
D-Tree Substitution Grammars 

O w e n  R a m b o w *  
AT&T Labs-Research 

D a v i d  Weir~ 
Universi ty of Sussex 

K.  V i j a y - S h a n k e r t  
Universi ty of Delaware 

There is considerable interest among computational linguists in lexicalized grammatical frame- 
works; lexicalized tree adjoining grammar (LTAG) is one widely studied example. In this paper, 
we investigate how derivations in LTAG can be viewed not as manipulations of trees but as 
manipulations of tree descriptions. Changing the way the lexicalized formalism is viewed raises 
questions as to the desirability of certain aspects of the formalism. We present a new formalism, 
d-tree substitution grammar (DSG). Derivations in DSG involve the composition of d-trees, 
special kinds of tree descriptions. Trees are read off from derived d-trees. We show how the DSG 
formalism, which is designed to inherit many of the characterestics of LTAG, can be used to express 
a variety of linguistic analyses not available in LTAG. 

1. Introduction 

There is considerable interest among computat ional  linguists in lexicalized grammati-  
cal frameworks.  From a theoretical perspective, this interest is mot ivated by  the widely  
held assumption that grammatical structure is projected from the lexicon. From a prac- 
tical perspective,  the interest stems from the growing importance of word-based cor- 
pora in natural  language processing. Schabes (1990) defines a lexicalized grammar  as 
a grammar  in which every e lementary structure (rules, trees, etc.) is associated with a 
lexical i tem and every  lexical i tem is associated with a finite set of e lementary struc- 
tures of the grammar.  Lexicalized tree adjoining grammar  (LTAG) (Joshi and Schabes 
1991) is a widely  s tudied example of a lexicalized grammatical  formalism. 1 

In LTAG, the e lementary structures of the grammar  are phrase structure trees. 
Because of the extended domain  of locality of a tree (as compared  to a context-free 
string rewriting rule), the e lementary trees of an LTAG can provide  possible syntactic 
contexts for the lexical i tem or items that anchor the tree, i.e., f rom which the syntactic 
structure in the tree is projected. LTAG provides  two operations for combining trees: 
substitution and adjunction. The substitution operat ion appends  one tree at a frontier 
node  of another  tree. The adjunction operat ion is more  powerful:  it can be used to 
insert one tree within another. This p roper ty  of adjoining has been widely  used in the 
LTAG literature to provide  an account for long-distance dependencies.  For example,  

* ATT Labs-Research, B233 180 Park Ave, PO Box 971, Florham Park, NJ 07932-0971, USA. E-mail: 
rambow@research.att.com 

t Department of Computer and Information Science University of Delaware Newark, Delaware 19716. 
E-mail: vijay@udel.edu 
School of Cognitive and Computing Sciences University of Sussex Brighton, BN1 6QH E. Sussex UK. 
E-mail: david.weir@cogs.susx.ac.uk 

1 Other examples of lexicalized grammar formalisms include different varieties of categorial grammars 
and dependency grammars. Neither HPSG nor LFG are lexicalized in the sense of Schabes (1990). 



Computational Linguistics Volume 27, Number 1 

NP S 

Peter NP VP 

John V NP 

I I 
s a w  e 

fl: S 

NP VP 

you V S 

I 
thought 

NP S 

Peter NP VP 

you V S 

thought NP VP 

I / N  
John V NP 

I I 
saw e 

Figure 1 
Example of adjunction. 

Figure I shows a typical analysis of topicalization. 2 The related nodes for the filler and 
the gap in the elementary tree c~ are moved further apart when the tree 7 is obtained 
by adjoining the auxiliary tree fl within ~. This shows that adjunction changes the 
structural relationship between some of the nodes in the tree into which adjunction 
occurs. 

In LTAG, the lexicalized elementary objects are defined in such a way  that the 
structural relationships between the anchor and each of its dependents change during 
the course of a derivation through the operation of adjunction, as just illustrated. This 
approach is not the only possibility. An alternative would be to define the relationships 
between the nodes of the elementary objects in such a way  that these relationships 
hold throughout the derivation, regardless of how the derivation proceeds. 

This perspective on the LTAG formalism was explored in Vijay-Shanker (1992) 
where, following the principles of d-theory parsing (Marcus, Hindle, and Fleck 1983), 
LTAG was seen as a system manipulating descriptions of trees rather than as a tree 

2 The same analysis holds for wh-movement ,  but  we  use topicalization as an example in order  to avoid 
the superficial complication of the auxiliary needed  in English questions. Sometimes, topicalized 
sentences sound somewhat  less natural than the corresponding wh-questions, which are always 
structurally equivalent. 

88 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

fl': 

NP S 

I 
Peter 

I 
I 

S 

NP VP 

I ' 
John 

I 
t 

VP 

V NP 

I I 
s a w  e 

S O d : 

NP VP 
I ' 

I 

you VP 

V S 

I 
thought 

Figure 2 
Adjunction example revisited. 

NP S 

Peter NP VP 
I ' 

! 

you VP 

V S 

thought NP VP 
I ' 

I 

John VP 

V NP 

I I 
saw e 

rewriting formalism. Elementary objects are descriptions of possible syntactic contexts 
for the anchor, formalized in a logic for describing nodes and the relationships (dom- 
inance, immediate dominance, linear precedence) that hold between them. 

From this perspective, instead of positing the elementary tree ~ in Figure 1, we can 
describe the projection of syntactic structure from the transitive verb. This description is 
presented pictorially as c~ ~ in Figure 2. The solid lines indicate immediate domination, 
whereas the dashed lines indicate a domination of arbitrary length. The description 
a ~ not only partially describes the tree c~ (by taking the dominations to be those of 
length 0) but also any tree (such as "~) that can be derived by using the operations 
of adjunction and substitution starting from c~. In fact, (~t describes exactly what is 
common among these trees. 

By expressing elementary objects in terms of tree descriptions, we can describe 
syntactic structure projected from a lexical item in a way that is independent of the 
derivations in which it is used. This is achieved by employing composition operations 
that produce descriptions that are compatible with the descriptions being combined. 
For instance, adjoining, seen from this perspective, serves to further specify the un- 
derspecified dominations. In Figure 2, the description -y~ is obtained by additionally 
stating that the domination between the two nodes labeled S in c~ ~ is now given by 
the domination relation between the two nodes labeled S in fl~. 

As we will explore in this paper, changing the way the lexicalized formalism is 
viewed, from tree rewriting to tree descriptions, raises questions as to the desirability 

89 



Computational Linguistics Volume 27, Number 1 

S 

NP~ S NP VP 

' I ' 
! ! 

many of us VP John VP 

to meet  NPi V VP 

I I 
e hopes 

Figure 3 
A problem for LTAG. 

of certain aspects of the formalism. Specifically, we claim that the following two aspects 
of LTAG appear unnecessarily restrictive from the perspective of tree description: 

. 

. 

In LTAG, the root and foot of auxiliary trees must be labeled by the same 
nonterminal symbol. This is not a minor issue since it derives from one 
of the most fundamental principles of LTAG, factoring of recursion. This 
principle states that auxiliary trees express factored out recursion, which 
can be reintroduced via the adjunction operation. It has had a profound 
influence on the way that the formalism has been applied linguistically. 3 
An example of how this can create problems is shown in Figure 3. In this 
case, the "adjoined" tree has a root labeled S and a foot labeled VP, 
something that is not permissible in LTAG. Note that without this 
constraint, the combination would appear to be exactly like adjoining. 
We consider this aspect in more detail in Section 4.1. 

The adjunction operation embeds all of the adjoined tree within that part 
of the tree at which adjunction occurs. This is illustrated in -y' (Figure 2) 
where both parts (separated by domination) of fl~ appear within one 
underspecified domination relationship in c~'. 
The foot node of tree fl in Figure 1 corresponds to a required argument 
of the lexical anchor, thought. The adjunction operation accomplishes the 
role of expanding this argument node. Unlike the substitution operation, 
where an entire tree is inserted below the argument node, with 
adjunction, only a subtree of ~ appears below the argument node; the 
remainder appears in its entirety above the root node of ft. However, if 
we view the trees as descriptions, as in Figure 2, and if we take the 
expansion of the foot node as the main goal served by adjunction, it is 
not clear why the composition should have anything to say about the 
domination relationship between the other parts of the two objects being 
combined. In the description approach, in order to obtain 3 /we  (in a 

3 Note that  in feature-based LTAG there is no restr ict ion that  the two feature s t ructures  be the same, or 
even  that  they  be compatible.  

90 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

PP S , 
I 
i 

To some of us VP 

V PP 

I I 
appears e 

Figure 4 
Another problem for LTAG. 

VP 

S 

NP VP 

I ' I 
i 

John VP 

to be happy 

sense to be made precise later) substitute the second component of ~ 
(rooted in S) at the foot node of fl'. This operation does not itself entail 
any further domination constraints between the components of ~P and fl~ 
that are not directly involved in the substitution, specifically, the top 
components of o / a n d  fl'. In the trees described it is possible for either 
one to dominate the other. 4 However, adjunction further stipulates that 
the rest of ~' will appear above all of fl'. This additional constraint 
makes certain analyses unavailable for the LTAG formalism (as is well 
known). For instance, given the two lexical projections in Figure 4, the 
subtrees must be interleaved in a fashion not available with adjoining to 
produce the desired result. This aspect of adjoining is the focus of the 
discussion in Section 4.2. 

In this paper, we describe a formalism based on tree descriptions called d-tree 
substitution grammars (DSG). 5 The elementary tree descriptions in DSG can be used 
to describe lexical items and the grammatical structure they project. Each elementary 
tree description can be seen as describing two aspects of the tree structure: one part of 
the description specifies phrase structure rules for lexical projections, and a second part 
of the description states domination relationships between pairs of nodes. DSG inherits 
from LTAG the extended domain of locality of its elementary structures, and, in DSG as 
in LTAG, this extended domain of locality allows us to develop a lexicalized grammar 
in which lexical items project grammatical structure, including positions for arguments. 
But DSG departs from LTAG in that it does not include factoring of recursion as 
a constraint on the makeup of the grammatical projections. Furthermore, in DSG, 
arguments are added to their head by a single operation that we call generalized 
substitution, whereas in LTAG two operations are used: adjunction and substitution. 

DSG is intended to be a simple framework with which it is possible to provide 
analyses for those cases described with LTAG as well as for various cases in which 
extensions of LTAG have been needed, such as different versions of multicomponent 

4 Of course, the node labels further restrict possible dominance in this case. 
5 This paper is based on Rarnbow, Vijay-Shanker, and Weir (1995), where DSG was called DTG (d-tree 

grammar). 

91 



Computational Linguistics Volume 27, Number 1 

Z% {Xl ~ X2, {Ul ~ U2, 

Xl /k X3, ~3 U3 ~1 /k U3~ 
X2 -~ 3:3~ U2 "~ ~3~ 
X3 '/~ Y l ,  I I 

yl /k y2, I I Zl /~ Z2, 

Yl /X Y3' O~ O~ z l  /X za' y2 -~ Y3} z2 -~ z3} 
Y3 z3 

Figure 5 
A pair of tree descriptions (which are also d-trees). 

