
Practical Experiments with Regular
Approximation of Context-Free Languages

M a r k - J a n N e d e r h o f "
German Research Center
Intelligence

for Artificial

Several methods are discussed that construct a finite automaton given a context-free grammar,
including both methods that lead to subsets and those that lead to supersets of the original
context-free language. Some of these methods of regular approximation are new, and some others
are presented here in a more refined form with respect to existing literature. Practical experiments
with the different methods of regular approximation are performed for spoken-language input:
hypotheses from a speech recognizer are filtered through a finite automaton.

1. Introduction

Several methods of regular approximation of context-free languages have been pro-
posed in the literature. For some, the regular language is a superset of the context-free
language, and for others it is a subset. We have implemented a large number of meth-
ods, and where necessary, refined them with an analysis of the grammar. We also
propose a number of new methods.

The analysis of the grammar is based on a sufficient condition for context-free
grammars to generate regular languages. For an arbitrary grammar, this analysis iden-
tifies sets of rules that need to be processed in a special way in order to obtain a regular
language. The nature of this processing differs for the respective approximation meth-
ods. For other parts of the grammar, no special treatment is needed and the grammar
rules are translated to the states and transitions of a finite automaton without affecting
the language.

Few of the published articles on regular approximation have discussed the appli-
cation in practice. In particular, little attention has been given to the following two
questions: First, what happens when a context-free grammar grows in size? What is
then the increase of the sizes of the intermediate results and the obtained minimal de-
terministic automaton? Second, how "precise" are the approximations? That is, how
much larger than the original context-free language is the language obtained by a
superset approximation, and how much smaller is the language obtained by a subset
approximation? (How we measure the "sizes" of languages in a practical setting will
become clear in what follows.)

Some considerations with regard to theoretical upper bounds on the sizes of the
intermediate results and the finite automata have already been discussed in Nederhof
(1997). In this article we will try to answer the above two questions in a practical set-
ring, using practical linguistic grammars and sentences taken from a spoken-language
corpus.

• DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany. E-mail: nederhof@dfki.de

© 2000 Association for Computational Linguistics

Computational Linguistics Volume 26, Number 1

The structure of this paper is as follows: In Section 2 we recall some s tandard
definitions from language theory. Section 3 investigates a sufficient condit ion for a
context-free grammar to generate a regular language. We also present the construction
of a finite au tomaton from such a grammar. In Section 4, we discuss several meth-
ods to approximate the language generated by a g rammar if the sufficient condit ion
ment ioned above is not satisfied. These methods can be enhanced by a g rammar trans-
formation presented in Section 5. Section 6 compares the respective methods, which
leads to conclusions in Section 7.

2. Preliminaries

Throughout this paper we use s tandard formal language notat ion (see, for example,
Harr ison [1978]). In this section we review some basic definitions.

A context-free g rammar G is a 4-tuple (G , N , P , S) , where G and N are two finite
disjoint sets of terminals and nonterminals, respectively, S E N is the start symbol, and
P is a finite set of rules. Each rule has the form A ~ ~ with A E N and ~ E V*, where
V denotes N U ~. The relation ~ on N x V* is extended to a relation on V* x V* as
usual. The transitive and reflexive closure of 4 is denoted by 4 * .

The language generated by G is given by the set {w E G* I S 4 " w}. By definition,
such a set is a context-free language. By reduction of a g rammar we mean the elimi-
nation from P of all rules A 4 , 7 such that S --+* c~Afl --* a"/fl 7 " w does not hold for
a n y ~ , f l E V * a n d w E G * .

We generally use symbols A, B, C to range over N, symbols a, b, c , . . . to range
over ~, symbols X, Y, Z to range over V, symbols a, fl,"7 to range over V* and
symbols v, w, x to range over G* We write ¢ to denote the empty string.

A rule of the form A --, B is called a uni t rule.
A (nondeterministic) finite automaton .T is a 5-tuple (K, G, A, s, F), where K is a

finite set of states, of which s is the initial state and those in F c K are the final states,
is the input alphabet, and the transition relation A is a finite subset of K x Z* x K.

We define a configurat ion to be an element of K x G*. We define the binary relation
t- be tween configurations as: (q, vw) F- (q', w) if and only if (q, v, q') E A. The transitive
and reflexive closure of ~- is denoted by F-*.

Some input v is recognized if (s, v) t-* (q, c), for some q E F. The language accepted
by .T is defined to be the set of all strings v that are recognized. By definition, a
language accepted by a finite au tomaton is called a regular language.

3. Finite Automata in the Absence of Self-Embedding

We define a sp ine in a parse tree to be a pa th that runs from the root d o w n to some
leaf. Our main interest in spines lies in the sequences of g rammar symbols at nodes
border ing on spines.

A simple example is the set of parse trees such as the one in Figure 1, for a
g rammar of palindromes. It is intuitively clear that the language is not regular: the
g rammar symbols to the left of the spine from the root to E "communica te" with those
to the right of the spine. More precisely, the prefix of the input up to the point where
it meets the final node c of the spine determines the suffix after that point, in such
a way that an unbounded quanti ty of symbols f rom the prefix need to be taken into
account.

A formal explanation for w h y the grammar m ay not generate a regular language
relies on the following definition (Chomsky 1959b):

18

Nederhof Experiments with Regular Approximation

S-- ' ,a S a
S-->b S b
S---~ ~

S

a S a

Y \
b S b

Figure 1
Grammar of palindromes, and a parse tree.

Definition
A grammar is se l f -embedding if there is some A E N such that A --+* c~Afl, for some
a ¢ e a n d f l ¢ e .

If a g rammar is not self-embedding, this means that w h en a section of a spine in
a parse tree repeats itself, then either no grammar symbols occur to the left of that
section of the spine, or no grammar symbols occur to the right. This prevents the
"unbou nde d communicat ion" be tween the two sides of the spine exemplified by the
pal indrome grammar.

We now prove that grammars that are not self-embedding generate regular lan-
guages. For an arbitrary grammar, we define the set of reeursive nonterminals as:

B

N = {A E N I Ag]}
m

We determine the parti t ion N" of N consisting of subsets N1, N2 , Nk, for some k > 0,
of mutua l ly recursive nonterminals:

H = {N1,N2 ,Nk}
N I U N 2 U . . . U N k = N

Vi[Ni 7L O]
Vi, j[i • j =~ Ni N Nj = 0]

and for all A, B E N:

3i[A E Ni A B @ Nil - ~oQ, fll, O~2,fl2[a ---~* alBfll A B ---+* c¢2Afl2],

We now define the function recursive f rom N" to the set {left, right, self, cyclic}. For
l < i K k :

recursive(Ni) -- left, i f ~LeftGenerating(Ni)
= right, i f LeftGenerating(Ni)
-- self, i f LeftGenerating(Ni)
= cyclic, i f -,LeftGenerating(Ni)

/x RightGenerating(Ni)
/x ~RightGenerating(Ni)
/x RightGenerating(Ni)
/x ~RightGenerating(Ni)

where

LeftGenerating(Ni) = 3(A --* aBfl) E P[A E Ni A B E Ni /X ~ 7~ e]

RightGenerating(Ni) = 3(A --* aBfl) E P[A E Ni /x B E Ni /~ fl • ¢]

19

Computational Linguistics Volume 26, Number 1

When recursive(Ni) = left, Ni consists of only left-recursive nonterminals, which does
not mean it cannot also contain right-recursive nonterminals, but in that case right
recursion amounts to application of unit rules. When recursive(Ni) = cyclic, it is only
such unit rules that take part in the recursion.

That recursive(Ni) = self, for some i, is a sufficient and necessary condition for the
grammar to be self-embedding. Therefore, we have to prove that if recursive(Ni) E
{left, right, cyclic}, for all i, then the grammar generates a regular language. Our proof
differs from an existing proof (Chomsky 1959a) in that it is fully constructive: Fig-
ure 2 presents an algorithm for creating a finite automaton that accepts the language
generated by the grammar.

The process is initiated at the start symbol, and from there the process descends
the grammar in all ways until terminals are encountered, and then transitions are
created labeled with those terminals. Descending the grammar is straightforward in
the case of rules of which the left-hand side is not a recursive nonterminal: the sub-
automata found recursively for members in the right-hand side will be connected.
In the case of recursive nonterminals, the process depends on whether the nontermi-
nals in the corresponding set from H are mutually left-recursive or right-recursive;
if they are both, which means they are cyclic, then either subprocess can be ap-
plied; in the code in Figure 2 cyclic and right-recursive subsets Ni are treated uni-
formly.

