconsistently in specific contexts. Ex- 
amples  here are about in cases such as about 20 (405 IN  vs. 385 RB) or about $20 (243 
IN vs. 227 RB), ago in cases such as years ago (152 IN  vs. 410 RB) and  more in more than 
(558 JJR vs. 197 RBR). 

Finally, there are more  general  word  class confusions, such as adject ive/part icle  
or noun/ad jec t ive  in noun  p remodi fy ing  positions. Here  it is m u c h  harder  to p rov ide  
numer ica l  examples ,  as the problemat ic  si tuation mus t  first be recognized.  We therefore 
limit ourselves to a few sample  phrases.  The first is stock-index, which leads to several  
errors in combinat ions  like stock-index futures or stock-index arbitrage. In the training set, 
stock-index in p remodi fy ing  posi t ion is tagged JJ 64 t imes and  N N  69 times. The second 
phrase  chief executive officer has three words  so that  we  have  four choices of tagging: 
JJ-JJ-NN is chosen 90 times, J J -NN-NN 63 times, NN-JJ-NN 33 times, and  N N - N N - N N  
30 times. 

Admittedly,  all of these are problemat ic  cases and  m a n y  other cases are han-  
dled quite consistently. However ,  the inconsistently handled  cases do account  for 44% 
of the errors found  for our  best  tagging system. Under  the circumstances,  we  feel 
quite justified in assuming  that  inconsistency is the ma in  cause of the low accuracy 
scores. 28 

5.4 Size of the Training Set 
The mos t  impor tan t  result  that  has undergone  a change be tween  van  Halteren,  Zavrel,  
and  Dae lemans  (1998) and  our  current  exper iments  is the relative accuracy of TagPair 
and stacked sys tems such as MBL. Where  TagPair used  to be  significantly bet ter  than 
MBL, the roles are n o w  well reversed.  It appears  that  our  hypothes is  at the time, that  
the stacked sys tems were  p lagued  by  a lack of training data, is correct, since they 
can n o w  hold their own. In order  to see at which point  TagPair is over taken,  we  
have  trained several  sys tems on increasing amoun t s  of training data f rom LOB. 29 Each 
increment  is one of the 10% training corpus  par ts  described above.  The results are 
shown  in Figure 5. 

28 Another property that might contribute to the relatively low scores for the WSJ material is the use of a 
very small tagset. This makes annotation easier for human annotators, but it provides much less 
information to the automatic taggers and combiners. It may well be that the remaining information is 
insufficient for the systems to discover useful disambiguation patterns in. Although we cannot measure 
this effect for WSJ, because of the many differences with the LOB data set, we feel that it has much less 
influence than the inconsistency of the WSJ material. 

29 Only combination uses a variable number of parts. The base taggers are always trained on the full 90%. 
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Figure 5 
The accuracy of combiner methods on LOB as a function of the number of tokens of training 
material. 

TagPair is only best when a single part is used (as in the earlier experiments). 
After that it is overtaken and quickly left behind, as it is increasingly unable to use 
the additional training data to its advantage. 

The three systems using only base tagger outputs have comparable accuracy 
growth curves, although the initial growth is much higher for WPDV. The curves 
for WPDV and Maccent appear to be leveling out towards the right end of the graph. 
For MBL, this is much less clear. However, it would seem that the accuracy level at 
1M words is a good approximation of the eventual ceiling. 

The advantage of the use of context information becomes clear at 500K words. 
Here the tags-only systems start to level out, but WPDV(Tags+Context) keeps show- 
ing a constant growth. Even at 1M words, there is no indication that the accuracy is 
approaching a ceiling. The model seems to be getting increasingly accurate in correct- 
ing very specific contexts of mistagging. 

