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In a medical information extraction system, we use common word association techniques to 
extract side-effect-related terms. Many of these terms have a frequency of less than five. Standard 
word-association-based applications disregard the lowest-frequency words, and hence disregard 
useful information. We therefore devised an extraction system for the full word frequency range. 
This system computes the significance of association by the log-likelihood ratio and Fisher's exact 
test. The output of the system shows a recurrent, corpus-independent pattern in both recall and 
the number of significant words. We will explain these patterns by the statistical behavior of the 
lowest-frequency words. We used Dutch verb-particle combinations as a second and independent 
collocation extraction application to illustrate the generality of the observed phenomena. We will 
conclude that a) word-association-based extraction systems can be enhanced by also considering 
the lowest-frequency words, b) significance levels should not be fixed but adjusted for the optimal 
window size, c) hapax legomena, words occurring only once, should be disregarded a priori in 
the statistical analysis, and d) the distribution of the targets to extract should be considered in 
combination with the extraction method. 

1. Introduction 

The research repor ted here arose from an a t tempt  to determine the conditions under  
which optimal recall and precision are obtained for the extraction of terms related to 
side effects of drugs in medical  abstracts. We used the s tandard technique of defining a 
w indow around a seed term, side-effect in our  case, and selected as potential ly relevant 
terms those words  that appeared more often in these windows  than expected under  
chance conditions. 

Our  original quest ion concerned the extent to which recall and precision are in- 
f luenced by  the size of the window. It turns out, however,  that a prel iminary quest ion 
needs to be answered first, namely, how to gauge the significance of the large effect of 
the lowest-frequency words  on recall, precision, and the number  of words  extracted 
as potential ly relevant terms. 
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Figure 1 
Frequency distribution of medical expert word types. Panel (a) shows the number of 
side-effect-related word types as judged by a medical expert (Nexpert) as a function of the 
first 23 frequency classes. Panel (b) shows the proportion of expert types/total corpus types 
(Ntotal) for the first 23 frequency classes. The horizontal dashed line indicates the mean 
proportion of 0.0619. 

It is common practice in information retrieval to discard the lowest-frequency 
words a priori as nonsignificant (Rijsbergen 1979). In Smadja's collocation algorithm 
Xtract, the lowest-frequency words are effectively discarded as well (Smadja 1993). 
Church and Hanks (1990) use mutual information to identify collocations, a method 
they claim is reasonably effective for words with a frequency of not less than five. 

A frequency threshold of five seems quite low. Unfortunately, even this lower 
frequency threshold of five is too high for the extraction of side-effect-related terms 
from our medical abstracts. To see this, consider the left panel of Figure 1, which 
plots the number of side-effect-related words in our corpus of abstracts as judged 
by a medical expert, as a function of word-frequency class. The side-effect-related 
words with a frequency of less than five account for 295 of a total of 432 expert 
words (68.3%). The right panel of Figure 1 shows that the first 23 word-frequency 
classes are characterized by, on average, the same proportion of side-effect-related 
words. The a priori assumption of Rijsbergen (1979) that the lowest-frequency words 
are nonsignificant is not warranted for our data, and, we suspect not for many other 
data sets as well. 

The recent literature has seen some discussion of the appropriate statistical meth- 
ods for analyzing the contingency tables that contain the counts of how a word is 
distributed inside and outside the windows around a seed term. Dunning (1993) has 
called attention to the log-likelihood ratio, G 2, as appropriate for the analysis of such 
contingency tables, especially when such contingency tables concern very low fre- 
quency words. Pedersen (1996) and Pedersen, Kayaalp, and Bruce (1996) follow up 
Dunning's suggestion that Fisher's exact test might be even more appropriate for such 
contingency tables. 

We have therefore investigated for the full range of word frequencies whether 
there is an optimal window size with respect to recall and the number of significant 
words extracted using both the log-likelihood ratio and Fisher's exact test. In Sec- 
tion 2, we will show that indeed there seems to be an optimal window size for both 
statistical tests. However, a recurrent pattern of local optima calls this conclusion into 
question. Upon closer inspection, this recurrent pattern appears at fixed ratios of the 
number of words inside the window to the number of words outside the window 
(complement). 
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In Section 3, we will relate the recurrent patterns of local optima at fixed window- 
complement ratios (henceforth W/C-ratios) to the distributions of the lowest-frequency 
words over window and complement. We will call attention to the critical effect of the 
choice of W/C-ratios on the significance of the lowest-frequency words. 

As the improvement in the extraction of side-effect terms from medical abstracts, 
as gauged by the F-measure, which combines recall and precision (Rijsbergen 1979), 
is small, we also applied the same approach to the extraction of Dutch verb-particle 
combinations from a newspaper corpus. In Section 4, we report substantially better 
results for this more lexical extraction task, which is subject to the same statistical 
behavior of the lowest-frequency words. 

In the last section, we will discuss the consequences of our findings for the op- 
timization of word-based extraction systems and collocation research with respect to 
the lowest-frequency words. 

