
Multitiered Nonlinear Morphology Using 
Multitape Finite Automata: A Case Study 
on Syriac and Arabic 

G e o r g e  A n t o n  Kiraz* 
Bell Laboratories, Lucent Technologies 

He who corrects the alphabetical ordering [of this Lexicon] does not 
take into account the letters which are added, or those that change, 
here and there, due to inflexion at the beginning of the lexis [i.e., 
word], but goes back to the base form of the word. 

- Abu Hasan Bar Bahl~l (ft. ca. 963) 
Syriac Lexicon, Duval's edition (Paris, 1888) 

This paper presents a computational model for nonlinear morphology with illustrations from 
Syriac and Arabic. The model is a multitiered one in that it allows for multiple lexical representa- 
tions corresponding to the multiple tiers of autosegmental phonology. The model consists of three 
main components: (i) a lexicon, which is made of sublexica, with each sublexicon representing 
lexical material from a specific tier, (ii) a rewrite rules component that maps multiple lexical 
representations into one surface form and vice versa, and (iii) a morphotactic component that 
employs regular grammars. The system is finite-state in that lexica and rules can be represented 
by multitape finite-state machines. 

1 .  I n t r o d u c t i o n  

This paper is concerned with presenting a general finite-state framework for comput- 
ing complex nonlinear (i.e., nonconcatenative) morphophonological descriptions. The 
framework subsumes previous models in that it is not only capable of handling the 
complex nonlinear morphological phenomena we are about to describe, but also the 
usual linear ones found in many languages. The framework is a multitiered model 
that encompasses linear and nonlinear morphology. 

The elegance of the proposed framework lies in the fact that it is capable of han- 
dling sophisticated linguistic descriptions, such as those of autosegmental phonology, 
in a computationally tractable way. The model consists of three components. The first 
is a multitier lexicon that consists of several sublexica, each describing a lexical tier 
as in autosegmental phonology. The second component is a bidirectional rewrite rules 
system that maps, inter alia, the multitier lexical representations to a linearized surface 
form and vice versa. The third component provides morphotactic constraints. The pro- 
posed framework has the computational property that its lexical and rule formalisms 
are compiled algorithmically into finite-state machinery using operators under which 
finite-state machines are closed. 

* 700 Mountain Ave., Murray Hill NJ 07974. E-mail: gkiraz@research.belMabs.com 

~) 2000 Association for Computational Linguistics 



Computational Linguistics Volume 26, Number 1 

The rest of this section discusses the importance of nonlinear morphology and 
outlines the research objectives of this work. 

1.1 Nonlinear Morphology 
Early generative morphophonological theory was mainly based on the linear segmen- 
tal approach of The Sound Pattern of English (Chomsky and Halle 1968). In the mid 
seventies, however, linguists had departed from this linear framework to a nonlinear 
one. Goldsmith (1976), working on the phonology of African tone languages, pro- 
posed autosegmental phonology with multitiered representations. Goldsmith made 
use of two tiers to describe tone languages: one to represent sequences of vowels 
and consonants, and another to describe tone segments. McCarthy (1979) applied au- 
tosegmental phonology to Semitic root-and-pattern morphology resulting in what is 
now known as the theory of nonconcatenative (or nonlinear) morphology, as opposed 
to concatenative morphology. McCarthy's findings have become ubiquitous. In fact, 
"every aspect of the theory of morphology and morphophonology," remarks Spencer 
(1991, 134), "has had to be reappraised in one way or another in the wake of [Mc- 
Carthy's] analysis of Semitic and other languages." 

Spencer's statement could well apply to the theory of computational morphology. 
Two-level morphology (Koskenniemi 1983), as well as its predecessor in the work of 
Kay and Kaplan (1983), is also deeply rooted in the linear concatenative tradition. In- 
deed, "if Koskenniemi had been interested in Arabic or Warlpiri rather than Finnish," 
notes Sproat (1992, 206), "his system might have taken on a rather different character 
from the start." It would prove difficult, if not impossible, to implement Semitic lan- 
guages using linguistically motivated theoretical models such as those of McCarthy 
and others in the field with traditional two-level morphology. 

Kay (1987) was the first computational linguist to make use of McCarthy's find- 
ings. He proposed that a four-tape finite-state machine, as opposed to the traditional 
two-tape machines of two-level morphology, be used to describe the autonomous 
morphemes of Arabic. Kay devised a system for manipulating the multitape machine, 
albeit using an ad hoc procedure to control the movements of the machine's head(s). 
We shall build upon Kay's work by providing higher-level lexical and rule formalisms, 
and algorithms for compiling the formalisms into multitape machines, eliminating the 
need for the ad hoc procedure that controls head movements. We shall revisit Kay's 
approach in Section 6.1. 

Previous work to implement Semitic languages, namely, Akkadian (Kataja and 
Koskenniemi 1988), Arabic (Beesley, Buckwalter, and Newton 1989; Beesley 1990, 1991, 
1996, 1998a, 1998b, 1998c, forthcoming) and Hebrew (Lavie, Itai, and Ornan 1990), 
employed traditional two-level morphology with some augmentation to handle the 
nonlinearity of stems, but did not make any use of the then-available theory of non- 
concatenative morphology. The challenge here lies in the fact that two-level morphol- 
ogy assumes the lexical representation of a surface form to be the concatenation of 
the corresponding lexical morphemes in question. To resolve the problem, these au- 
thors (with the exception of Beesley's work from 1996 on) provided for a simultaneous 
search of various root and affix lexica, the result of which served as the lexical tape of 
the two-level system. We shall revisit these approaches in Sections 6.2 and 6.3. 

Other publications dealing with Semitic computational morphology are confined 
to proposals for compiling autosegmental descriptions into automata (Kornai 1991; 
Wiebe 1992; Bird and Ellison 1992). They revolve around encoding autosegmental 
representations (by various encoding mechanisms) and providing ways for compiling 
such encodings into finite machines. None provide for lexicon and rule formalisms 
that can be compiled into their respective encodings or directly into automata. No 

78 



Kiraz Multitiered Nonlinear Morphology 

Semitic language, to the best of the author's knowledge, has been implemented with 
these proposals. We shall revisit these approaches in Section 6.4. 

1.2 Research Objectives 
The purpose of this work is to provide a theoretical computational framework under 
which nonlinear morphology can be handled in a linguistically and computationally 
motivated manner with the following objectives in mind: 

1. The framework is to present a general multitiered computational 
morphology model that allows for both linear and nonlinear 
morphophonological descriptions. 

2. The formalism of the framework is to handle various linguistic theories 
and models including McCarthy's initial findings as well as later models 
for Hebrew (Bat-E1 1989), moraic theory (McCarthy and Prince 1990a, 
1995), the affixational approach to handling templates in Arabic 
(McCarthy 1993), and others. That is, a flexible formalism that leaves the 
grammar writer with ample room to choose the appropriate linguistic 
theory for an application. 

3. Multitiered lexica and grammars written in the formalism are to be 
compiled into finite-state machines (multitape automata in this case). The 
multitape machines are created by a compiler that employs a finite-state 
engine with an algebraic interface to n-way regular expressions. 

4. The multitape machines are to be as close as possible in spirit to 
two-level morphology in that surface forms map to lexical morphemes. 
Our lexical level is a multitiered representation. 

This paper provides an overall description of the theoretical framework, compila- 
tion algorithms, and illustrations. Additionally, it discusses other related topics crucial 
to developing Semitic grammars. 

Results that emerged earlier from this work appear elsewhere (Kiraz 1994b, 1996, 
1997a, 1997b, 1997c, in press), but have been thoroughly enhanced and reworked since. 
New contributions include enhancing the theoretical framework (Section 3), compiling 
lexica and rules into multitape finite-state machines (Section 4), and evaluating the 
current model with respect to previous ones (Section 6). 

2. Problems in Semitic Morphophonology 

The challenges in implementing Semitic morphophonological grammars are numer- 
ous. Here, we shall concentrate only on nonlinearity that poses computational diffi- 
culties to traditional finite-state models. 

2.1 The Nonlinear Stem 
The main characteristic of Semitic derivational morphology is that of the "root and pat- 
tern." The "root" represents a morphemic abstraction, usually consisting of consonants, 
e.g., {ktb} 'notion of writing'. Stems are derived from the root by the superimposition 
of patterns. A "pattern" (or "template") is a sequence of segments containing Cs that 
represent the root consonants, e.g., ClaC2C2aC3 and maC1C2aC3 (the indices refer to 
root consonants). Root consonants are slotted in, in place of the Cs, to derive stems, 
e.g., Arab i c /ka t t ab / 'wro t e '  and /mak tab / ' o f f i c e '  from the root {ktb} and the above 
two patterns, respectively. 

79 



Computational Linguistics Volume 26, Number 1 

Table 1 
Syriac verbal stems with the root {ktb}. The data 
provides stems in underlying morphological forms; 
surface forms are parenthesized. The passive is 
marked by the reflexive prefix {?et}. 

Measure Active Passive ({?et}+) 

P%l (1) katab (ktab) kateb (?etkteb) 
Pa~%l (2) katteb kattab 
?afqel (3) ?akateb (?akteb) ?akatab (?ettaktab) 

3 a e 

I I 
C V C V (7: C V C, C V C, 

I I I V I 
k t b k t b 

a e 

V C, V C V C 
I I I 
k t b 

(~) (b) 
/katab/ /katteb/ (c)/?akat eb/ 

Figure 1 
Autosegmental representations of Syriac Measures 1-3. Each morpheme sits on its own 
autonomous tier. 

2.2 Various Linguistic Models 
There are various linguistic models for representing patterns. In traditional accounts, 
the "vocalism" (i.e., vocalic elements) is collapsed with the pattern (Harris, 1941), 
e.g., maC1C2aC3 above. Since the late 1970s, however, more sophisticated descriptions 
have emerged, most notably by McCarthy (1981, 1986, 1993) and McCarthy and Prince 
(1990a, 1990b, 1995). 

Consider the Syriac verbal data in Table 1 containing verbs classified according to 
various measures. 1 Glancing over the table horizontally, one notes the same pattern 
of consonants and vowels per measure; the only difference is that the vowels are 
invariably {ae} in active stems, but {aa} in passive stems (apart from Measure 1 
whose vocalism is idiosyncratic, a general Semitic phenomenon). Surface forms that 
result after phonological rules are applied appear in parentheses. The vowel after [k] 
in the Measure 1 and 3 forms, for example, is deleted because it is a short vowel in an 
open syllable, a general phenomenon of Aramaic (of which Syriac is a dialect). Further, 
[7] in the passive of Measure 3 is assimilated into the preceding [t] of the reflexive 
prefix. Both rules are employed in * / ? e t ? a k a t a b / ~  /?ettaktab/.  