We discuss the case in which the nonterminals are left-recursive. One new state is
created for each nonterminal in the set. The transitions that are created for terminals
and nonterminals not in Ni are connected in a way that is reminiscent of the con-
struction of left-corner parsers (Rosenkrantz and Lewis 1970), and specifically of one
construction that focuses on sets of mutually recursive nonterminals (Nederhof 1994,
Section 5.8).

An example is given in Figure 3. Four states have been labeled according to the
names they are given in procedure make~fa. There are two states that are labeled qB.
This can be explained by the fact that nonterminal B can be reached by descending
the grammar from S in two essentially distinct ways.

The code in Figure 2 differs from the actual implementation in that sometimes, for a
nonterminal, a separate finite automaton is constructed, namely, for those nonterminals
that occur as A in the code. A transition in such a subautomaton may be labeled by
another nonterminal B, which then represents the subautomaton corresponding to B.
The resulting representation is similar to extended context-free grammars (Purdom
and Brown 1981), with the exception that in our case recursion cannot occur, by virtue
of the construction.

The representation for the running example is indicated by Figure 4, which shows
two subautomata, labeled S and B. The one labeled S is the automaton on the top level,
and contains two transitions labeled B, which refer to the other subautomaton. Note
that this representation is more compact than that of Figure 3, since the transitions
that are involved in representing the sublanguage of strings generated by nonterminal
B are included only once.

The compact representation consisting of subautomata can be turned into a sin-
gle finite automaton by substituting subautomata A for transitions labeled A in other
automata. This comes down to regular substitution in the sense of Berstel (1979). The
advantage of this way of obtaining a finite automaton over a direct construction of a
nondeterministic automaton is that subautomata may be determinized and minimized
before they are substituted into larger subautomata. Since in many cases determinized
and minimized automata are much smaller, this process avoids much of the combina-

20

Nederhof Experiments with Regular Approximation

le t K = O, A = O, s = fresh_state, f = fresh_state, F = {f};
make_fa(s, S, f) .

p r o c e d u r e makeffa(qo, a, ql):
i f a = e
t h e n let A = A U {(q0,e, ql)}
e l se i f a = a, s o m e a E ,U
t h e n let A = A U {(q0, a, ql)}
e l se i f a = Xfl , s o m e X E V, fl C V* s u c h t h a t IflI > 0
t h e n let q = fresh_state;

makeffa(qo, X, q);
makeffa(q, t , ql)

else le t A = a; (* a must consist of a single nonterminal *)
i f t h e r e e x i s t s i s u c h t h a t A C Ni
t h e n fo r e a c h B E Ni d o let qB = fresh_state end ;

i f recursive(Ni) = left
t h e n fo r e a c h (C - + X I ' . ' X m) E P s u c h t h a t C E N i A X 1 , . . . , X m ~ N i

d o make_fa(qo, XI " . Xm, qc)
e n d ;
fo r e a c h (C --+ DX1 .. . X,~) C P s u c h t h a t

C , D ~ Ni A X 1 , . . . , X m ~ Ni
d o make ffa(qD , X I " " X,~ , qc)
e n d ;
le t A = A U {(qA, e, ql)}

e l se (* recursive(g,) C {right, cyclic} *)
fo r e a c h (C - + X 1 . . . X m) E P s u c h t h a t C E N i A X 1 , . . . , X m ~ N i
d o make_fa(qc, X 1 . . . Xm, ql)
e n d ;
fo r e a c h (C --~ XI ".. X m D) E P s u c h t h a t

C, D E Ni A X I , . . . , X m ~ Ni
d o makc_fa(qc, XI ".. Xm, qD)
e n d ;
le t A = A U {(qo, e, qa)}

e n d
e lse fo r e a c h (A -+ fl) C P d o make_fa(qo,fl, ql) e n d (* A is not recursive *)
e n d

e n d
e n d .

p r o c e d u r e fresh_state():
create some object q such tha t q ~ K ;
le t K = K U { q } ;
r e t u r n q

end .

Figure 2
Transformation from a grammar G = (E, N,P, S) that is not self-embedding into an equivalent
finite automaton 3 v = (K, E, A, s, F).

21

Computational Linguistics Volume 26, Number 1

S --* Aa

A --* SB

A ~ Bb

B --* Bc

B ---* d
c

qB

Figure 3

N = {S ,A,B}
]kf : {N1, N2}

N1 = {S,A} recursive(N1) = left
N2 -- {B} recursive(N2) = left

__qA a d

Application of the code from Figure 2 on a small grammar.

S

Figure 4

B
. 1

c
i

i
i
I

, , . d ~ (~) ,
f w - w = i

qB I

The automaton from Figure 3 in a compact representation.

torial explosion that takes place u p o n naive construct ion of a single nondeterminis t ic
finite au tomaton . 1

Assume we have a list of subau toma ta A1 Am that is ordered f rom lower-level
to higher-level au tomata ; i.e., if an au toma ton Ap occurs as the label of a transit ion
of a u t o m a t o n Aq, then p < q; Am mus t be the start symbol S. This order is a natural
result of the w a y that subau toma ta are constructed dur ing our depth-f irs t t raversal of
the g rammar , which is actually pos to rde r in the sense that a subau toma ton is ou tpu t
after all subau tomata occurr ing at its transit ions have been output .

Our implementa t ion constructs a min imal determinist ic au toma ton b y repeat ing
the fol lowing for p = 1 , . . . , m :

.

.

Make a copy of Ap. Determinize and min imize the copy. If it has fewer
transit ions labeled by nontermina ls than the original, then replace Ap by
its copy.

Replace each transit ion in Ap of the fo rm (q, Ar, q') by (a copy of)
a u t o m a t o n Ar in a s t ra ight forward way. This means that new e-transitions
connect q to the start state of Ar and the final states of Ar to qt.

1 The representation in Mohri and Pereira (1998) is even more compact than ours for grammars that are
not self-embedding. However, in this paper we use our representation as an intermediate result in
approximating an unrestricted context-free grammar, with the final objective of obtaining a single
minimal deterministic automaton. For this purpose, Mohri and Pereira's representation offers little
advantage.

22

Nederhof Experiments with Regular Approximation

3. Again determinize and minimize Ap and store it for later reference.

The au tomaton obtained for Am after step 3 is the desired result.

4. Methods of Regular Approximation

This section describes a number of methods for approximat ing a context-free gram-
mar by means of a finite automaton. Some publ ished methods did not ment ion self-
embedding explicitly as the source of nonregular i ty for the language, and suggested
that approximations should be applied globally for the complete grammar. Where
this is the case, we adapt the me thod so that it is more selective and deals with
self-embedding locally.

The approximations are integrated into the construction of the finite au tomaton
from the grammar, which was described in the previous section. A separate incarnation
of the approximat ion process is activated upon finding a nonterminal A such that
A E Ni and recursive(Ni) = self, for some i. This incarnation then only pertains to
the set of rules of the form B --* c~, where B E Ni. In other words, nonterminals not
in Ni are treated by this incarnation of the approximat ion process as if they were
terminals.

4.1 Superset Approximation Based on RTNs
The following approximat ion was proposed in Nederhof (1997). The presentat ion
here, however, differs substantially f rom the earlier publication, which treated the ap-
proximation process entirely on the level of context-free grammars: a self-embedding
grammar was t ransformed in such a way that it was no longer self-embedding. A
finite automaton was then obtained from the grammar by the algori thm discussed
above.

The presentat ion here is based on recursive transition networks (RTNs) (Woods
1970). We can see a context-free grammar as an RTN as follows: We introduce two
states qA and q~ for each nonterminal A, and m + 1 states q0 qm for each rule
A --* X1 .. • Xm. T h e states for a rule A ~ X 1 . . . X m are connected with each other and
to the states for the left-hand side A by one transition (qA, c, q0), a transition (qi-1, Xi, qi)
for each i such that 1 < i < m, and one transition (qm, e,q~A). (Actually, some epsilon
transitions are avoided in our implementat ion, but we will not be concerned with such
optimizations here.)

In this way, we obtain a finite au tomaton with initial state qA and final state q~ for
each nonterminal A and its defining rules A --* X1 • • • Xm. This au tomaton can be seen
as one component of the RTN. The complete RTN is obtained by the collection of all
such finite automata for different nonterminals.

An approximat ion now results if we join all the components in one big automaton,
and if we approximate the usual mechanism of recursion by replacing each transition
(q, A, q') by two transitions (q, c, qA) and (q~, e, q'). The construction is illustrated in
Figure 5.