2. An Optimal Window Size for Medical Abstracts? 

The MEDLINE bibliographic database contains a large number of abstracts of scien- 
tific journal papers discussing medical and drug-related research. Typically, abstracts 
discussing medical drugs mention the side effects of these drugs briefly. Information 
on side effects is potentially relevant for finding new applications for existing drugs 
(Rikken and Vos 1995). We are therefore interested in any terms related to the side 
effects of drugs. 

Before proceeding, it may be useful to clarify the way in which the present re- 
search differs from standard research on collocations. In the latter kind of research, 
there is no a priori knowledge of which combinations of words are true collocations. 
Moreover, the most salient collocations generally are found at the top of a list ranked 
according to measures for surprise or association, such as G 2 or mutual information 
(Manning and Sch~itze 1999). The large numbers of word combinations with signifi- 
cant but low values for these measures are often of less interest. Low-frequency words 
are predominant among these kinds of collocations. In our research, we likewise find 
many low-frequency terms for side effects with low ranks in medical abstracts. The 
relatively well-known side effects that are mentioned frequently can be captured by 
examining the top ranks in the lists of extracted words. At the same time, the rarely 
mentioned side-effect terms are no less important, and in post marketing surveillance 
the extraction of such side-effect terms may be crucial for the acceptance or rejection 
of new medicines. 

Is reliable automatic extraction of both low- and high-frequency side-effect terms 
from MEDLINE abstracts feasible? To answer this question, we explored the efficacy 
of a standard collocation-based term extraction method that extracts those words that 
appear more frequently in the immediate neighborhood of a given seed term than 
might be expected under chance conditions. 

We compiled two corpora on the side effects of the cardiovascular drugs captopril 
and enalapril from MEDLINE abstracts. The first corpus contains all abstracts mention- 
ing captopril and the word side. The second corpus contains all abstracts mentioning 
captopril and at least one of the compounds side-effect, side effect, side-effects, and side 
effects. Thus, the second corpus is a subset of the first. The first corpus is comprised 
of 118,675 tokens and 7,678 types; the second corpus 103,603 tokens and 6,582 types. 
A medical expert marked 432 of the latter word types as side-effect-related terms. The 
left panel of Figure 1 summarizes the head of the frequency distribution of these terms 
in the larger corpus. Note that most side-effect-related terms have a frequency lower 
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Table 1 
General 2x2 contingency table. A = frequency of the target in the window 
corpus, B = frequency of the target in the complement corpus, W = total 
number of words in the window, C = total number of words in the 
complement. Corpus size N = W + C. 

window complement 
frequency of target A B 
sum frequency of other words W - A C - B 

W C 

A + B  
W + C - A - B  

W + C  

than five. What  we need,  then, is an extraction me thod  that is sensitive enough to 
select such very  low frequency terms. 

In the collocation-based me thod  studied here, the ne ighborhood of a given seed 
term is defined in terms of a w indow around the seed term. We constructed windows  
around all seed terms in the corpus, leading to a w indow corpus and a complement  
corpus. The window corpus contains all words  that appear  within a given w in d o w  
size of the seed term. For instance, with a w indo w  size of 10, any word  appear ing 
from five words  before the seed to five words  after the seed as well as the seed itself is 
included in the w indow corpus. The word  tokens not  in the w in d o w  corpus comprise 
the complement  corpus. Any type in the w ind o w  corpus is a potential  side-effect- 
related term. For any such target type, we tabulate its distribution in w in d o w  and 
complement  corpora in a cont ingency table like Table 1. 

Given W and C, we need to know whether  the f requency of the target in the 
w indow corpus, A, is high enough to warrant  extraction. Typically, given the marginal  

B and distribution of the contingency table, a target is extracted for which wA--~A > ~-2-~, 

for which the tabulated distribution is nonhomogeneous  according to tests such as G 2 
and Fisher 's  exact test for a given cMevel. 

In this approach,  the w indow size is a crucial variable. At small w in d o w  sizes, 
many  potential ly relevant terms fail to appear  in the w indow corpus. However ,  at 
large w indow sizes, many  irrelevant words  are found in the w indow corpus and m ay  
be extracted spuriously. 

To see to what  extent w indow size may  affect the results of the extraction proce- 
dure, consider the solid lines in panels (a) and (b) of Figure 2. The left panel  shows the 
results for recall when  we use the log-likelihood ratio, G 2, the right panel  the results 
for Fisher 's  exact test. We define recall as the propor t ion  of the number  of side-effect 
words  extracted and the total number  of side-effect words  available in the window. 

For both statistical tests, recall seems to be optimal at w in d o w  size 2. However ,  
at this w indow size, the number  of words  extracted is ve ry  small. This can be seen in 
panels (c) and (d). Considered jointly, panels (a) and (c) suggest  an optimal w indow 
size of 24 for our  larger corpus (corpus 1), as recall is still high, and the number  of 
significant words  is maximal.  When Fisher 's  exact test is used instead of G 2, panels (b) 
and (d) suggest 42 as the optimal size. 

The dashed lines in panels (a) to (d) show the corresponding results for our  smaller 
corpus (corpus 2). Unsurprisingly, the general pat tern for this subcorpus is quite sim- 
ilar, a l though the drops in recall and the number  of significant words,  Nsig, occur at 
somewhat  smaller w indow sizes. 