5.5 Interaction of Components 
Another way in which the amount of input data can be varied is by taking subsets 
of the set of component taggers. The relation between the accuracy of combinations 
for LOB (using WPDV(Tags+Context)) and that of the individual taggers is shown 
in Table 11. The first three columns show the combination, the accuracy, and the 
improvement in relation to the best component. The other four columns show the 
further improvement gained when adding yet another component. 

The most important observation is that every combination outperforms the com- 
bination of any strict subset of its components. The difference is always significant, ex- 
cept in the cases MXP+HMM+MBT+TBL vs. MXP+HMM+MBT and HMM+MBT+TBL 
vs. HMM+MBT. 

We can also recognize the quality of the best component as a major factor in the 
quality of the combination results. HMM and MXP always add more gain than MBT, 
which always adds more gain than TBL. Another major factor is the difference in 
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Table 11 
WPDV(Tags+Context) accuracy measurements for various component tagger combinations. 
For each combination, we list the tagging accuracy (Test), the error reduction expressed as a 
percentage of the error count for the best component base tagger (AErr(best)) and any 
subsequent error reductions when adding further components (Gain). 

Gain Gain Gain Gain 
Combination Test AErr(best) +TBL +MBT +MXP +HMM 
TBL 96.37 - - 29.1 40.2 38.9 
MBT 97.06 - 12.5 - 28.4 26.0 
MBT+TBL 97.43 12.5 (MBT) - - 20.6 17.2 
MXP 97.52 - 12.3 15.0 - 16.2 
HMM 97.55 - 9.5 11.3 15.3 - 
HMM+TBL 97.78 9.5 (HMM) - 4.0 11.8 - 
HMM+MBT 97.82 11.3 (HMM) 2.0 - 13.7 - 
MXP+TBL 97.83 12.3 (MXP) - 6.0 - 9.9 
HMM+MBT+TBL 97.87 13.1 (HMM) - - 12.9 - 
MXP+MBT 97.89 15.0 (MXP) 3.0 - - 10.8 
MXP+HMM 97.92 15.3 (HMM) 5.7 9.6 - - 
MXP+MBT+TBL 97.96 17.6 (MXP) - - - 9.1 
MXP+HMM+TBL 98.04 20.1 (HMM) - 5.2 - - 
MXP+HMM+MBT 98.12 23.4 (HMM) 1.1 - - - 
MXP+HMM+MBT+TBL 98.14 24.3 (HMM) . . . .  

language model. MXP, al though having a lower accuracy by itself than HMM, yet 
leads to better combination results, again witnessed by the Gain columns. In some 
cases, MXP is even able to outperform pairs of components  in combination: both 
MXP+MBT and MXP+HMM are better than HMM+MBT+TBL. 

5.6 Effects of Granularity 
The final influence on combination that we measure is that of the granulari ty of the 
tagset, which can be examined with the highly structured Wotan tagset. Part of the 
examination has already taken place above, as we have added  the WotanLite tagset, a 
less granular projection of Wotan. As we have seen, the WotanLite taggers undeniably  
have a much  higher accuracy than the Wotan ones. However,  this is hardly  surprising, 
as they have a much  easier task to perform. In order to make a fair comparison,  we 
now measure them at their performance of the same task, namely, the prediction of 
WotanLite tags. We do this by  projecting the output  of the Wotan taggers (i.e., the base 
taggers, WPDV(Tags), and WPDV(Tags+Context)) to WotanLite tags. Additionally, we 
measure all taggers at the main word  class level, i.e., after the removal  of all attributes 
and ditto tag markers. 

All results are listed in Table 12. The three major horizontal blocks each represent 
a level at which the correctness of the final output  is measured. Within the lower two 
blocks, the three rows represent the type of tags used by the base taggers. The rows 
for Wotan and WotanLite represent the actual taggers, as described above. The row for 
BestLite does not represent a real tagger, but  rather a virtual tagger that corresponds 
to the best tagger from among Wotan (with its output  projected to WotanLite format) 
and WotanLite. This choice for the best granulari ty is taken once for each system 
as a whole, not  per individual token. This leads to BestLite being always equal to 
WotanLite for TBL and MBT, and to projected Wotan for MXP and HMM. 