In terms of the original grammar, this approximat ion can be informally explained
as follows: Suppose we have three rules B --* c~Afl, B I ~ c~IAfl ~, and A ~ % Top-down,
left-to-right parsing would proceed, for example, by recognizing a in the first rule;
it would then descend into rule A ~ % and recognize "y; it would then return to
the first rule and subsequent ly process ft. In the approximation, however, the finite
au tomaton "forgets" which rule it came from when it starts to recognize % so that it
may subsequently recognize fl' in the second rule.

23

Computational Linguistics Volume 26, Number 1

(b)

a B b

(a)

d A e

qB Y ' ~ ; i = i ~ 'B A---~ a B b >t~ q
A---~c A " ' " ~ " ~ f

B - - - ~ d A e

B--~ f

(c)

a b

~ ~ t /

Figure 5
Application of the RTN method for the grammar in (a). The RTN is given in (b), and (c)
presents the approximating finite automaton. We assume A is the start symbol and therefore
qA becomes the initial state and q~ becomes the final state in the approximating automaton.

For the sake of presentat ional convenience, the above describes a construction
working on the complete grammar. However , our implementa t ion applies the con-
struction separately for each nonterminal in a set Ni such that recursive(Ni) = self,
which leads to a separate subautomaton of the compact representat ion (Section 3).

See Nederhof (1998) for a variant of this approximat ion that constructs finite trans-
ducers rather than finite automata.

We have further implemented a parameter ized version of the RTN approximation.
A state of the nondeterminist ic au tomaton is n o w also associated to a list H of length
IHI strictly smaller than a number d, which is the parameter to the method. This list
represents a history of rule positions that were encountered in the computa t ion leading
to the present state.

More precisely, we define an i tem to be an object of the form [A ~ a • fl],
where A ~ aft is a rule from the grammar. These are the same objects as the "dot-
ted" product ions of Earley (1970). The dot indicates a posit ion in the r ight-hand
side.

The unparameter ized RTN me thod had one state qI for each i t em/ , and two states
qA and q~ for each nonterminal A. The parameter ized RTN me thod has one state qrH
for each i tem I and each list of items H that represents a valid history for reaching
I, and two states qaH and q~H for each nonterminal A and each list of items H that
represents a valid history for reaching A. Such a valid history is defined to be a list

24

Nederhof Experiments with Regular Approximation

H with 0 < [HI < d that represents a series of positions in rules that could have been
invoked before reaching I or A, respectively. More precisely, if we set H = /1 . . . In, then
each Im (1 < m < n) should be of the form [Am ~ olin • Bmflm] and for 1 < m < n we
should have Am -- Bm+l. Furthermore, for a state qiH with I = [A --* a • fl] we demand
A = B1 if n > 0. For a state qAH we demand A -- B1 if n > 0. (Strictly speaking, states
qAH and qrH, with [HI < d - 1 and I = [A --+ a • fl], will only be needed if AIH] is the
start symbol in the case IH[> 0, or if A is the start symbol in the case H = c.)

The transitions of the au tomaton that pertain to terminals in r ight-hand sides
of rules are ve ry similar to those in the case of the unparameter ized method: For a
state qIH with I of the form [A ~ a • aft], we create a transition (q~H, a, qi,H), with
I' = [A ~ aa • fl].

Similarly, we create epsilon transitions that connect left-hand sides and r ight-hand
sides of rules: For each state qAa there is a transition (qAH, e, qIH) for each i tem I =
[A --* • a], for some a, and for each state of the form qI,u, with I' = [A ~ a •], there
is a transition (qFa, c, q~H).

For transitions that pertain to nonterminals in the r ight-hand sides of rules, we
need to manipulate the histories. For a state qIH with I of the form [A ~ a • Bfl], we
create two epsilon transitions. One is (qIH, c, qBn,), where H' is defined to be I H if
[IH[< d, and to be the first d - 1 i tems of I H , otherwise. Informally, we extend the
history by the i tem I representing the rule position that we have just come from, but
the oldest information in the history is discarded if the history becomes too long. The
second transition is (q'BH,, ~, q~'H), with I' = [A --* a B • fl].

If the start symbol is S, the initial state is qs and the final state is q~ (after the
symbol S in the subscripts we find empty lists of items). Note that the parameter ized
method with d -- 1 concurs with the unparameter ized method, since the lists of items
then remain empty.

An example with parameter d -- 2 is given in Figure 6. For the unparameter ized
method, each I = [A --* a • fl] corresponded to one state (Figure 5). Since reaching A
can have three different histories of length shorter than 2 (the empty history, since A is
the start symbol; the history of coming from the rule posit ion given by i tem [A -~ c • A];
and the history of coming from the rule position given by i tem [B ~ d • Ae]), in Figure 6
we now have three states of the form qI~ for each I -- [A ~ a • fl], as well as three
states of the form qA~r and q~H"

The higher we choose d, the more precise the approximat ion is, since the histories
allow the au tomaton to simulate part of the mechanism of recursion from the original
grammar, and the max imum length of the histories corresponds to the number of
levels of recursion that can be simulated accurately.

4.2 Refinement of RTN Superset Approximation
We rephrase the me thod of Grimley-Evans (1997) as follows: First, we construct the
approximating finite au tomaton according to the unparameter ized RTN method above.
Then an additional mechanism is in t roduced that ensures for each rule A --~ X1 • . . Xm
separately that the list of visits to the states qo , . . • • qm satisfies some reasonable criteria:
a visit to qi, with 0 < i < m, should be fol lowed by one to qi+l or q0. The latter option
amounts to a nested incarnation of the rule. There is a complementary condit ion for
what should precede a visit to qi, with 0 < i < m.

Since only pairs of consecutive visits to states from the set {q0 qm} are consid-
ered, finite-state techniques suffice to implement such conditions. This can be realized
by attaching histories to the states as in the case of the parameter ized RTN method
above, but now each history is a set rather than a list, and can contain at most one
i tem [A --* a • fl] for each rule A ---* a f t . As repor ted by Grimley-Evans (1997) and con-

25

Computational Linguistics Volume 26, Number 1

A ~ a B b
A ~ c A

B---,'d A e

B--->f

Figure 6

a

c

/

a

H = [A----> c . A l q A ~ _ g ~',

x I I , a ,,

H = [B-->d.A el qA e',,

b

, E

b

i ,
, ,,

b "

,,'" \ - q A .

d " , , , , Z e _

qB Q~___ H = [A --~ a . B b] - - 5 . . "'L qBH

Application of the parameterized RTN method with d = 2. We again assume A is the start
symbol. States qm have not been labeled in order to avoid cluttering the picture.

f i rmed by our own experiments, the nondeterminist ic finite automata resulting from
this me thod may be quite large, even for small grammars. The explanat ion is that the
number of such histories is exponential in the number of rules.

We have refined the me thod wi th respect to the original publicat ion by applying
the construction separately for each nonterminal in a set Ni such that recursive(Ni) =
self.

4.3 Subset Approximation by Transforming the Grammar
Putt ing restrictions on spines is another way to obtain a regular language. Several
methods can be defined. The first me thod we present investigates spines in a ve ry
detailed way. It eliminates f rom the language only those sentences for which a sub-
derivat ion is required of the form B --~* aBfl, for some a ~ ¢ and fl ~ e. The motivat ion
is that such sentences do not occur f requent ly in practice, since these subderivat ions
make them difficult for people to comprehend (Resnik 1992). Their exclusion will
therefore not lead to much loss of coverage of typical sentences, especially for simple
application domains.

We express the me thod in terms of a g rammar t ransformation in Figure 7. The
effect of this t ransformation is that a nonterminal A is tagged with a set of pairs
(B, Q), where B is a nonterminal occurring higher in the spine; for any given B, at
most one such pair (B, Q) can be contained in the set. The set Q m ay contain the
element l to indicate that something to the left of the par t of the spine from B to A

26

Nederhof Experiments with Regular Approximation

We are given a grammar G = (E,N, P, S). The following is to be performed for each
set Ni E A f such that recursive(Ni) = self.

. For each A E Ni and each F E 2 (Nix2~l''}), add the following nonterminal
to N.

• A F .

2. For each A E Ni, add the following rule to P.

• A---~A 0.

. For each (A --* o~0A1o~1A2... C~m-lAmCrm) E P such that A, A1 ,Am E Ni
and no symbols from c~0 , am are members of Ni, and each F such that
(A, (l, r}) ~ F, add the following rule to P.

a F F1 Fm o~0A 1 oq . . . A m O~m, where, for 1 G j _< m,

- - F j= {(B, QUC~U~F) I (B,Q) E F'};
F' = FU {(A, 0)} if -~3Q[(A,Q) E F], and F' = F
otherwise;

- - • = 0 if c~0AlC~l...Aj-I~j-1 = c, and ~ = {l} otherwise;

- - QJr = 0 if o/.jaj+lOLj+l...AmOL m = £ , and QJr = {r}
otherwise.