Interestingly, we can synchronize the curves for both  corpora by  plott ing recall and 
the number  of significant items, Nsig, against the window-complemen t  ratio (W/C).  
This is shown in panels (e) and (f). These panels suggest not  an optimal w in d o w  size 
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Figure 2 
Results of the word extraction procedure (a = 0.05). Solid line = corpus 1, dashed line = 
corpus 2. Panel (a) shows the log-likelihood, G 2, recall results as a function of the window 
size. Panel (b) shows recall values for Fisher's exact test. Panel (c) shows the total number of 
significant words (Nsig) as a function of the window size for G 2. Panel (d) shows the same as 
(c) but for Fisher's exact test. Panel (e), G 2, and (f), Fisher's exact test, also show the total 
number of significant words, but as a function of the W/C-ratio; the ratio of the number of 
words in the window corpus to the number of words in the complement corpus. 

but  an opt imal  W/C-ratio (0.17 for G 2 and  0.29 for Fisher ' s  exact test). Al though we 
n o w  seem to have  shown  that recall and  Nsig depend  on the choice of w i n d o w  size, 
the sudden  drops  in recall and  Nsig  and  the reoccurrence of such drops  at var ious  
W/C-ratios is a source of worry,  not  only for G 2 results, but  also for the results based 
on Fisher ' s  exact test. A further  source of wor ry  is the fact that the two tests diverge 
considerably wi th  respect  to the opt imal  W/C-ratio. 

3. Contingency Tables and the Lowest-Frequency Words 

Before we  can have  any  confidence in the opt imal i ty  of a given W/C-ratio, we should 
unders tand  w h y  the saw- tooth-shaped  pat terns  of Nsig  arise. Both the log-likelihood 
ratio (G 2) and  Fisher 's  exact test compute  the significance of cont ingency tables similar 
to Table 1. So w h y  is it that  the left panels  in Figure 2 differ f rom the r ight  panels? 
G 2 has a •2-distribution as N --* cx~. This convergence is not  guaran teed  for low 
expected frequencies and  sparse tables, which  renders  use of G 2 problemat ic  for our  
lowest- f requency words  in that  it m a y  suggest  words  to be  more  remarkable  than they 
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Table 2 
Contingency tables for hapax legomena, dis legomena, and tris legomena. 
W = number of words in window corpus; C = number of words in 
complement corpus. Total corpus size: N = W + C. 

(a): 1 0 (b): 2 0 (c): 1 1 
W - 1  C W - 2  C W - 1  C - 1  

(d): 3 0 (e): 2 1 (f): 1 2 
W - 3  C W - 2  C - 1  W - 1  C - 2  

really are. Fisher 's  exact test, on the other hand,  does not  use an approximat ion to a 
probabili ty distribution but  computes  the exact hypergeometr ic  distribution given the 
marginal  totals of the contingency table. While Fisher 's  exact test is suitable for the 
analysis of sparse tables, it is inherently conservative because it regards the marginal  
totals not  as stochastic variables but  as fixed bounda ry  conditions. Consequently,  this 
test is likely to reject words  that are in fact remarkably distr ibuted in the contingency 
table. The difference in behavior  of the two tests is clearly visible in panels (c) and (d) 
of Figure 2: the number  of significant words  (Nsig) according to G 2 is roughly  twice 
as large as that according to Fisher 's  exact test. 

When  a hapax legomenon 1, a word  with frequency 1, occurs in the w in d o w  corpus, 
we use contingency table (a) as shown in Table 2. For dis legomena,  words  with a 
f requency of 2, that appear  at least once in the w in d o w  corpus, we obtain the two 
contingency tables (b) and (c). The interesting cont ingency tables for tris legomena are 
tables (d) to (f). These six tables are relevant for 63.8% of the side-effect-related terms 
as judged by  our  medical  expert. 

H o w  do changes in the W/C-ratio affect G 2 and Fisher 's  exact test, w h en  appl ied 
to cont ingency tables (a) to (f)? In other words,  how does the choice of the w in d o w  
size affect whether  a low-frequency word  is judged to be a significant term, for fixed 
A and B (e.g., A = 1 and B = 0 for a hapax legomenon)? 

First, consider cont ingency tables with B = 0, for instance tables (a), (b), and (d). 
For small A, (A ~ W, C), it is easily seen (see the appendix)  that the critical W/C-ratio 
based on the log-likelihood ratio is: 

W 1 

C ~/eX/2 - 1' 
(1) 

with X the X 2 value corresponding to a given s- level  wi th  1 degree of freedom. For 
A = 1 and c~ -- 0.05, X = 3.84, the critical W/C-ratio equals 0.1718. This is exactly 
the W/C-ratio in panel  (e) in Figure 2 at which the first and largest d rop  in the num-  
ber of significant words  occurs. Up to this ratio, any hapax legomenon appear ing in 
the w indow corpus is judged  to be a significant term. For W/C > 0.1718, no hapax 
legomenon will be extracted. 