LTAG. Furthermore, because the elementary objects are expressed in terms of logical 
descriptions, it has been possible to investigate the characteristics of the underspecifi- 
cation that is used in these descriptions (Vijay-Shanker and Weir 1999). 

In Section 2, we give some formal definitions and in Section 3 discuss some of 
the formal properties of DSG. In Section 4, we present analyses in DSG for various 
linguistic constructions in several languages, and compare them to the corresponding 
LTAG analyses. In Section 5, we discuss the particular problem of modeling syntactic 
dependency. We conclude with a discussion of some related work and summary. 

2. Def in i t ion  of  D S G  

D-trees are the primitive elements of a DSG. D-trees are descriptions of trees, in partic- 
ular, certain types of expressions in a tree description language such as that of Rogers 
and Vijay-Shanker (1992). In this section we define tree descriptions and substitution 
of tree descriptions (Section 2.1) and d-trees (Section 2.2) together with some associ- 
ated terminology and the graphical representation (Section 2.3). We then define d-tree 
substitution grammars, along with derivations of d-tree substitution grammars (Sec- 
tion 2.4) and languages generated by these grammars (Section 2.5), and close with an 
informal discussion of path constraints (Section 2.6). 

2.1 Tree Descr ip t ions  and Subs t i tu t ion  
In the following, we are interested in a tree description language that provides at least 
the following binary predicate symbols: A, /~, and -~. These three predicate sym- 
bols are intended to be interpreted as the immediate domination, domination, and 
precedence relations, respectively. That is, in a tree model, the literal x/~ y would be 
interpreted as node (referred to by the variable) x immediately dominates node (re- 
ferred to by) y, the literal x/~ y would be interpreted such that x dominates y, and 
x -~ y indicates that x is to the left of y. In addition to these predicate symbols, we 
assume there is a finite set of unary function symbols, such as label, which are to be 
used to describe node labeling. Finally, we assume the language includes the equality 
symbol. 

We will now introduce the notion of tree description. 

Def in i t ion  
A tree descr ipt ion  is a finite set (conjunction) of positive literals in a tree description 

language. 

In order to make the presentation more readable, tree descriptions are usually pre- 
sented graphically rather than as logical expressions. Figure 5 gives two tree descrip- 
tions, each presented both graphically and in terms of tree descriptions. We introduce 

92 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

x x3 
,p 

/ 

Z3 

Y5 

Figure 6 
A tree description (which is also a d-tree) with three components. 

the conventions used in the graphical representations in more  detail in Section 2.3. 
Note that with a functor for each feature, feature structure labels can be specified as 

required. Al though feature structures will be used in the linguistic examples presented 
in Section 4, for the remainder  of this section we will assume that each node  is labeled 
with a symbol by  the function label. Furthermore,  we assume that these symbols come 
from two pairwise distinct sets of symbols, the terminal and nonterminal  labels. (Note 
that the examples in this section do not  show labels for nodes,  but  rather  their names, 
while the examples in subsequent  sections show the labels.) 

In the following, we consider a tree description to be satisf iable if it is satisfied 
by  a finite tree model.  For our  current  purposes,  we assume that a tree model  will be 
defined as a finite universe (the set of nodes) and will interpret  the predicate symbols: 
G, ,~,, and -~ as the immedia te  domination,  domination,  and precedence relations, 
respectively. For more  details on the notion of satisfiability and the definition of tree 
models,  see Backofen, Rogers, and Vijay-Shanker (1995), where  the axiomatization of 
their theory is also discussed. 6 

We use d ~ d ~ to indicate that the description d ~ logically follows from d, in other 
words,  that d ~ is known in d. 7 Given a tree description d, we say x dominates  y in d if 
d ~ x ,~ y (similarly for the immediate  dominat ion and precedes relations). 

We use vars(d) to denote  the set of variables involved in the description d. For 
convenience, we will also call the variables in vars(d) the nodes  of description d. For a 
tree description d, a node  x E vars(d) is a frontier n o d e  of d if for all y E vars(d) such 
that x # y, it is not  the case that d =~ x ~ y. Only frontier nodes of the tree description 
can be labeled with terminals. A frontier node  labeled with a nonterminal  is called a 
subst i tut ion  node .  

A useful not ion for tree description is the notion of components .  Given a tree 
description d, consider the binary relation on vars(d) corresponding to the immedia te  
dominat ion relations specified in d; i.e., the relation {(x, Y/ I x, Y E vars(d), d =~ x A y}. 
The transitive, symmetric,  reflexive closure of this relation partit ions vars(d) into equiv- 
alence classes that we call components .  For example,  the nodes in the tree descrip- 
tion in Figure 6 fall into the three components:  { Xl, x2, x3, x4, x5 }, { yl, y2, y3, y4, Y5 }, 
and { zl,z2, Zg, Z4,Z5 }- In particular, note that y4 and Zl (likewise x3 and z2) are not  
in the same components  despite the fact that y4 dominates  zl is known  in that de- 

6 Note that the symbol /~ in this paper replaces the symbol/~* used in Backofen, Rogers, and 
Vijay-Shanker (1995). 

7 In other words, d =~ d ~ iff d A ~d ~ is not satisfied by any tree model. 

93 



Computational Linguistics Volume 27, Number 1 

0 3 : ~  
{X l  t 2:2~ 

x l  /k x3, OFX2 ~ X 3 
3:2 "~ X3~ I 
x3/h Yl, I 
Yl /k y2, 

y2 "< Ul, 
Ul ]~ U2~ I£1 

Ul  t u3 ,  ~ U  2 0153 
I/,2 "~ u3  

'//'2 ]~' Zl ~ ! I 
Zl ]~ Z2 ~ I 
Zl t z3,  Z~Z 1 
z2 "~ Z3} 

Z3 

Figure 7 
Result of substitution by tree description root. 

scription. This is because the reflexive, symmetric,  and transitive closure of the im- 
mediate  dominat ion relation known  in the description will not  include these pairs 
of nodes.  

We say that x is the root  of a componen t  if it dominates  every  node  in its com- 
ponent ,  and we say that x is on the f ront ier  of a componen t  if the only node  in its 
component  that it dominates  is itself. Note  that x can be on the frontier of a component  
of d wi thout  being a frontier node  of a tree description. For example,  in Figure 6, x3 
is a frontier of a component  but  not  a frontier of the tree description. In contrast, z3 is 
both  a frontier of a component  as well  as a frontier of the tree description. We say that 
x is the root  of a tree descr ipt ion  if it dominates  every  node  in the tree description. 
Note that it need not  be the case that every  tree descript ion has a root. For example,  
according to the definition of tree descriptions, the descript ion in Figure 6 is a tree de- 
scription and does not  have a root. Al though we know that either xl or Yl dominates  
all nodes  in a tree model  of the tree description, we don ' t  know which. 

We can now define the subs t i tu t ion  opera t ion  o n  tree descr ip t ions  that will be 
used in DSG. We use  dl [y/x] to denote  the description obtained from dl by  replacing 
all instances in dl of the variable x by  y. 

D e f i n i t i o n  
Let dl and d2 be two tree descriptions. Without loss of generality, we assume that 

vars(dl) N vars(d2) = ¢. Let x E vars(dl) be a root of a component  of dl and 
y E vars(d2) be a substi tution node  in the frontier of d2. Let d be the descript ion 
dl kJ d2[x/y]. We say that d is obtained from dl and d2 by  subs t i tu t ing  x at y. 

Note that in addition, we may  place restrictions on the values of the labeling 
functions for x and y in the above definition. Typically, for a node  labeling function such 
as label we require label(x) = label(y), and for functions that re turn feature structures 
we require unifiability (with the unification being the new value of the feature function 
for y). 

Figure 7 shows the result of substituting the root Ul of the tree description on 
the right of Figure 5 at the substi tution node  Y3 of the tree descript ion on the left of 
Figure 5. 

Figure 8 shows the result of substituting a node  that is not  the root of the tree 

94 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

Xl ]~ .T2~ 
Xl /'x X3, 

x3 ~ y~, ~ X 2  N ~  x3 c ~ t  , 
Yl A y~, . / ' c  4 
Yl fk Zl, I q) U 2 O '//3 
Y2 "~ Zl, I I 
Ul ]k U2~ ~ Y l  ii 
Ul ~ U3~ 
u2 -~ ua, (5 Y2 ~ Y 3 :  z l  
U2 /~ Zl~ 
Zl /k Z2, (9 Z2 (9 Z3 

zl  /k z3, 
z2 ~ z3} 

Figure 8 
Result of substitution by component root. 

description but  the root Zl of a component of the tree description on the right of Figure 5 
at the substitution node  y3 of the tree description on the left of Figure 5. 

2.2 D-Trees 
D-trees are certain types of tree descriptions: not  all tree descriptions are d-trees. In 
describing syntactic structure, we are interested in two kinds of primitive tree de- 
scriptions. The first kind of primitive tree description, which we call parent-chi ld  
descriptions,  involves n + 1 (n _> 1) variables, say x, xl, .  •. ,  Xn, and in addit ion to spec- 
ifying categorial information associated with these variables, specifies tree structure of 
the form 

{X & I1 . . . . .  X A Xn, Xl "g X2 . . . . .  Xn-1 "¢, Xn} 

A parent-child description corresponds to a phrase structure rule in a context-free 
grammar,  and by  extension, to a phrase  structure rule in X-bar theory, to the instanti- 
ation of a rule schema in HPSG, or to a c-structure rule in LFG. As in a context-free 
grammar,  in DSG we assume the siblings Xl , . . . ,  Xn are totally ordered by  precedence,  s 

The second kind of primitive description, which we call a dominat ion  description, 
has the form {x & y}, where x and y are variables. In projecting from a lexical i tem to 
obtain the e lementary objects of a grammar,  this underspecif ied dominat ion s tatement  
allows for structures projected from other lexical items to be interspersed dur ing  the 
derivation process. 

Defini t ion 
A d-tree is a satisfiable description in the smallest class of tree descriptions obtained 

by closing the primitive tree descriptions under  the substitution operation. 

For example, Figure 9 shows how the d-tree in Figure 6 is p roduced  by  using 
six parent-child descriptions and two dominat ion descriptions. The ovals show cases 
of substitution; the circle represents a case of two successive substitutions. Figure 10 
shows a tree description that is not  a d-tree: it is not  a parent-child description, nor  

8 One could, of course, relax this constraint  and assume that they are only partially ordered. However,  
for now, we do not  consider such an extension. See Section 4.4 for a discussion. 

95 



Computational Linguistics Volume 27, Number 1 

~g4 
X5 I 

X3 

Y2 

Y5 

,s 
J 

J 

2:4 

| f 

Z3 

Figure 9 
Derivation of an elementary d-tree. 

{x & y, 
o.x 

6y  "o z 
y -~ z} 

Figure 10 
A description that is not a d-tree. 

