
Book Reviews

Foundations of Computational Linguistics: Man-Machine
Communication in Natural Language

Roland Hausser
(Friedrich-Alexander-Universitat Erlangen-Nfirnberg)

Berlin: Springer, 1999, xii+534 pp;
hardbound, ISBN 3-540-66015-1, $54.00

Reviewed by
Alexander F. Gelbukh
National Polytechnic Institute, Mexico

As the subtitle of Hausser's book suggests, it is not exactly on what is usually supposed
by computational linguistics. Instead, the author treats computational linguistics as a
science of human-machine communication in real-world situations, with the ultimate
goal of constructing cognitive, autonomous talking robots. The author notes that while
most of the linguistic literature concentrates on the description of internal properties
of language, surprisingly little effort is devoted to a functional theory of language
that would model the process of communication in all its aspects. In this book, he
presents his own theory, which he calls the SLIM theory of language, aimed at treat-
ing in a consistent and uniform way all aspects of communication, both linguistic and
extralinguistic (nonverbal perception and action)--though the book mainly addresses
linguistic issues. The description of all stages of language analysis--morphology, syn-
tax, semantics, pragmatics, and even logical reasoning--is based on a single formalism
called LA-grammar, and more specifically, on a subclass of LA-grammars that has lin-
ear complexity. The motto "everything is time-linear" runs through the text.

The book is organized in four parts. The first part, "Theory of Language," gives
an outline of the SLIM theory. It begins with a general introduction to computational
linguistics for novices that explains what a text is and why we should want to use
computers to analyze it. Then the author passes to the idea of language functioning in
real-world communication. One of the cornerstones of the SLIM theory is the idea of
internal representation of meanings (which is the I in the acronym SLIM): the meaning
of words used in communication exists only as a mental image inside the cognitive
agent and does not exist in external reality. Since communication is aimed at changing
the partner's internal cognitive structures (knowledge, tasks, etc.), understanding and
modeling these structures is of crucial importance in modeling communication.

As a simple example, a toy robot is described that is capable of simple visual
perception and mental representation of geometric objects. One can affect the mental
status of the robot by presenting geometric images to it; for example, when seeing three
connected lines, the robot matches the image against its repertoire of expected types
(triangles, squares, circles) and decides that it resembles a triangle more than a square
or circle; only then can it determine the parameters (coordinates, size, angles) of this
specific instance of a triangle. Such matching is the second cornerstone of the theory (the
M in the SLIM acronym): perceived images are not stored directly within the cognitive
agent but instead are matched against expected patterns; if a suitable pattern is found,
the perceived image is classified, with the necessary degree of detail, as an instance of

Computational Linguistics Volume 26, Number 3

the corresponding general concept (type of objects). Language perception--the words
we hear--is no exception: instead of showing a triangle to the robot, one can describe
such a triangle verbally, which results in the same effect--the robot constructs and
stores a specific instance of the concept triangle. Thus, language is viewed as one of
the means of affecting the hearer's cognitive state, or, for a speaker, as one of the
means of action in the external world. This idea is elaborated in the last part of the
book.

The second part, "Theory of Grammar," develops a universal computational for-
malism that is then applied to all language analysis and logical reasoning tasks through-
out the rest of the book. The formalism, called LA-grammar (for left associative), is sim-
ilar to good old augmented transition networks (ATNs). Like any generative grammar,
it describes a language by means of the rules of an algorithm that reads the input string
symbol by symbol and at some moment either accepts it as grammatical or rejects it as
ungrammatical. The analysis algorithm maintains a record of some internal state--say,
a tape with special symbols being written and erased, starting with an empty tape.
After a symbol is read from the input, a rule is sought that allows it to be accepted
given the current internal state (the whole contents of the tape). If no such rule exists,
the string is rejected. If more than one rule is found, all alternatives are continued in
parallel. Each rule provides an instruction for changing the current internal state (the
contents of the tape); it also enables some subset of the rules and disables the others.
Only enabled rules are used at each step of analysis.

The manner in which the rules decide whether or not the new symbol is com-
patible with the current state is not specified by the definition of the LA-formalism,
the only requirement being that the corresponding Boolean function be recursive, i.e.,
computable in principle. The same holds for the procedure that changes the internal
state. This gives great freedom in implementing parsers with "memory" to handle
phenomena such as long-distance dependencies and discontinuous constituents, but
it raises the problem of development of formalisms for specifying these functions and
procedures. Depending on what restrictions are placed on these Boolean functions,
procedures, and the sets of rules that can be enabled simultaneously, subclasses of
LA-grammars called C3 (less restricted), C2, and C1 are defined, with C1 having lin-
ear complexity. These subclasses are orthogonal to (that is, independent of) Chomsky's
hierarchy of context-sensitive (CSG), context-free (CFG), and regular grammars: some
CS languages are C1 languages and thus can be parsed in linear time by a suitable C1
grammar.