Under McCarthy's autosegmental analysis, a stem is represented by three au- 
tonomous morphemes: a consonantal root, a vocalism, and a pattern that consists of 
Cs and Vs. For example, the analysis of /ka t teb /  (Measure 2) produces three mor- 
phemes: the root {ktb} 'notion of writing', the vocalism {ae} 'PERF ACT' and the 
pattern {CVCCVC} 'Measure 2'. Some stems include affix morphemes, e.g. the prefix 
{?a} of Measure 3; these sit on their own tier. The segments are linked together by as- 
sociation lines as in Figure 1. Note the spreading of [a] i n / k a t a b / a n d  the gemination 
of [t] i n / k a t t e b / .  

1 The term "measure" is employed by native grammarians  to denote a specific pattern. 

80 



Kiraz Multitiered Nonlinear Morphology 

O" O'x 

n a f s 

(7 o" o,c 

?,/ 
r a j  u 

O" (7 (7 a. (7 (7 O'.r O" O" O',r 

J a. z 1 I r .] a a. 111 i i  Ii s t, a a 11 

(a) (b) man  (c) island (d) buffah) (e) sul tan  
s o u l  

Figure 2 
Moraic analysis of the Arabic nominals. Glosses appear under each autosegmental structure. 
Consonants and vowels, although shown on the same line, belong to different tiers. 

While McCarthy's initial model is the most visible in the computational linguistics 
literature, it is by no means the only one. McCarthy and Prince (1990b) argue for 
representing the pattern morpheme in terms of the authentic units of prosody. Consider 
the Arabic nominal stems and their moraic analysis in Figure 2. Here, a pattern is 
represented by a sequence of syllables, as. Association takes the following form: a 
syllable node cr takes a consonant, and its mora # takes a vowel. In bimoraic syllables, 
the second # may be associated with either a consonant or a vowel. At the right edge, 
all stems end in an extrametrical consonant, denoted by Crx. 

Other linguistic models have been described by Hammond (1988), Bat-E1 (1989), 
and McCarthy (1993). 

2.3 Orthographic Issues 
In addition to the linguistic peculiarities of Semitic, the writing system adds further 
complications. The vast majority of Semitic texts (apart from Ethiopic) are orthograph- 
ically underspecified. Short vowels are absent from the orthography. (Imagine the pre- 
vious sentence had been written "shrt vwls ?r ?bsnt frm th ?rthgrph!") We shall deal 
with vocalization issues in Section 5.4. 

3. The Theoretical Framework: A Multitiered Model  

The model presented here assumes two levels of linguistic description in recognition 
and synthesis. The lexical level employs multiple representations (e.g., for patterns, 
roots, and vocalisms), while the surface level employs only one representation. The 
upper bound on the number of lexical representations is not only language-specific, 
but also grammar-specific. 

The proposed model is divided into three components: (i) a lexicon component, 
which consists of multiple sublexica, each representing entries for a particular lexical 
representation or tier, (ii) a rewrite rules component, which maps the multiple lexical 
representations to a surface representation, and (iii) a morphotactic component, which 
enforces morphotactic constraints. 

Throughout the following discussion, a tuple of strings represents a surface-to- 
lexical mapping, where the first element of the tuple represents the surface form and 
the remaining elements represent lexical forms. For instance, the tuple of strings that 
represents the mapping of /ka tab /  to its lexical forms is (katab,cvcvc,ktb,a). 2 The 
elements are: surface, pattern, root, vocalism. 

2 Capital-initial strings will be used shortly to denote variables. For this reason, we represent  the pat tern  
using small letters. 

81 



Computational Linguistics Volume 26, Number 1 

3.1 The Lexicon Component 
Here, the lexicon consists of multiple sublexica, each sublexicon containing entries for 
one particular lexical representation (or tier in the autosegmental analysis). Since an n- 
tuple contains n -  1 lexical elements (the first element is the surface representation), the 
lexicon component consists of n - 1 sublexica. A Syriac lexicon for the data in Table 1 
requires a pattern sublexicon, a root sublexicon, and a vocalism sublexicon. Other 
affixes that do not conform to the root-and-pattern nature of Semitic morphology (e.g., 
the reflexive prefix {?et}) can either be given their own sublexicon or placed in one 
of the three sublexica. Since pattern segments are the closest--in terms of number--  
to surface segments, such morphemes are represented in the pattern sublexicon by 
convention. 

As a way of illustration, the first sublexicon for the Syriac data in Table 1 contains 
the following entries: {?et} (representing the reflexive prefix) and {cvcvc} (for the 
verbal pattern). Here, we have chosen to derive all verbs from this pattern in a way 
reminiscent of McCarthy (1993) rather than entering separate patterns for each mor- 
pheme. The second sublexicon maintains roots, e.g., {ktb} 'notion of writing', {pnq} 
'notion of delight', and {qrb} 'notion of approaching'. The third sublexicon maintains 
vocalisms: {ae} for active stems and {a} (with spreading) for passive ones. 

3.2 The Rewrite Rules Component 
The rewrite rules component maps the multiple lexical representations to a surface 
representation and vice versa. It also provides for phonological, orthographic, and 
other rules. The current model adopts the formalism presented by Ruessink (1989) 
and Pulman and Hepple (1993) with additional extensions to handle multiple lexical 
forms. Below, the top line represents the lexical tiers and the bottom line represents 
the corresponding surface form: 

LLC - LEX -- RLC { o , - }  
LSC - SURF -- RSC 

LLC denotes the left lexical context, LEX denotes the lexical form, and RLC denotes 
the right lexical context. LSC, SURF and RSC are the surface counterparts. The con- 
text denoted by "*" represents Kleene star as applied to the grammar alphabet (i.e., 
matching anything). When all four contexts are "*", they are omitted from rules; i.e., 
the formalism becomes: 

LEX { =G -- } 
SURF 

Further, capital-initial expressions are variables over predefined finite sets of symbols. 
The operator ~ is the optional operator. It states that LEX may surface as SURF 

in the given context, but may surface otherwise if sanctioned by another rule. The 
operator - adds obligatory constraints: when LEX appears in the given context, then 
the surface description must satisfy SURF. A lexical string maps to a surface string if 
and only if they can be partitioned into pairs of lexical-surface subsequences, where (i) 
each pair is licensed by a ~ rule, and (ii) no sequence of zero or more adjacent pairs 
violates a - rule. The interpretation of the latter condition is based on Grimley-Evans, 
Kiraz, and Pulman (1996). (See Kiraz [in press] for the historical development of the 
formalism.) 

Several extensions are introduced into the formalism to handle multitiered repre- 
sentations. Expressions on the upper lexical side (LLC, LEx, and RLC) are tuples of 
strings of the form {Xl, x2, . . . ,  Xn-1}. The ith element in the tuple refers to symbols in 
the ith sublexicon of the lexical component. When a lexical expression makes use of 

82 



Kiraz Multitiered Nonlinear Morphology 

(c,X,s) 
RI: X 

where X is a consonant. 
( v , ~ , x )  =~ 

R2: X 

where X is a vowel. 
* - - 

R3: * - s - 
where X is a vowel. 

CV,. *, *) - -  

Figure 3 
Rules for the derivation of Syriac/ktab/.  R1 and R2 sanction root consonants and vowels, 
respectively, while R3 handles vowel deletion. 

]a a vocalism 
k j t, b root 
c iv c v c pallern 

1 3 1 2 1  
Iki  t a 

(~) 

Figure 4 

k J t i  b tool 
? e, t c , v i c  Iv c lmllern. ~; affi,res 
0 0 0 1 3 1 2 1  

[? e i t ,  k it, i .  

(b) 

Lexical-surface analysis of Syr iac /k tab/and/?e tk tab/ .  Vocalic spreading is ignored in this 
example (see Section 5.1). 

only the first sublexicon, the angle brackets can be ignored. Hence, the LEX expression 
(x, e . . . . .  e) and x are equivalent; in lexical contexts, (x, ,  . . . .  , *) and x are equivalent. 
Additionally, the symbol "*" now denotes Kleene star as applied to the alphabet of 
the respective tier. 

The formalism is illustrated in Figure 3. The rules derive S y r i a c / k t a b / ( u n d e r l y i n g  
* /ka tab/ )  from the pattern morpheme {cvcvc} 'verbal Measure 1', the root morpheme 
{ktb} 'notion of writing',  and the vocalism morpheme {aa} 'PERF ACT' (ignoring 
spreading for the moment).  Rule R1 sanctions root consonants by mapping  a [c] from 
the first (pattern) sublexicon, a consonant [X] from the second (root) sublexicon, and no 
symbol from the third (vocalism) sublexicon to surface [X]. Rule R2 sanctions vowels 
in a similar manner. The obligatory rule R3 deletes the first vowel of * / k a t a b / i n  the 
given context. The mapping is illustrated in Figure 4(a). The numbers  between the 
surface and lexical expressions indicate the rules in Figure 3 that sanction the shown 
subsequences. Empty slots represent the empty string ¢. 

As stated above, morphemes that do not conform to the root-and-pattern nature of 
Semitic (e.g., prefixes, suffixes, particles) are given in the first sublexicon. The identity 
rule: 

R0 
X 
X 
where X ¢~ {c, v} 

maps such morphemes to the surface. The rule basically states that any symbol not  

83 



Computational Linguistics Volume 26, Number 1 

Table 2 
Syriac circumfixes of the 
imperfect verb. 

Number Gender Circumfix 

Sing. masc. he- 
Sing. fern. te- 
P1. masc. ne-~n 
P1. fern. te-an 

in { c,v } from the first sublexicon may optionally surface. Figure 4(b) illustrates the 
analysis o f / ? e t k a t a b / f r o m  the morphemes given earlier. 

3.3 The Morphotactics Component 
Semitic morphotactics is divided into two categories: Templatic morphotactics occurs 
when the pattern, root, vocalism, and possibly other morphemes, join together in a 
nonlinear manner to form a stem. Non-templatic morphotactics takes place when the 
stem is combined with other morphemes to form larger morphological or syntactic 
units. The latter is divided in turn into two types: linear nontemplatic morphotactics, 
which makes use of simple prefixation and suffixation, and nonlinear nontemplatic 
morphotactics, which makes use of circumfixation. 

Templatic morphotactics is handled implicitly by the rewrite rules component. For 
example, the rules in Figure 3 implicitly dictate the manner in which pattern, root, and 
vocalism morphemes combine. Hence, the morphotactic component need not worry 
about templatic morphotactics. 