Fisher 's  exact test is far more conservative. For this test, the critical W/C-ratio is 

1 The term hapax legomenon (literally 'read once') goes back to classical studies and was originally used 
to refer to the words used once only in the works of a given author, e.g., Homer. By analogy, dis 
legomenon and tris legomenon have come into use to refer to words occurring only twice or three 
times. 
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Table 3 
Critical W/C-ratios where sparse and skewed contingency tables lose 
significance. Equations 1 and 2 provide the ratios for the B = 0 cases. The 
other ratios are obtained by simulations. 

distribution G 2 Fisher 
A-B cz = 0.05 c~ = 0.01 c~ -- 0.05 c~ -- 0.01 

1 - 0 0.1718 0.0375 0.0526 0.0101 

1 - 1 0.0400 0.0092 0.0260 0.0050 
2 - 0 0.6204 0.2348 0.2880 0.1111 

1 - 2 0.0232 0.0053 0.0172 0.0033 
2 - 1 0.1917 0.0824 0.1565 0.0626 
3 - 0 1.1155 0.4938 0.5833 0.2746 

hapax legomena 

dis legomena 

tris legomena 

(see the appendix for details): 

w 
C 1 -  ¢/-P' (2) 

where  P is the s-level.  For A -- 1 and P = 0.05, the critical W/C-ratio for a hapax 
legomenon equals 0.0526. In panel  (f) of Figure 2, we observe the first drop in the 
number  of significant words  at precisely this W/C-ratio. For very  small W/C-ratios, 
any hapax legomenon in the w indow corpus is also judged to be significant according 
to Fisher 's  exact test. Compared  to G 2, Fisher 's  exact test rejects hapax legomena as 
significant at much  smaller W/C-ratios. Note  that w h en  W/C -- 0.05/0.95 = 0.0526, 
i.e., when  the w indow corpus is exactly 1/20 of the total corpus, the probabil i ty that a 
hapax legomenon appears  in the w indow corpus equals 0.05. Our  conclusion is that, 
wi th  the W/C-ratio as the only determinant  of significance, the windowing  method  is 
not  powerful  enough to distinguish between relevant and irrelevant hapax legomena. 
In other words,  hapax legomena should be removed  from considerat ion a priori. 

For dis legomena that appear  exclusively in the w indow corpus, the critical ratios 
are 0.6204 for G 2, corresponding to the second major drop in panel  (e) of Figure 2, 
and 0.2880 for Fisher 's exact test, corresponding to the severe drop following the 
max imum of Nsig in panel  (f). The third major drop in this panel  corresponds to the 
critical W/C-ratio for tris legomena occurring three times in the w in d o w  corpus. 

For contingency tables with B > 0; A > B; A, B <~ W, C, critical W/C-ratios are not  
easy to capture analytically. We therefore carried out  a simulation s tudy for W + C = 
100,000. For fixed A and B and a given s-level,  we calculated the critical W/C-ratio 
by iterative approximation.  Results are summar ized  in Table 3. 

When we highlight these critical ratios in Figure 2 by  means  of vertical dashed 
lines, we obtain Figure 3. Panels (a) to (d) correspond to the curves for corpus 2 in the 
first four panels of Figure 2. For the log-likelihood ratio, we observe that both  the major 
and minor  drops in recall and the number  of significant words  (Nsig) occur at the W/C- 
ratios where  different distributions of the lowest-frequency words  lose significance. For 
Fisher 's exact test, we observe exactly the same pattern. Panels (e) and (f) show the 
number  of significant words  for a pseudorandomized  version of corpus 2 where  we 
used the same tokens but  randomized  the order  of their appearance.  Al though the 
number  of significant words  is lower, the saw-tooth-shaped pat tern with the sudden  
drops at fixed ratios reemerges. 

We conclude that W and C are the pr ime determinants  of both recall and the 
number  of significant words.  At first sight, Fisher 's  test is clearly preferable to the 
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F i g u r e  3 
Results of word extraction procedure (a = 0.05) with A-B distributions. Panels (a), 
log-likelihood ratio, G 2, and (b), Fisher's exact test, show the recall results of the extraction 
procedure for corpus 2. Panels (c) and (d) show the total number of significant words (Nsig), 
again for G 2 and Fisher's exact test, respectively (see also Figure 2). Panels (e) and (f) show the 
results for a randomized corpus for G 2 and Fisher's exact test. The numbers above the panels 
indicate the A-B distribution of the contingency tables in Table 2. 

log-likelihood ratio because the extreme saw-tooth-shaped pat tern is substantially re- 
duced.  However ,  the use of Fisher 's  exact test does not  eliminate the effect of the choice 
of w indow and complement  size on the number  of significant words  and recall. At 
specific W/C-ratios, nonnegligible numbers  of words  with the lowest f requency of oc- 
currence suddenly  lose significance. Moreover,  in our  discussion thus far, we have not  
taken extraction precision into account nor  the trade-off be tween precision and recall. 
For the assessment of overall extraction results, we turn to the F-measure (Rijsbergen 
1979), a measure that assigns equal weights to precision (P) and recall (R): 

2PR 
F =  P + R "  (3) 

Figure 4 plots precision, recall, and F as a function of the W/C-ratio. The co m m o n  
trade-off be tween recall and precision is clearly present  for the smaller w indow sizes, 
with the F-measure providing a kind of average. 