4. Remove from P the old rules of the form A --* c~, where A E Ni.

5. Reduce the grammar.

Figure 7
Subset approximation by transforming the grammar.

was generated. Similarly, r E Q indicates that something to the right was generated. If
Q = {l, r}, then we have obtained a derivation B --** c~Afl, for some c~ ~ c and fl ~ ~,
and further occurrences of B below A should be blocked in order to avoid a derivation
with self-embedding.

An example is given in Figure 8. The original grammar is implicit in the depicted
parse tree on the left, and contains at least the rules S --+ A a, A --, b B, B -* C, and
C --* S. This grammar is self-embedding, since we have a subderivation S --~* bSa.
We explain how FB is obtained from FA in the rule A ~ --* b B r'. We first construct
F' = {(S, {r}), (A, 0)} from FA = {(S, (r})} by adding (A, 0), since no other pair of the
form (A, Q) was already present. To the left of the occurrence of B in the original rule
A --* b B we find a nonempty string b. This means that we have to add l to all second
components of pairs in F', which gives us FB = {(S, (l, r}), (A, {l})}.

In the transformed grammar, the lower occurrence of S in the tree is tagged with
the set {(S, {I, r}), (A, {l}), (B, 0), (C, 0)}. The meaning is that higher up in the spine, we
will find the nonterminals S, A, B, and C. The pair (A, (1}) indicates that since we saw
A on the spine, something to the left has been generated, namely, b. The pair (B, 0)
indicates that nothing either to the left or to the right has been generated since we
saw B. The pair (S, {1, r}) indicates that both to the left and to the right something has
been generated (namely, b on the left and a on the right). Since this indicates that an

27

Computational Linguistics Volume 26, Number 1

s

(a) s (b) s Fs F s =

A a a

/ \ / \
FB

b B b B 'B
I

C ~ F c F c =

5 ' ' - - s

X

0

{(S, {l, r}), (A, {/})}

{(S, {l, r}), (A, {/}), (B, 0)}

{(S, {l, r}), (A, {/}), (B, 0), (C, 0)}

Figure 8
A parse tree m a self-embedding grammar (a), and the corresponding parse tree in the
transformed grammar (b), for the transformation from Figure 7. For the moment we ignore
step 5 of Figure 7, i.e., reduction of the transformed grammar.

offending subderivation S --** c~Sfl has been found, further completion of the parse
tree is blocked: the transformed grammar will not have any rules with left-hand side
S {(S'{I'r})'(A'{I})'(B'O)'(C'O)}. In fact, after the grammar is reduced, any parse tree that is
constructed can no longer even contain a node labeled by S {(s'U'r})'(a'{O)'(B'°)'(c'°)}, or
any nodes with labels of the form A r such that (A, {l,r}) c F.

One could generalize this approximation in such a way that not all self-embedding
is blocked, but only self-embedding occurring, say, twice in a row, in the sense of a
subderivation of the form A --** a l A f l l --+* oqol2Afl2fll. We will not do so here, because
already for the basic case above, the transformed grammar can be huge due to the
high number of nonterminals of the form A F that may result; the number of such
nonterminals is exponential in the size of Ni.

We therefore present, in Figure 9, an alternative approximation that has a lower
complexity. By parameter d, it restricts the number of rules along a spine that may
generate something to the left and to the right. We do not, however, restrict pure left
recursion and pure right recursion. Between two occurrences of an arbitrary rule, we
allow left recursion followed by right recursion (which leads to tag r followed by tag
rl), or right recursion followed by left recursion (which leads to tag l followed by
tag lr).

An example is given in Figure 10. As before, the rules of the grammar are implicit
in the depicted parse tree. At the top of the derivation we find S. In the transformed
grammar, we first have to apply S --* S -r'°. The derivation starts wi th a rule S --* A a,
which generates a string (a) to the right of a nonterminal (A). Before we can apply zero
or more of such rules, we first have to apply a unit rule S T,° --* S r,° in the transformed
grammar. For zero or more rules that subsequently generate something on the left,
such as A ~ b B, we have to obtain a superscript containing rl, and in the example
this is done by applying A r,° ~ A rl,°. Now we are finished with pure left recursion and
pure right recursion, and apply B rl,O ---+ B ±,0. This allows us to apply one unconstrained
rule, which appears in the transformed grammar as B ±,° ---* c S T'I d.

28

Nederhof Experiments with Regular Approximation

We are given a g rammar G = (G, N, P, S). The following is to be per formed for each
set Ni C .IV" such that recursive(Ni) = self. The value d stands for the m ax im u m number
of unconstrained rules along a spine, possibly alternated with a series of left-recursive
rules fol lowed by a series of right-recursive rules, or vice versa.

1. For each A c Ni, each Q E { T, l, r, It, rl, 3_ }, and each f such that
0 < f < d, add the following nonterminals to N.

• AQ,f.

2. For each A E Ni, add the following rule to P.

• A ---+ A T'0.

3. For each A E Ni and f such that 0 G f G d, add the following rules to P.

• A T , f ___+ Al,f.
• ATd: __+ Ar,f.
• Aid ---+ Alr,f.
• Ar,f ---, A~l,/.
• Atr,f __+ A ± , d .

• Arl,f ___+ A±, f .

4. For each (A -+ Ba) ~ P such that A, B c Ni and no symbols f rom ~ are
members of Ni, e a c h f such that 0 < f G d, and each Q E {r, lr}, add the
following rule to P.

• AQd ~ BQ/a.

5. For each (A --+ c~B) E P such that A, B E Ni and no symbols f rom c~ are
members of Ni, e a c h f such that 0 G f < d, and each Q c {l, rl}, add the
following rule to P.

• Aqd ~ c~BQ,f.

6. For each (A -~ o~0AloqA2... O~m-lAmC~m) C P such that A, A1 Am E Ni
and no symbols from s0 C~m are members of Ni, and each f such that
0 < f G d, add the following rule to P, p rovided m = 0 v f < d.

• A ± / c~0Alq-d+lc~l AT,f+1 - - - 4 . . . ~ l m ' O L m .

7. Remove from P the old rules of the form A ~ c~, where A E Ni.

8. Reduce the grammar.

Figure 9
A simpler subset approximation by transforming the grammar.

N o w the counter f has been increased from 0 at the start of the subderivat ion to
1 at the end. Depending on the value d that we choose, we cannot build derivations
by repeating subderivat ion S --+* b c S d a an unl imited number of times: at some
point the counter will exceed d. If we choose d = 0, then already the derivat ion at

29

Computational Linguistics Volume 26, Number 1

S

S !T,O

(a) / ~ (b)!r,O
So\ A a ' a

rl, O

b B b B rl'O

:o
t t
t t
t t
t t Figure 10

A parse tree in a self-embedding grammar (a), and the corresponding parse tree in the
transformed grammar (b), for the simple subset approximation from Figure 9.

Figure 10 (b) is no longer possible, since no nonterminal in the transformed grammar
would contain 1 in its superscript.

Because of the demonstrated increase of the counter f , this transformation is guar-
anteed to remove self-embedding from the grammar. However, it is not as selective as
the transformation we saw before, in the sense that it may also block subderivations
that are not of the form A --** ~Afl. Consider for example the subderivation from
Figure 10, but replacing the lower occurrence of S by any other nonterminal C that is
mutually recursive with S, A, and B. Such a subderivation S ---** b c C d a would also
be blocked by choosing d = 0. In general, increasing d allows more of such derivations
that are not of the form A ~ " o~Afl but also allows more derivations that are of that
form.

The reason for considering this transformation rather than any other that elim-
inates self-embedding is purely pragmatic: of the many variants we have tried that
yield nontrivial subset approximations, this transformation has the lowest complex-
ity in terms of the sizes of intermediate structures and of the resulting finite au-
tomata.

In the actual implementation, we have integrated the grammar transformation and
the construction of the finite automaton, which avoids reanalysis of the grammar to
determine the partition of mutually recursive nonterminals after transformation. This
integration makes use, for example, of the fact that for fixed Ni and fixed f , the set of
nonterminals of the form A, f , with A c Ni, is (potentially) mutually right-recursive.
A set of such nonterminals can therefore be treated as the corresponding case from
Figure 2, assuming the value right.

The full formulation of the integrated grammar transformation and construction
of the finite automaton is rather long and is therefore not given here. A very similar
formulation, for another grammar transformation, is given in Nederhof (1998).