Y~ 

can it be der ived from two dominat ion  descriptions by substitution, since substi tut ion 
can only occur at the frontier nodes.  

A d-tree d is comple te  if it does not  contain any substi tut ion nodes,  i.e., all the 
frontier nodes  of the descript ion d are labeled by  terminals. Given a d-tree d, we say 
that a pair  of nodes,  x and y (variables in vars(d)), are related by  an i-edge if d ::~ x A y .  
We say that x is an i -parent  and y is an i-child. Given a d-tree d, we say that a pair  of 
nodes,  x and y, are related by  a d-edge if it is k n o w n  from d that x dominates  y, it is 
not  known  from d that x immediate ly  dominates  y, and there is no other variable in d 
that is known  to be be tween them. That is, a pair  of nodes  x and y, x ~ y, are related 
b y a d - e d g e i f d  ~ x ~ y , d  ~ x G y ,  and for a l l z  E vars (d) , i fd  ~ ( x & z A z ~ y )  
then z = x or z = y. If x and y are related by  a d-edge, then we say that they are 
d-parent and d-child, respectively. Note  that a node  in a d-tree (unlike a node  in a 
tree description) cannot  be both  an i-parent and a d-parent  at the same time. 

2.3 Graphical Presentation of a D-Tree 
We usually find it more  convenient  to present  d-trees graphically. When  present ing a 
d-tree graphically, i-edges are represented wi th  a solid line, while d-edges are repre- 
sented wi th  a broken line. All immedia te  dominance  relations are always represented 
graphically, bu t  only the dominat ion relations corresponding to d-edges are shown 
explicitly in graphical presentations.  

By definition of d-trees, each component  of a d-tree is fully specified wi th  respect 
to immediate  domination.  Thus, all immedia te  dominat ion  relations be tween nodes  
in a component  are indicated by  i-edges. Also, by  definition, components  mus t  be 
fully specified wi th  respect to precedence.  That is, for any two nodes  u and v within 

96 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

a component  we must  know whether  u precedes v or vice versa. In fact, all prece- 
dence information derives f rom precedence among siblings (two nodes  immediate ly  
dominated  by  a common  node). This means that all the precedence in a description 
can be expressed graphically s imply by  using the normal  left-to-right ordering among 
siblings. 

Another  impor tant  restriction on d-trees has to do with how components  are re- 
lated to one another. As we said above, a frontier node  of a component  of a d-tree 
can be a d-parent  but  not  an i-parent, and only frontier nodes  of a component  can 
serve as d-parents. However ,  by  definition, a frontier node  of a d-tree can neither be a 
d-parent  nor  an i-parent. Graphically, this restriction can be characterized as follows: 
edges specifying dominat ion (d-edges) must  connect a node  on the frontier of a com- 
ponent with a node  of another  component .  Furthermore,  nodes  on the frontier of a 
component  can have at most  one d-child. 

Recall that not  every  set of positive literals involving A, /~, and -~ is a legal d-tree. 
In particular, we can show that a description is a d-tree if and only if it is logically 
equivalent to descriptions that, when  writ ten graphically, would  have the appearance 
described above. 

2.4 D-Tree Substitution Grammars 
We can now define d-tree substitution grammars.  

Definition 
A d-tree substitution grammar (DSG) G is a 4-tuple (VT, VN, T, ds), where  VT and 

VN are pairwise distinct terminal and nonterminal  alphabets, respectively, T is a 
finite set of e lementary d-trees such that the functor label assigns each node  in 
each d-tree in T a label in VT U VN and such that only d-tree frontier nodes take 
labels in VT, and ds is a characterization of the labels that can appear  at the root 
of a der ived tree. 

Derivations in DSG are defined as follows. Let G = (VT, VN, T, ds) be a DSG. 
Furthermore:  

• Let T0(G) --- T. 

• Let Ti+I = Ti U {d[d is satisfiable and d results f rom combining a pair of 
d-trees in Ti by  substitution at a node x such that label(x) c VN}. 

The d-tree language T(G) generated by  G is defined as follows. 

T ( G ) = { d c T i l i > 0 ,  d i s c o m p l e t e }  

In a lexicalized DSG, there is at least one terminal node  on the frontier of every  
d-tree; this terminal is (these terminals are) designated the anchor(s) of the d-tree. 
The remaining frontier nodes  (of the description) and all internal nodes  are labeled by  
nonterminals.  Nonterminal  nodes  on the frontier of a description are called substitution 
nodes because these are nodes at which a substitution must  occur (see below). Finally, 
we say that a d-tree d is sentent ia l  if d has a single component  and the label of the 
root of d is compatible with ds. 

2.5 Reading D-Trees 
A description d is a tree if and only if it has a single component  (i.e., it does not  have 
any d-edges). Therefore, the process of reading off trees f rom d-trees can be v iewed as 

97 



Computational Linguistics Volume 27, Number 1 

a nondeterministic process that involves repeatedly removing d-edges until a d-tree 
with a single component results. 

In defining the process of removing a d-edge, we require first, that no i-edges 
be added which are not already specified in the components, and second, that those 
i-edges that are distinct prior to the process of reading off remain distinct after the 
removal of the d-edges. This means that each removal of a d-edge results in equating 
exactly one pair of nodes. These requirements are motivated by the observation that 
the i-edges represent linguistically determined structures embodied in the elementary 
d-trees that cannot be created or reduced during a derivation. 

We now define the d-edge removal algorithm. A d-edge represents a domination 
relation of length zero or more. Given the above requirements, at the end of the 
composition process, we can, when possible, get a minimal reading of a d-edge to 
be a domination relation of length zero. Thus, we obtain the following procedure for 
removing d-edges: Consider a d-edge with a node x as the d-parent and with a d-child 
y. By definition of d-trees, x is on the frontier of a component. The d-child y can either 
be a root of a component or not. Let us first consider the case in which y is a root of 
a component. To remove this d-edge, we equate x with y.9 This gives us the minimal 
reading that meets the above requirement (that no i-edges are added which are not 
already specified in the components, and that those i-edges that are distinct prior to 
the process of reading off remain distinct after the removal of the d-edge). Now we 
consider the alternate case in which the d-child is not the root of its component. Let z 
be the root of the component containing y. Now both z and x are known to dominate 
y and hence in any model of the description, either z will dominate x or vice versa. 
Equating x with y (the two nodes in the d-edge under consideration) has the potential 
of requiring the collapsing of i-edges (e.g., i-edges between x and its parent and y and 
its parent in the component including z). As a consequence of our requirement, the 
only way to remove the d-edge is by equating the nodes x and z. If we equated x 
with any other node dominated by z (such as y), we would also be collapsing i-edges 
from two distinct components and equating more than one pair of nodes, contrary to 
our requirement. The removal of the d-edge by equating x and z can also be viewed 
as adding a d-edge from x to z (which, as mentioned, is compatible with the given 
description and does not have the potential for collapsing i-edges). Now since this d- 
edge is between a frontier of a component and the root of another, it can be removed 
by equating the two nodes. 

Definition 
A tree t can be read off from a d-tree d iff t is obtained from d by removing the d-edges 

of d in any order using the d-edge removal algorithm. 

By selecting d-edges for removal in different orders, different trees can be pro- 
duced. Thus, in general, we can read off several trees from each d-tree in T(G). For 
example, the d-tree in Figure 6 can produce two trees: one rooted in xl (if we choose 
to collapse the edge between y4 and zl first) and one rooted in yl (if we choose to col- 
lapse the edge between x3 and z2 first). The fact that a d-tree can have several minimal 
readings can be exploited to underspecify different word orderings (see Section 4.4). 

9 This addi t ional  equal i ty  to obtain the min ima l  readings  is s imilar  to unificat ion of the so-called top and  
bo t tom feature s t ructures  associated wi th  a node  in tree adjoining g r ammars ,  wh ich  h a p p e n s  at the end  
of a derivation.  In DSG, if the labeling specifications on x and  y are incompatible,  t hen  the addi t ional  
equal i ty  s t a tement  does  not  lead to any  mi n i ma l  tree model ,  jus t  as in TAG, a der ivat ion cannot  
te rminate  if the  top and  bo t tom feature s t ructures  associated wi th  a node  do not  unify. 

98 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

Thus, while a single d-tree may  describe several trees, only some of these trees 
will be read off in this way. This is because of our  assumptions about  what  is being 
implicitly stated in a d- t ree- - for  example,  our  requirement  that i-edges can be neither 
des t royed nor  created in a derivation. Assumptions such as these about  the implicit 
content of d-trees constitute a theory of how to read off from d-trees. Variants of the 
DSG formalism can be defined, which differ with respect to this theory. 

We now define the tree and string languages of a DSG. 

Definition 
Let G be a DSG. The tree language T(G) generated by  G is the set of trees that can be 

read off from sentential d-trees in T(G). 

Definition 
The string language generated by  G is the set of terminal strings on the frontier of 

trees in T(G). 

2.6 DSG with Path Constraints 
In DSG, dominat ion statements are used to express dominat ion paths of arbitrary 
length. There is no requirement  placed on the nodes that appear  on such paths. In this 
section, we informally define an extension to DSG that allows for addit ional statements 
constraining the paths. 

Path constraints can be associated with dominat ion statements to constrain which 
nodes,  in terms of their labels, can or cannot appear  within a path  instantiating a 
d-edge. 1° Path constraints do not  directly constrain the length of the dominat ion path, 
which still remains underspecified. Path constraints are specified in DSG by  associat- 
ing with dominat ion statements a set of labels that defines which nodes cannot  appear  
within this path. u Suppose we have a statement x A y with an associated path con- 
straint set, P, then logically this pair can be unders tood as x A y A Vz(z ~ x A z y~ 
y A x A z A z A  y) ~ label(z) ~ P .  

Note that dur ing the process of derivation involving substitution, the dominat ion 
statements in the two descriptions being composed continue to exist and do not  p lay  
any role in the composit ion operat ion itself. The dominat ion statements only affect 
the reading off process. For this reason, we can capture the effect of path  constraints 
by  merely defining how they affect the reading off process. Recall that the reading off 
process is essentially the elimination of d-edges to arrive at a single component  d-tree. 
If there is a d-edge between x and y, we consider two situations: is the d-child y the 
root of a component ,  or not? When y is the root of a component ,  then x and y are 
collapsed. Clearly any path  constraint on this d-edge has no effect. However ,  when  y 
is not  the root of a component ,  and z is the root of the component  containing y, then 
the tree we obtain from the reading off process is one where  x dominates  z and not  
where z proper ly  dominates  x. That is, in this case, we replace the d-edge between 
x and y with a d-edge between x and z, which we then eliminate in the reading off 
process by  equating x and z. But in order  to replace the d-edge between x and y with 
a d-edge be tween x and z, we need to make sure that the path  between z and y does 
not  violate the path constraint associated with the d-edge be tween x and y. 

10 In Rambow, Vijay-Shanker, and Weir (1995), path constraints are called "subsertion-insertion 
constraints." 

11 Rambow (1996) uses regular expressions to specify path constraints. 

99 



Computational Linguistics Volume 27, Number 1 

A A 

a A a A 
I I 

I I 
, o 

B B 

b B b B 
I I 

! I 
i i 

C C 

e 6' 

Figure 11 
Counting to three: A derivation. 