Thus far, we  have applied a common  collocation extraction technique to a semantic 
association task. Actual extraction performance is low: F is maximally 0.17. To gauge 
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Figure 4 
F, recall, and precision as a function of the W/C-ratio. Recall (R, dashed line), F (solid line), 
and precision (P, dotted line) using G 2 (left panel) and Fisher's exact test (right panel) for our 
second corpus plotted as a function of the W/C-ratio. 

whether  better results can be obtained with the present techniques, we examined the 
extraction of Dutch verb-particle combinations. 

4. Extracting Verb-Particle Combinations 

In English, the particle of verb-particle combinations always follows the verb, as in 
she rang him up. In Dutch, the particle can occur either before or after the verb. When 
it occurs before the verb, it is separated from the verb by te ('to') a n d / o r  one or more 
auxiliary verbs. Extracting such particle-verb combinations is relatively straightfor- 
ward. However, when the particle follows the verb, it may  be separated from the verb 
by many  constituents of arbitrary complexity: Hij zegt de belangrijke afspraak met de pro- 
grammeur voor vanmiddag af ('he says the important  meeting with the programmer for 
this afternoon off'; i.e., he cancels the meeting). How well does our present approach 
lend itself to the extraction of verb-particle combinations with the particle af ('off') 
when  the particle follows the verb? 

We investigated this question by s tudying verb-particle combinations with af from 
a Dutch newspaper  corpus of about 4.5 million word tokens. We extracted by hand  all 
sentences from the corpus that contain af (3,802 sentences, 97,903 tokens) and singled 
out those sentences in which af belongs to a verb-particle combination in which the 
verb occurs to the left of the particle (2,202 sentences with 42,825 tokens). The targets 
to extract from the 2,202 sentences are 436 different verb inflections, of which 276 have 
a frequency of less than five. Just as the judgments  of a medical expert were used in 
the preceding extraction task to provide a frame of reference for the evaluation of 
precision and recall, the present lexical extraction task has as its frame of reference the 
2,202 sentences that we judged to contain a verb followed at some point to the right 
by a particle. How many  of the 436 different verb inflections can we extract with our 
windowing technique, and what  is the trade-off between recall and precision? 

To answer this question, we defined windows to the left of the seed term af in the 
range of positions [-12, -1].  We calculated the W/C-ratio for each window size. For 
each word in all windows,  we calculated its significance according to G 2 and Fisher's 
exact test. Using the 436 target verb inflections as a frame of reference, we computed 
precision, recall, and F. Panel (a) of Figure 5 plots F as a function of the W/C-ratio. 
F reaches a max imum F of 0.31 at W/C = 0.59 for G 2 (the solid line in the figure) 
and a max imum of 0.27 at W/C = 0.50 for Fisher's exact test (the dashed line). These 
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Figure 5 
Extraction results for the af corpus. Panel (a) shows F for G 2 (solid line) and Fisher's exact test 
(dashed line) as a function of the W/C-ratio. Panel (b) displays the number of significant 
words (Nsig) according to both tests. Panel (c) shows F for G 2 at c~ = 0.05 (solid line) and 
Fisher's exact test at c~ = 0.1 (dotted line). Panel (d) shows Nsig for G 2 at c~ = 0.05 and for 
Fisher's exact test at c~ -- 0.1. 

results compare  favorably with the max imum F of 0.17 obtained for the extraction of 
side-effect terms from medical abstracts. 

Panel (b) of Figure 5 shows the by-this-time familiar saw-tooth-shaped pat tern of 
the number  of significant word  types as function of the W/C-ratio. We observe again 
that Fisher 's  exact test is more conservative,  and in the extraction task, less successful, 
than G 2. However ,  by  opt ing for a more  liberal c~-level we can compensate  for the 
conservatism of Fisher 's  exact test and obtain an F profile that is indistinguishable 
from that of G 2 as shown in panel  (c) for ~ -- 0.1. Panel (d) returns to the number  of 
significant terms (Nsig) when  Fisher 's  exact test is used with c~ = 0.1. Note  that the 
optimal W/C-ratio according to F for G 2 (0.59) still leads to a higher  Nsig than the 
optimal W/C-ratio (0.83) for Fisher 's  exact test wi th  c~ -- 0.1. However ,  in the case of 
Fisher 's  exact test, the precision is much  higher  than w h en  G 2 is used. These results 
suggest  that the choice of G 2 or Fisher 's  exact test should be guided by  the desired 
trade-off be tween precision and recall. 

5. D i s c u s s i o n  

The quest ion that originally mot iva ted  the present  research concerned the determina-  
tion of the optimal w indow size for the extraction of side-effect-related words.  Most 
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words that are judged by a medical expert to be related to side effects have frequencies 
of use that are so low that they fall below the frequency thresholds generally used 
in standard information extraction techniques. Is it nevertheless possible to single out 
such low-frequency terms through optimal window size estimation, especially since 
the log-likelihood ratio and Fisher's exact test have recently been advanced as suitable 
techniques even for the analysis of the lowest-frequency ranges? 