Linear nontemplatic morphotactics is handled via regular operations, usually n- 
way concatenation (Kaplan and Kay 1994) in the multitiered case. Consider for ex- 
ample Syriac /?etktab/  and its lexical analysis in Figure 4(b). The lexical analysis of 
the prefix is/?et, e, ¢ / and  that of the stem is (cvcvc, ktb, aa~. Their n-way concatena- 
tion gives the tuple /?et cvcvc, ktb, aa/. One may also use the "continuation classes" 
paradigm familiar from traditional two-level systems (Koskenniemi 1983, inter alia), 
in which lexical elements on each sublexicon are marked with the set of morpheme 
classes that can follow on the same sublexicon. 

The last case is that of nonlinear nontemplatic morphotactics. Normally this arises 
in circumfixation operations. The following morphotactic rule formalism is used to 
describe such operations: 

A ~ P B S  

(P,s) (pl,sl) 
(P, S) ---+ (p2, $2) 

(P,S) (pn, sn) 

A circumfix here is a pair (P, S) where P represents the prefix portion of the circumfix 

and S represents the suffix portion. The circumfixation operation P B S  applies the 
circumfix (P, S) to B. By way of illustration, consider the Syriac circumfixes of the 
imperfect verb in Table 2. The circumfixation of the circumfixes to the stem Syriac 

84 



Kiraz Multitiered Nonlinear Morphology 

/ k t o b /  'to write - IMPF' is: 

Verb --* P ktob S 

(P,S) --* (ne,¢) 

(P,S) --* (te, c) 

(P,S)---* (te, On) 

(P,S) --* (te, An) 

Unlike traditional finite-state methods in morphology that employ two-tape trans- 
ducers, the proposed multitiered model  requires multi tape transducers. The algorithms 
for compiling the three components into such machines are given next. 

4. Algorithms for Compilation into Multitape Automata 

Multitape finite-state machines were first introduced by Rabin and Scott (1959), and El- 
got and Mezei (1965). An n-tape finite-state automaton (FSA) is a 5-tuple (Q, G, 6, q0, F), 
where Q is a finite set of states, G is a finite input alphabet, 6: Q x (p,~)" --, 2 Q is a 
transition function (where G* = G u { ~ } and c is the empty string), q0 E Q is an 
initial state, and F C_ Q is a set of final states. An n-tape FSA accepts an n-tuple of 
strings if and only if starting from the initial state q0, it can simultaneously scan all 
the symbols on every tape i, 1 < i < n, and end up in a final state q E F. An n- 
tape finite-state transducer (FST) is simply an n-tape finite-state automaton but with 
each tape marked as to whether  it belongs to the domain or range of the transduc- 
tion. 

In addit ion to common operators under  which finite machines are closed, the 
algorithms discussed below make use of the following three operators: 

Definition 
Let L be a regular language. Id,(L) = {X I X is an n-tuple of the form I x , . . . , x l ,  x E 

L } is the n-way identity of L. 

Definition 
Let R be a regular relation over the alphabet Y, and let m be a set of symbols not neces- 

sarily in G. Inser tm (R) inserts the relation Idn (a) for all a E m freely throughout  R. 

The identity and insert operators are the n-tape version of their counterparts in 
Kaplan and Kay (1994). 3 

Definition 
Let S and S ~ be same-length n-tuples of strings over some alphabet G, I = Idn(a) 

for some a E G, and S = $1IS2I... Sk, k > 1, such that S i does not contain I; i.e., 
Si E (~n _ {i}),. We say that S u b s t i t u t @ ( s , , i  ) (S) = $ 1 S ' $ 2 S ' . . .  S k substitutes every 
occurrence of I in S with Sq 

3 Insert is also called the ignore operator, e.g., in the Xerox finite-state compiler (Karttunen and Beesley 
1992; Karttunen 1993). 

85 



Computational Linguistics Volume 26, Number 1 

<v,O,a> 

( :Y ,   'q'7 <v,o,o 

<v,O,a> 

Figure 5 

: ~ , t , O >  

Multitape representation of the lexicon. 

<v,O,e> 

<v,O,e> 

4.1 Building a Multitape Lexicon 
The compilation process builds a one-tape automaton for each sublexicon. The sub- 
lexica are then put together using the cross product operator with the effect that the 
resulting machine accepts entries from the ith sublexicon on its ith tape. 

Representing a lexical entry W in an automaton is achieved by concatenating the 
symbols of W one after the other. Now let £i = { W1, W2,... } be the set of lexical 
entries in the ith sublexicon. The expression for the ith sublexicon becomes: 

Li= U W (1) 
W E  f-.i 

(Daciuk et al. [2000] give a more sophisticated incremental algorithm for compiling 
acyclic lexica.) 

The overall lexicon can then be expressed by taking the cross product of all the 
sublexica. To make the final lexicon accept same-length tuples, we insert 0s throughout, 

Lexicon=(HInsert{o}(Li))Nrr* 
\ i=1 

(2) 

All invalid tuples resulting from the cross product operation (e.g., (0,0 . . . . .  0)) are 
removed by the intersection with 7r*, where 7r is the set of all feasible tuples computed 
from rules (see Section 4.2). By way of illustration, Figure 5 gives the lexicon for the 
pattern {cvcvc}, the roots {ktb}, {pnq}, {qrb}, and {prq}, and the vocalism {ae}. 

4.2 Compiling the Rewrite Rules Component 
The algorithm for compiling rewrite rules is based on collaborative work by the author 
with E. Grimley-Evans and S. Pulman (Grimley-Evans, Kiraz, and Pulman 1996). The 
compilation process is preceded by a preprocessing stage during which all mappings 
of unequal lengths are made same-length mappings by inserting a special symbol, 0, 
when necessary. (The grammar writer need not worry about this special symbol, but 
cannot use it in the grammar.) This is necessary because e-containing transducers are 
not closed under intersection and subtraction. Additionally, during preprocessing the 
following sets are computed: the set of all feasible tuples sanctioned by the grammar, 
7r (used in expression (2) above); and the set of feasible surface symbols, 7rs (to be used 
in expression (23) in Appendix A). 

The actual compiler takes as its input rules that have been preprocessed. The 
algorithm is subtractive in nature: it starts off by creating an automaton that accepts 
sequences of feasible tuples that are sanctioned by rules regardless of context, then 
starts subtracting strings which violate the rules. This subtractive approach was first 
suggested by E. Grimley-Evans. 

86 



Kiraz Multitiered Nonlinear Morphology 

S:<S,S,S> 

Figure 6 
A four-tape machine for accepting centers. The symbol s denotes the partition symbol ¢. The 
surface symbol appears to the left of ":" and the lexical tuple to its right. 

4.2.1 Accepting Centers. Recall that in the formalism of Section 3.2, a lexical string 
maps to a surface string if and only if they can be partitioned into pairs of lexical- 
surface subsequences, where (i) each pair is licensed by a ~ rule, and (ii) no sequence 
of zero or more adjacent pairs violates a - rule. 

Let c = s:(ll, 12, . . . I  be the center of a rule where s is the surface form and li are the 
lexical forms, and let C be the set of all such centers in the grammar. Further, let ¢ be 
a special symbol (not in the grammar ' s  alphabet) to denote a subsequence boundary  
within a partition, and let or' = Tdn(Cr ). The automaton that accepts the centers of the 
grammar is described by the relation 

Centers  = cr'(C ~r')* (3) 

Centers  accepts any sequence of the centers described by the grammar (each cen- 
ter surrounded by cr/) irrespective of their contexts. Assuming that / k t a b /  is under  
consideration, Figure 6 gives the four-tape machine for the centers of the rules from 
Figure 3. 

4.2.2 Valid Contexts. Now we eliminate all the sequences whose left and right con- 
texts violate the grammar. For each center c E C in the entire grammar, let LRc = 
{(&l, Pl), (2~2,/92) . . . .  } be the set of valid left and right context pairs for that center. The 
invalid contexts for c, are expressed by: 

Restr ic t  = 7r* c 7r* - U &cp (4) 
(2,,.) c LRc 

The first component  of expression (4) gives all the possible contexts for c. The sec- 
ond component  gives all the valid contexts for c. The subtraction results in all the 
invalid contexts for c. However, since ¢ appears freely in expression (3), it needs to be 
introduced in expression (4) as well, resulting in: 

Restrict:Insert, ( *C * (5) 

The relation in expression (5) works only if the center consists of just one tuple. In 
order to allow it to be a sequence of tuples, c must  be surrounded by c / o n  both sides 

87 



Computational Linguistics Volume 26, Number 1 

a:<v,0,a~ 

s:<s,s,s~ 
s:<s,s,s> 

k:<c.k.O> 

k:<c.k.O> s:<s,s.s> 

O:<v,O.a> • 

s:<s,s,s> 

Figure 7 
The machine from Figure 6 is repeated here after processing the rules in Figure 3. 

to mark it as one Subsequence. It also must be devoid of any ¢'. The first condition 
is accomplished by simply placing er I to the left and right of c. As for the second 
condition, an auxiliary symbol co is used as a placeholder representing c in order to 
avoid inserting ¢' within the tuples of c by Inser t .  Hence, first we introduce er freely 
using Inser t ,  then substitute c back in place of 02, 

Restrict = (6) 

where 0Y = Idn(cO) .  Finally, for each c we subtract all such invalid relations from 
Centers, yielding the relation, 

ValidContexts = Centers - m Restrict (7) 

ValidContexts now accepts all the sequences of tuples described by the grammar based 
on their contexts; however, it does not enforce obligatory rules. Figure 7 gives the 
machine after the center of R3 from Figure 3 has been processed. 

4.2.3 Obligatory Rules. For each obligatory rule, let C represent the center c with the 
correct lexical expressions and the incorrect surface expression. The following relation 
describes all sequences of tuples that contain an unlicensed segment: 

Coerce= O Insert{C} (A~r'Ca'p) (8) 
(~,,p)ELa 

The two ¢/s surrounding C ensure that obligatoriness applies to at least one lexical- 
surface subsequence. The In se r t  operator inserts additional cr/s through the contexts 
and the center. The insertion of ¢' through the center allows Coerce to apply to a series 
of lexical-surface subsequences. To handle the case of epenthetic rules, one needs to 
allow Coerce to apply on zero subsequences as well. In such a case, one takes the union 
of expression (8) with Insert{C} (Aer'p), i.e., the empty subsequence. 