30

Nederhof Experiments with Regular Approximation

4.4 Superset Approximation through Pushdown Automata
The distinction between context-free languages and regular languages can be seen in
terms of the distinction between pushdown automata and finite automata. Pushdown
automata maintain a stack that is potentially unbounded in height, which allows more
complex languages to be recognized than in the case of finite automata. Regular ap-
proximation can be achieved by restricting the height of the stack, as we will see in
Section 4.5, or by ignoring the distinction between several stacks when they become
too high.

More specifically, the method proposed by Pereira and Wright (1997) first con-
structs an LR automaton, which is a special case of a pushdown automaton. Then,
stacks that may be constructed in the course of recognition of a string are computed
one by one. However, stacks that contain two occurrences of a stack symbol are iden-
tified with the shorter stack that results by removing the part of the stack between the
two occurrences, including one of the two occurrences. This process defines a congru-
ence relation on stacks, with a finite number of congruence classes. This congruence
relation directly defines a finite automaton: each class is translated to a unique state of
the nondeterministic finite automaton, shift actions are translated to transitions labeled
with terminals, and reduce actions are translated to epsilon transitions.

The method has a high complexity. First, construction of an LR automaton, of
which the size is exponential in the size of the grammar, may be a prohibitively ex-
pensive task (Nederhof and Satta 1996). This is, however, only a fraction of the effort
needed to compute the congruence classes, of which the number is in turn exponen-
tial in the size of the LR automaton. If the resulting nondeterministic automaton is
determinized, we obtain a third source of exponential behavior. The time and space
complexity of the method are thereby bounded by a triple exponential function in the
size of the grammar. This theoretical analysis seems to be in keeping with the high
costs of applying this method in practice, as will be shown later in this article.

As proposed by Pereira and Wright (1997), our implementation applies the ap-
proximation separately for each nonterminal occurring in a set Ni that reveals self-
embedding.

A different superset approximation based on LR automata was proposed by Baker
(1981) and rediscovered by Heckert (1994). Each individual stack symbol is now trans-
lated to one state of the nondeterministic finite automaton. It can be argued theoret-
ically that this approximation differs from the unparameterized RTN approximation
from Section 4.1 only under certain conditions that are not likely to occur very often
in practice. This consideration is confirmed by our experiments to be discussed later.
Our implementation differs from the original algorithm in that the approximation is
applied separately for each nonterminal in a set Ni that reveals self-embedding.

A generalization of this method was suggested by Bermudez and Schimpf (1990).
For a fixed number d > 0 we investigate sequences of d top-most elements of stacks
that may arise in the LR automaton, and we translate these to states of the finite
automaton. More precisely, we define another congruence relation on stacks, such that
we have one congruence class for each sequence of d stack symbols and this class
contains all stacks that have that sequence as d top-most elements; we have a separate
class for each stack that contains fewer than d elements. As before, each congruence
class is translated to one state of the nondeterministic finite automaton. Note that the
case d = 1 is equivalent to the approximation in Baker (1981).

If we replace the LR automaton by a certain type of automaton that performs top-
down recognition, then the method in Bermudez and Schimpf (1990) amounts to the
parameterized RTN method from Section 4.1; note that the histories from Section 4.1
in fact function as stacks, the items being the stack symbols.

31

Computational Linguistics Volume 26, Number 1

4.5 Subset Approximation through Pushdown Automata
By restricting the height of the stack of a pushdown automaton, one obstructs recogni-
tion of a set of strings in the context-free language, and therefore a subset approxima-
tion results. This idea was proposed by Krauwer and des Tombe (1981), Langendoen
and Langsam (1987), and Pulman (1986), and was rediscovered by Black (1989) and
recently by Johnson (1998). Since the latest publication in this area is more explicit in
its presentation, we will base our treatment on this, instead of going to the historical
roots of the method.

One first constructs a modified left-corner recognizer from the grammar, in the
form of a pushdown automaton. The stack height is bounded by a low number;
Johnson (1998) claims a suitable number would be 5. The motivation for using the
left-corner strategy is that the height of the stack maintained by a left-corner parser
is already bounded by a constant in the absence of self-embedding. If the artificial
bound imposed by the approximation method is chosen to be larger than or equal to
this natural bound, then the approximation may be exact.

Our own implementat ion is more refined than the published algorithms ment ioned
above, in that it defines a separate left-corner recognizer for each nonterminal A such
that A E Ni and recursive(Ni) = self, some i. In the construction of one such recognizer,
nonterminals that do not belong to Ni are treated as terminals, as in all other methods
discussed here.

4.6 Superset Approximation by N-grams
An approximation from Seyfarth and Bermudez (1995) can be explained as follows.
Define the set of all terminals reachable from nonterminal A to be ~A = {a I 3c~, iliA --**
o~afl]}. We now approximate the set of strings derivable from A by G~, which is the
set of strings consisting of terminals from GA. Our implementat ion is made slightly
more sophisticated by taking ~A to be {X] 3B, c~,fl[B E Ni A B ~ oLXfl A X ~ Ni]}, for
each A such that A E Ni and recursive(Ni) = self, for some i. That is, each X E ~A is
a terminal, or a nonterminal not in the same set Ni as A, but immediately reachable
from set Ni, through B E Ni.

This method can be generalized, inspired by Stolcke and Segal (1994), who derive
N-gram probabilities from stochastic context-free grammars. By ignoring the probabil-
ities, each N = 1, 2, 3 gives rise to a superset approximation that can be described
as follows: The set of strings derivable from a nonterminal A is approximated by the
set of strings al . . . an such that

• for each substring v = ai+l . . . ai+N (0 < i < n -- N) we have A --+* wvy, for
some w and y,

• for each prefix v = al . . . ai (0 < i < n) such that i < N we have A -** vy,
for some y, and

• for each suffix v = ai+l . . . an (0 < i < n) such that n - i < N we have
a ---~* wv, for some w.

(Again, the algorithms that we actually implemented are more refined and take into
account the sets Ni.)

The approximation from Seyfarth and Bermudez (1995) can be seen as the case N =
1, which will henceforth be called the unigram method. We have also experimented
with the cases N = 2 and N = 3, which will be called the bigram and trigram methods.

32

Nederhof Experiments with Regular Approximation

5. Increasing the Precision

The methods of approximation described above take as input the parts of the grammar
that pertain to self-embedding. It is only for those parts that the language is affected.
This leads us to a way to increase the precision: before applying any of the above
methods of regular approximation, we first transform the grammar.

This grammar transformation copies grammar rules containing recursive nonter-
minals and, in the copies, it replaces these nonterminals by new nonrecursive nonter-
minals. The new rules take over part of the roles of the old rules, but since the new
rules do not contain recursion and therefore do not pertain to self-embedding, they
remain unaffected by the approximation process.

Consider for example the palindrome grammar from Figure 1. The RTN method
will yield a rather crude approximation, namely, the language {a, b}*. We transform
this grammar in order to keep the approximation process away from the first three
levels of recursion. We achieve this by introducing three new nonterminals S[1], S[2]
and S[3], and by adding modified copies of the original grammar rules, so that we
obtain:

S[1]
S[2]
S[3]

S

The new start symbol is S[1].

aS[2]a] bS[2] b I ¢
aS[3]a] bS[3] b I c
a S a l b S b i c
a S a i b S b i e

The new grammar generates the same language as before, but the approximation
process leaves unaffected the nonterminals S[1], S[2], and S[3] and the rules defining
them, since these nonterminals are not recursive. These nonterminals amount to the
upper three levels of the parse trees, and therefore the effect of the approximation
on the language is limited to lower levels. If we apply the RTN method then we
obtain the language that consists of (grammatical) palindromes of the form ww R, where
w E {¢, a, b} U {a, b} 2 U {a, b} 3, plus (possibly ungrammatical) strings of the form wvw R,
where w E {a, b} 3 and v E {a, b}*. (w R indicates the mirror image of w.)

The grammar transformation in its full generality is given by the following, which
is to be applied for fixed integer j > 0, which is a parameter of the transformation,
and for each Ni such that recursive(Ni) = self.

For each nonterminal A E Ni we introduce j new nonterminals All] A~]. For
each A --, X 1 . . . X m in P such that A E Ni, and h such that 1 ~ h < j, we add
A[h] --* X ' I . . . X " to P, where for 1 < k < m:

X~k = Xk[h + 1] if X k E Ni /X h < j

= Xk otherwise

Further, we replace all rules A --* X1 . . . Xm such that A ~ Ni by A --* X~ ... X~m, where
for 1 < k < m:

X~ -- Xk[1] i fXkE Ni

= Xk otherwise

If the start symbol S was in Ni, we let S[1] be the new start symbol.
A second transformation, which shares some characteristics with the one above,

was presented in Nederhof (1997). One of the earliest papers suggesting such transfor-
mations as a way to increase the precision of approximation is due to ~ulik and Cohen
(1973), who only discuss examples, however; no general algorithms were defined.