Manipulation of the window size revealed a saw-tooth-shaped pattern in the num- 
ber of significant words (Nsig) that depends not on the window size itself but on 
the W/C-ratio. This saw-tooth-shaped pattern arises most prominently when the log- 
likelihood ratio is used to extract significant words, but it is also clearly visible when 
Fisher's exact test is used. This pattern is due to the way in which these tests eval- 
uate surprise as a function of the window size for the lowest-frequency words. We 
argue that hapax legomena should be disregarded a priori, while for low-frequency 
words with frequency greater than 1, only the most extreme distributions over win- 
dow and complement are reliable in that we are confident that these terms are really 
related to the seed. For dis and tris legomena, for instance, all occurrences should in 
effect be concentrated in the window. Only then are we confident that there is truly a 
relationship between the seed and the target. 

With these restrictions, the optimum W/C-ratio for our side-effect data is just 
smaller than 0.2880, using Fisher's exact test, which amounts to an optimal win- 
dow size of 36. Of the 295 terms with a frequency of 4 or less that a medical expert 
judged to be side-effect-related terms, we capture 14, which amounts to 4.8%. When 
we exclude the hapax legomena as impossible to extract reliably a priori, we capture 
14/122 = 11.5%. Although the gain in number of significant low-frequency items is 
small, the success for the low-frequency items is still reasonable when compared to the 
corresponding success rate of 26/137 = 19.0% for the items with a frequency of 5 or 
more. These results suggest that the windowing technique is far from optimal for the 
extraction of side-effect terms from medical abstracts, irrespective of the frequencies 
of these terms. 

The windowing technique applied to the extraction of Dutch verb-particle com- 
binations led to more encouraging results. Choosing 0.4625 as the optimal W/C-ratio 
for the af data, which amounts to accepting dis legomena with a 2-0 distribution, and 
using a = 0.1 with Fisher's exact test, we obtain an optimal window size of 5. With 
this window, we extract 42 of the 139 lowest-frequency words in the 2 to 4 range, i.e., 
30.2%. This compares favorably to the success rate of 60/170 = 35.2% for verbs with 
a frequency greater than 4. When we use G 2 instead of Fisher's exact test to obtain 
improved recall at the cost of lesser precision, we extract 58/139 = 41.7% of the lowest- 
frequency words in the 2 to 4 range and 64/170 = 37.6% of the higher-frequency words 
(optimum W/C-ratio 0.6204, corresponding window size of 7). For this more lexical 
extraction task, extraction success rates are comparable for the lower-frequency and 
the higher-frequency words. Neglecting the extraction of the lower-frequency words 
a priori would have led to the loss of nearly half of the words currently extracted. 

The difference in the results between the two extraction tasks, side effects in medi- 
cal abstracts and verb-af combinations in a newspaper corpus, is due to the difference 
in the distributions of the targets around the seed terms. Concentrating on the lowest- 
frequency word tokens, the left panel of Figure 6 shows their distribution for the 
side-effect corpus. The right panel shows the corresponding distribution for the af 
corpus. The side-effect terms reveal a wide scatter around the seed at position 0. By 
contrast, verbs predominantly cluster close to the left of af. Apparently, the distance 
between the verb and the particle is more constrained than the distance between side- 
effect terms and the seed term. The optimal window size of 7 (position -7) for G 2 
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Figure  6 
Frequency distribution of words occurring two to four times. Panel (a) shows for the side 
effect corpus how the expert words with a frequency of 2, 3, and 4 are distributed around the 
seed term. Panel (b) shows this distribution for the af corpus. 

obtained above ties in with the distribution of the lowest-frequency words: 68% of all 
lowest-frequency tokens are in this window. For the side-effect corpus, only 31% of 
all low-frequency tokens are in the optimal w in d o w  of 36 for Fisher 's  exact test. This 
suggests that the optimal w indow size must  be ascertained on the basis of the distri- 
but ion of targets a round the seed, on the one hand,  and by  opt imizing the statistics, 
on the other hand. 

As an illustration of how the statistics can be opt imized,  we re turn to the af data. 
When  we look at the distribution of the lowest-frequency words  in Figure 6, an optimal  
w indow size of 8 to the left suggests itself. This translates into a W/C-ratio of 0.6689. 
Given that we want  to retain dis legomena with a 2-0 distribution, we proceed to 
compute  the corresponding significance levels for both  G 2 and Fisher 's  exact test by  
Equations 1 and 2. The critical X 2 value for G 2 equals 3.65, the critical P for Fisher 's  
exact test is 0.161. The extraction results for both  tests as measured  by  F are 0.31 and 
0.33, respectively. This procedure  allows us to extract 64/139 = 46.0% of the low- 
frequency words  and 66/170 -~ 38.8% of the high-frequency words  using G 2, and 
64/139 = 46.0% and 79/170 = 46.7%, respectively, using Fisher 's  exact test. Note  that 
this technique is optimal for the extraction of the lowest-frequency words,  leading to 
identical performance for G 2 and Fisher 's  exact test for these words.  For the higher- 
f requency words,  Fisher 's  exact test leads to a slightly better  recall wi th  the same 
precision scores (0.31 for both  tests). 