Finally, we subtract Coerce from the ValidContexts relation, yielding the relation: 

Rules = ValidContexts - m Coerce (9) 

88 



Kiraz Multitiered Nonlinear Morphology 

a:~.O.a> 

k:~c.k.O> k:<c3t O> 

o:<v.o.~ ~:<s.s.s> 

a:o.O.~> 0 : ~ . o . ~  

Figure 8 
The machine from Figure 7 is repeated here after processing the obligatory rule R3 from 
Figure 3. 

The relation accepts all and only the sequences of tuples described by the grammar. 
Figure 8 gives the machine after processing the obligatoriness of rule R3. The last step 
in compiling rules is to remove all instances of the symbol ~ and the symbol 0. 

4.3 Compiling the Morphotactic Component 
The only class of morphotactics that is of interest here is nonlinear nontemplatic cir- 
cumfixation per the formalism in Section 3.3. Let (P, S) = { (pl, Sl), (p2, s2),. •., (pn, Sn) } 
be a set of circumfixes and let B be the domain of the circumfixation operation. A rule 

A ~ PBS is compiled into an automaton by the expression in (10): 

A :  LJ pBs (10) 
(p,s) S (P,S) 

An equivalent approach to handling circumfixation is to follow the subtractive ap- 
proach used in compiling the rewrite rules component above by first overgenerating 
and then subtracting all invalid forms. The two approaches, union or subtraction, are 
formally equivalent in that they result in the same machine. Compilation using the 
union approach, however, is more efficient in terms of time complexity than the sub- 
tractive approach. The latter requires invoking negation and intersection algorithms, 
both of which are computationally expensive. It must be noted that the union approach 
requires a great deal of care in creating a machine that accepts only grammatical forms 
with no overgeneration. 

Beesley (1998c) employed a similar approach for eliminating invalid forms in Ara- 
bic long-distance dependencies by means of composition. 

5. Developing Semitic Grammars 

When developing Semitic grammars, various issues and problems arise that normally 
do not occur with linear grammars. This section aims at pointing out some of these 
issues. 

5.1 Handling the Nonlinear Stem 
The example lexica and rules in Sections 3.1 and 3.2 demonstrate how the CV-based 
templates are implemented in the current framework. Further, spreading and gemina- 
tion, which tend to cause difficulties in other computational frameworks (see Section 6), 
are represented easily in the multitiered model without having to resort to ad hoc no- 
tation. For example, the following rule, which uses prosodic templates, demonstrates 

89 



Computational Linguistics Volume 26, Number 1 

the intrasyllabic spreading of vowels: 

Intrasyllabic spreading: (a,a, C, V) 
CVV 

Extrametricality: {ax, C, e} ¢~ 
C 

The symbol a~, above is a templatic segment denoting a bimoraic syllable. The rule 
states that when a , ,  appears on the pattern tape, a consonant C and a vowel V are read 
from the root and vocalism tapes, respectively; the corresponding surface segments are 
CVV. In conjunction with the extrametricality rule above, one obtains surface-lexical 
tuples like 3aamuus: (a~a~ax,  3ms, au), where the element to the left of ":" is the 
surface form and the tuple to its right represents the lexical forms (see Figure 2(d)). 

Gemination is handled in one of two ways: The first marks pattern consonantal 
segments (C or as) with a subscript (e.g., CIVCaVC3) and provides rules to geminate the 
appropriate consonant, e.g., 

Gemination i n / k a t t a b / :  {c2,X,e) 4:~ 
XX 

The second approach leaves pattern segments unmarked, but provides the proper 
left and right contexts in rules. The former approach requires more annotations in 
lexica and rules, but provides for smaller machines since no context expressions are 
used. The opposite holds for the later approach. Both, however, require rule features 
(see Section 5.2) to ensure that the rule applies only to the desired measures. 

As the multitiered framework does not put any limitations on the number of lexical 
tapes, the grammar writer may also choose to place affixes on their own autonomous 
tape. Hence, one produces surface-lexical tuples like ?akateb:(?a, cvcvc, ktb, ae) (see 
Figure 1(c)). 

5.2 Using Features to Handle Idiosyncracies 
Various lexical and morphotactic constraints exist in Semitic. For instance, roots do 
not appear in all verbal measures; rather, each root occurs in the literature in a subset 
of the measures, e.g., {pnq} does not exist in Measure 1 (one gets such information 
from dictionaries and corpora). Another example is that the vocalisms of Measure 
1 in almost all Semitic languages are lexically marked for each root. In the current 
framework, categories of the form: 

cat-name 

A T T R I B U T E 1  ~ V A L U E 1  

A T T R I B U T E 2  = V A L U E 2  

are used in the lexicon as well as rules to resolve such issues (Bear 1988; Ritchie et al. 
1992). Here, a value can be either an atom or a set of atoms. For example, the set of 
measures in which a root occurs are given in the attribute MEASURE below: 

[pattern ] 
ktb MEASURE = { 1,2,3 } , 

V O W E L  = a 

[ ] qrb MEASURE = { 1,2,3 } 
V O W E L  ~ e 

pattern ] 
pnq MEASURE = { 2,3 } , 

V O W E L  ~--- NA 

90 



Kiraz Multitiered Nonlinear Morphology 

The vocalisms of Measure I for various roots are marked with the attribute VOWEL. 
Hence, one gets [a] i n / k t a b / ,  but [e] i n / q r e b / .  

Categories are also used in rules. For example, the gemination rule above is asso- 
ciated with a category that indicates the measures in which gemination is valid. The 
definition of rule obligatoriness is extended to include categories (Pulman and Hepple 
1993). The categories are incorporated in the automata compilation process following 
the algorithms in Kiraz (1997a). 

5 . 3  L i n e a r  v e r s u s  N o n l i n e a r  G r a m m a r s  

Considering that nonlinearity in Semitic occurs mainly in the stem, maintaining a 
nonlinear lexical representation in rewrite rules causes rules that describe one phono- 
logical/orthographic phenomenon to be duplicated. This becomes a challenge to the 
grammar writer since Semitic employs very rich phonological rules: assimilation, dis- 
similation, prosthesis, anaptyxis, syncope, haplology, etc. (Moscati et al. 1969, Sec- 
tion 9.1 ft.). 

Consider the derivation of S y r i a c / k t a b / u s i n g  the rules in Figure 3. Since vowel 
deletion in Syriac applies right-to-left, when adding the object pronominal suffix {eh} 
'MASC 3RD SING', the second vowel should be deleted, */katabeh/ --* /katbeh/ .  By 
virtue of its right lexical context, however, R3 in Figure 3 can only apply to the first 
stem vowel. Another rule (R4 below) is required for de r iv ing /ka tbeh / f rom */katab/  
and the suffix {eh}, where the second stem vowel is deleted. 

* - - ( c V , * , * )  

R4 * - e - * 

where V is a vowel. 

The c in the right lexical context is a concrete symbol from a pattern morpheme, while 
V represents the class of all vowels. 

This does not resolve the problem. Both R3 and R4 fail when the deleted vowel 
itself appears in the prefix, e.g. /waka tbeh/  --* /wka tbeh /  (with the prefix {wa}), 
requiring another rule. An additional rule is also needed to delete prefix vowels when 
the right context belongs to a (possibly another) linear prefix, e.g., prefixing the se- 
quence {wa} 'and', {la} 'to', and {da} 'of' to the stem /ka tab /  giving /waldaktab/  
(the [a] of {la} and the first stem vowel are deleted). 

The above examples clearly illustrate the proliferation that would result. Consid- 
ering that such phonological rules do not depend on the nonlinear lexical structure 
of the stem, a better approach divides the lexical-surface mappings into two separate 
problems. The first handles the templatic nature of morphology, mapping the multi- 
ple lexical representation into a linearized lexical form, somewhat corresponding to 
McCarthy's notion of tier conflation (McCarthy 1986). Linearization of autosegmental 
representations in general has been suggested earlier by Kornai (1991, 1995). 

The second takes care of phonological/orthographic/graphemic mappings be- 
tween the linearized lexical form and the actual surface. The entire grammar is taken 
as the composition of two sets of rules (Karttunen, Kaplan, and Zaenen 1992). Com- 
position, however, needs to be defined for multitape machines. First, we redefine an 
n-tape finite-state machine as (Q, E, 6, q0, F, d), where the first five elements are as be- 
fore and d, 1 < d < n, is the number of domain tapes (the number of range tapes is 
simply n - d). 

D e f i n i t i o n  

Let A = (Q1, El, 61, ql, F1, dl) and B = (Q2, ~"2, 62, q2, F2, d2) be two multitape machines 
over nl and n2 tapes, respectively. Further, let si denote the symbol on the ith tape. 

91 



Computational Linguistics Volume 26, Number 1 

There is a composition of A and B, denoted by C, if and only if d2 = nl - dl with 
C = (Q1 x Q2,~1 u ~2,6, [ql, q2],F1 x F2,dl) where for all pl E Q1 and p2 E Q2, 

6([pl,p2],Sl : " "  : Sdl :s '  d 2 q - 1  : " " • : Sn2) 
[ ~ l ( p l , s l  : . . .  : sd l  : s d l + l  : . . .  : s n , ) ,  

i . S /  i ~2(p2,s~ : . • .  : %  • d2+1 : ' . .  : s ,2)]  

if and only if sd~+l = s~ . . . .  s,~ = s' 
• d 2 .  

The resulting machine is an k-tape machine, where k = dl - d2 q- n2. In our imple- 
mentation (see Section 7, and Appendix A), the domain and range tapes are given as 
arguments to the composition function, rather than coding them in machines, in order 
to allow for flexibility in using machines. 

5.4 Vocalization 
Semitic texts appear in three forms: consonantal texts, which do not incorporate any 
vowels but matres lectionis; partially vocalized texts, which incorporate some vowels 
to clarify ambiguity; and vocalized texts, which incorporate full vocalization. 

Handling all such forms is resolved in line with the previous discussion on lin- 
earizafion. The grammar writer should assume full vocalization when writing gram- 
mars. This will not only get rid of the duplicated rules for the same phonologi- 
cal/orthographic phenomenon, but will also make understanding and debugging rules 
an easier task. Once a lexical-surface rewrite rules system has been achieved, a set of 
rules that optionally delete vowel segments are specified and composed with the entire 
system. 

6. Other Approaches to Finite-State Semitic Morphology 

6.1 Kay's Multitape Approach 
Kay (1987) proposed handling the autosegmental analysis of Arabic by means of mul- 
titape automata• Kay adds some extensions to traditional FSTs. Transitions are marked 
with quadruples of elements (for vocalism, root, pattern, and surface form, respec- 
tively), where each element is a pair: a symbol and an instruction concerning the 
movement of the tape's head. Kay uses the following notation: An unadorned symbol 
is read and the tape's head moves to the next position. A symbol in brackets, [ ], is 
read and the tape's head remains stationary• A symbol in braces, { }, is read and the 
tape's head moves only if the symbol is the last one on the tape. 