A 

a B 
I 

I 
i 

B 

/ N  
b C 

i 

I 
i 

C 

C 

3. Properties  of  the Languages  of  D S G  

It is clear that any context-free language can be generated by DSG (a context-free 
grammar can simply be reinterpreted as a DSG). It is also easy to show that the weak 
generative capacity of DSG exceeds that of context-free grammars. Figure 11 shows 
three d-trees (including two copies of the same d-tree) that generate the non-context- 
free language { anb'c" In > 1 }. Figure 12 shows the result of performing the first of 
two substitutions indicated by the arrows (top) and the result of performing both 
substitutions (bottom). Note that although there are various ways that the domination 
edges can be collapsed when reading off trees from this d-tree, the order in which 
we collapse domination edges is constrained by the need to consistently label nodes 
being equated. This is what gives us the correct order of terminals. 

Figure 13 shows a grammar for the language 

{ w E { a, b, c }* ] w has an equal nonzero number of a's, b's and c's }, 

which we call Mix. This grammar is very similar to the previous one. The only differ- 
ence is that node labels are no longer used to constrain word order. Thus the domi- 
nation edges can be collapsed in any order. 

Both of the previous two examples can be extended to give a grammar for strings 
containing an equal number of any number of symbols simply by including additional 
components in the elementary d-trees for each symbol to be counted. Hence, DSG 
generates not only non-context-free languages but also non-tree adjoining languages, 
since LTAG cannot generate the language { anbncndnen i n _~ 1 } (Vijay-Shanker 1987). 

However, it appears that DSG cannot generate all of the tree adjoining languages, 
and we conjecture that the classes are therefore incomparable (we offer no proof of 
this claim in this paper). It does not appear to be possible for DSG to generate the 
copy language { ww [ w c { a, b }* }. Intuitively, this claim can be motivated by the 
observation that nonterminal labels can be used to control the ordering of a bounded 
number of terminals (as in Figure 12), but this cannot be done in an unbounded way, 
as would be required for the copy language (since the label alphabet is finite). 

100 



Rainbow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

A A 

a A a A 
t I 
I I 
o n 

B B 

b B b B 
! / 

o / 

c 6' 

c 6' 

A A A 

a A a A a B 
I I ! 

I I I 
i n i 

B B B 

b B b B b C 
| d / / t 
I / . , . I  

I / 

C / ., 
/ t 

/ 1 1 / 
f / 

s j 

i 

i 

e C 

I 
C 

Figure 12 
Counting to three: After substituting one tree (above) and the derived d-tree (below). 

DSG is closely related (and weakly equivalent) to two equivalent string rewriting 
systems, UVG-DL and {}-LIG (Rainbow 1994a, 1994b). In UVG-DL, several context- 
free rewrite rules are grouped into a set, and dominance links may hold between 

101 



Computational Linguistics Volume 27, Number 1 

S S S S 

a S b S c S a S 

S < 

S S 

b S c S 

:" S 

I 
£ 

S 

a S 

S S S S S 

b S c S a S b S c S 

S 

I 
Figure 13 
A grammar for Mix. 

right-hand-side nonterminals and left-hand-side nonterminals of different rules from 
the same set. In a derivation, the context-free rules are applied as usual, except that all 
rules from an instance of a set must be used in the derivation, and at the end of the 
derivation, the dominance links must correspond to dominance relations in the deriva- 
tion tree. {}-LIG is a multisebvalued variant of Linear Index Grammar (Gazdar 1988). 
UVG-DL and {}-LIG, when lexicalized, generate only context-sensitive languages. 

Finally, Vijay-Shanker, Weir, and Rainbow (1995), using techniques developed for 
UVG-DL (Rainbow 1994a; Becker and Rambow 1995), show that the languages gen- 
erated by lexicalized DSG can be recognized in polynomial time. This can be shown 
with a straightforward extension to the usual bottom-up dynamic programming algo- 
rithm for context-free grammars. In the DSG case, the nonterminals in the chart are 
paired with multisets. The nonterminals are used to verify that the immediate dom- 
inance relations (i.e., the parent-child descriptions) hold, just as in the case of CFG. 
The multisets record the domination descriptions whose lower (dominated) node has 
been found but whose upper (dominating) node still needs to be found in order for 
the parse to find a valid derivation of the input string (so-called open domination 
descriptions). The key to the complexity result is that the size of the multisets is lin- 
early bounded by the length of the input string if the grammar is lexicalized, and the 
number of multisets of size n is polynomial in n. Furthermore, if the number of open 
domination descriptions in any chart entry is bounded by some constant independent 

102 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

of the length of the input string (as is plausible for many natural languages including 
English), the parser performs in cubic time. 

4. Some Linguistic Analyses with DSG 

In Section 1, we saw that the extended domain of locality of the elementary structures 
of DSG--which DSG shares with LTAG--allows us to develop lexicalized grammars 
in which the elementary structures contain lexical items and the syntactic structure 
they project. There has been considerable research in the context of LTAG on the is- 
sue of how to use the formalism for modeling natural language syntax--we mention 
as salient examples XTAG-Group (1999), a wide-coverage grammar for English, and 
Frank (1992, forthcoming), an extensive investigation from the point of view of theo- 
retical syntax. Since DSG shares the same extended domain of locality as LTAG, much 
of this research carries over to DSG. In this section, we will be presenting linguis- 
tic analyses in DSG that follow some of the elementary principles developed in the 
context of LTAG. We will call these conventions the standard LTAG practices and 
summarize them here for convenience. 

• Each elementary structure contains a lexical item (which can be 
multiword) and the syntactic structure it projects. 

• Each elementary structure for a syntactic head contains syntactic 
positions for its arguments. (In LTAG, this means substitution or foot 
nodes; in DSG, this means substitution nodes.) 

• When combining two elementary structures, a syntactic relation between 
their lexical heads is established. For example, when substituting the 
elementary structure for lexical item ll into an argument position of the 
elementary structure for lexical item 12, then ll is in fact an argument 
of 12. 

In Section 1 we also saw that the adjoining operation of LTAG has two properties 
that appear arbitrary from a tree description perspective. The first property is the 
recursion requirement, which states that the root and foot of an auxiliary tree must 
be identically labeled. This requirement embodies the principle that auxiliary trees 
are seen as factoring recursion. The second property, which we will refer to as the 
nesting property of adjunction, follows from the fact that the adjoining operation 
is not symmetrical. All the structural components projected from one lexical item 
(corresponding to the auxiliary tree used in an adjoining step) are included entirely 
between two components in the other projected structure. That is, components of only 
one of the lexically projected structures can get separated in an adjoining step. 

In this section, we examine some of the ramifications of these two constraints 
by giving a number of linguistic examples for which they appear to preclude the 
formulation of an attractive analysis. We show that the additional flexibility inherent in 
the generalized substitution operation is useful in overcoming the problems that arise. 

4.1 Factoring of Recursion 
We begin by explaining why, in LTAG, the availability of analyses for long-distance 
dependencies is limited by the recursion requirement. Normally, substitution is used 
in LTAG to associate a complement to its head, and adjunction is used to associate 
a modifier. However, adjunction rather than substitution must be used with com- 
plements involving long-distance dependencies, e.g., in wh-dependencies and raising 

103 



Computational Linguistics Volume 27, Number 1 

S 

NP~ S NP VP 
I I 

many of us S John VP 

NP VP V S 

PRO VP hopes 

to meet NPi 

I 
e 

Figure 14 
S-analysis for extraction from infinitival complements. 

constructions. Such auxiliary trees are called predicative auxiliary trees. 12 In a pred- 
icative auxiliary tree, the foot node should be one of the nonterminal nodes on the 
frontier that is included due to argument requirements of the lexical anchor of the tree 
(as determined by its active valency). However, the recursion requirement means that 
all frontier nonterminal nodes that do not have the same label as the root node must 
be designated as substitution nodes, which may mean that no well-formed auxiliary 
tree can be formed. 

Let us consider again the topicalized sentence used as an example in Section 1, 
repeated here for convenience: 

(1) Many of us, John hopes to meet 

A possible analysis is shown in Figure 3 in Section 1. We will refer to this anal- 
ysis as the VP-complement analysis. Note that the individual pieces of the structures 
projected from lexical items follow standard LTAG practices. Because of the recursion 
requirement, the tree on the right is not (a description of) an auxiliary tree. To obtain 
an auxiliary tree in order to give a usual TAG-style account of long-distance depen- 
dencies, the complement of the equi-verb (control verb) hopes must be given an S label, 
which in turn imposes a linguistic analysis using an empty (PRO) subject as shown 
in Figure 14 (or, at any rate, an analysis in which the infinitival to meet projects to S). 

The VP-complement analysis has been proposed within different frameworks, and 
has been adopted as the standard analysis in HPSG (Pollard and Sag 1994). However, 
because this would require an auxiliary tree rooted in S with a VP foot node, the 
recursion requirement precludes the adoption of such an analysis in LTAG. We are 

12 This term is from Schabes and Shieber (1994). Kroch (1987) calls such trees complement auxiliary trees. 

104 



Rainbow, Vijay-Shanker, and  Weir D-Tree Subst i tu t ion G r a m m a r s  

NPi S 
/ / x , , x  ' I I 

i i 

John PP VP 

P NPi V NP PP 

I I 
to e gave the book 

Figure 15 
HPSG analysis of give expressed as trees. 

S 

NP VP 

I 
Peter 

not suggesting that one linguistic analysis is better than another, but instead we point 
out that the formal mechanism of LTAG precludes the adoption of certain linguistically 
motivated analyses. Furthermore, this mechanism makes it difficult to express entire 
grammars originally formulated in other formalisms in LTAG; for example, when 
compiling a fragment of HPSG into TAG (Kasper et al. 1995). In fact, the compilation 
produces structures just like those (described) in Figure 3. Kasper et al. (1995) consider 
the tree on the right of Figure 3 to be an auxiliary tree with the VP sibling of the anchor 
determined to be the foot node. Technically, the tree on the right of Figure 3 caimot be 
an auxiliary tree. Kasper et al. (1995) overcome the problem by making the node label 
a feature (with all nodes having a default label of no significance). This determination 
of the foot node is independent of the node labels of the frontier nodes. Instead, the 
foot node is chosen because it shares certain crucial features (other than label!) with 
the root node. These shared features are extracted from the HPSG rule schema and 
are used to define the localization of dependencies in the compiled TAG grammar. See 
Kasper et al. (1995) for details. 

A similar example involves analyses for sentences such as (2), which involve ex- 
traction from argument PPs. 

(2) John, Peter gave the book to 

Figure 15 shows the structures obtained by using the method of Kasper et al. (1995) 
for compiling an HPSG fragment to TAG-like structures. In contrast to traditional TAG 
analyses (in which the elementary tree contains the preposition and its PP, with the 
NP complement of the preposition as a substitution node), the PP argument of the 
ditransitive verb is not expanded. ~3 Instead the PP tree anchored by the preposition 
is substituted. However, because of the extraction, DSG's notion of substitution rather 
than LTAG substitution would need to be used. 