While we have observed reasonable results wi th  both  G 2 and Fisher 's  exact test, we 
have not  yet discussed how these results compare  to the results that can be obtained 
wi th  a technique commonly  used in corpus linguistics based on the mutual  information 
(MI) measure (Church and Hanks  1990): 

I(x,y) --- log 2 P(x,y) (4) 
P(x)P(y) 

In (4), y is the seed term and x a potential  target word.  A high MI score for a given 
target word  suggests an association be tween this target and the seed term. Or perhaps  
more  precisely, a low MI score suggests a dissociation be tween target and seed word  
(Manning and Sch/itze 1999). To compute  recall, precision, and F, we require a cut-off 
value. As there is no theoretically mot ivated  cut-off value, we vary  it systematically. 
Panel (a) of Figure 7 plots the results for the af corpus. The x-axis represents the MI 
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Figure 7 
Extraction results (F) for the af corpus for mutual information and Fisher's exact test. Panel (a) 
shows the F score as a function of both W/C-ratio and mutual information cut-off value. 
Panel (b) shows F as a function of W/C-ratio and the significance level c~ used with Fisher's 
exact test. 

cut-off value, the y-axis the W/C-ratio, and the z-axis the F value. Note that F is rather 
indifferent to variation in window size and MI cut-off value. It varies between 0 (at 
the right-hand edge) to 0.17, with most values around 0.15 (the plateau in the figure). 
Interestingly, the highest possible MI cut-off point equals 4.27: the right-hand edge of 
the plateau. In fact, 4.27 is the maximum MI score for this corpus size (42,825) and 
the frequency of the seed term af (2,206), irrespective of the frequency of the target 
word, reached when all occurrences of the target word are concentrated in the window 
(see the appendix for details). Consequently, any hapax legomenon appearing in the 
window will automatically be assigned the maximum value of MI, along with target 
words with the most extreme W/C distributions (Window-Complement: 2-0, 3-0, 4-0, 
etc.). This has the unfortunate consequence that, with regard to their MI score, truly 
remarkably distributed target words become indistinguishable from the statistically 
unremarkable hapax legomena. 

Panel (b) of Figure 7 displays the corresponding results when we use Fisher's exact 
test rather than MI. Instead of varying the MI cut-off value, we vary the significance 
level a. Note that the resulting F scores tend to be roughly twice as high as those 
obtained with MI-based extraction. As there are a number of very similar local maxima, 
the choice of window size and significance level should be based on the desired trade- 
off between precision and recall given the general distribution of the target words 
around the seed term. 2 We conclude that, at least for the present word extraction task, 
Fisher's exact test compares favorably to mutual information (as does G2). 

All the analyses presented thus far are conditional analyses, in the sense that we 
compiled new corpora from the database of abstracts and from the newspaper corpus 
containing only relevant abstracts (containing the drug names captopril and enalapril 
as well as the term side-effect) and relevant sentences (containing the particle af and 
its verb to its left), respectively. The size of the complement was always determined 
with respect to these new conditional corpora, and not with respect to all MEDLINE 

2 Note that we  manipulate the a-levels in the same way  as the MI cut-off values. In the present  
technique, the a-level is a parameter  that we vary to optimize extraction results for a training data set. 
Our  use of a should be carefully dist inguished from the function of preset  a-levels when  testing the 
significance of observed differences in experimentally obtained data. 
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Table 4 
General and specific 2 x 2 contingency tables for low-frequency words. 
Table (a) provides the general notation of the counts in a 2 x 2 
contingency table. In table (b), A = frequency of rare words (1, 2, 3 . . . .  ), 
W = number of words in window, C = number of words in complement. 
Corpus size N = W + C. 

(a): 1/11 /'/12 /'/1+ 
/'/21 /'/22 /'/2+ 

//+1 //+2 //+q- 

(b): A 
W - A  

W 

0 A 
C W + C - A  
C W+C 

abstracts or to the complete newspaper  corpus. This raises the quest ion of whether  
better  results might  have been obtained if the complete data sets had been used. In 
principle, more data might  imply more  power. At the same time, more data also entails 
the risk of more  noise. At least for our  af data, enlarging the complement  leads to worse 
performance.  When  we allow any sentence that contains af in our  analyses, F decreases 
f rom 0.31 to 0.23 for G 2. When  we base the analyses on the complete newspaper  corpus, 
F reduces further  to 0.19. The reason for this decrease in performance is probably due  to 
the W/C-ratio being very  low for all practical w indow sizes, i.e., at the very  left part  of 
the saw-tooth-shaped pat tern characterizing Nsig as a function of W/C. Consequently,  
any low-frequency word  is singled out  as a significant i tem wheneve r  it occurs at least 
once in the window. Given the Zipfian structure of word-f requency distributions, a 
great ma ny  spurious low-frequency words  are extracted. 

As ment ioned  in the introduction,  the received wisdom is that the windowing  
method  is unreliable for events with a f requency of less than 5. By means  of an 
analysis of the behavior  of statistical tests for 2 x 2 contingency tables wi th  sparse 
data, a me thod  for opt imizing the use of these tests has been developed.  We hope  
that this technique will prove to be useful for domains  in which the extraction of 
low-probabili ty events is crucial. 

