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In this paper, we describe a new method for constructing minimal, deterministic, acyclic finite- 
state automata from a set of strings. Traditional methods consist of two phases: the first to construct 
a trie, the second one to minimize it. Our approach is to construct a minimal automaton in a 
single phase by adding new strings one by one and minimizing the resulting automaton on-the- 
fly. We present a general algorithm as well as a specialization that relies upon the lexicographical 
ordering of the input strings. Our method is fast and significantly lowers memory requirements 
in comparison to other methods. 

1. Introduction 

Finite-state automata are used in a variety of applications, including aspects of natural 
language processing (NLP). They may store sets of words, with or without annotations 
such as the corresponding pronunciation, base form, or morphological categories. The 
main reasons for using finite-state automata in the NLP domain are that their repre- 
sentation of the set of words is compact, and that looking up a string in a dictionary 
represented by a finite-state automaton is very fast--proportional to the length of the 
string. Of particular interest to the NLP community are deterministic, acyclic, finite- 
state automata, which we call dictionaries. 

Dictionaries can be constructed in various ways--see Watson (1993a, 1995) for a 
taxonomy of (general) finite-state automata construction algorithms. A word is simply 
a finite sequence of symbols over some alphabet and we do not associate it with 
a meaning in this paper. A necessary and sufficient condition for any deterministic 
automaton to be acyclic is that it recognizes a finite set of words. The algorithms 
described here construct automata from such finite sets. 

The Myhill-Nerode theorem (see Hopcroft and Ullman [1979]) states that among 
the many deterministic automata that accept a given language, there is a unique au- 
tomaton (excluding isomorphisms) that has a minimal number of states. This is called 
the minimal  deterministic automaton of the language. 

The generalized algorithm presented in this paper has been independently devel- 
oped by Jan Daciuk of the Technical University of Gdafisk, and by Richard Watson 
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and Bruce Watson (then of the IST Technologies Research Group) at Ribbit Software 
Systems Inc. The specialized (to sorted input data) algorithm was independently de- 
veloped by Jan Daciuk and by Stoyan Mihov of the Bulgarian Academy of Sciences. 
Jan Daciuk has made his C + +  implementations of the algorithms freely available 
for research purposes at www.pg.gda.pl/~jandac/fsa.html.  1 Stoyan Mihov has imple- 
mented the (sorted input) algorithm in a Java package for minimal acyclic finite-state 
automata. This package forms the foundation of the Grammatical Web Server for Bul- 
garian (at origin2000.bas.bg) and implements operations on acyclic finite automata, 
such as union, intersection, and difference, as well as constructions for perfect hash- 
ing. Commercial C + +  and Java implementations are available via www.OpenFIRE.org. 
The commercial implementations include several additional features such as a method 
to remove words from the dictionary (while maintaining minimality). The algorithms 
have been used for constructing dictionaries and transducers for spell-checking, mor- 
phological analysis, two-level morphology, restoration of diacritics, perfect hashing, 
and document indexing. The algorithms have also proven useful in numerous prob- 
lems outside the field of NLP, such as DNA sequence matching and computer virus 
recognition. 

An earlier version of this paper, authored by Daciuk, Watson, and Watson, ap- 
peared at the International Workshop on Finite-state Methods in Natural Language 
Processing in 1998--see Daciuk, Watson, and Watson (1998). 

2. Mathematical Preliminaries 

We define a deterministic finite-state automaton to be a 5-tuple M = (Q, ~, 6, q0, F), 
where Q is a finite set of states, q0 E Q is the start state, F C Q is a set of final states, 
is a finite set of symbols called the alphabet, and 6 is a partial mapping 6: Q x G ~ Q 
denoting transitions. When 6(q,a) is undefined, we write ~(q,a) = _L. We can extend 
the 6 mapping to partial mapping 6*: Q x ~* ~ Q as follows (where a E Y,, x E ~*): 

= q 

6*(q, ax) = {6*(6(q,a),x) ifotherwise6(q,a) ~ J_ 

Let DAFSA be the set of all deterministic finite-state automata in which the transition 
function 6 is acyclic--there is no string w and state q such that 6" (q, w) = q. 