These examples suggest that the method for compiling an HPSG fragment into 
TAG-like structures discussed in Kasper et al. (1995) can be simplified by compiling 
HPSG to a DSG-like framework. 

13 Recall that we are not, in this section, advocating one analysis over another; rather, we are discussing 
the range of options available to the syntactician working in the TAG framework. 

105 



Computational Linguistics Volume 27, Number 1 

NPi S 
/ , , ,  , 

I 
i 

This painting NP 

DET KI 

a N PP 

copy P 

I 
ol 

Figure 16 
Extraction from picture-NPs. 

S 

NP VP 

I ' I 
i 

John VP 

V NP 

I 
bought 

NP~ 

I 
e 

We have shown a number of examples where some, but not all, of the possible 
linguistic analyses can be expressed in LTAG. It could be claimed that a formal frame- 
work limiting the range of possible analyses constitutes a methodological advantage 
rather than a disadvantage. However, as is well known, there are several other exam- 
ples in English syntax where the factoring of recursion requirement in fact eliminates 
all plausible LTAG analyses. The only constraint assumed here is that extraction is 
localized in elementary trees. One such example in English is extraction out of a "pic- 
ture-NP" (a noun which takes a prepositional complement from which extraction into 
the main sentence is possible), as illustrated in the following example: 

(3) This painting, John bought a copy of 

Following the standard LTAG practices, we would obtain the structures described 
in Figure 16. As these descriptions show, the recursion constraint means that adjoining 
cannot be used to provide this analysis of extraction out of NPs. See Kroch (1989) for 
various examples of such constructions in English and their treatment using an exten- 
sion of TAG called multicomponent tree adjoining grammars. (We return to analyses 
using multicomponent TAG in Section 4.2.) 

However, we now show that all of these cases can be captured uniformly with 
generalized substitution (see Figure 17). The node labeled X in fl arises due to the 
argument requirements of the anchor (the verb) and when X = S, fl is a predica- 
tive auxiliary tree in LTAG. The required derived phrase structure in these cases is 
described by 7. To obtain these trees, it would suffice to simply substitute the compo- 
nent rooted in X of c~ at the node labeled X in ft. While in general, such a substitution 
would not constrain the placement of the upper component of t ,  because of the labels 
of the relevant nodes, this substitution will always result in % The use of substitution 
at argument nodes not only captures the situations where adjoining or multicompo- 

106 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

g t :  S v g 

YPi S NP VP YPi S 

! I 
i i 

X VP NP VP 

V X V X 

J 
e 

e 

Figure 17 
General case of extraction. 

nent adjoining is used for these examples, it also allows the DSG treatment to be 
uniform, and is applicable even in cases where there is no extraction (e.g., the upper 
component of a is not present). 

We end this discussion of the nature of foot nodes by addressing the question 
of how the choice of foot nodes limits illicit extractions. In the TAG approach, the 
designation of a foot node specifically rules out extraction from any structure that 
gets attached to any other frontier node (other arguments), or from structures that 
are adjoined in (adjuncts). However, as has been pointed out before (Abeill6 1991), the 
choice of foot nodes is not always determined by node labels alone, for example in the 
presence of sentential subjects or verbs such as ddduire, which can be argued to have 
two sentential objects. In these cases some additional linguistic criteria are needed in 
order to designate the foot node. These same linguistic criteria can be used to designate 
frontier nodes from which extraction is possible; extraction can be regulated through 
the use of features. We also note that in moving to a multicomponent TAG analysis, an 
additional regulatory mechanism becomes necessary in any case to avoid extractions 
out of subjects (and, to a lesser degree, out of adjuncts). We refer the interested reader 
to Rainbow, Vijay-Shanker, and Weir (1995) and Rambow and Vijay-Shanker (1998) for 
a fuller discussion. 

4.2 Interspersing of Components 
We now consider how the nesting constraint of LTAG limits the TAG formalism as a 
descriptive device for natural language syntax. We contrast this with the case of DSG, 
which, through the use of domination in describing elementary structures projected 
from a lexical item, allows for the interleaving of components projected from lexical 
items during a derivation. 

Consider the raising example introduced in Section 1 repeated here as (4a), along 
with its nontopicalized version (4b), which indicates a possible original position for 

107 



Computational Linguistics Volume 27, Number 1 

g 

PPi S / , , , ,  , 
I 
i 

To many of us VP 

S 

I ' I 
t 

John VP 

V PP VP to be happy 

I I 
appears e 

Figure 18 
Topicalization out of the clause of a raising verb. 

the topicalized phrase) 4 

(4) a. To many of us, John appears to be happy 

b. John appears to many of us to be happy 

Following standard LTAG practices of localizing argument structure (even in the 
presence of topicalization) and the standard LTAG analysis for the raising verb appear, 
the descriptions shown in Figure 18 could be proposed. Because of the nesting property 
of adjunction, the interleaving required to obtain the relevant phrase structure for the 
sentence (4a) cannot be realized using LTAG with the assumed lexical projections (or 
any other reasonable structures where the topicalized PP and the verb appear are in 
the same projected structure). In contrast, with these projections, using generalized 
substitution in DSG (i.e., equating the VP argument node of the verb and the root of 
the infinitival VP), the only possible derived tree is the desired one. 

We will now consider an example that does not involve a wh-type dependency: 

(5) Didn't John seem to like the gift? 

Following the principles laid out in Frank (1992) for constructing the elementary 
trees of TAG, we would obtain the projections described in Figure 19 (except for the 
node labels). Note in particular the inclusion of the auxiliary node with the cliticized 
negation marker in the projection of the raising verb seem. Clearly the TAG opera- 
tions could never yield the necessary phrase structure given this localization. Once 
again, the use of generalized substitution in DSG would result in the desired phrase 
structure. 

An alternative to the treatment in Frank (1992) is implemented in the XTAG gram- 
mar for English (XTAG-Group 1999) developed at the University of Pennsylvania. The 
XTAG grammar does not presuppose the inclusion of the auxiliary in the projection 
of the main verb. Rather, the auxiliary gets included by separately adjoining a tree 

14 Throughout this section, we underline the embedded clause with all of its arguments, such as here, the 
raised subject. 

108 



Rainbow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

I 
Didn't 

V VP 

I 
seem 

Figure 19 
Raising verb with a fronted auxiliary. 

S S 

I I I 
i i 

VP John VP 

to like the gift 

projected from the auxiliary verb. The adjunction of the auxiliary is forced through 
a linguistically motivated system of features. A treatment such as this is needed to 
avoid using multicomponent adjoining. In our example, the auxiliary, along with the 
negation marker, is adjoined into the tree projected by the embedded verb l ike,  which 
may be considered undesirable since semantically, it is the matrix verb seem that is 
negated. We take this example to show once more that TAG imposes restrictions on 
the linguistic analyses that can be expressed in it. Specifically, there are constructions 
(which do not involve long-distance phenomena) for which one of the most widely 
developed and comprehensive theories for determining the nature of localization in 
elementary trees--that of Frank (1992)---calmot be used because of the nature of the 
TAG operation of adjunction. In contrast, the operations of DSG allow this theory of 
elementary lexical projections to be used. 

In English, the finite verb appears before the subject only in questions (and in 
some other contexts such as neg-inversion), but in other languages, this word order 
is routine, leading to similar problems for an LTAG analysis. In V1 languages such 
as Welsh, the subject appears in second position after the finite verb in the standard 
declarative sentence. The raised subject behaves in the same manner as the matrix 
subject, as observed in Harley and Kulick (1998) and illustrated in (6), from Hen- 
drick (1988): 

(6) a. Mae 

Is 

John 

b. Mae 

Is 

John 

Si6n yn gweld Mair 

John seeing Mary 

is seeing Mary 

Si6n yn digwydd bod yn gweld Mair 

John happening be seeing Mary 

happens to be seeing Mary 

In German, a V2 language, the finite verb appears in second position in matrix 
clauses. The first position may be occupied by any constituent (not necessarily the 
subject). When the subject is not in initial position, it follows the finite verb, both in 

109 



Computational Linguistics Volume 27, Number 1 

S 

NP VP 

I ' 
John 

NPi S 
I 
i 

, Which bridge VP 
u 

I VP PP 
v 

I P NPi 
sleep I I 

Figure 20 
Licit extraction from an adjunct in English. 

under e 

simplex sentences and in raising constructions: 

(7) a. Leider wird es standig regnen 

unfortunately will itNOM continually rain 

Unfortunately, it will rain continually 

b. Oft schien e_~s uns st~indig zu regnen 

often seemed itNo M USDA w continually to rain 

Often it seemed to us to rain continually 

In the German example, a separate adjunction of the tensed verb (as in the XTAG 
analysis of the English auxiliary) is not a viable analysis at all, since the tensed verb 
is not an auxiliary but the main (raising) verb of the matrix clause. 

We now return to examples that do not include raising, but only wh-dependencies. 

(8) a. John slept under the bridge 

b. Which bridge did John sleep under? 

Most LTAG analyses would treat the prepositional phrase in (8a) as an adjunct and 
use an intransitive frame for the verb. However, the related sentence (8b) cannot be 
analyzed with TAG operations in the same way, because the projected structures from 
the verb and the preposition would have to be as shown in Figure 20. The interspersing 
of components from these projections to obtain the desired tree cannot be obtained 
using adjoining. Clearly, with the appropriate generalized substitutions in DSG, this 
tree alone will be derived with these lexical projections. 

Related problems arise in languages in which a wh-moved element does not in- 
variably appear in sentence-initial position, as it does in English. For example, in 

110 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

Kashmiri, the wh-element ends up in second position in the presence of a topic. This 
is the case even if the wh-element comes from the embedded clause and the topic from 
the matrix clause. (The data is from Bhatt, [1994].) 

(9) a. rameshan kyaa dyutnay tse 

RameShERc whatNoM gave yOUDA T 

What did you give Ramesh? 

b. rameshan kyaai chu baasaan ki me kor ti 

RameShERc what is belieVeNPERF that IERC do 

What does Ramesh believe that I did? 

Another example comes from Rumanian. Rumanian differs from English in that it 
allows multiple fronted wh-elements in the same clause. Leahu (1998) illustrates this 
point with the examples in (10) (her (8a) and (11a)); (10a) shows multiple wh-movement 
in the same clause, while (10b) shows multiple wh-words in one clause that originate 
from different clauses, resulting again in an interspersed order. 

(10) a. Cinei cuij ti promite o masina tj? 

who to whom promises a car 

Who promises a car to whom? 

b. Cinei pe cinej a zis ti ca a vazut tj? 

who whom has said that has seen 

Who has said he has seen whom? 