The author argues for the hypothesis that all natural languages--even those with
non-context-free phenomena (if they exist)--belong to the C1 class and thus have linear
complexity, which is the author's main argument in favor of using his LA-grammars in
language analysis and against using traditional phrase-structure (PS) grammars and
formalisms mathematically equivalent to them (in which he includes, for example,
HPSG).

The third part, "Morphology and Syntax," introduces the basic concepts of mor-
phology and syntax and shows how to write C1 grammars that in a uniform manner
build, element by element, morphs out of letters: I + o + v, wordforms out of morphs:
lov + es, and sentences out of wordforms: loves + Mary. Such a linear, automaton-type
order of processing of the elements is the third cornerstone of the theory (the L in
SLIM): the author argues that we produce and perceive utterances letter by letter,
word by word, and this order is to be directly modeled in a functional model of lan-
guage and--because of the author's requirement of direct application of the rules by
the parser--in the linguistic description. This is an idea that I find highly arguable,
as the linguistic competence engaged in the processing is hardly of linear character.

450

Book Reviews

The final cornerstone is surface compositionality (the S in SLIM): no zero elements are
allowed.

In the area of morphology, such surface-compositional, linear processing leads to
rejection of the ideas underlying, say, the KIMMO model that builds a graphical rep-
resentation of the word on the fly on the basis of interdependencies between its parts:
lady + es = ladies, put + ed = put. Instead, all possible graphical variants of a morph- -
allomorphs: {lady-, ladi-}, {-s, -es}--are predefined in the dictionary (or generated by
a stand-alone algorithm), and compatibility rules decide what combinations are pos-
sible: ladi + es, ,lady + s. Such a "morphist" approach to morphology is analogous to
well-known lexicalist approaches to syntax. I believe this is a good (even if not very
new) idea.

For syntax, the same LA-grammar mechanism is used. Thus, the very notion of a
tree-like syntactic structure is absent from the theory (LA-syntactic structure is always
linear, as per the L in SLIM). A sentence is either accepted by the automaton after it
has read the final punctuation or it is rejected at some step; the semantic operations
that augment the transition rules directly assemble the semantic representation of the
sentence in the same linear order. At the end, consistency (grammaticality) of the
sentence is checked for valency and agreement: all valencies should be filled and all
agreement conditions satisfied. At any moment, the next word can prove to be incom-
patible with the already-read part of the sentence; then the analysis fails. Examples of
small grammars, for both morphology and syntax, are given for English and German,
including an example of the treatment of a supposedly non-context-free construction
in German.

The author's main point here is that C1 grammar can be parsed in linear time
with the suggested syntactic parser, while traditional CFGs have polynomial (almost
cubic) complexity. How then is the ambiguity problem handled? For example, one
of the most challenging problems of parsing leading to high complexity is ambigu-
ity of prepositional phrase attachment: Put the block in the box on the table; what is on
the table--box, block, or put? What Hausser suggests (page 236) is simply to leave
the prepositional phrases unattached, it being the pragmatic module's job to incor-
porate them into the semantic network. As far as I understand, he would treat the
example above roughly as if it were Put the block. This is in the box. This is on the ta-
ble, where it is the business of semantics, not syntax, to identify what this refers to.
Unfortunately, I did not find any further explanation of how the pragmatic module
would deal with such fragments. As for the syntactic parser, unattached phrases do
not present any problems to it, since no syntactic structure at all is considered in the
SLIM theory.

The last part, "Semantics and Pragmatics," further develops the idea of the crucial
role of pragmatics in natural language--a good idea that in my opinion is surprisingly
underestimated by the computational linguistics mainstream. The difference is the
following: semantics deals with the meaning that is stored in the dictionary entry for
the word once and for all. Pragmatics deals with the meaning that the word has in a
specific act of communication (occurring in a specific place, time, and circumstances).
Look, a mushroom! says a traveler to his companion, having noted a rock formation with
a flat wide top and thin base. To identify the object referred to, the hearer tries to find
an object in their common view that most plausibly (or least implausibly) matches
the standard dictionary definition of a mushroom; in this act of communication, the
referent of the word mushroom proves to be a rock formation.