We define £(M) to be the language accepted by automaton M: 

£(M) = {xE I 6*(q0,x) 

The size of the automaton, IMI, is equal to the number of states, IQ[. ~(G*) is the set 

of all languages over G. Define the function 2: Q ~ 7~(G *) to map a state q to the 
set of all strings on a path from q to any final state in M. More precisely, 

Z (q) = {x 16"(q,x) c F} 

£ (q) is called the right language of q. Note that £(M) = £  (q0). The right language of 

1 The algorithms in Daciuk's implementation differ slightly from those presented here, as he uses 
automata with final transitions, not final states. Such automata have fewer states and fewer transitions 
than traditional ones. 
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a state can also be defined recursively: 

(q)= { a £  ( 6 ( q , a ) ) [ a c ~ A 6 ( q , a ) ~  _L } U {{~ } 
i f q E F  
otherwise 

One may ask whether such a recursive definition has a unique solution. Most texts on 
language theory, for example Moll, Arbib, and Kfoury (1988), show that the solution 
is indeed unique--it is the least fixed-point of the equation. 

We also define a property of an automaton specifying that all states can be reached 
from the start state: 

Reachable(M) = Vq~Q 3xc ~, (6* ( qo, x) = q) 

The property of being a minimal automaton is traditionally defined as follows (see 
Watson [1993b, 1995]): 

Min(M) = VM, EDAFSA(~(M ) = £(M') ~ IMI ~ IM'I) 

We will, however, use an alternative definition of minimality, which is shown to be 
equivalent: 

Minimal(M) = (Vq,q, cQ(q ~ q' ~ £  (q) # £  (q'))) A Reachable(M) 

A general treatment of automata minimization can be found in Watson (1995). A formal 
proof of the correctness of the following algorithm can be found in Mihov (1998). 

3. Construct ion  from Sorted Data  

A trie is a dictionary with a tree-structured transition graph in which the start state 
is the root and all leaves are final states. 2 An example of a dictionary in a form of a 
trie is given in Figure 1. We can see that many subtrees in the transition graph are 
isomorphic. The equivalent minimal dictionary (Figure 2) is the one in which only 
one copy of each isomorphic subtree is kept. This means that, pointers (edges) to 
all isomorphic subtrees are replaced by pointers (edges) to their unique representa- 
tive. 

The traditional method of obtaining a minimal dictionary is to first create a (not 
necessarily minimal) dictionary for the language and then minimize it using any one 
of a number of algorithms (again, see Watson [1993b, 1995] for numerous examples of 
such algorithms). The first stage is usually done by building a trie, for which there are 
fast and well-understood algorithms. Dictionary minimization algorithms are quite ef- 
ficient in terms of the size of their input dictionary--for some algorithms, the memory 
and time requirements are both linear in the number of states. Unfortunately, even such 
good performance is not sufficient in practice, where the intermediate dictionary (the 
trie) can be much larger than the available physical memory. (Some effort towards 
decreasing the memory requirement has been made; see Revuz [1991].) This paper 
presents a way to reduce these intermediate memory requirements and decrease the 

2 There may also be nonleaf, in other words interior, states that are final. 
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Figure 1 
A trie whose language is the French regular endings of verbs of the first group. 

Figure 2 
The unique minimal dictionary whose language is the French regular endings of verbs of the 
first group. 

total construction time by constructing the minimal dictionary incrementally (word by 
word, maintaining an invariant of minimality), thus avoiding ever having the entire 
trie in memory. 
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The central part of most automata minimization algorithms is a classification 
of states. The states of the input dictionary are partitioned such that the equiva- 
lence classes correspond to the states of the equivalent minimal automaton. Assum- 
ing the input dictionary has only reachable states (that is, Reachable is true), we can 
deduce (by our alternative definition of minimality) that each state in the minimal 
dictionary must have a unique right language. Since this is a necessary and suffi- 
cient condition for minimality, we can use equality of right languages as the equiv- 
alence relation for our classes. Using our definition of right languages, it is easily 
shown that equality of right languages is an equivalence relation (it is reflexive, 
symmetric, and transitive). We will denote two states, p and q, belonging to the 
same equivalence class by p = q (note that = here is different from its use for log- 
ical equivalence of predicates). In the literature, this relation is sometimes written 
as E. 