The examples discussed in this section show a range of syntactic phenomena in 
English and in other languages that cannot be analyzed using the operations of TAG. 
We conclude that complex interspersing is a fairly common phenomenon in natu- 
ral language. As in the case of factoring of recursion, sometimes we find that the 
definition of adjunction precludes certain linguistically plausible analyses but allows 
others; in other cases, TAG does not seem to allow any linguistically plausible anal- 
ysis at all. However, in each case, we can use standard LTAG practices for projecting 
structures from lexical items and combine the resulting structures using the general- 
ized substitution operation of DSG to obtain the desired analyses, thus bringing out 
the underlying similarity of related constructions both within languages and cross- 
linguistically. 

4.3 Linguistic Use of Path Constraints 
In the examples discussed so far, we have not had the need to use path constraints. 
The d-edges seen so far express any domination path. Recall that path constraints can 
be associated with a d-edge to express certain constraints on what nodes, in terms of 
their labels, cannot appear within a path instantiating a d-edge. 

111 



Computational Linguistics Volume 27, Number 1 

S 

NP VP 
I ' 

I 
I 

wood I 
I 
I 
I 
I 
I 
I 
I 

" ' " ' " ' . . .  ok  

° ' ' • ' . o  ° o 

I path cgnstr,aint: I ' ,  
n o  ~ nocle 

%. 

S 
! 

i 
I 

....." ~ ' " ' . . . o k .  
V S 

' l S e e m 8  

S 
• , ~ .  I 

I " ~ "  
I 

VP 

V Vp 

' T 
appears 

VP 

NP 

I 
it 

~tc ° °  

S 

VP 

to float 

Figure 21 
Path constraints are needed to rule out ungrammatical super-raising. 

As an example of the use of path constraints, let us consider the well-known case 
of "super-raising": 

(11) a. It seems wood appears to float 

b. *Wood seems it appears to float 

c. Wood seems to appear to float 

In (11a), the subject of float, wood, has raised to the appears clause, while the raising 
verb seem does not trigger raising and has an expletive it as its subject• In (11b), 
wood has raised further, and appear now has an expletive subject; (11b) is completely 
ungrammatical.  If we make the intermediate raising verb appear nonfinite (and hence 
without  a subject), as in (11c), the sentence is again grammatical. 

Now consider the DSG analysis for (11a) shown in Figure 21. The d-tree for seem 
has an S substitution node, since seems takes a finite complement  with a subject• Appear, 

112 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

since it is finite, projects to S, but  takes a VP complement  since its complement ,  the 
float clause, is nonfinite and has no overt  subject, is We fur thermore  assume that the 
raising verbs seem and appear do not  select for subjects, but  that the expletive subject 
it is freely available for inclusion in their d-trees, since expletive it is semantically 
vacuous and merely  fulfills syntactic requirements (such as subject-verb agreement),  
not  semantic ones. We substitute the float d-tree into the appear d-tree, and the result 
into the seem d-tree, as indicated by  the solid arrows in Figure 21. Given the reading 
off process, this der ived d-tree can be seen to express two possibilities, depending  
on where  the wood component  and the expletive it end up. These two possibilities 
correspond to (11a) and (11b). 

To exclude the ungrammatical  result, we  use the path  constraints discussed in 
Section 2.6. Let us make the uncontroversial  assumption that as we project from a 
verb, we will project to a VP before projecting to an S. But we will interpret  this 
notion of projection as also applying to the d-edges between nodes labeled VP: we 
annotate the d-edge between the VP nodes in the float tree (and in fact in all trees, of 
course) as having a path  constraint that does not  allow an S node  on this path. This 
is, after all, what  we would  expect in claiming that the float tree represents a structure 
lexically projected from the verb float. 16 Given this addit ional grammatical  expression, 
after the substitution at the S node  of the seems tree, it is no longer possible to read off 
f rom the d-tree in Figure 21 a tree whose yield is the ungrammatical  (11b). The only 
possible way  of reading off f rom the der ived d-tree yields (11a). 

What  is striking is that this particular path  constraint disallowing S nodes be tween 
VP nodes  in structures projected from a verb can be used in other cases as well. In fact, 
this same path  constraint on its own, when  applied to the English examples considered 
so far, predicts the correct a r rangement  of all components  among the two d-trees 
being combined,  regardless of whether  the nesting constraint of adjoining must  be met  
(extraction out  of clausal or VP complements,  extraction from NP or PP complements) ,  
or not  (extraction from the clause of a raising verb, raising verb with fronted auxiliary, 
or extraction from an adjunct). For example,  in Figure 18, after substituting the to be 
happy component  at the VP node  of the appears d-tree, a path constraint on the d-edge 
between the two VP nodes  of the to be happy tree makes it impossible for the to any 
of us component  to intervene, thus leaving the interspersed tree as the only possible 
result of the reading off process, even if we relaxed the requirement  on label equali ty 
for the removal  of d-edges dur ing the reading off process. 

Note that while the same path  constraints apply  in all cases, in LTAG, as we have 
seen, the nesting constraint of adjoining precludes deriving the correct order  in some 
cases, and the use of extensions such as mul t icomponent  adjoining has been suggested. 
In fact, because there are both  situations in which the ar rangement  of components  of 
the lexically projected structures corresponds to adjoining and situations in which 
this ar rangement  is inappropriate,  Vijay-Shanker (1992) raises the quest ion of whether  
the definition of the formalism should limit the ar rangement  of components  of the 
lexically projected structures, or whether  the possible arrangements  should be der ived 
from the linguistic theory and from intuitions about  the nature of the e lementary 
objects of a grammar. This subsection partially addresses this question and shows 

15 The point we are making in this section relies on there being some distinction between the labels of the 
roots of the appear and float clauses, a linguistically uncontroversial assumption. Here, we use the 
categorial distinction between S and VP for convenience only; we could also have assumed a difference 
in feature content. 

16 Bleam (2000) uses informal path constraints in much the same way in order to restrict Spanish clitic 
climbing in an LTAG analysis. 

113 



Computational Linguistics Volume 27, Number 1 

how the path  constraint expressing the nature of projection from a lexical i tem can be 
used to derive the arrangements  of components  corresponding to adjoining in some 
cases as well as predict  when  the nesting condit ion of adjoining is too limiting in the 
others. 

4.4 Underspecification of Linear Precedence 
In our  proposed  tree description language, we provide  for underspecif ied dominance 
but  not  for underspecif ied linear precedence.  As a consequence,  in the graphical repre- 
sentations of d-trees, we assume that sister nodes  are always ordered  as shown. This 
may  seem arbitrary at first glance, especially since in m an y  linguistic f rameworks  
and theories it is common  to specify linear precedence (LP) separately f rom syntactic 
structure (GPSG, HPSG, LFG, ID/LP-TAG [Joshi 1987] and FO-TAG [Becker, Joshi, 
and Rambow 1991], various dependency-based  formalisms, and so on). This separate 
specification of LP rules allows for underspecif ied LP rules, which is useful in cases 
in which word  order  is not  fully fixed. 

In principle, an underspecificat ion of LP could easily be added  to DSG wi thout  
p ro found ly  changing its character or formal  properties.  The reason we have not  done  
so is that in all cases, the same effect can be achieved using underspecif ied dominance  
alone, though at the cost of forcing a linguistic analysis that uses binary branching 
phrase structure trees rather than n-ary branching ones. We will illustrate the point  
using examples f rom German,  which allows for scrambling of the arguments.  

Consider the following German  examples. 17 

(12) a. dat~ die Kinder dem Lehrer das Buch geben 

that [the children]NOM [the teacher]DAT [the book]Acc give 

that the children give the teacher the book 

b. dat~ dem Lehrer die Kinder das Buch geben 

c. dat~ de m Lehrer das Buch die Kinder geben 

All orders of the three arguments  are possible, resulting in six possible sentences 
(three of which are shown in (12)). In DSG, we can express this by  giving the lexical 
entry for geben shown in Figure 22. TM The arguments  of the verb have no dominance  
specified among them, so that when  using this d-tree (which is of course not  yet  a 
tree) in a derivation, we can choose whichever  dominance relations we want  w h en  
we read off a tree at the end of the derivation. As a result, we  obtain any ordering of 
the arguments.  

As ment ioned previously, while we can derive any ordering, we cannot, in DSG, 
obtain a flat VP structure. However ,  our  analysis has an advantage when  we consider 
"long scrambling," in which arguments  f rom two lexical verbs intersperse. (In German,  
only certain matrix verbs allow long scrambling.) If we have the subject-control verb 
versuchen ' to try' ,  the nominat ive  argument  is the overt  subject of the matrix clause, 
while the dative and accusative arguments  are arguments  of the embedded  clause. 
Nonetheless,  the same six word  orders are possible (we again underl ine the embedded  

17 We give embedded clauses starting with the complementizer in order to avoid the problem of V2. For 
a discussion of V2 in a framework like DSG, see Rambow (1994a) and Rambow and Santorini (1995). 

18 We label all projections from the verb (except the immediate preterminal) VP. We assume that relevant 
levels of projection are distinguished by the feature content of the nodes. This choice has mainly been 
made in order to allow us to derive verb-second matrix clause order using the same d-trees, which is 
also why the verb is in a component of its own. 

114 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

VP VP VP 

NPNoM VP NPAcc VP NPDAT VP VP 

VP 

I 
V 

I 
e 

Figure 22 
D-tree for German verb geben ' to give'. 

VP 

geben 

SUBJ XCOMP 

VP VP 

NP VP VP VP 

VP 

I 
e 

Figure 23 
D-tree for German verb versuchen ' to try'. 

VP 

VP V 

versuchen 

clause material):  

(13) a. daf~ die Kinder dem Lehrer das Buch zu geben 

that [the children]NOM [the teacher]DAT [the book]ncc to give 

that the children try to give the teacher the book 

b. daf~ dem Lehrer die Kinder das Buch zu geben versuchen 

c. daf~ dem Lehrer das Buch die Kinder zu geben versuchen 

versuchen 

try 

We can represent  the mat r ix  verb  as s h o w n  in Figure  23, and  a de r iva t ion  as s h o w n  
in Figure  24. It is clear tha t  w e  can still ob ta in  all possible  w o r d  orders ,  and  that  this 

115 



Computat ional  Linguistics Volume 27, Number  1 

OBJ INDOBJ XGOMP 

VP VP VP VP 

NP VP NP VP VP VP VP V 

SUBJ 

VP 

NP VP 

- -  - , i x ,  ' ' I " 
\ I . #  

VP V , ~ v e r s u c h e n .  - 
I 

VP z u  g e b e n  VP 

I I 
e e 

Figure 24 
DSG derivat ion for a complex sentence. 

w o u l d  b e  i m p o s s i b l e  u s i n g  s i m p l e  LP ru les  tha t  o r d e r  s i s te r  n o d e s .  19 (It w o u l d  a lso  
be  i m p o s s i b l e  in  LTAG, b u t  see  Joshi,  Becker,  a n d  R a m b o w  [2000] for  an  a l t e rna t e  
d i s c u s s i o n  of  l o n g  s c r a m b l i n g  in  LTAG.) 