Distinguishing the dictionary meaning from the context meaning allows the author
to give an elegant solution to the problem of vagueness--which is perhaps the most
valuable (though not completely new) idea of the book. How is it that the word

451

Computational Linguistics Volume 26, Number 3

mushroom is so vague as to be applicable even to rock formations? To what else, then, is
it applicable? Should its dictionary entry describe this continuum of meanings? Which
of these meanings are more direct than others? Hausser 's answer is this: neither the
dictionary entry of the word mushroom nor its referring to the rock formation is vague;
what is tensile is the matching of the dictionary definition against the least implausible
candidate available in the specific communication situation. Clearly, there are other
approaches to semantics, such as invariant definitions. Hausser 's idea is similar to
that of prototypes, which in its turn has received much criticism--see Wierzbicka
(1989).

Thus, the final representation of the analyzed utterance proves to be pragmatic
rather than semantic in its nature, according to the distinction made above though
functionally it corresponds to what is called semantic representation in the flame-
works that do not make this fine distinction. It is quite similar to the familiar old
semantic network (though the author carefully avoids this term). All knowledge that
the cognitive agent has is represented as such a semantic network, whose nodes and
relations are built by the agent either during parsing and interpretation of linguistic
input, or by interpretation of otherwise-perceived images such as visual forms, or by
logical inference---thinking.

The last chapter of the book describes logical inference implemented as a simple
LA-grammar that can take two facts and produce as output a new fact--their logical
combination such as or or and. Possibly, the author has more to say about how logical
inference is supposed to be done in SLIM theory but there was not enough space in the
book to say it; however, in the way it is presented (pages 494-495), such uncontrolled,
purposeless adding of trivial relations to the network does not seem to be a good
substitute for classical inference methods; rather it looks like a bad illustration of the
universal applicability of LA-grammars.

The same approach is described for text generation: "The most general form of
navigation is the accidental, aimless motion of the focus point through the contents
of word bank [i.e., semantic network--A.G.] analogous to free association in humans"
(page 477). A simple LA-grammar is used for such "aimless" navigation through the
network, verbalizing the nodes that are passed by. Though no real-world examples are
given, I expect that the utterances generated would resemble a delirium rather than
a reasonable reaction of the system; again, possibly, the author has better ideas about
how to make such generation more purposeful but did not have the space to explain
them. The only thing explained is how the system can answer simple yes-no and
wh- questions, interpreting them as patterns for search in the network. Surprisingly,
in direct contradiction with the author's desiderata (page 181), the grammar used
for parsing is not used for text generation. Instead, quite another grammar--actually
another mechanism stuffed with ad hoc solutions and additions to the general LA-
grammar formalism--is suggested for this purpose.

In general, in spite of its wide coverage, solid introduction, and quite a few good
ideas, in its new proposals the book impressed me as yet another manual on building
toy systems, especially in its treatment of semantics, reasoning, and text generation. It
is good news and bad news: people who need to build a simple question-answering
system or talking robot could find the suggested approach useful. On the other hand,
the book does not provide any deep linguistic discussion, considering mostly the John
loves Mary kind of artificial examples.

One of the main innovations introduced in the book is the LA-grammar formalism
that--unlike traditional PS grammars--satisfies the author's eight desiderata for a
generative grammar (page 180). Unfortunately, three very important requirements are
absent from the author's list.

452

Book Reviews

First, a g rammar for a talking robot should be robust enough to unders tand in-
complete or slightly ungrammatical sentences. The algori thm presented by the author,
however, just rejects the sentence and aborts the analysis process w h en the next word
read is unexpected. The author defines a generative g rammar as a device "to formally
decide for any arbitrary expression whether or not it is grammatical ly wel l - formed"
(page 130) wi thout any option of somehow processing (understanding) an input ex=
pression that it would not generate. Given this definition, it is strange that the author
has chosen a generative grammar as the basis for a functional model of language. In
communicat ion, we do not wor ry much about whether or not the ut terance we hear is
grammatical but instead about what it means, and it is not a human-l ike behavior for
a talking robot to fail to unders tand a whole sentence only because of a split infinitive
or misplaced comma. Are there any alternatives to generative grammars that are more
appropriate for talking robots? For example, Mel'~uk's Meaning ~=~ Text theory (Steele
1990) directly describes the translation of texts into meanings and vice versa.