The transitions for the analysis of Sy r i ac /ka t t ab / ' t o  write--CAUSATIVE, PASSIVE', 
excluding the reflexive prefix {?et}, are shown in Figure 9. After the first transition 
on the quadruple {[ ], k, C, k} in Figure 9(a): no symbol is read from the vocalism 
tape, [k] is read from the root tape and the tape's head is moved, [C] is read from the 
pattern tape and the tape's head is moved, and [k] is written on the surface tape and 
the tape's head is moved• At the final configuration, all the tapes have been exhausted. 
Kay makes use of a special symbol, G, to handle gemination; when read, a symbol 
from the root tape is scanned without advancing the read head of that tape. 

The model suffers from a number of shortcomings, some of which have already 
been pointed out (Bird and Ellison 1992, Section 5.1). Firstly, the use of various bracket- 
ing notations to control the moves of the machine head(s) causes the read heads of the 
three upper input tapes to move independently of each other; this put the expressive- 
ness of the device under question: Bird and Ellison (1992, but not 1994) questioned the 
formal power of the device. Wiebe (1992), citing formal results from Fischer (1965), 

92 



Kiraz Multitiered Nonlinear Morphology 

I "k! ! ! ! ! iS 
i t i b i  i i k 
iv!oic' , ivic, I c 

I 
[ki i i i 1 ~  

I I i I 
k i t i i > l  i i { }  

I 
{k iwi  i i i I<, 

I I~,i ! ! [] 
E~kil,~i>l i ~  . [1] 

(", IViGiCiViC o 

(b) 

i i I~,I 
i klt, TI--;i 

c, jv!eiC',TVic 

I 
[ k i ~ i t i  i i ]t 

(4) (,:) 

i I a i i  [ }  
I k ! t i b l  [~] 

CIVIGtCtViC O 

M 
[ ]  
V 

] ikil ,  ib [b,! 
(: ivi(; ic!vlc,  c 

1 i 1 
[ki~it i t i i l* [kia. i t i t ,  iai ]a [ k } a i t i t l a t b i b  

(d) (e) (¢) 
Figure 9 
Kay's Analysis of Syriac/kattab/. The four tapes are (from top to bottom): vocalism tape, root 
tape, pattern tape, and surface tape. Transition quadruples are shown at the right side of the 
tapes. The symbol "~" between the lower surface tape and the lexical tapes indicates the 
current symbols under the read/write heads. 

stated that Kay's machine goes beyond finite-state power. No consensus has been 
reached on the matter to the best of the author's knowledge. In contrast, our pro- 
posed n-tape machines move all the read heads simultaneously ensuring finite-state 
expressive power. Secondly, the introduction of ad hoc symbols to templates (e.g., G 
for gemination) moves away from the spirit of association in autosegmental phonology 
that Kay wanted to model; other special symbols must also be added to completely 
implement the rest of the paradigm in question. 

We have demonstrated, however, the usefulness of Kay's proposal. Indeed, if one 
eliminates the ad hoc controls of the read head(s) and provides a rule formalism 
from which machines can be compiled algorithmically, the multitape model is quite 
adequate for describing autosegmental representations. 

6.2 The Intersection of Lexica Approach 
Kataja and Koskenniemi (1988), working on Akkadian, developed a system under 
traditional two-level morphology. It was mentioned earlier (see Section 1.1) that the 
challenge of handling Semitic morphology within traditional two-level morphology is 
that the lexical level is not merely the concatenation of the morphemes in question. 

Kataja and Koskenniemi resolved this by devising a "lexicon component" that 
makes use of two lexica: one for roots and the other for stem patterns and affixes. 
Entries in the former leave affix elements unspecified, while entries in the latter leave 
root elements unspecified. For example, the lexical entry for the Arabic root morpheme 
{ktb} takes the form 

E~ kEp tEpbEp (11) 

where Ep is the alphabet of nonroot segments; likewise, the entry for the perfect passive 
vocalism {ui} takes the form: 

E r u E r i E r (12) 

where Gr is the alphabet of root segments. The intersection of both expressions allows 
for the well-formed s t r ing /ku t ib / ,  as well as numerous ill-formed sequences such as 
*/ktbui/ ,  inter alia. Under this framework, the result of the intersection becomes the 

93 



Computational Linguistics Volume 26, Number 1 

lexical level of a traditional two-level morphology system. The two-level system then 
takes care of other morphological, phonological, and orthographic rules, all of which 
are linear in nature. Kataja and Koskenniemi suggested simulating the intersection by 
having the lexical lookup explore both lexica simultaneously. 

The following computational shortcomings of the intersection approach come to 
mind. The intersection of the two lexica works only if Gp and Gr are disjoint. As this 
is not the case in Semitic, one has to introduce ad hoc symbols in the alphabet to 
make the two alphabets disjoint. Alternatively, Beesley (forthcoming) introduces an 
ingenious, but cumbersome, bracketing mechanism. Expression (11) above becomes: 

A* (k) A* (t) A* (b) A* (13) 

where A = ~ - { (,) } (I have changed Beesley's curly brackets into angle brackets in 
order to avoid confusion with set notation). Expression (12) then becomes: 

B* u B* i B* (14) 

where B = E - V, and V is the disjunction of all vowels. Finally, each measure is given 
by an expression; for instance, Arabic Form V (e .g . , / t aka t tab /where  the first [t] is an 
affix not related to the [t] of the root) is: 

tVCVCXVC (15) 

where C is 
({ k,t,b }) (16) 

(i.e., the disjunction of the root symbols surrounded by angle brackets). The symbol 
X in expression (15) indicates gemination in a way reminiscent of Kay's G symbol. 
The intersection of expressions (13), (14), and (15) results in / takatXab/ (X is dealt 
with by later rules). The disjunction of all such intersections results in what one may 
call a "quasi lexicon," i.e, the lexical side of subsequent two-level transducers that 
deal with linear phenomena (setting aside long-distance dependencies). Given r roots 
(approximately 4,000 in Modern Standard Arabic), v vocalisms, and p patterns (a few 
hundred for v x p depending on the linguistic framework used), Beesley's bracketing 
algorithm needs to perform m intersections, where r KK m < r x v x p (since each root 
only intersects with lexically defined subsets of the patterns). In contrast, such a brack- 
eting mechanism is not necessary in our multitape approach, since the alphabet of one 
tape does not interfere with the alphabets of other tapes. Further, our lexicon compiler 
needs to perform only n - 1 cross product operations (where n is the number of lex- 
ical tapes, usually 3). There is a substantial time complexity difference with practical 
effects. A faithful implementation of Beesley's bracketing approach and ours was per- 
formed using the Bell Labs Lextools compiler (Sproat 1995; Kiraz 1997b). (See Sproat 
[1997, Section 3.2] for a brief description of Lextools.) The test was also performed by 
M. Jansche using a neutral finite-state library (van Noord 1997) to ensure partiality. 
Jansche was able to substantially enhance the performance of Beesley's method. The 
results of compiling various numbers of roots with the 24 Arabic verbal patterns ap- 
pear in Table 3. The table indicates that for a full-scale system, the proposed multitier 
compilation method is far more efficient. Details of the tests appear in Appendix B. 

More serious is the fact that bidirectionality of two-level morphology (i.e., mor- 
phemes mapping to surface forms and vice versa) is lost. Once intersection is per- 
formed, the result is an accepting automaton that represents stems rather than inde- 
pendent morphemes. In contrast, using our multitape model, the original morphemes 

94 



Kiraz Multitiered Nonlinear Morphology 

Table 3 
Evaluation of lexical compilation of Beesley's bracketing mechanism vs. 
Kiraz's multitiered method using Lextools and van Noord's FSA utilities. 
The times of the compilation process for the latter are based on an 
enhanced implementation of Beesley's method by M. Jansche (see 
Appendix B). The ratio columns show the order of complexity (e.g., for 
100 roots, the multitiered lexical compilation runs 23.7 times faster than 
Beesley's bracketing mechanism using Lextools and 4.9 times faster than 
Jansche's enhancements to Beesley's algorithm). 

Lextools Van Noord's 

Roots Beesley Kiraz Ratio Beesley-Jansche Kiraz Ratio 
(h min sec) (sec) (sec) (sec) 

20 4.97s 0.64 7.8 7.4 3.9 1.9 
40 9.85s 0.79 12.5 15.6 6.1 2.6 
60 14.64s 0.81 18.1 25.7 7.4 3.5 
80 19.51s 0.95 20.5 38.1 9.3 4.1 

100 24.03s 1.13 23.7 52.9 10.8 4.9 
200 48.52s 1.39 34.9 177.0 22.7 7.8 
300 lm 10.95s 1.67 42.5 387.7 37.6 10.4 
400 lm 37.42s 1.87 52.1 677.1 56.3 12.0 
500 2m 6.94s 2.62 48.4 1124.4 79.2 14.2 

1,000 5m 0.79s 5.64 53.4 
2,000 22m 19.53s 10.20 131.3 
3,000 2h 5m 35.38s 12.60 598.0 

(root, pattern, and vocalism) can be reconstructed from the multi tape lexicon by a 
projection operation. Hence, projection, under  which automata are closed, acts as the 
"reciprocal" operator for cross product  in expression (2) ensuring means for bidi- 
rectionality. There is no such reciprocal operator for intersection: it is a destructive 
operator in the sense that its arguments cannot be recovered from the result. 

6.3 Beesley's Other "Intersection" Approach 
Beesley and his colleagues (Beesley, Buckwalter, and Newton 1989; Beesley 1990, 1991) 
developed a large-scale Arabic system under  two-level morphology, which even has 
the ability to handle regional Egyptian spelling (Beesley, p. c.). The lexical lookup of 
the two-level model  was augmented by a technique called "detouring" to access roots 
and affixes from different lexica (see Sproat [1992, 163-165] for details on "detouring").  
In his 1996 paper, and subsequent work, Beesley reimplemented the system using the 
Xerox lexical and rule compilers (Karttunen 1993; Karttunen and Beesley 1992). An 
on-line demo of the reimplementation was also developed (Beesley 1998a). 4 

Bidirectionality is maintained in Beesley's system by a direct mapping of each root 
and pattern pair to their respective surface realizations. The lexical description gives 
the root and pattern superficially concatenated in the form (Beesley 1996, p. c.): 

[ktb&CaCaC] (17) 

The square brackets are special symbols that delimit the stem, and "&" is another spe- 
cial symbol that separates the root from the pattern; it is not  the intersection operator. 