Appendix 

Log-Likelihood Ratio 
For the general cont ingency table, table (a) in Table 4, the log-likelihood ratio is defined 
by  (Agresti 1990): 

G 2 = 2 ~_, ~ nijin(nij/mq), 
i j 

where  rhq = ni+n+j/n++. When we use the specific cont ingency table for hapax legom- 
ena, table (b) in Table 4, we obtain for a specific G 2 of X the formula: 

W + C  ( W - A ) ( W + C )  W + C  
X/2 = A l n ~ + ( W - A ) l n  W ( W + C - A )  + C I n w + C - A "  

= I n ( W -  A) w-A - InW w + In(W q- C) w+C - In(W q- C - A) w+C-A, 

= In ( W -  A)W-A(w q- C) w+C 
w W ( w  q- C - A) w+C-A ' 

(W - A)W-A(w q- C) w+C 
eX/2 

w W ( w  + C - A) w+c-A " 
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We rewrite the latter equation to: 

eX/2w w 

(W-A)  w-A 

eX/2wW(w - -  A) A 

( W - A )  w 

(W + C) w+c 

(W + C - A) w+c-A' 

(w + c)W(w + c )c (w + c - A ?  

(W + C - A)W(W + C - A) c 

Because W >> A and therefore W + C >> A, we rewrite the formula above as follows: 

eX/2 W w W A (w + c)W(w + c)C(w + c) A 

w w (w + c)W(w + c)  c 

eX/2w A = (W ÷ C) A, 

~ W  = W +  C. 

So that the ratio is: 
W 1 

C ~ - 1 '  

When N > 10,000, the error of this equation is smaller than 0.001. 

Fisher's Exact Test 
With Fisher's exact test, the observed marginal totals are used to compute the hyper- 
geometric distribution, which is defined for the general 2 x 2 table, table (a) of Table 4, 
as (Agresti 1990): 

?/2+ ) ( n ' + ) ( n +  , rill - -  F / l l  

n+l 
The probability of every possible table with given marginal totals adds to 1. We use 
Fisher's exact test that sums the hypergeometric probabilities of all tables with prob- 
abilities less than or equal to the observed table. With B -- 0, table (b) in Table 4 is the 
only table we are interested in so that the probability P for this contingency table is: 

P 

A C - A  
W - A  ) 

(w + c - A)! 

(w  + c)~ ' 
W!C! 

W~(W + C - A)~ 

(w - A)~(W + C)~" 

W(W- 1). . .  ( W - A  + 1) (W-A)!  (W + C - A)! 
( w - a ) ~  ( w +  c ) ( w +  c -  1 ) . . . ( w +  c - A  + 1) (w+ c - A ) !  
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Because A = 1 , 2 , 3 , . . . ,  W >> A and therefore W + C >> A, we allow ourselves to 
formulate  W! = w A ( w  - A)! and (W + C)! = (W + c ) A ( w  + C - A)!. We therefore 
rewrite Fisher 's  exact test as follows: 

The W/C-ratio is then: 

wAw (w + 
P = 

(W + c ) A w ! ( w  + C)!' 

WA 

(W + C) 

W - 
W + C "  

w 

C 1 -  ~Y-P" 

When  N > 20,000, the error of this equat ion is smaller than 0.001. 

Practical Issues Using Fisher 's  Exact Test. We used a ne twork  algori thm to compute  
Fisher 's  exact test (Mehta and Patel 1986; Clarkson, Fan, and Joe 1993). This algori thm 
is computat ional ly  intensive, but  since m a n y  words  have the same table, only a few 
tables have to be computed  and their results can be cached. It takes an average of 50 
seconds to compute  one w indow size in a 100,000 word  corpus on a Pent ium 133MHz, 
48MB Linux machine. 

Source code for the algori thm can be found  at: http://www, acm. org/pubs/citations/ 
j ournals/toms/1986-12-2/p154-meht a/ 

Mutual Information 
Given the definition of Mutual  Information (Church and Hanks  1990), 

I(x,y) = log 2 P(x,y) 
P(x)P(y)" 

we consider the distribution of a w indow word  according to the contingency table (a) 
in Table 4. P(x) is the relative f requency of the target word,  P(y) is the relative frequency 
of the seed term, and P(x,y) is the f requency of the target word  in the window. In 
terms of the contingency table, we have: 

/'/11 

I(x,y) = log 2 n++ 
//1+ S ' 

f /++  7"/++ 

where  S is the frequency of the seed. Substituting nn = nl+ - n12, we find that 

/ 1 1 +  - -  F/12 

I(x,y) = log 2 n++ 
nl+ S ' 
/ / + +  / /++  

1 

= log 2 n++ 
//1+ S ' 

n++(nl+ -- nu )  " n++ 
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= log2(n++) - log2(S) - log2(nl+) + log2(nl+ - n12). 

For a given corpus and extraction task, corpus size (n++) and the frequency of the 
seed term S are fixed, so that we can write 

I(x,y) = C - log2(nl+) + log2(nl+ - n12). 

As n12 K nl+, I(x,y) reaches its max imum value (C) when  n12 = 0, i.e., when  all 
instances of the target word  are in the window, irrespective of the frequency of the 
target. 
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