The three major vertical blocks represent combinat ion strategies: no combination, 
combination using only the tags, and combination using tags and direct context. The 
two combinat ion blocks are divided into three columns, representing the tag level 
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Table 12 
Accuracy for base taggers and different levels combiners, as measured at various levels of 
granularity. The rows are divided into blocks, each listing accuracies for a different comparison 
granularity. Within a block, the individual rows list which base taggers are used as ingredients 
in the combination. The columns contain, from left to right, the accuracies for the base taggers, 
the combination accuracies when using only tags (WPDV(Tags)) at three different levels of 
combination granularity (Full, Lite, and Main) and the combination accuracies when adding 
context (WPDV(Tags+Context)), at the same three levels of combination granularity. 

Base Taggers WPDV(Tags) WPDV(Tags+Context) 

TBL MBT MXP HMM Full Lite Main Full Lite Main 
Measured as Wotan Tags 

Wotan 89.78 91.72 92.06 I 92.83 - - I 93.03 - 
Measured as WotanLite Tags 

Wotan - 94.56 95 .71  9 5 . 9 8  96.50 96.49 - 96.53 96.54 - 
WotanLite 94 .63  94 .92  9 5 . 5 6  95.26 - 96.32 - - 96.42 - 
BestLite 94.63 94 .92  95 .71  95.98 - 96.58 - - 96.64 - 

. m  

Measured as Main Word Class Tags 

Wotan 
WotanLite 
BestLite 

- 96.55 9 7 . 2 3  97.54 
96.37 96 .76  9 7 . 1 2  96.96 
96.37 96 .76  97 .23  97.54 

97.88 97.87 97.85 
- 97.69 97.71 
- 97.91 97.90 

97.88 9 7 . 8 9  97.91 
- 97.76 97.77 
- 97.94 97.93 

at which combinat ion is performed,  for example, for the Lite co lumn the output  of 
the base taggers is projected to WotanLite tags, which are then used as input  for the 
combiner. 

We hypothes ized beforehand that, in general, the more information a system can 
use, the better its results are. Unfortunately, even for the base taggers, reality is not  that 
simple. For both MXP and HMM, the Wotan tagger indeed yields a better WotanLite 
tagging than the WotanLite tagger itself, thus support ing the hypothesis.  On  the other 
hand,  the results for MBT do not confirm this, as here the WotanLite tagger is more ac- 
curate. However,  we have already seen that MBT has severe problems in dealing with 
the complex Wotan data. Furthermore,  the lowered accuracy of the MBL combiners 
when  provided  with words  (see Section 4.3) also indicate that memory-based  learning 
sometimes has problems in coping with a surplus of information. This means that we 
have to adjust our hypothesis:  more information is better, but  only up to the point  
where the weal th of information overwhelms the machine learning system. Where this 
point  is found obviously differs for each system. 

For the combiners, the situation is rather inconclusive. In some cases, especially 
for WPDV(Tags), combining at a higher granulari ty (i.e., using more information) pro- 
duces better results. In others, combining at a lower granulari ty works better. In all 
cases, the difference in scores between the columns is extremely small and hardly 
supports  any conclusions either way. What  is obviously much  more important  for the 
combiners is the quality of the information they can work  with. Here, higher granular- 
ity on the part  of the ingredients is preferable, as combiners based on Wotan taggers 
per form better than those based on WotanLite taggers, 3° and ingredient performance 
seems to be even more useful, as BestLite yields yet better results in all cases. 

30 However, this comparison is not perfect, as the combination of Wotan tags does not include TBL. On 
the one hand, this means the combination has less information to go on and we should hence be even 
more impressed with the better performance. On the other hand, TBL is the lowest scoring base tagger, 
so maybe the better performance is due to not having to cope with a flawed ingredient. 
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Table 13 
A comparison of our results for WSJ with those by Brill and Wu (1998). 