4 The new URL is http://www.xrce.xerox.com/research/mltt/arabic. 

95 



Computational Linguistics Volume 26, Number 1 

For each root and pattern pair, a rule of the following form is generated automatically: 

[ktb&CaCaC] ~ katab (18) 

Each rule of the form in (18) is compiled into a transducer, which is then applied 
by composition to the identity transducer of the corresponding lexical description in 
(17). The result is a transducer that maps the string "[ktb&CaCaC]" into "katab". It 
is worth noting that rules of the form in (18) are reminiscent of Chomsky's early 
transformational rules for Hebrew stems (Chomsky 1951). 

(As "&" in (17) and (18) is a concrete symbol, no real intersection, in the set- 
theoretic sense, takes place, though Beesley refers to this method as well as to the 
bracketing mechanism described in the previous section as "intersection".) 

This method requires m (where r << m < r x v x p as before) rules of the form 
in (18) to be compiled into their respective transducers using algorithms of the Xerox 
replace operator (Karttunen 1997), literally thousands of rules. Additionally, the entire 
set of m transducers (or subsets, one subset at a time) needs to be put together into 
one (or more) transducer(s) by means of intersection (if the transducers are c-free) or 
composition. Although this takes place during developing the grammar, rather than 
at run-time, the inefficiency that results in the compilation process is apparent from 
the fact that a linguistic phenomenon (here, the linearization of stems) is conveyed by 
applying a rule to every single stem of the language. As one does not provide a rule 
to delete [e] in Eng l i sh /move+ ing / and  another to delete the same in /charge+ing/ ,  
etc., but a single [e] deletion rule that applies throughout the entire language, stems in 
Semitic ought to be realized by rules that represent the phenomenon itself, not every 
single instance of the phenomenon. 

In contrast, the proposed multitier model requires only three rules throughout the 
entire language to model Beesley's roots and patterns (i.e., with X to denote gemination 
and hard-coding vocalic spreading): R1 (for stem consonants) and R2 (for stem vowels) 
from Figure 3, in addition to the following gemination rule (see Section 5.1 for our 
handling of gemination and spreading): 

Gemination: 
( x , C , ~ )  - ( x , , , c )  - * 

where  C is a consonant. 

~=~ 

The result of the three rules is a mere (]R I + 1)-state machine, where R is the set of all 
root segments (= 28 for Arabic, 22 for Syriac), which is then applied to the multitiered 
lexicon. Figure 10 gives such a machine for R={ k,t,b } and the vowels { a,u,i }. 

Another disadvantage, although a minor one, of rules of the form in (18) is the loss 
of alignment between surface segments and their lexical counterparts. While this does 
not affect the behavior of the resulting machines, having segments aligned helps in 
debugging at the grammar-design stage. A cursory look at the transitions in Figure 10 
indicates to the grammar writer the lexical segments that correspond to a surface 
segment. 

Having said that, Beesley's system remains the largest reported Semitic grammar 
written within finite-state morphology to date. The system, however, relies on old 
linguistic models, as old as Harris (1941). No move has been reported to employ mod- 
ern linguistic models such as the autosegmental framework and other developments 
mentioned in Section 1, although this seems to be the direction of modern research 
in computational Semitic morphology as well as linguistics (see the bibliographical 
entries cited in Section 1). 

96 



Kiraz Multitiered Nonlinear Morphology 

i:<v,( 

t:<c,LO> 

< I  . . . . . . . . .  o.o> 

a:<v,O,a>, u:<v,O,u>, i:<v,O,i> 

~ k:<c,k,O> 

~ k:<c,k,O> : , ~,0>/  

a:<v,O,a> c+ t:<c,t,O> 

a:<v,O,a>, u;<v,O,u>, i;<v,O,i> 

,t,O> 

Figure 10 
Rules for mapping multitier lexica into stems. The symbol 0 represents c. 

c c v c l  i/ 

4 a 

Figure 11 
Triangular prism demonstrating the autosegmental representation of Arabic/kattab/. 

6.4 Encoding Autosegmental Representations Approach 
There have been a number of proposals to encode autosegmental representations. 
Kornai (1991, 1995) gives a linear coding; Wiebe (1992) and Bird and Ellison (1992) 
give a multitiered encoding. We shall illustrate this approach from Bird and Ellison's 
work. 

Every pair of autosegmental tiers constitutes a chart (or plane). The representation 
of Arab ic /ka t tab / ,  for example, takes the form of a triangular prism as in Figure 11 
(Pulleyblank 1986). Each morpheme sits on one of the prism's three longitudinal edges: 
the pattern on edge 1-2, the vocalism on edge 3-4, and the root on edge 5-6. The prism 
has three longitudinal charts: pattern-vocalism (1-2-3-4), pattern-root (1-2-6-5), and 
root-vocalism (3-4-5-6). The corresponding encoding of the diagram is: 

Tier 1 a:2:0:0 
Tier 2 C:0:1:0 V:I:0:0 C:0:1:0 C:0:1:0 V:I:0:0 C:0:1:0 
Tier 3 k:0:l:0 t:0:2:0 b:0:l:0 

Each expression is an (n + 1)-tuple, where n is the number of charts. The first element 
in the tuple represents the autosegment. The positions of the remaining elements in the 
tuple indicate the chart in which an association line occurs, and the numerals indicate 
the number of association lines on that chart. For example, the expression a:2:0:0 states 
that the autosegment "a" has two association lines on the first pattern-vocalism chart, 
zero lines on the second pattern-root chart, and zero lines on the third root-vocalism 
chart. 

97 



Computational Linguistics Volume 26, Number 1 

No implementation of a Semitic language, to the best of the author's knowledge, 
has been carried out using these methods. Bird and Ellison, however, give an example 
of how they envisage implementing Semitic using their framework. For each mea- 
sure, they provide an expression that generalizes over that particular measure, e.g. for 
{CVCCVC}: 

C:1 V:0 C:1 C:1 V:0 C:1 (19) 

The numbers after the colon refer to the autosegmental tier with which the segment 
is linked (0 for vowels and 1 for root segments). A second expression generalizes over 
all stems constructed from a particular root, e.g., for {ktb}: 

G:0* k:l (G:0* t:l) + b:l (20) 

where "*" and "+" denote Kleene star and plus, respectively. A third expression de- 
scribes the vocalism, e.g., for {a} with spreading: 

(a U C)* (21) 

The intersection of the three expressions, per their intersection algorithm for such 
encodings, yields: 

k:l a:0 t:l t:l a:0 b:l (22) 

Superficially, this approach may seem equivalent to the other intersection ap- 
proaches mentioned in Section 6.2. The methodology here, however, is formally more 
appealing and linguistically more sound since it provides for a mechanism to describe 
autosegmental association. Bird and Ellison (1992, 87) question if their approach will 
"cover all possible generalizations about Arabic verbal structure." It would definitely 
be worth investigating how a higher-level autosegmental description of Semitic can 
be compiled algorithmically into their machines directly. 

We mentioned above (Section 6.2) that the intersection approach lacks bidirec- 
tionality. It is possible, though this has not been tested, that the indices in Bird and 
Ellison's method can play a role in claiming the various morphemes of a particular 
surface form. 

7. Implementation 

There are two aspects of the implementation: implementing the theoretical model 
based on the algorithms presented in Section 4 and implementing Semitic grammars 
for the case study. As for the former, the algorithms in Section 4 were implemented by 
the author in SICStus Prolog. Details of the implementation are given in Appendix A. 

As for the grammars themselves, a small-scale Syriac grammar was implemented 
based on the 100 most frequent roots, including their numerous inflexions, of the Syr- 
iac New Testament (Kiraz 1994a). Care was taken, however, to ensure that most of the 
verbal and nominal classes of the language were exhaustively covered. Additionally, 
sample Arabic grammars--but  with full coverage of the phenomena under question I 
have been implemented to test various linguistic models of Semitic, including: CV 
templates, moraic templates, affixational templatic morphology, prosodic circumscrip- 
tion, and broken plurals. A detailed description of handling these linguistic models 
appears elsewhere (Kiraz, in press). 

8. Conclusion 

This paper presented a multitier morphology model that can cope with the nonlinear 
operations of Semitic root-and-pattern morphology in a linguistically motivated way. 

98 



Kiraz Multitiered Nonlinear Morphology 

The system consists of three main components: a lexicon made of multiple sublex- 
ica, where each sublexicon represents entries from a particular tier; a rewrite rules 
system that maps multiple lexical representations to a surface representation; and a 
morphotactic component that makes use of regular rewrite rules. Rules and lexica 
are compiled algorithmically into multitape finite-state machines. There is no reason 
to believe that our multitiered rewrite rules component cannot be applied to other 
rewrite rules systems (Koskenniemi 1983; Kaplan and Kay 1994; Mohri and Sproat 
1996; Karttunen 1997). 

It was demonstrated that the proposed framework is capable of modeling sophis- 
ticated linguistic descriptions, especially those of autosegmental phonology. Having 
said that, considering that the morphology of Semitic languages is notoriously dif- 
ficult to analyze--partly because of its root-and-pattern nature and the existence of 
many morphologically distinct homographic morphemes, but mostly because the or- 
thographic system is underspecified (see Section 5.4)--the current work, as well as all 
reported work on Semitic morphology, is far from providing a usable morphological 
system. Much work in the area of morphological disambiguation, which must venture 
into the realms of syntax and semantics, awaits research. 

The proposed multitape approach may not be confined to Semitic and may prove 
useful for autosegmental representation in general. Since a segment in modern phono- 
logical theory is a mere shorthand for multitiered features, the model may be applied 
to concatenative languages when descriptions are required at the multitiered feature 
level. While this may be cumbersome for morphological applications, it may prove 
useful for automatic speech recognition and other applications that require subseg- 
mental analyses. 

Acknowledgments 

This research was supported by a St. John's Benefactors' scholarship and was carried 
out under the supervision of Dr. Stephen Pulman (University of Cambridge). Thanks 
are due to the Master and Fellows of St. John's College and the Computer Labora- 
tory, Cambridge, for various grants. Much revision and enhancement took place at 
Bell Laboratories. Comments by the anonymous reviewers helped in reshaping the 
presentation of this paper. Ken Beesley kindly made a forthcoming paper available 
to me and answered many questions. Martin Jansche performed the test detailed in 
Appendix B.2 and provided comments. Christine Nakatani provided many useful ed- 
itorial comments. 