33

Computational Linguistics Volume 26, Number 1

550

500

450

• 400 -5
350

._N_ 300
250

E 200
E

150

100

50

0
0

I I I I I I

50 100 150 200 250 300 350
corpus size (# sentences)

E

180

160

140

120

100

80

60

40

20

0
5 10 15 20 25 30

length (# words)
Figure 11
The test material. The left-hand curve refers to the construction of the grammar from 332
sentences, the right-hand curve refers to the corpus of 1,000 sentences used as input to the
finite automata.

6. Empirical Results

In this section we investigate empirically how the respective approximation methods
behave on grammars of different sizes and how much the approximated languages
differ from the original context-free languages. This last question is difficult to answer
precisely. Both an original context-free language and an approximating regular lan-
guage generally consist of an infinite number of strings, and the number of strings
that are introduced in a superset approximation or that are excluded in a subset ap-
proximation may also be infinite. This makes it difficult to attach numbers to the
"quality" of approximations.

We have opted for a pragmatic approach, which does not require investigation of
the entire infinite languages of the grammar and the finite automata, but looks at a
certain finite set of strings taken from a corpus, as discussed below. For this finite set
of strings, we measure the percentage that overlaps with the investigated languages.

For the experiments, we took context-free grammars for German, generated auto-
matically from an HPSG and a spoken-language corpus of 332 sentences. This corpus
consists of sentences possessing grammatical phenomena of interest, manually selected
from a larger corpus of actual dialogues. An HPSG parser was applied on these sen-
tences, and a form of context-free backbone was selected from the first derivation that
was found. (To take the first derivation is as good as any other strategy, given that we
have at present no mechanisms for relative ranking of derivations.) The label occur-
ring at a node together with the sequence of labels at the daughter nodes was then
taken to be a context-free rule. The collection of such rules for the complete corpus
forms a context-free grammar. Due to the incremental nature of this construction of
the grammar, we can consider the subgrammars obtained after processing the first p
sentences, where p = 1, 2, 3 332. See Figure 11 (left) for the relation between p and
the number of rules of the grammar. The construction is such that rules have at most
two members in the right-hand side.

As input, we considered a set of 1,000 sentences, obtained independently from the
332 sentences mentioned above. These 1,000 sentences were found by having a speech
recognizer provide a single hypothesis for each utterance, where utterances come from
actual dialogues. Figure 11 (right) shows how many sentences of different lengths the
corpus contains, up to length 30. Above length 25, this number quickly declines, but
still a fair quantity of longer strings can be found, e.g., 11 strings of a length between

34

Nederhof Experiments with Regular Approximation

51 and 60 words. In most cases however such long strings are in fact composed of a
number of shorter sentences.

Each of the 1,000 sentences were input in their entirety to the automata, although
in practical spoken-language systems, often one is not interested in the grammaticality
of complete utterances, but tries to find substrings that form certain phrases bearing
information relevant to the understanding of the utterance. We will not be concerned
here with the exact way such recognition of substrings could be realized by means of
finite automata, since this is outside the scope of this paper.

For the respective methods of approximation, we measured the size of the com-
pact representation of the nondeterministic automaton, the number of states and the
number of transitions of the minimal deterministic automaton, and the percentage
of sentences that were recognized, in comparison to the percentage of grammatical
sentences. For the compact representation, we counted the number of lines, which is
roughly the sum of the numbers of transitions from all subautomata, not considering
about three additional lines per subautomaton for overhead.

We investigated the size of the compact representation because it is reasonably
implementation independent, barring optimizations of the approximation algorithms
themselves that affect the sizes of the subautomata. For some methods, we show that
there is a sharp increase in the size of the compact representation for a small increase
in the size of the grammar, which gives us a strong indication of how difficult it
would be to apply the method to much larger grammars. Note that the size of the
compact representation is a (very) rough indication of how much effort is involved in
determinization, minimization, and substitution of the subautomata into each other.
For determinization and minimization of automata, we have applied programs from
the FSM library described in Mohri, Pereira, and Riley (1998). This library is considered
to be competitive with respect to other tools for processing of finite-state machines.
When these programs cannot determinize or minimize in reasonable time and space
some subautomata constructed by a particular method of approximation, then this can
be regarded as an indication of the impracticality of the method.

We were not able to compute the compact representation for all the methods
and all the grammars. The refined RTN approximation from Section 4.2 proved to be
quite problematic. We were not able to compute the compact representation for any
of the automatically obtained grammars in our collection that were self-embedding.
We therefore eliminated individual rules by hand, starting from the smallest self-
embedding grammar in our collection, eventually finding grammars small enough to
be handled by this method. The results are given in Table 1. Note that the size of the
compact representation increases significantly for each additional grammar rule. The
sizes of the finite automata, after determinization and minimization, remain relatively
small.

Also problematic was the first approximation from Section 4.4, which was based
on LR parsing following Pereira and Wright (1997). Even for the grammar of 50 rules,
we were not able to determinize and minimize one of the subautomata according
to step 1 of Section 3: we stopped the process after it had reached a size of over 600
megabytes. Results, as far as we could obtain them, are given in Table 2. Note the sharp
increases in the size of the compact representation, resulting from small increases, from
44 to 47 and from 47 to 50, in the number of rules, and note an accompanying sharp
increase in the size of the finite automaton. For this method, we see no possibility
of accomplishing the complete approximation process, including determinization and
minimization, for grammars in our collection that are substantially larger than 50 rules.

Since no grammars of interest could be handled by them, the above two methods
will be left out of further consideration.

35

Computational Linguistics Volume 26, Number 1

Table 1
Size of the compact representation and number of states and transitions,
for the refined RTN approximation (Grimley-Evans 1997).

Grammar Size Compact Representation # of States # of Transitions

10 133 11 14
12 427 17 26
13 1,139 17 34
14 4,895 17 36
15 16,297 17 40
16 51,493 19 52
17 208,350 19 52
18 409,348 21 59
19 1,326,256 21 61

Table 2
Size of the compact representation and number of states and transitions,
for the superset approximation based on LR automata following Pereira
and Wright (1997).

Grammar Size Compact Representation # of States # of Transitions

35 15,921 350 2,125
44 24,651 499 4,352
47 151,226 5,112 35,754
50 646,419 ? ?

Below, we refer to the unparameter ized and parameter ized approximations based
on RTNs (Section 4.1) as RTN and RTNd, respectively, for d = 2,3; to the subset
approximat ion from Figure 9 as Subd, for d = 1, 2, 3; and to the second and third
methods from Section 4.4, which were based on LR parsing following Baker (1981)
and Bermudez and Schimpf (1990), as LR and LRd, respectively, for d = 2, 3. We refer
to the subset approximat ion based on left-corner parsing from Section 4.5 as LCd, for
the maximal stack height of d = 2, 3, 4; and to the methods discussed in Section 4.6 as
Unigram, Bigram, and Trigram.

We first discuss the compact representat ion of the nondeterminist ic automata. In
Figure 12 we use two different scales to be able to represent the large variety of values.
For the me thod Subd, the compact representat ion is of purely theoretical interest for
grammars larger than 156 rules in the case of Sub1, for those larger than 62 rules
in the case of Sub2, and for those larger than 35 rules in the case of Sub3, since
the minimal deterministic automata could thereafter no longer be computed with a
reasonable bound on resources; we s topped the processes after they had consumed
over 400 megabytes. For LC3, LC4, RTN3, LR2, and LR3, this was also the case for
grammars larger than 139, 62, 156, 217, and 156 rules, respectively. The sizes of the
compact representat ion seem to grow modera te ly for LR and Bigram, in the uppe r
panel, yet the sizes are much larger than those for RTN and Unigram, which are
indicated in the lower panel.