5. Modeling Syntactic Dependency 

In  the  p r e v i o u s  sec t ions ,  w e  h a v e  p r e s e n t e d  D S G  a n d  h a v e  s h o w n  h o w  it  c an  b e  u s e d  to 
p r o v i d e  a n a l y s e s  for  a r a n g e  of  l i ngu i s t i c  p h e n o m e n a .  In  th is  sec t ion,  w e  c o n c l u d e  o u r  
i n t r o d u c t i o n  of  DSG b y  d i s c u s s i n g  the  r e l a t i o n s h i p  b e t w e e n  d e r i v a t i o n s  in  DSG a n d  
syntactic dependency. Recent ly ,  syn tac t i c  d e p e n d e n c y  h a s  e m e r g e d  as  an  i m p o r t a n t  
fac tor  for  a p p l i c a t i o n s  in  n a t u r a l  l a n g u a g e  p roces s ing .  

In  l ex i ca l i z ed  f o r m a l i s m s  such  as  LTAG, the  o p e r a t i o n s  of  the  f o r m a l i s m  (i.e., 
in  the  case  of  LTAG, s u b s t i t u t i o n  a n d  a d j u n c t i o n )  re la te  s t r uc tu r e s  a s s o c i a t e d  w i t h  
t w o  lexica l  i t ems .  I t  is t he re fo re  n a t u r a l  to  i n t e r p r e t  these  o p e r a t i o n s  as  e s t a b l i s h i n g  
a d i rec t  syn tac t i c  r e l a t i o n  b e t w e e n  the  t w o  lexical  i t ems ,  i.e., a r e l a t i on  of  syn tac t i c  
d e p e n d e n c y .  The re  are  at  l eas t  t w o  t y p e s  of  syn tac t i c  d e p e n d e n c y :  a r e l a t i o n  of  c o m -  
p l e m e n t a t i o n  ( p r e d i c a t e - a r g u m e n t  re la t ion)  a n d  a r e l a t i on  of  m o d i f i c a t i o n  (p r ed i ca t e -  
a d j u n c t  re la t ion) .  2° Syn tac t i c  d e p e n d e n c y  r e p r e s e n t s  an  i m p o r t a n t  l i ngu i s t i c  i n tu i t i on ,  
p r o v i d e s  a u n i f o r m  in te r face  to  s eman t i c s ,  a n d  is, as  Sc ha be s  a n d  Sh iebe r  (1994) a rgue ,  
i m p o r t a n t  in  o r d e r  to s u p p o r t  s ta t i s t ica l  p a r a m e t e r s  in  s tochas t i c  f r a m e w o r k s .  In  fact,  

19 This kind of construction has been extensively analyzed in the Germanic syntax literature. Following 
the descriptive notion of "coherent construction" proposed by Bech (1955), Evers (1975) proposes that 
in German (and in Dutch, but not in English) a biclausal structure undergoes a special process to 
produce a monoclausal structure, in which the argument lists of the two verbs are merged and the 
verbs form a morphological unit. This analysis has been widely adopted (in one form or another) in 
the formal and computational syntax literature by introducing special mechanisms into the underlying 
formal system. If the special mechanism produces a single (flat) VP for the new argument list, then LP 
rules for the simplex case can also apply to the complex case. However, the DSG analysis has the 
advantage that it does not involve a special mechanism, and the difference between German and 
English complex clauses is related simply to the difference in word orders allowable in the simplex 
case (i.e., German but not English allows scrambling). Furthermore, the DSG analysis correctly predicts 
some "interleaved" word orders to be grammatical. See Rambow (1995) for details. 

20 In addition, we may want to identify the relation between a function word and its lexical headword 
(e.g., between a determiner and a noun) as a third type of relation. 

116 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

adore claim 

he seem 

Mary / OBJ \ seems I COMP 
I 

hotdog claim adore 

I SUB J S U B J ~ ~ ~  BJ 

he Mary hotdog 

Figure 25 
LTAG derivation tree for (14) (left); dependency tree for (14) (right). 

recent advances in parsing technology are due to the explicit stochastic modeling of 
dependency information (Collins 1997). 

Purely CFG-based approaches do not  represent syntactic dependency, but other 
frameworks do, e.g. the f-structure (functional structure) of LFG (Kaplan and Bresnan 
1982), and dependency grammars (see, for example, Mel'~uk [1988]), for which syn- 
tactic dependency is the sole basis for representation. As observed by Rambow and 
Joshi (1997), for LTAG, we can see the derivation structure as a dependency structure, 
since in it lexemes are related directly. 

However, as we have pointed out in Section 4.1, the LTAG composition operations 
are not used uniformly: while substitution is used only to add a (nominal) complement,  
adjunction is used both for modification and (clausal) complementation. 21 Furthermore, 
there is an inconsistency in the directionality of the substitution operation and those 
uses of adjunction for clausal complementation: in LTAG, nominal  complements are 
substituted into their governing verb's tree, while the governing verb's tree is ad- 
joined into its own clausal complement. The fact that adjunction and substitution are 
used in a linguistically heterogeneous manner  means that (standard) LTAG derivation 
trees do not provide a direct representation of the dependencies between the words 
of the sentence, i.e., of the predicate-argument and modification structure. In DSG, 
this problem is overcome straightforwardly, since DSG uses generalized substitution 
for all complementation (be it nominal  or clausal), while still allowing long-distance 
effects. = 

There is a second, more serious problem with modeling syntactic dependency in 
LTAG, as can be seen from the following example: 

(14) Hot  dogs he claims Mary seems to adore 

The problem is that in the standard LTAG derivation, we adjoin both the trees 
for claim and seem into the tree for adore (Figure 25, left), while in the (commonly 
assumed) dependency structure, seem depends on claim, and adore depends on seem 
(Figure 25, right). The problem is in fact related to the interleaving problem discussed 
in Section 4.2, and can easily be solved in DSG by proposing a structure such as that 

21 Clausal complementation cannot be handled nniformly by substitution because of the existence of 
syntactic phenomena such as long-distance wh-movement in English. 

22 Modification can be handled by some other operation, such as sister adjunction (Rainbow, 
Vijay-Shanker, and Weir 1995), and is thus distinguished from complementation. We do not discuss 
modification in this paper. 

117 



Computational Linguistics Volume 27, Number 1 

S 
I 

I 
i 

VP 

V VP 

I 
s e e m s  

Figure 26 
Elementary d-tree for finite seems. 

in Figure 26 for seems ,  which we have already seen in Figure 21. (This structure can 
be justified on linguistic grounds independently from the dependency considerations, 
by assuming that all finite verbs--whether raising or not--project to at least S [= IP]. 
Raising verbs simply lack a subject of their own, but  the S node is justified by the 
finiteness of the verb, not by the presence or absence of a subject.) Thus, DSG can be 
used to develop grammars in which the derivation faithfully and straightforwardly 
reflects syntactic dependency. 23 

6. Related Work 

In this section, we mention some related theoretical work and some application- 
oriented work that is based on DSG. 

On the theoretical side, Kallmeyer (1996, 1999) presents an independently con- 
ceived formalism called tree description grammar (TDG). TDG is similar to DSG: 
in both formalisms, descriptions of trees are composed during derivations through 
conjunction and equation of nodes. Furthermore, like DSG, TDG does not allow the 
conflation of immediate dominance structure specified in elementary structures. How- 
ever, TDG allows for more than one node to be equated in a derivation step: nodes 
are "marked" and all marked nodes are required to be equated with other nodes in a 
derivation step. (Equating more than one pair of nodes in each derivation step shifts 
some of the work done in reading off in DSG to the derivation in TDG.) In DSG, 
we have designed a simple generative system based on tree descriptions involving 
dominance, using an operation that directly correspond to the linguistic notion of 
complementation. Additional mechanisms, such as the marking of nodes and their 
simultaneous involvement in a derivation step, are not available in DSG. 

Hepple (1998) relates DSG to a system he has previously proposed in which de- 
ductions in implicational linear logic are recast as deductions involving only first-order 
formulas (Hepple 1996). He shows how this relation can be exploited to give deriva- 
tions in DSG a functional semantics. 

There is an ongoing effort to evaluate the theoretical proposals presented in this 
paper through the development of a wide-coverage DSG-based parsing system that 
provides analysis in a broadly HPSG style (Carroll et al. 2000). One aspect of this work 
involves exploiting the extended domain of locality that DSG shares with TAG in order 

23 Candito and Kahane (1998) propose to use derivations in DSG to model semantic (rather than 
syntactic) dependency. 

118 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

to maximize localization of syntactic dependencies within elementary tree descriptions, 
thereby avoiding the need for unification during parsing (Carroll et al. 1999). 

Nicolov and Mellish (2000) use DSG as the formalism in a generation application. 
The principal motivation for using DSG is that DSG is a lexicalized formalism which 
can provide derivations that correspond to the traditional notion of (deep) syntactic 
dependency (see Section 5), which is often considered to be the input to the syntactic 
component of a generation system. 

7. C o n c l u s i o n s  

We have introduced the grammar formalism of d-tree substitution grammars by show- 
ing how it emerges from a tree-description-theoretic analysis of tree adjoining gram- 
mars. Derivations in DSG involve the composition of d-trees, special kinds of tree 
descriptions. Trees are read off from derived d-trees. 

We have shown that the DSG formalism can be used to express a variety of lin- 
guistic analyses, including styles of analysis that do not appear to be available with 
the LTAG approach, and analyses for constructions that appear to be beyond the de- 
scriptive capacity of LTAG. Furthermore, linguistic analyses of syntactic phenomena 
are uniform, both language-internally and cross-linguistically. Finally, DSG allows for 
a consistent modeling of syntactic dependency. 

References 
AbeillG Anne. 1991. Une grammaire lexicalisde 

d'arbres adjoints pour le fran¢ais. Ph.D. 
thesis, Universit~ Paris 7. 

Backofen, Roll James Rogers, and K. 
Vijay-Shanker. 1995. A first-order 
axiomatization of the theory of finite 
trees. Journal of Language, Logic, and 
Information, 4(1):5-39. 

Bech, Gunnar. 1955. Studien fiber das deutsche 
Verbum infinitum. Det Kongelige Danske 
videnskabernes selskab. 
Historisk-Filosofiske Meddelelser, bd. 35, 
nr. 2 (1955) and bd. 36, nr. 6 (1957). 
Munksgaard, Kopenhagen. Second 
unrevised edition published 1983 by Max 
Niemeyer Verlag, Tiibingen (Linguistische 
Arbeiten 139). 

Becker, Tilman, Aravind Joshi, and Owen 
Rainbow. 1991. Long distance scrambling 
and tree adjoining grammars. In Fifth 
Conference of the European Chapter of the 
Association for Computational Linguistics 
(EACL'91), pages 21-26. 

Becker, Tilman and Owen Rainbow. 1995. 
Parsing non-immediate dominance 
relations. In Proceedings of the Fourth 
International Workshop on Parsing 
Technologies, pages 26-33, Prague. 

Bhatt, Rakesh. 1994. Word Order and Case in 
Kashmiri. Ph.D. thesis, University of 
Illinois, Urbana-Champaign. 