Appendix A: Implementation 

The algorithms in Section 4 were implemented by the author in SICStus Prolog us- 
ing a finite-state library provided by E. Grimley-Evans. The library allows the cre- 
ation, manipulation, and destruction of multitape finite-state machines with an easy 
algebraic interface to n-way regular expressions. The Prolog term 
regexp to fsa(+RegExp,?Automaton) constructs the machine Automaton for the ex- 
tended regular expression KegExp, e.g., expression 3 (Section 4.2.1) is turned into a 
four-tape machine with the expression 

regexp_to_fsa(t(c,c,c,c)^( [ t (k,c,k,O) . . . .  ) ] ^ t ( c , c , c , c ) ) * ,  Centers) 

The predicate t (+terminal)  denotes a terminal tuple, infix ^ denotes concatena- 
tion, postfix * denotes Kleene star, and a list denotes union over its elements. Primi- 

99 



Computational Linguistics Volume 26, Number 1 

tive Prolog procedures (e.g., union/3, kleene/2,  etc.) are also provided for (Kiraz and 
Grimley-Evans 1998). 

The algorithms given in Section 4 are closely followed. First, the lexical compiler 
is invoked creating a multitape machine for each sublexicon, and then putting them 
together with the cross product operator. The rule compiler then compiles all the 
rules into another machine. The entire language description is then created with the 
operation: 

Language = (% x Lexicon) N Rules (23) 

where 7rs denotes the set of all surface symbols. The first component maps the lexicon 
to all surface symbols. The intersection leaves Language with the valid expressions 
only. (One can also use composition instead of intersection depending on the nature 
of the rules.) 

There is some room to enhance the implementation, especially in time and memory 
overhead. While the finite state library is capable of handling automata for small-scale 
grammars, larger grammars would stretch its capabilities. The library was successfully 
used, however, to implement the algorithms in the current work as well as those 
presented by Grimley-Evans (1997) and Kiraz (1997a). It must be stressed that the 
finite-state calculus library, as well as the rule and lexicon compilers, are prototype 
implementations written for research purposes. An interpreter version of the work 
presented here was described earlier (Kiraz 1996). The interpreter works on rules 
directly and can handle larger grammars. 

Appendix B: Beesley's Bracketing Algorithm vs. Kiraz's Multitape Algorithm 

B.1 Using Bell Labs" Lextools 
This test was performed using the Lextools lexical compiler. Each line in the input 
file is an extended regular expression. The compiler turns each line into an FSA, then 
takes the union of all FSAs. The file may contain a header, surrounded between two 
XXs, for alias definitions. In Beesley's case, the following source file was used (only 
two roots a n d t w o  vocalisms are shown): 

ZZ 
$(NotRoot) : {Sigma} - ({<}I{>}) ; 
$(Con) = {<} {Letters} {>} ; 
$(ktb) = ({<}k{>} {<}t{>} {<}b{>})-$(NotRoot) ; 
$(qbr) = ({<}q{>} {<}b{>} {<}r{>})~$(SotRoot) ; 
$(aa) = $(Con)a$(Con)aS(Con) ; 

$(ui) = $(Con)n$(Con)i$(Con) ; 
ZZ 

$(ktb) a $(aa) 
$(ktb) ~ $(ui) 
$(qbr) ~ $(aa) 
$(qbr) a $(ui) 

// This is A in eq. 13 
// See eq. 16 
// Root ktb; see eq. i3 
/ /  Root qbr 
// Pattern CaCaC; eq. 15 with 
// vowels instantiated 
// Pattern CuCiC 

// Intersection for /katab/ 
// Intersection for /kutib/ 
// Intersection for /qabar/ 
// Intersection for /qubir/ 

Each line in the header consists of $ (name), followed by =, followed by an extended 
regular expression. The compiler builds an FSA for the expression and stores it under 
name. In regular expressions, curly brackets are used to denote multicharacter symbols 
(e.g., {Sigma}) or special symbols (e.g., < and > which otherwise are used for weights 
in weighted FSAs). The operators are: - for subtraction, I for union, ~ for insert or 
ignore, a for intersection, and $ (name) for reference to a machine already defined in 
the header. 

The implementation of the Lextools insert operator was modified to provide for a 
fair representation of Beesley's method. The initial runs took quite some time (many 

100 



Kiraz Multitiered Nonlinear Morphology 

hours for 100 roots!) since the insert operator was initially implemented by the ex- 
pression Range(A o (G U c:B)*) for inserting B into A (Kaplan and Kay 1994). The new 
algorithm inserts B directly into A by iterating over states and adding new states 
and arcs. Additionally, since Beesley's algorithm makes heavy use of alias definitions, 
access to them was enhanced by applying a binary search mechanism rather than 
Lextools's original linear search. 

For Kiraz's method, two source files were used. The root file is simply a list of all 
roots, e.g., 

k t b  / /  
qb r  / /  

and the pattern file is a 

aa  / /  

ui / /  

root ktb 

root qbr 

listing of all vocalisms, e.g., 

vocalism aa 

vocalism ui 

The two FSAs generated from the two files were fed into a regular expression compiler 
to compute expression (2) (Section 4.1). 

Table 3 (Section 6.2) shows the times spent on compiling up to 3,000 roots with 
the 24 patterns described in (Beesley, forthcoming). The test was performed on a MIPS 
R5000 180 MHz based Unix system with a memory size of 64 MB. 

Caveat is required here: To the disadvantage of Kiraz, the two FSAs resulting 
from the root and vocalism files are saved on disk, then loaded again by the regular 
expression compiler to compute their cross product adding unnecessary expensive 
I /O  operations. Otherwise, the results would be even more in favor of the multitiered 
model. 

B.2 Using van Noord's FSA Utilities (by Martin Jansche) 
An independent comparison between the approach described here and the one in 
(Beesley, forthcoming) was carried out using van Noord's FSA Utilities (van Noord 
1997) (we use its notation for regular expressions throughout this section). We com- 
pared the time spent on compiling lexica of various sizes for both frameworks. Given 
a set of roots and a set of patterns, each compiled into a finite automaton as outlined 
in Section 4.1, the key difference between the work of Kiraz and that of Beesley is that 
the former uses the cross product operation to compile the full lexicon, while the latter 
uses intersection. Since these two operations are very similar, one would not expect 
much of a difference if the elements in each sublexicon were the same. However, the 
different formal renderings of roots and patterns in the two approaches results in a 
significant difference. 

Beesley Kiraz 

lexicon by intersection cross product 
roote.g, ignore([<,k,>,<,t,>,<,b,>], ?-{<,>}) [k,t,b] 
pattern e.g. [<,?,>,u,<,?,>,i,<,?,>] ['C' ,u, 'C' ,±, 'C'] 

Using Beesley's approach directly made the task of compiling the root lexicon 
intractable for more than 10 roots. After modifications to Beesley's version--such as 
intersecting the disjunction of roots with the disjunction of patterns once, 5 delimiting 

5 We realize that since roots do not apply to all patterns, but  to lexically defined subsets, applying 
intersection once does not work in practice. It was applied here to enhance the performance of 
Beesley's algorithm. 

101 



Computational Linguistics Volume 26, Number 1 

root consonants with one special symbol only, and inserting other symbols only be- 
tween root consonants rather than at arbitrary positions so that a typical root now has 
the shape [sym*, <, k, sym*, <, t ,  sym*, <, b, sym*], where syms expands to (? - <)--it 
became tractable, but was still much slower than the alternative discussed here. 

Both approaches were implemented as Prolog code and macros on top of the FSA 
Utilities. The two implementations share common code that contains, among other 
things, a database of roots and patterns in the form 

pattern(['C',a,'C',a,'C']). 
pattern(['C',u,'C',i,'C']). 
%% etc .  
r o o t ( k , t , b ) .  
root(p,n,q). 
%% etc .  

% Form I, 
% Form I, 

Perfect Active 
Perfect Passive 

The data represented there are transformed in different ways by the two imple- 
mentations: 

%% Kiraz 
root([X,Y,Z]) :- root(X,Y,Z). 
%% Beesley 
root([sym*,<,X,sym*,<,Y,sym*,<,Z,sym*]) :- root(X,Y,Z). 
macro(sym, ? - <). ~% Beesley's "nonRoot" 

There is a common macro sublexicon(Pred,N) that calls a metapredicate like 
f i n d a l l / 3  to find the first N solutions to a call to Pred(W) and collects all the Ws 
thus obtained into a big disjunction. The compilation of the lexicon is then very sim- 
ple: 

ZZ Kiraz 
macro(lexicon(R,P), 

ignore(sublexicon(pattern,P),O) x ignore(sublexicon(root,R),O)). 
%% Beesley 
macro(lexicon(R,P), sublexicon(pattern,P) & sublexicon(root,R)). 
macro('C', [<,sym]). 

While the pattern database is shared between the two implementations, the mean- 
ing of ' C' within the patterns is different: for Kiraz, it is just an ordinary symbol, 
but for Beesley it expands into a marker for a root consonant followed by any other 
symbol (the root consonant itself). 

Table 3 shows the times (in seconds) spent on compiling full lexica with different 
numbers of roots and the 24 patterns described in (Beesley, forthcoming). Each number 
is the minimum obtained after several trials with the "walltime" statistics of SICStus 
Prolog 3.7.1 running on an Intel Pentium 233 MHz based Linux system. 

102 



Kiraz Multitiered Nonlinear Morphology 

References 
Bat-E1, O. 1989. Phonology and Word Structure 

in Modern Hebrew. Ph.D. thesis, University 
of California at Los Angeles. 

Bear, J. 1988 Morphology with two-level 
rules and negative rule features. In 
COLING-88: Papers Presented to the 12th 
International Conference on Computational 
Linguistics, volume 1, pages 28-31. 

Beesley, K. 1990. Finite-state description of 
Arabic morphology. In Proceedings of the 
Second Cambridge Conference: Bilingual 
Computing in Arabic and English. 

Beesley, K. 1991. Computer analysis of 
Arabic morphology: A two-level 
approach with detours. In B. Comrie and 
M Eid, editors, Perspectives on Arabic 
Linguistics IIh Papers from the Third Annual 
Symposium on Arabic Linguistics. John 
Benjamins, Amsterdam, pages 155-72. 

Beesley, K. 1996. Arabic finite-state 
morphological analysis and generation. In 
COLING-96: Papers Presented to the 16th 
International Conference on Computational 
Linguistics, volume 1, pages 89-94. 

Beesley, K. 1998a. Arabic morphological 
analysis on the Internet. In Proceedings of 
the 6th International Conference and 
Exhibition on Multi-Lingual Computing, 
pages 3.1.1-10, Cambridge. 

Beesley, K. 1998b. Arabic morphology using 
only finite-state operations. In M. Rosner, 
editor, Proceedings of the Workshop on 
Computational Approaches to Semitic 
Languages, pages 50-57, Montreal. 