The numbers of states for the respective methods are given in Figure 13, again
using two very different scales. As in the case of the grammars, the terminals of our
finite automata are parts of speech rather than words. This means that in general there
will be nondeterminism dur ing application of an au tomaton on an input sentence due
to lexical ambiguity. This nondeterminism can be handled efficiently using tabular

36

Nederhof Experiments with Regular Approximation

r'~
E
O o

7 0 0 0 0 0

6 0 0 0 0 0

5 0 0 0 0 0

4 0 0 0 0 0

3 0 0 0 0 0

2 0 0 0 0 0

100000

0
0

i i] ; ; / i i

, / ! /' LC4
! / / ," LR3--x--- .
i [/ ., RTN3 - ~
i I i ," LC3
i [i " LR2
! / j Trigram -~'---
, / ; LC2 -e---
i / i RTN2
i / / LR -+ --

:t] / Bigram-E3---

~: ~ ;'

~ /'

! / " / / 4-

/ ," ,4- +
" / ' / ' ~ 4 - " " " ,' / . - " _ . . + 4-

' ~ - ~ "" - ---E3- E} E}----n --'-

- - 1 I I I I I I

50 100 150 200 250 300 350 400 450 500 550
grammar size

2 0 0 0 0

15000

"3
&

10000

o

5 0 0 0

IJ
:/

/"
/ /"

/

/.' ,.'
,; ,.: ,"

i ... ,'

,,..,'
...." ,,,'

/
,,: ,,, . . , . .

.:
z ~ ,'" . .. " ~

/ ... , ' .-'

.....-
, , • y~..-

" ' " " ' '
, , , ~

::'~

0 50 100 150 200

Figure 12
Size of the compact representation.

R T N 2 .-a--
LC2 - e - -

LR -+ --'
Bigram -~---

Sub3 -x
Sub2 "a
Sub1 -~
RTN

Unigram -~,---

....

.,0.

I I I I I I

250 300 350 400 450 500 550
grammar size

techniques, provided the number of states is not too high. This consideration favors
methods that produce low numbers of states, such as Trigram, LR, RTN, Bigram, and
Unigram.

3 7

Computational Linguistics Volume 26, Number 1

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Sub2 ..A
LC4 -8 - -

Sub1 --~
LC3 - x - -

RTN3
LC2 -e - -

f

/ j

/
[

/
/

~ ~ ~ i

100

° ~ - ' ~ - ~ ~

0 200 300 400 500 600
grammar size

100 , , , , ,

LC3
RTN3

LR3 --x- --
LC2 -e - -

x RTN2
80 ,,,,,," TrigramLR2 -.~--~----

LR -+ --
RTN - B ~

Bigram -a--
~ - - ~ - Unigram -~---

60 .~¢"

/

40
: ~ ~ d~3._-.D . D -- - [] ' - - - •

. ~E]" * [] -

20 " ~" --e-- "<>

. . e - e -e ~

0 i i i i i

0 100 200 300 400 500 600
grammar size

Figure 13
Number of states of the deterrninized and minimized automata.

Note that the num ber s of states for LR and RTN differ ve ry little. In fact, for
some of the smallest and for some of the largest g r a m m a r s in our collection, the
result ing au tomata were identical. Note, however , that the in termedia te results for LR

38

Nederhof Experiments with Regular Approximation

(Figure 12) are much larger. It should therefore be concluded that the "sophistication"
of LR parsing is here merely an avoidable source of inefficiency.

The numbers of transitions for the respective methods are given in Figure 14.
Again, note the different scales used in the two panels. The numbers of transitions
roughly correspond to the storage requirements for the automata. It can be seen that,
again, Trigram, LR, RTN, Bigram, and Unigram perform well.

The precision of the respective approximations is measured in terms of the per-
centage of sentences in the corpus that are recognized by the automata, in comparison
to the percentage of sentences that are generated by the grammar, as presented by Fig-
ure 15. The lower panel represents an enlargement of a section from the upper panel.
Methods that could only be applied for the smaller grammars are only presented in
the lower panel; LC4 and Sub2 have been omitted entirely.

The curve labeled G represents the percentage of sentences generated by the gram-
mar. Note that since all approximation methods compute either supersets or subsets, a
particular automaton cannot both recognize some ungrammatical sentences and reject
some grammatical sentences.

Unigram and Bigram recognize very high percentages of ungrammatical sentences.
Much better results were obtained for RTN. The curve for LR would not be distin-
guishable from that for RTN in the figure, and is therefore omitted. (For only two of
the investigated grammars was there any difference, the largest difference occurring
for grammar size 217, where 34.1 versus 34.5 percent of sentences were recognized
in the cases of LR and RTN, respectively.) Trigram remains very close to RTN (and
LR); for some grammars a lower percentage is recognized, for others a higher per-
centage is recognized. LR2 seems to improve slightly over RTN and Trigram, but data
is available only for small grammars, due to the difficulty of applying the method to
larger grammars. A more substantial improvement is found for RTN2. Even smaller
percentages are recognized by LR3 and RTN3, but again, data is available only for
small grammars.

The subset approximations LC3 and Sub1 remain very close to G, but here again
only data for small grammars is available, since these two methods could not be
applied on larger grammars. Although application of LC2 on larger grammars required
relatively few resources, the approximation is very crude: only a small percentage of
the grammatical sentences are recognized.

We also performed experiments with the grammar transformation from Section 5,
in combination with the RTN method. We found that for increasing j, the interme-
diate automata soon became too large to be determinized and minimized, with a
bound on the memory consumption of 400 megabytes. The sizes of the automata that
we were able to compute are given in Figure 16. RTN+j, for j = 1, 2, 3,4, 5, repre-
sents the (unparameterized) RTN method in combination with the grammar transfor-
mation with parameter j. This is not to be confused with the parameterized RTNd
method.

Figure 17 indicates the number of sentences in the corpus that are recognized by
an automaton divided by the number of sentences in the corpus that are generated
by the grammar. For comparison, the figure also includes curves for RTNd, where
d = 2, 3 (cf. Figure 15). We see that j = 1, 2 has little effect. For j = 3,4, 5, however,
the approximating language becomes substantially smaller than that in the case of
RTN, but at the expense of large automata. In particular, if we compare the sizes of
the automata for RTN+j in Figure 16 with those for RTNd in Figures 13 and 14, then
Figure 17 suggests the large sizes of the automata for RTN+j are not compensated
adequately by a reduction of the percentage of sentences that are recognized. RTNd
seems therefore preferable to RTN+j.

39

Computational Linguistics Volume 26, Number 1

9 0 0 0 0

8 0 0 0 0

7 0 0 0 0

6 0 0 0 0

5 0 0 0 0 o

4 0 0 0 0

3 0 0 0 0

20000

100OO

0
0

z~

100 2 0 0 3 0 0 4 0 0 5 0 0
g r a m m a r size

i

S u b 2 --~
LC4

Sub1 --~
LC3
LC2

R T N 2

I

6 0 0

5 0 0 0

4 0 0 0 -

0000 / /! '

2000 - /

/ -

. / / ' / ' / ' ; '"
. 1 3 - - - _ D -

/ ";Y" _ ~ - 43"-
1000 I I .:..i~ ..- (3

.D -''0

L C 3 -x- - -
R T N 3

L R 3 --x- --
L C 2 - e ~

R T N 2
T r i g r a m -~---

L R 2 -~,- --
LR - ÷ --

R T N
B ig ram - B - -

U n i g r a m -~- --

0 100 2 0 0 3 0 0 4 0 0 5 0 0
g r a m m a r size

Figure 14
Number of transitions of the determinized and minimized automata.

6 0 0

7. C o n c l u s i o n s

If we app ly the finite au tomata wi th the intention of filtering out incorrect sentences,
for example f rom the ou tpu t f rom a speech recognizer, then it is a l lowed that a

40

Nederhof Experiments with Regular Approximation

100

80

-o 6O

&
oo

40

0
0

20

Unigram -4- --
Bigram -[]--

, e - - - ~ Trigram -x--.-
, , ' RTN(LR) - ~ - -

e- ¢, -- --e- -- -~- '~ RTN2G -~---~a--

. . ' LC2 - e - -

• 1 3 - * - £ 3
,.O ~" ~3 (3"

" ' " 13 E l - - - - [] ' - ' -

[] Ey •
/ , - _ . l q _ _ _ +

/ ' , ' 4 . . - I

6 ,~ ' 0 0 . _ . - - - e - -~O 0

• C] / /

i" I I

100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
grammar size

5'

,[::

4

"E

0
3

i , ' i []

/ , -

• j : /
, D / / i - ,

/ / . .-
/ '

0 i I I I I I I

4 0 60 80 100 120 140 160
grammar size

Figure 15
Percentage of sentences that are recognized.

/ i

/ Bigram -D--
RTN(LR)

Trigram -x-. -
LR2 -,~- --

RTN2 - ~ - -
LR3 --x- --

R T N 3 - + - - -
G - - t - - .