Bleam, Tonia. 2000. Clitic climbing and the 
power of tree adjoining grammar. In 
Anne AbeilM and Owen Rambow, editors, 

Tree Adjoining Grammars: Formalisms, 
Linguistic Analyses and Processing. CSLI 
Publications, pages 193-220. Paper 
initially presented in 1995. 

Candito, Marie-He'l~ne and Sylvain Kahane. 
1998. Defining DTG derivations to get 
semantic graphs. In Proceedings of the 
Fourth International Workshop on Tree 
Adjoining Grammars and Related Frameworks 
(TAG+4), IRCS Report 98-12, pages 25-28. 
Institute for Research in Cognitive 
Science, University of Pennsylvania. 

Carroll, John, Nicolas Nicolov, Olga 
Shaumyan, Martine Smets, and David 
Weir. 1999. Parsing with an extended 
domain of locality. In Ninth Conference of 
the European Chapter of the Association for 
Computational Linguistics (EACL'99), 
pages 217-224. 

Carroll, John, Nicolas Nicolov, Olga 
Shaumyan, Martine Smets, and David 
Weir. 2000. Engineering a wide-coverage 
lexicalized grammar. In Proceedings of the 
Fifth International Workshop on Tree 
Adjoining Grammars and Related 
Frameworks, pages 55-60. 

Collins, Michael. 1997. Three generative, 
lexicalised models for statistical parsing. 
In Proceedings of the 35th Annual Meeting, 
Madrid, Spain, July. Association for 
Computational Linguistics. 

Evers, Arnold. 1975. The Transformational 
Cycle in Dutch and German. Ph.D. thesis, 
University of Utrecht. Distributed by the 
Indiana University Linguistics Club. 

119 



Computational Linguistics Volume 27, Number 1 

Frank, Robert. 1992. Syntactic Locality and 
Tree Adjoining Grammar: Grammatical, 
Acquisition and Processing Perspectives. 
Ph.D. thesis, Department of Computer 
and Information Science, University of 
Pennsylvania. 

Frank, Robert. Forthcoming. Phrase Structure 
Composition and Syntactic Dependencies. 
MIT Press, Cambridge. 

Gazdar, G. 1988. Applicability of indexed 
grammars to natural languages. In U. 
Reyle and C. Rohrer, editors, Natural 
Language Parsing and Linguistic Theories. D. 
Reidel, Dordrecht, pages 69-94. 

Harley, Heidi and Seth Kulick. 1998. TAG 
and raising in VSO languages. In 
Proceedings of the Fourth International 
Workshop on Tree Adjoining Grammars and 
Related Frameworks (TAG+4), IRCS Report 
98-12, pages 62-65. Institute for Research 
in Cognitive Science, University of 
Pennsylvania. 

Hendrick, R. 1988. Anaphora in Celtic and 
Universal Grammar. Kluwer Academic 
Publishers, Dordrecht. 

Hepple, Mark. 1996. A compilation-chart 
method for linear categorical deduction. 
In Proceedings of the 16th International 
Conference on Computational Linguistics 
(COLING'96), pages 537-542. 

Hepple, Mark. 1998. On same similarities 
between D-Tree Grammars and 
type-logical grammars. In Proceedings of 
the Fourth International Workshop on Tree 
Adjoining Grammars and Related Frameworks 
(TAG+4), IRCS Report 98-12, pages 66-69. 
Institute for Research in Cognitive 
Science, University of Pennsylvania. 

Joshi, Aravind K. 1987. Word-order 
variation in natural language generation. 
Technical Report, Department of 
Computer and Information Science, 
University of Pennsylvania. 

Joshi, Aravind K., Tilman Becker, and Owen 
Rambow. 2000. A new twist on the 
competence/performance distinction. In 
Anne Abeill4 and Owen Rambow, editors, 
Tree Adjoining Grammars: Formalisms, 
Linguistic Analysis, and Processing. CSLI 
Publications, pages 167-182. 

Joshi, Aravind K. and Yves Schabes. 1991. 
Tree-adjoining grammars and lexicalized 
grammars. In Maurice Nivat and Andreas 
Podelski, editors, Definability and 
Recognizability of Sets of Trees. Elsevier. 

Kallmeyer, Laura. 1996. Tree description 
grammars. In D. Gibbon, editor, Natural 
Language Processing and Speech Technology. 
Results of the 3rd KONVENS Conference, 
pages 332-341, Berlin. Mouton de 
Gruyter. 

KaUmeyer, Laura. 1999. Tree Description 
Grammars and Underspecified 
Representations. Ph.D. thesis, University of 
Tiibingen. Available as Technical Report 
No. 99-08 from the Institute for Research 
in Cognitive Science at the University of 
Pennsylvania. 

Kaplan, Ronald M. and Joan W. Bresnan. 
1982. Lexical-functional grammar: A 
formal system for grammatical 
representation. In J. W. Bresnan, editor, 
The Mental Representation of Grammatical 
Relations. MIT Press, Cambridge, MA. 

Kasper, Robert, Bernd Kiefer, Klaus Netter, 
and K. Vijay-Shanker. 1995. Compilation 
of HPSG and TAG. In Proceedings of the 
Annual Meeting, pages 92-99. Association 
for Computational Linguistics. 

Kroch, Anthony. 1987. Subjacency in a tree 
adjoining grammar. In Alexis 
Manaster-Ramer, editor, Mathematics of 
Language. John Benjamins, Amsterdam, 
pages 143-172. 

Kroch, Anthony. 1989. Asymmetries in long 
distance extraction in a Tree Adjoining 
Grammar. In Mark Baltin and Anthony 
Kroch, editors, Alternative Conceptions of 
Phrase Structure. University of Chicago 
Press, Chicago, pages 66-98. 

Leahu, Manuela. 1998. Wh-dependencies in 
Romanian and TAG. In Proceedings of the 
Fourth International Workshop on Tree 
Adjoining Grammars and Related Frameworks 
(TAG+4), pages 92-95, IRCS Report 98-12, 
Institute for Research in Cognitive 
Science, University of Pennsylvania. 

Marcus, Mitchell, Donald Hindle, and 
Margaret Fleck. 1983. D-theory: Talking 
about talking about trees. In Proceedings of 
the 21st Annual Meeting, Cambridge, MA. 
Association for Computational 
Linguistics. 

Mel'~uk, Igor A. 1988. Dependency Syntax: 
Theory and Practice. State University of 
New York Press, New York. 

Nicolov, Nicolas and Christopher Mellish. 
2000. Protector: Efficient generation with 
lexicalized grammars. In Ruslan Mitkov 
and Nicolas Nicolov, editors, Recent 
Advances in Natural Language Processing 
(RANLP vol. II). John Benjamins, 
Amsterdam and Philadelphia, 
pages 221-243. 

Pollard, Carl and Ivan Sag. 1994. 
Head-Driven Phrase Structure Grammar. 
University of Chicago Press, Chicago. 

Rambow, Owen. 1994a. Formal and 
Computational Aspects of Natural Language 
Syntax. Ph.D. thesis, Department of 
Computer and Information Science, 
University of Pennsylvania, Philadelphia. 

120 



Rambow, Vijay-Shanker, and Weir D-Tree Substitution Grammars 

Available as Tectmical Report 94-08 from 
the Institute for Research in Cognitive 
Science (IRCS) and also at ftp://ftp.cis. 
upenn.edu/pub/rambow/thesis.ps.Z. 

Rambow, Owen. 1994b. Multiset-valued 
linear index grammars. In Proceedings of 
the 32nd Annual Meeting, pages 263-270. 
Association for Computational 
Linguistics. 

Rambow, Owen. 1995. Coherent 
constructions in German: Lexicon or 
syntax? In Glyn Morrill and Richard 
Oehrle, editors, Formal Grammar: 
Proceedings of the Conference of the European 
Summer School in Logic, Language, and 
Information, pages 213-226, Barcelona. 

Rambow, Owen. 1996. Word order, clause 
union, and the formal machinery of 
syntax. In Miriam Butt and Tracy 
Holloway King, editors, Proceedings of the 
First LFG Conference. On-line version at 
http://www-csli.stanford.edu/ 
publications/LFG/lfgl.html. 

Rainbow, Owen and Aravind Joshi. 1997. A 
formal look at dependency gran~nars and 
phrase-structure grammars, with special 
consideration of word-order phenomena. 
In Leo Wanner, editor, Recent Trends in 
Meaning-Text Theory. John Benjamins, 
Amsterdam and Philadelphia. 

Rainbow, Owen and Beatrice Santorini. 
1995. Incremental phrase structure 
generation and a universal theory of V2. 
In J. N. Beckman, editor, Proceedings of 
NELS 25, pages 373-387, Amherst, MA. 
GSLA. 

Rambow, Owen and K. Vijay-Shanker. 1998. 
Wh-islands in TAG and related 
formalisms. In Proceedings of the Fourth 
International Workshop on Tree Adjoining 
Grammars and Related Frameworks (TAG+4), 
pages 147-150, IRCS Report, 98-12. 
Institute for Research in Cognitive 
Science, University of Pennsylvania. 

Rambow, Owen, K. Vijay-Shanker, and 
David Weir. 1995. D-Tree Grammars. In 
Proceedings of the 33rd Annual Meeting, 
pages 151-158. Association for 
Computational Linguistics. 

Rogers, James and K. Vijay-Shanker. 1992. 
Reasoning with descriptions of trees. In 
Proceedings of the 30th Annual Meeting, 
pages 72-80. Association for 
Computational Linguistics. 

Schabes, Yves. 1990. Mathematical and 
Computational Aspects of Lexicalized 
Grammars. Ph.D. thesis, Department of 
Computer and Information Science, 
University of Pennsylvania. 

Schabes, Yves and Stuart Shieber. 1994. An 
alternative conception of tree-adjoining 
derivation. Computational Linguistics, 
20(1):91-124. 

Vijay-Shanker, K. 1987. A Study of Tree 
Adjoining Grammars. Ph.D. thesis, 
Department of Computer and Information 
Science, University of Pennsylvania, 
Philadelphia, PA, December. 

Vijay-Shanker, K. 1992. Using descriptions 
of trees in a Tree Adjoining Grammar. 
Computational Linguistics, 18(4):481-518. 

Vijay-Shanker, K. and David Weir. 1999. 
Exploring the underspecified world of 
Lexicalized Tree Adjoining Grammars. In 
Proceedings of the Sixth Meeting on 
Mathematics of Language. 

Vijay-Shanker, K., David Weir, and Owen 
Rainbow. 1995. Parsing D-Tree Grammars. 
In Proceedings of the Fourth International 
Workshop on Parsing Technologies, 
pages 252-259. ACL/SIGPARSE. 

XTAG-Group, The. 1999. A lexicalized Tree 
Adjoining Grammar for English. 
Technical Report. The Institute for 
Research in Cognitive Science, University 
of Pennsylvania. Available at: 
http:/ /www.cis.upenn.edu/~xtag/tech- 
report/tech-report.html. 

121 