Second, g rammar formalisms should allow for the easy maintenance and extension
of large grammars. The author argues that LA-grammars are easy to debug since the
LA-parser executes the g rammar rules directly, whereas traditional PS parsers translate
the grammar rules into internal tables, which makes it difficult to track what actions
of the parser correspond to what rules. This is as true as the statement that Assembler
programs are easier to debug than Prolog ones since at each moment you know exactly
what line of your code is being executed. However , is it easier to maintain a large
program in Assembler? An LA-grammar resembles the data structure used internally
by the Earley algorithm: a list of all possible continuations in each possible s ta te - -wi th
the exception that in this case you write this data structure manually. On pages 335-
336, the author illustrates how easy it is to add a new rule to a toy four-line grammar. If
this is considered easy, then I guess that a realistic-size LA-grammar would turn into
a maintenance nightmare. Unfor tunate ly (and probably not by accident) the author
does not give any clear data on whether such realistic-size LA-grammars exist for any
language, and if so, what the number of rules in such a g rammar is and what its
coverage of a real text corpus is. 1

Third, g rammar formalisms should directly suppor t linguistic intuition, allowing
the linguist to write down his or her ideas more or less directly. The good news about
LA-grammar is that it is based on notions well known in general linguistics, valency
and agreement, while the basic idea under ly ing PS grammars takes these phenomena
as rather marginal (taking them seriously required the drastic changes that resulted
in the emergence of HPSG). Actually, Hausser ' s syntax has a lot in common with
the dependency approach (which he does not even mention), and this is the reason
for its applicability to free-word-order languages. Is it then the long-awaited efficient
computat ional formalism for dependency grammar? Possibly it is a good step towards
such formalism. However , LA-grammars for natural languages presented in the book
are rather counterintuit ive linguistically. While the notion of consti tuent is lost, the
notions of dependency used in the book do not agree with linguistic tradit ion (Mel'~uk
1988). Often I found it hard to follow w h y a certain combination of rules happened

1 One of the maintenance problems with the LA-grammar as presented by the author is nonlocality of
changes: to add one rule, you have to adjust so-called rule packages in a bunch of other rules
throughout the grammar, guessing what rules are to be adjusted and what not, which is very
error-prone. I believe that the notion of a rule package (which is responsible for enabling some rules
and disabling the others) in LA-formalism is mathematically redundant and methodologically harmful,
or at least misused, though I do not have space here to discuss such technical details. Similarly,
information on a word is scattered among the lexicon, rules, so-called variable definitions, and rule
packages.

453

Computational Linguistics Volume 26, Number 3

to describe a certain type of sentence. Of course, this might be due to the way the
author describes specific linguistic facts rather than to any inherent unsuitability of
the formalism itself.

One of the author's main arguments in favor of his grammar and against PS
grammars is that the latter have (almost) cubic complexity, whereas his C1 grammar
is linear. I did not find this argument convincing at all from the engineering point
of view. There are two important differences between an engineering linguistics and
pure mathematics.

First, the length n of input sentences in real life is limited to, say, 1,000 words (in
the sense that the frequency of longer sentences decreases so fast that they will not
affect the average time under any complexity). With this, it is not enough to say that
C1 grammar has complexity an while PS grammar has bn3; the exact values of a and
b do matter. The author does not mention the value of b for the PS grammars, but he
shows (page 211) that a is bounded by 2 R where R is the number of rules. Since in a
realistic-size grammar, R is likely to be of the order of 1,000, the argument about the
advantage of the complexity an does not sound well supported. Even knowledge of
the coefficient b would not help a lot, as it is not clear what number of PS rules would
correspond (in what sense?) to a certain number R of LA-rules.

Second, the complexity of a grammar class is measured by the worst case: a gram-
mar class has a complexity x if there exists some grammar in this class such that there
exists an infinite series of long-enough sentences that parse in time x by this grammar.
However, what matters in engineering practice is the average case for a specific gram-
mar. Specific, since a specific grammar belonging to a high complexity class may well
prove to parse much faster than the worst grammar of its class, even with the general
algorithm, if the possible time-consuming behavior of the algorithm never happens
for this grammar. Average, since it can happen that the grammar does admit hard-to-
parse sentences that are not used (or at least not frequently used) in the real corpus.
For example, Radzinsky (1991) proves that Chinese numerals such as wu zhao zhao zhao
zhao zhao wu zhao zhao zhao zhao wu zhao zhao zhao wu zhao zhao wu zhao, for the number

5000000000000000005000000000000005000000000005000000005000,

are not context-free, which implies that Chinese is not a context-free language and
thus might parse in exponential worst-case time. Do such arguments--no doubt im-
portant for mathematical linguistics--have any direct consequences for an engineering
linguistics? Even if a Chinese grammar includes a non-context-flee rule for parsing
such numerals, how frequently will it be activated? Does it imply impossibility of pro-
cessing real Chinese texts in reasonable time? Clearly, the average time for a specific
grammar cannot be calculated in such a mathematically elegant way as the worst-case
complexity of a grammar class; for the time being, the only practical way to compare
the complexity of natural language processing formalisms is the hard one--building
real-world systems and comparing their efficiency and coverage.