Brill and Wu Our Experiments 
Training/Test Split 80/20 Training/Test Split 90/10 
Unigram 93.26 LexProb 94.57 
Trigram 96.36 TnT 96.63 
- MBT 96.41 
Transformation 96.61 Transformation 96.28 
Maximum Entropy 96.83 Maximum Entropy 96.88 
Transformation-based combination 97.16 
Error rate reduction 10.4% 

WPDV(Tags+Context) 97.23 
Error rate reduction 11.3% 

6. Related Research 

Combination of ensembles of classifiers, although well-established in the machine 
learning literature, has only recently been applied as a method for increasing accuracy 
in natural language processing tasks. There has of course always been a lot of research 
on the combination of different methods (e.g., knowledge-based and statistical) in hy- 
brid systems, or on the combination of different information sources. Some of that 
work even explicitly uses voting and could therefore also be counted as an ensemble 
approach. For example, Rigau, Atserias, and Agirre (1997) combine different heuris- 
tics for word sense disambiguation by voting, and Agirre et al. (1998) do the same 
for spelling correction evaluation heuristics. The difference between single classifiers 
learning to combine information sources, i.e., their input features (see Roth [1998] for a 
general framework), and the combination of ensembles of classifiers trained on subsets 
of those features is not always very clear anyway. 

For part-of-speech tagging, a significant increase in accuracy through combining 
the output of different taggers was first demonstrated in van Halteren, Zavrel, and 
Daelemans (1998) and Brill and Wu (1998). In both approaches, different tagger gen- 
erators were applied to the same training data and their predictions combined using 
different combination methods, including stacking. Yet the latter paper reported much 
lower accuracy improvement figures. As we now apply the methods of van Halteren, 
Zavrel, and Daelemans (1998) to WSJ as well, it is easier to make a comparison. An 
exact comparison is still impossible, as we have not used the exact same data prepara- 
tion and taggers, but we can put roughly corresponding figures side by side (Table 13). 
As for base taggers, the first two differences are easily explained: Unigram has to deal 
with unknown words, while LexProb does not, and TnT is a more advanced trigram 
system. The slight difference for Maximum Entropy might be explained by the dif- 
ference in training/test split. What is more puzzling is the substantial difference for 
the transformation-based tagger. Possible explanations are that Brill and Wu used a 
much better parametrization of this system or that they used a different version of the 
WSJ material. Be that as it may, the final results are comparable and it is clear that 
the lower numbers in relation to LOB are caused by the choice of test material (WSJ) 
rather than by the methods used. 

In Tufi~ (1999), a single tagger generator is trained on different corpora repre- 
senting different language registers. For the combination, a method called credibility 
profiles worked best. In such a profile, for each component tagger, information is 
kept about its overall accuracy, its accuracy for each tag, etc. In another recent study, 
Marquez et al. (1999) investigate several types of ensemble construction in a decision 
tree learning framework for tagging specific classes of ambiguous words (as opposed 
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to tagging all words). The construction of ensembles was based on bagging, selection 
of different subsets of features (e.g., context and lexical features) in decision tree con- 
struction, and selection of different splitting criteria in decision tree construction. In 
all experiments, simple voting was used to combine component tagger decisions. All 
combination approaches resulted in a better accuracy (an error reduction between 8% 
and 12% on average compared to the basic decision tree trained on the same data). But 
as these error reductions refer to only part of the tagging task (18 ambiguity classes), 
they are hard to compare with our own results. 