To aid in understanding, let us traverse the trie (see Figure 1) with the postorder 
method and see how the partitioning can be performed. For each state we encounter, 
we must check whether there is an equivalent state in the part of the dictionary that 
has already been analyzed. If so, we replace the current state with the equivalent 
state. If not, we put the state into a register, so that we can find it easily. It follows 
that the register has the following property: it contains only states that are pairwise 
inequivalent. We start with the (lexicographically) first leaf, moving backward through 
the trie toward the start state. All states up to the first forward-branching state (state 
with more than one outgoing transition) must belong to different classes and we im- 
mediately place them in the register, since there will be no need to replace them by 
other states. Considering the other branches, and starting from their leaves, we need to 
know whether or not a given state belongs to the same class as a previously registered 
state. For a given state p (not in the register), we try to find a state q in the register 
that would have the same right language. To do this, we do not need to compare the 
languages themselves---comparing sets of strings is computationally expensive. We 
can use our recursive definition of the right language. State p belongs to the same 
class as q if and only if: 

. 

2. 

3. 

4. 

they are either both final or both nonfinal; and 

they have the same number of outgoing transitions; and 

corresponding outgoing transitions have the same labels; and 

corresponding outgoing transitions lead to states that have the same 
right languages. 

Because the postorder method ensures that all states reachable from the states al- 
ready visited are unique representatives of their classes (i.e., their right languages 
are unique in the visited part of the automaton), we can rewrite the last condition 
a s :  

4'. corresponding transitions lead to the same states. 

If all the conditions are satisfied, the state p is replaced by q. Replacing p simply in- 
volves deleting it while redirecting all of its incoming transitions to q. Note that all 
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leaf states belong to the same equivalence class. If some of the conditions are not sat- 
isfied, p must be a representative of a new class and therefore must be put into the 
register. 

To build the dictionary one word at a time, we need to merge the process of 
adding new words to the dictionary with the minimization process. There are two 
crucial questions that must be answered. First, which states (or equivalence classes) 
are subject to change when new words are added? Second, is there a way to add new 
words to the dictionary such that we minimize the number of states that may need to 
be changed during the addition of a word? Looking at Figures 1 and 2, we can repro- 
duce the same postorder traversal of states when the input data is lexicographically 
sorted. (Note that in order to do this, the alphabet G must be ordered, as is the case 
with ASCII and Unicode). To process a state, we need to know its right language. Ac- 
cording to the method presented above, we must have the whole subtree whose root 
is that state. The subtree represents endings of subsequent (ordered) words. Further 
investigation reveals that when we add words in this order, only the states that need 
to be traversed to accept the previous word added to the dictionary may change when 
a new word is added. The rest of the dictionary remains unchanged, because a new 
word either 

begins with a symbol different from the first symbols of all words 
already in the automaton; the beginning symbol of the new word is 
lexicographically placed after those symbols; or 

it shares some (or even all) initial symbols of the word previously added 
to the dictionary; the algorithm then creates a forward branch, as the 
symbol on the label of the transition must be later in the alphabet than 
symbols on all other transitions leaving that state. 

When the previous word is a prefix of the new word, the only state that is to be 
modified is the last state belonging to the previous word. The new word may share 
its ending with other words already in the dictionary, which means that we need to 
create links to some parts of the dictionary. Those parts, however, are not modified. 
This discovery leads us to Algorithm 1, shown below. 

Algorithm 1. 

Register := ~; 
do there is another word --* 

Word := next word in lexicographic order; 
CommonPrefix := common_prefix(Word); 
LastS tate := 6*(q0, CommonPrefix ) ; 
CurrentSuffix := Word[length(CommonPrefix)+ l. . . length(Word)l; 
if has_children(LastState) --, 

replace ~r_register(Last S tate) 
fi; 
add_suffix(LastState, CurrentSuffix) 

od; 
replace_or_register(qo) 

8 
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func common_prefix(Word) 
return the longest prefix w of Word such that ~* (q0, w) ~ 3_ 

cnuf  

func replace_or_register(State) --~ 
Child := last_child(State); 
if  has_children(Child) 

replace_or_register(Child) 
fi; 
if 3qEQ( q E Register A q = Child) --, 

last_child(State) :-- q: (q E Register A q = Child); 
delete(Child) 

else 
Register := Register U {Child} 

fi 
cnuf  

The main loop of the algorithm reads subsequent words and establishes which 
part of the word is already in the automaton (the CommonPrefix), and which is not 
(the CurrentSuffix). A n  important step is determining what the last state (here called 
LastState) in the path of the common prefix is. If LastState already has children, it 
means that not all states in the path of the previously added word are in the path of 
the common prefix. In that case, by calling the function replace_or_register, we can let 
the minimization process work on those states in the path of the previously added 
word that are not in the common prefix path. Then we can add to the LastState a chain 
of states that would recognize the CurrentSuffix. 