The above discussion raises the following questions. Since LA-grammar is simi-
lar to the Earley algorithm, can a linear-time C1 grammar be automatically built as
the parser's internal representation for some new higher-level formalism that is lin-
guistically more intuitive than the LA one--possibly resembling something like CSG,
LFG, or HPSG? More specifically, can a subclass of CFGs, CSGs, or HPSG-like gram-
mars be specified that allows efficient automatic translation into LA-grammar? Into
C1 grammar? Can the corresponding converter be written that would give clear error

454

Book Reviews

messages if the g rammar does not belong to this class? 2 Then: To what degree and in
what form can the mathematical theory of complexi ty provide an estimation of the ef-
ficiency of parsing algorithms that is useful for engineering practice? More specifically,
how can the average-case (rather than worst-case) complexi ty of a specific g rammar
(rather than a g rammar class) be estimated? Can a p rogram be wri t ten that at least
in some cases verifies that the complexity of a specific CSG is less than exponential?
H o w can nonequivalent g rammar formalisms be compared as to their complexity, tak-
ing into account the practical restrictions on the length of the sentence? Finally: Can
LA-formalism be used, in a linguistically intuitive and maintainable form, as a com-
putational formalism for dependency grammars? Or, can the ideas of LA-grammar be
useful in deve lopment of such a formalism?

The book is a compilation of the author ' s works mainly from 1973 to 1989. Incor-
porat ing into his f ramework ideas currently dominat ing the deve lopment of syntactic
grammars, such as unification and hierarchical lexicon, would probably significantly
improve the linguistic descriptions writ ten in LA-formalisms. Such incorporat ion is
possible wi thout changing the definition of LA-grammar, since this definition does
not pose any restrictions on the nature of the categories and operations used.

This book will probably be most useful to the developers of simple human-
machine communicat ion systems, as well as providing some useful ideas on im-
plementat ion of parsers or giving the basis for the deve lopment of a new, possibly
dependency-based, syntactic formalism.

References
Mel'~uk, Igor A. 1988. Dependency Syntax:

Theory and Practice. State University of
New York Press, Albany, NY.

Radzinsky, Daniel. 1991. Chinese
number-names, tree adjoining languages,
and mild context-sensitivity. Computational
Linguistics, 17(3):277-299.

Steele, James, editor. 1990. Meaning-Text
Theory: Linguistics, lexicography, and

implications. University of Ottawa Press.
Wierzbicka, Anna. 1989. Prototypes save: On

the uses and abuses of the notion of
'prototype' in linguistics and related fields.
In Savas L. Tsohatzidis, editor, Meanings
and Prototypes: Studies in Linguistic
Categorization. Routledge, London,
pages 347-366.

Alexander Gelbukh is the head of the Laboratory of Natural Language and Text Processing, a
Professor and Researcher of the Center for Computing Research (CIC) of National Polytech-
nic Institute (IPN), Mexico City, Mexico. His current scientific interests include the syntax of
languages with free word order (such as Spanish and Russian) and applications involving se-
mantic representations. He received his M.Sc. in mathematics from the Moscow "Lomonossov"
State University, Russia, and his Ph.D. in computer science from the All-Russian Institute of
Scientific and Technical Information, Moscow, Russia, with a thesis on the computational mor-
phology of inflective languages. His address is: Centro de Investigacidn en Computacidn (CIC),
IPN, Av. Juan Dios Bdtiz s /n esq. Mendizabal, U.P. Adolfo Ldpez Mateos, Col. Zacatenco, CP.
07738, D.F., Mexico; email: gelbukh@cic.ipn.mx, gelbukh@earthling.net. The reviewer thanks
Prof. Roussanka Loukanova for valuable discussion.

2 An example of such compilation is the YACC language: it converts some (not all) CFGs into a regular
grammar. If the grammar cannot be converted, the compiler points to the specific rule pair that is
incompatible within the grammar.

455