Beesley, K. 1998c. Constraining separated 
morphotactic dependencies in finite-state 
grammars. In Proceedings of the 
International Workshop on Finite State 
Methods in Natural Language Processing, 
pages 118-127, Ankara, Turkey. 

Beesley, K. Forthcoming. Arabic stem 
morphotactics via finite-state intersection. 
In E. Benmamoun, editor, Perspectives on 
Arabic Linguistics XIh Papers from the 
Twelfth Annual Symposium on Arabic 
Linguistics, pages 85-100. John Benjamins, 
Amsterdam. 

Beesley, K., T. Buckwalter, and S. Newton. 
1989. Two-level finite-state analysis of 
Arabic morphology. In Proceedings of the 
Seminar on Bilingual Computing in Arabic 
and English. The Literary and Linguistic 
Computing Centre, Cambridge. 

Bird, S. and T. Ellison. 1992. One-level 
phonology: Autosegmental 
representations and rules as finite-state 
automata. Technical Report Research 
Paper EUCCS/RT-51, University of 

Edinburgh. 
Bird, S. and T. Ellison. 1994. One-level 

phonology. Computational Linguistics, 
20(1):55-90. 

Chomsky, N. 1951. Morphophonemics of 
modern Hebrew. Master's thesis, 
University of Pennsylvania. Published by 
Garland Press, New York, 1979. 

Chomsky, N. and M. Halle. 1968. The Sound 
Pattern of English. Harper and Row, New 
York. 

Daciuk, J., S. Mihov, B. Watson, and 
R. Watson. 2000. Incremental construction 
of minimal acyclic finite-state automata. 
Computational Linguistics, 26(1):3-16. 

Elgot, C. and J. Mezei, 1965. On relations 
defined by generalized finite automata. 
IBM Journal of Research and Development, 
9:47-68. 

Fischer, P. 1965. Multi-tape and infinite-state 
automata--A survey. Communications of 
the ACM, 8:799-805. 

Goldsmith, J. 1976. Autosegmental Phonology. 
Ph.D. thesis, MIT. Published as 
Autosegmental and Metrical Phonology, 
Oxford, 1990. 

Grimley-Evans, E. 1997. Approximating 
context-free grammars with a finite-state 
calculus. In Proceedings of the 35th Annual 
Meeting of the Association for Computational 
Linguistics and 8th Conference of the European 
Chapter of the Association for Computational 
Linguistics, pages 452-9, Madrid, Spain. 

Grimley-Evans, E., G. Kiraz, and S. Pulman. 
1996. Compiling a partition-based 
two-level formalism. In COLING-96: 
Papers Presented to the 16th International 
Conference on Computational Linguistics, 
volume 1, pages 454-59. 

Hammond, M. 1988. Templatic transfer in 
Arabic broken plurals. Natural Language 
and Linguistic Theory, 6:247-70. 

Harris, Z. 1941. Linguistic structure of 
Hebrew. Journal of the American Oriental 
Society, 62:143-67. 

Kaplan, R. and M. Kay. 1994. Regular 
models of phonological rule systems. 
Computational Linguistics, 20(3):331-78. 

Karttunen, L. 1993. Finite-state lexicon 
compiler. Technical Report, XEROX Palo 
Alto Research Center, April. 

Karttunen, L. 1997. The replace operator. In 
E. Roche and Y. Schabes, editors, 
Finite-State Language Processing. MIT Press, 
chapter 4, pages 117-47. 

Karttunen, L. and K. Beesley. 1992. 
Two-level rule compiler. Technical Report, 
XEROX Palo Alto Research Center. 

103 



Computational Linguistics Volume 26, Number 1 

Karttunen, L., R. Kaplan, and A Zaenen. 
1992. Two-level morphology with 
composition. In COLING-92: Papers 
Presented to the 15th [sic] International 
Conference on Computational Linguistics, 
volume 1, pages 141-48, Nantes, France. 
International Committee on 
Computational Linguistics. 

Kataja, L. and K. Koskenniemi. 1988. Finite 
state description of Semitic morphology. 
In COLING-88: Papers Presented to the 12th 
International Conference on Computational 
Linguistics, volume 1, pages 313-15. 

Ka~ M. 1987. Nonconcatenative finite-state 
morphology. In Proceedings of the Third 
Conference of the European Chapter of the 
Association for Computational Linguistics, 
pages 2-10. 

Kay, M. and R. Kaplan. 1983. Word 
recognition. Unpublished paper. The core 
ideas are published in Kaplan and Kay 
(1994). 

Kiraz, G. 1994a. Lexical Tools to the Syriac New 
Testament. JSOT Manuals 7. Sheffield 
Academic Press. 

Kiraz, G. 1994b. Multi-tape two-level 
morphology: A case study in Semitic 
non-linear morphology. In COLING-94: 
Papers Presented to the 15th International 
Conference on Computational Linguistics, 
volume 1, pages 180-86. 

Kiraz, G. 1996..SEMH. E: A generalised 
two-level system. In Proceedings of the 34th 
Annual Meeting, pages 159--66, Association 
for Computational Linguistics. 

Kiraz, G. 1997a. Compiling regular 
formalisms with rule features into 
finite-state automata. In Proceedings of the 
35th Annual Meeting of the Association for 
Computational Linguistics and 8th Conference 
of the European Chapter of the Association for 
Computational Linguistics, pages 329-36. 

Kiraz, G. 1997b. Lextools 2.0: Tools for 
finite-state linguistic analysis. Technical 
Report 011334-970625-04TM, Bell 
Laboratories. 

Kiraz, G. 1997c. Linearization of nonlinear 
lexical representations. In J. Coleman, 
editor, Proceedings of the Third Meeting of the 
ACL Special Interest Group in Computational 
Phonology, pages 57-62. 

Kiraz, G. In press. Computational Nonlinear 
Morphology: With Emphasis on Semitic 
Languages. Cambridge University Press. 

Kiraz, G. and E. Grimley-Evans. 1998. 
Multi-tape automata for speech and 
language systems: A Prolog 
implementation. In Derick Wood and 
Sheng Yu, editors, Automata 
Implementation. Lecture Notes in 
Computer Science, Number 1436. 

Springer Verlag, pages 87-103. 
Kornai, A. Formal Phonology. Ph.D. thesis, 

Stanford University. Published in 1995. 
Kornai, A. 1991. Formal Phonology. Garland 

Publishing. 
Koskenniemi, K. 1983. Two-Level Morphology. 

Ph.D. thesis, University of Helsinki. 
Lavie, A., A. Itai, and U. Ornan. 1990. On 

the applicability of two level morphology 
to the inflection of Hebrew verbs. In 
Y. Choueka, editor, Literary and Linguistic 
Computing 1988: Proceedings of the 15th 
International Conference, pages 246-60. 

McCarthy, J. 1979. Formal Problems in Semitic 
Phonology and Morphology. Ph.D. thesis, 
MIT, Cambridge, MA. 

McCarthy, J. 1981. A prosodic theory of 
nonconcatenative morphology. Linguistic 
Inquiry, 12(3):373-418. 

McCarthy, J. 1986. OCP effects: Gemination 
and antigemination. Linguistic Inquiry, 
17:207-63. 

McCarthy, J. 1993. Template form in 
prosodic morphology. In Stvan, L. et al., 
editors, Papers from the Third Annual Formal 
Linguistics Society of Midamerica Conference, 
pages 187-218. Indiana University 
Linguistics Club, Bloomington. 

McCarthy, J. and A. Prince. 1990a. Foot and 
word in prosodic morphology: The 
Arabic broken plural. Natural Language 
and Linguistic Theory, 8:209-83. 

McCarthy, J. and A. Prince. 1990b. Prosodic 
morphology and templatic morphology. 
In M. Eid and J. McCarthy, editors, 
Perspectives on Arabic Linguistics Ih Papers 
from the Second Annual Symposium on Arabic 
Linguistics. John Benjamins, Amsterdam, 
pages 1-54. 

McCarthy, J. and A. Prince. 1995. Prosodic 
morphology. In J. Goldsmith, editor, The 
Handbook of Phonological Theory. Blackwell, 
chapter 9, pages 318-66. 

Mohri, M. and R. Sproat. 1996. An efficient 
compiler for weighted rewrite rules. In 
Proceedings of the 34th Annual Meeting, 
pages 231-8. Association for 
Computational Linguistics. 

Moscati, S., A. Spitaler, E. Ullendorff, and 
W. von Soden. 1969. An Introduction to the 
Comparative Grammar of the Semitic 
Languages: Phonology and Morphology. Porta 
Linguarum Orientalium. Otto 
Harrassowitz, Wiesbaden, Second edition. 

Pulleyblank, D. 1986. Tone in Lexical 
Phonology. Studies in Natural Language 
and Linguistic Theory. Reidel. 

Pulman, S. and M. Hepple. 1993. A 
feature-based formalism for two-level 
phonology: A description and 
implementation. Computer Speech and 

104 



Kiraz Mulfitiered Nonlinear Morphology 

Language, 7:333-58. 
Rabin, M. and D. Scott. 1959. Finite 

automata and their decision problems. 
IBM Journal of Research and Development, 
3:114-25. Reprinted in E. Moore, editor, 
Sequential Machines. Addison-Wesley, 
Reading, MA. 1964, pages 63-91. 

Ritchie, G., A. Black, G. Russell, and 
S. Pulman. 1992. Computational 
Morphology: Practical Mechanisms for the 
English Lexicon. MIT Press, Cambridge, 
MA. 

Ruessink, H. 1989. Two level formalisms. 
Technical Report 5, Utrecht Working 
Papers in NLP. 

Spencer, A. 1991. Morphological Theory. Basil 
Blackwell. 

Sprout, R. 1992. Morphology and Computation. 
MIT Press, Cambridge, MA. 

Sprout, R. 1995. Lextools: Tools for 
finite-state linguistic analysis. Technical 
Report 11522-951108-10TM, Bell 
Laboratories. 

Sprout, R., editor. 1997. Multilingual 
Text-to-Speech Synthesis: The Bell Labs 
Approach. Kluwer, Boston, MA. 

van Noord, Gertjan. 1997. FSA Utilities: A 
toolbox to manipulate finite-state 
automata. In Darrell Raymond, Derick 
Wood, and Sheng Yu, editors, Automata 
Implementation, Lecture Notes in 
Computer Science, Number 1260. 
Springer Verlag, pages 87-108. 

Wiebe, B. 1992. Modelling autosegmental 
phonology with multi-tape finite state 
transducers. Master's thesis, Simon Fraser 
University. 

105 