LC3 - x - -
Sub1 --~

LC2 - e - -

certain percentage of ungrammatical input is recognized. Recognizing ungrammat-
ical input merely makes filtering less effective; it does not affect the functionality
of the system as a whole, provided we assume that the grammar specifies exactly
the set of sentences that can be successfully handled by a subsequent phase of pro-

41

Computational Linguistics Volume 26, Number 1

10000

8000

6000

4000

2000

: ! !

i i i i

RTN+5 -~--
RTN+4 -0--
RTN+3 -+--
RTN+2 -o--
RTN+I

a %0

, / ~ , , ,,

; / . 4 - -"

50 100 150 200 250 300 350 400 450 500 550
grammar size

250000

200000

o
150000

100000

50000

i i i , i i

:i

a ii
j

}

! o

i i i i i

RTN+5 -z~--
RTN+4 -o--
RTN+3 -+--
RTN+2 -ra--
RTN+I "~'"

,+" ~-E],[3

^ _ ~ / ,, 4 z ' ' +

0 :"~'~""
0 50 100 150 200 250 300 350 400 450 500 550

grammar size

Figure 16
Number of states and number of transitions of the determinized and minimized automata.

1.6

1.5

1.4

1.3

s

1.2

1.1

i i

RTN
RTN2 -a---
RTN3

RTN+I -~<--
RTN+2 -D--
RTN+3 -+--
RTN+4 -o--
RTN+5 -a--

1
50 100 150 200 250 300 350 400

grammar size

Figure 17
Number of recognized sentences divided by number of grammatical sentences.

cessing. Also al lowed is that "pathological" grammatical sentences are rejected that
seldom occur in practice; an example are sentences requiring multiple levels of self-
embedding.

Of the methods we considered that may lead to rejection of grammatical sen-
tences, i.e., the subset approximations, none seems of m u ch practical value. The most
serious problem is the complexi ty of the construction of automata from the compact
representat ion for large grammars. Since the tools we used for obtaining the minimal

42

Nederhof Experiments with Regular Approximation

deterministic automata are considered to be of high quality, it seems unlikely that
alternative implementat ions could succeed on much larger grammars, especially con-
sidering the sharp increases in the sizes of the automata for small increases in the size
of the grammar. Only LC2 could be applied with relatively few resources, but this is a
very crude approximation, which leads to rejection of many more sentences than just
those requiring self-embedding.

Similarly, some of the superset approximations are not applicable to large gram-
mars because of the high costs of obtaining the minimal deterministic automata. Some
others provide rather large languages, and therefore do not allow very effective ill-
tering of ungrammatical input. One method, however, seems to be excellently suited
for large grammars, namely, the RTN method, considering both the unparameter ized
version and the parameter ized version with d = 2. In both cases, the size of the au-
tomaton grows modera te ly in the grammar size. For the unparameter ized version, the
compact representat ion also grows moderately. Furthermore, the percentage of recog-
nized sentences remains close to the percentage of grammatical sentences. It seems
therefore that, under the conditions of our experiments, this me thod is the most suit-
able regular approximation that is presently available.

Acknowledgments
This paper could not have been written
without the wonderful help of Hans-Ulrich
Krieger, who created the series of grammars
that are used in the experiments. I also owe
to him many thanks for countless
discussions and for allowing me to pursue
this work. I am very grateful to the
anonymous referees for their inspiring
suggestions.

This work was funded by the German
Federal Ministry of Education, Science,
Research and Technology (BMBF) in the
framework of the VERBMOBIL Project under
Grant 01 IV 701 V0.

References
Baker, Theodore P. 1981. Extending

lookahead for LR parsers. Journal of
Computer and System Sciences, 22:243-259.

Bermudez, Manuel E. and Karl M. Schimpf.
1990. Practical arbitrary lookahead LR
parsing. Journal of Computer and System
Sciences, 41:230-250.

Berstel, Jean. 1979. Transductions and
Context-Free Languages. B. G. Teubner,
Stuttgart.

Black, Alan W. 1989. Finite state machines
from feature grammars. In International
Workshop on Parsing Technologies, pages
277-285, Pittsburgh, PA.

Chomsky, Noam. 1959a. A note on phrase
structure grammars. Information and
Control, 2:393-395.

Chomsky, Noam. 1959b. On certain formal
properties of grammars. Information and
Control, 2:137-167.

Culik, Karel II and Rina Cohen. 1973.

LR-regular grammars--An extension of
LR(k) grammars. Journal of Computer and
System Sciences, 7:66-96.

Earley, Jay. 1970. An efficient context-free
parsing algorithm. Communications of the
ACM, 13(2):94-102, February.

Grimley-Evans, Edmund. 1997.
Approximating context-free grammars
with a finite-state calculus. In Proceedings
of the 35th Annual Meeting of the Association
for Computational Linguistics an 8th
Conference of the European Chapter of the
Association for Computational Linguistics,
pages 452-459, Madrid, Spain.

Harrison, Michael A. 1978. Introduction to
Formal Language Theory. Addison-Wesley.

Heckert, Erik. 1994. Behandlung von
Syntaxfehlern fiir LR-Sprachen ohne
Korrekturversuche. Ph.D. thesis,
Ruhr-Universit/it Bochum.

Johnson, Mark. 1998. Finite-state
approximation of constraint-based
grammars using left-comer grammar
transforms. In COLING-ACL "98: 36th
Annual Meeting of the Association for
Computational Linguistics and 17th
International Conference on Computational
Linguistics, volume 1, pages 619-623,
Montreal, Quebec, Canada.

Krauwer, Steven and Louis des Tombe. 1981.
Transducers and grammars as theories of
language. Theoretical Linguistics, 8:173-202.

Langendoen, D. Terence and Yedidyah
Langsam. 1987. On the design of finite
transducers for parsing phrase-structure
languages. In Alexis Manaster-Ramer,
editor, Mathematics of Language. John
Benjamins, Amsterdam, pages 191-235.

Mohri, Mehryar and Fernando C. N.

43

Computational Linguistics Volume 26, Number 1

Pereira. 1998. Dynamic compilation of
weighted context-free grammars. In
COLING-ACL "98: 36th Annual Meeting of
the Association for Computational Linguistics
and 17th International Conference on
Computational Linguistics, volume 2, pages
891-897, Montreal, Quebec, Canada.

Mohri, Mehryar, Femando C. N. Pereira,
and Michael Riley. 1998. A rational design
for a weighted finite-state transducer
library. In Derick Wood and Sheng Yu,
editors, Automata Implementation. Lecture
Notes in Computer Science, Number 1436.
Springer Verlag, pages 144-158.

Nederhof, Mark-Jan. 1994. Linguistic Parsing
and Program Transformations. Ph.D. thesis,
University of Nijmegen.

Nederhof, Mark-Jan. 1997. Regular
approximations of CFLs: A grammatical
view. In Proceedings of the International
Workshop on Parsing Technologies,
pages 159-170, Massachusetts Institute of
Technology.

Nederhof, Mark-Jan. 1998. Context-free
parsing through regular approximation.
In Proceedings of the International Workshop
on Finite State Methods in Natural Language
Processing, pages 13-24, Ankara, Turkey.

Nederhof, Mark-Jan and Giorgio Satta. 1996.
Efficient tabular LR parsing. In Proceedings
of the 34th Annual Meeting, pages 239-246,
Santa Cruz, CA. Association for
Computational Linguistics.

Pereira, Fernando C. N. and Rebecca N.
Wright. 1997. Finite-state approximation
of phrase-structure grammars. In

Emmanuel Roche and Yves Schabes,
editors, Finite-State Language Processing.
MIT Press, pages 149-173.

Pulman, S. G. 1986. Grammars, parsers, and
memory limitations. Language and
Cognitive Processes, 1(3):197-225.

Purdom, Paul Walton, Jr. and Cynthia A.
Brown. 1981. Parsing extended LR(k)
grammars. Acta Informatica, 15:115-127.

Resnik, Philip. 1992. Left-corner parsing and
psychological plausibility. In COLING '92:
Papers presented to the Fifteenth [sic]
International Conference on Computational
Linguistics, pages 191-197, Nantes, France.

Rosenkrantz, D. J. and P. M. Lewis, II. 1970.
Deterministic left comer parsing. In IEEE
Conference Record of the 11th Annual
Symposium on Switching and Automata
Theory, pages 139-152.

Seyfarth, Benjamin R. and Manuel E.
Bermudez. 1995. Suffix languages in LR
parsing. International Journal of Computer
Mathematics, 55:135-153.

Stolcke, Andreas and Jonathan Segal. 1994.
Precise N-gram probabilities from
stochastic context-free grammars. In
Proceedings of the 32nd Annual Meeting,
pages 74-79, Las Cruces, NM. Association
for Computational Linguistics.

Woods, W. A. 1970. Transition network
grammars for natural language analysis.
Communications of the ACM,
13(10):591-606.

44