In Abney, Schapire, and Singer (1999), ADABOOST variants are used for tagging 
WSJ material. Component classifiers here are based on different information sources 
(subsets of features), e.g., capitalization of current word, and the triple "string, cap- 
italization, and tag" of the word to the left of the current word are the basis for 
the training of some of their component classifiers. Resulting accuracy is comparable 
to, but  not better than, that of the maximum entropy tagger. Their approach is also 
demonstrated for prepositional phrase attachment, again with results comparable to 
but not better than state-of-the-art single classifier systems. High accuracy on the same 
task is claimed by Alegre, Sopena, and Lloberas (1999) for combining ensembles of 
neural networks. ADABOOST has also been applied to text filtering (Schapire, Singer, 
and Singhal 1998) and text categorization (Schapire and Singer 1998). 

In Chen, Bangalore, and Vijay-Shanker (1999), classifier combination is used to 
overcome the sparse data problem when using more contextual information in super- 
tagging, an approach in which parsing is reduced to tagging with a complex tagset 
(consisting of partial parse trees associated with lexical items). When using pairwise 
voting on models trained using different contextual information, an error reduction 
of 5% is achieved over the best component model. Parsing is also the task to which 
Henderson and Brill (1999) apply combination methods with reductions of up to 30% 
precision error and 6% recall error compared to the best previously published results 
of single statistical parsers. 

This recent research shows that the combination approach is potentially useful for 
many NLP tasks apart from tagging. 

7. Conc lus ion  

Our experiments have shown that, at least for the word class tagging task, combina- 
tion of several different systems enables us to raise the performance ceiling that can be 
observed when using data-driven systems. For all tested data sets, combination pro- 
vides a significant improvement over the accuracy of the best component tagger. The 
amount of improvement varies from 11.3% error reduction for WSJ to 24.3% for LOB. 
The data set that is used appears to be the primary factor in the variation, especially 
the data set's consistency. 

As for the type of combiner, all stacked systems using only the set of proposed 
tags as features reach about the same performance. They are clearly better than sim- 
ple voting systems, at least as long as there is sufficient training data. In the absence 
of sufficient data, one has to fall back to less sophisticated combination strategies. 
Addition of word information does not lead to improved accuracy, at least with the 
current training set size. However, it might still be possible to get a positive effect by 
restricting the word information to the most frequent and ambiguous words only. Ad- 
dition of context information does lead to improvements for most systems. WPDV 
and Maccent make the best use of the extra information, with WPDV having an 
edge for less consistent data (WSJ) and Maccent for material with a high error rate 
(Wotan). 
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Although the results reported in this paper are very positive, many directions for 
research remain to be explored in this area. In particular, we have high expectations for 
the following two directions. First, there is reason to believe that better results can be 
obtained by using the probability distributions generated by the component systems, 
rather than just their best guesses (see, for example, Ting and Witten [1997a]). Second, 
in the present paper we have used disagreement between a fixed set of component 
classifiers. However, there exist a number of dimensions of disagreement (inductive 
bias, feature set, data partitions, and target category encoding) that might fruitfully 
be searched to yield large ensembles of modular components that are evolved to 
cooperate for optimal accuracy. 

Another open question is whether and, if so, when, combination is a worthwile 
technique in actual NLP applications. After all, the natural language text at hand has to 
be processed by each of the base systems, and then by the combiner. Now none of these 
is especially bothersome at run-time (most of the computational difficulties being expe- 
rienced during training), but when combining N systems, the time needed to process 
the text can be expected to be at least a factor N +  1 more than when using a single sys- 
tem. Whether this is worth the improvement that is achieved, which is as yet expressed 
in percents rather than in factors, will depend very much on the amount of text that has 
to be processed and the use that is made of the results. There are a few clear-cut cases, 
such as a corpus annotation project where the CPU time for tagging is negligible in 
relation to the time needed for manual correction afterwards (i.e., do use combination), 
or information retrieval on very large text collections where the accuracy improvement 
does not have enough impact to justify the enormous amount of extra CPU time (i.e., 
do not use combination). However, most of the time, the choice between combining or 
not combining will have to be based on evidence from carefully designed pilot experi- 
ments, for which this paper can only hope to provide suggestions and encouragement. 
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