The function common_prefix finds the longest prefix (of the word to be added) 
that is a prefix of a word already in the automaton. The prefix can be empty (since 

= q) .  

The function add_suffix creates a branch extending out of the dictionary, which 
represents the suffix of the word being added (the maximal suffix of the word which 
is not a prefix of any other word already in the dictionary). The last state of this branch 
is marked as final. 

The function last_child returns a reference to the state reached by the lexicographi- 
cally last transition that is outgoing from the argument state. Since the input data is lex- 
icographically sorted, last_child returns the outgoing transition (from the state) most re- 
cently added (during the addition of the previous word). The function replace_or_register 
effectively works on the last child of the argument state. It is called with the argu- 
ment that is the last state in the common prefix path (or the initial state in the last 
call). We need the argument state to modify its transition in those instances in which 
the child is to be replaced with another (equivalent) state. Firstly, the function calls 
itself recursively until it reaches the end of the path of the previously added word. 
Note that when it encounters a state with more than one child, it takes the last one, 
as it belongs to the previously added word. As the length of words is limited, so is 
the depth of recursion. Then, returning from each recursive call, it checks whether a 
state equivalent to the current state can be found in the register. If this is true, then 
the state is replaced with the equivalent state found in the register. If not, the state is 
registered as a representative of a new class. Note that the function replace-or_register 
processes only the states belonging to the path of the previously added word (a part, 
or possibly all, of those created with the previous call to add_suffix), and that those 
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states are never reprocessed. Finally, has_children returns true if, and only if, there are 
outgoing transitions from the state. 

During the construction, the automaton states are either in the register or on the 
path for the last added word. All the states in the register are states in the resulting 
minimal automaton. Hence the temporary automaton built during the construction 
has fewer states than the resulting automaton plus the length of the longest word. 
Memory is needed for the minimized dictionary that is under construction, the call 
stack, and for the register of states. The memory for the dictionary is proportional 
to the number of states and the total number of transitions. The memory for the 
register of states is proportional to the number of states and can be freed once con- 
struction is complete. By choosing an appropriate implementation method, one can 
achieve a memory complexity O(n) for a given alphabet, where n is the number 
of states of the minimized automaton. This is an important advantage of our algo- 
rithm. 

For each letter from the input list, the algorithm must either make a step in the 
function common_prefix or add a state in the procedure add_suyqx. Both operations can 
be performed in constant time. Each new state that has been added in the procedure 
add~ufix has to be processed exactly once in the procedure replace_or_register. The num- 
ber of states that have to be replaced or registered is clearly smaller than the number 
of letters in the input list. 3 The processing of one state in the procedure consists of 
one register search and possibly one register insertion. The time complexity of the 
search is ©(log n),where n is the number of states in the (minimized) dictionary. The 
time complexity of adding a state to the register is also O(log n). In practice, however, 
by using a hash table to represent the register (and equivalence relation), the average 
time complexity of those operations can be made almost constant. Hence the time 
complexity of the whole algorithm is 0(I log n), where l is the total number of letters 
in the input list. 

4. Construct ion  from Unsorted  Data  

Sometimes it is difficult or even impossible to sort the input data before constructing 
a dictionary. For example, there may be insufficient time or storage space to sort the 
data or the data may originate in another program or physical source. An incremental 
dictionary-building algorithm would still be very useful in those situations, although 
unsorted data makes it more difficult to merge the trie-building and the minimization 
processes. We could leave the two processes disjoint, although this would lead to 
the traditional method of constructing a trie and minimizing it afterwards. A better 
solution is to minimize everything on-the-fly, possibly changing the equivalence classes 
of some states each time a word is added. Before actually constructing a new state 
in the dictionary, we first determine if it would be included in the equivalence class 
of a preexisting state. Similarly, we may need to change the equivalence classes of 
previously constructed states since their right languages may have changed. This leads 
to an incremental construction algorithm. Naturally, we would want to create the states 
for a new word in an order that would minimize the creation of new equivalence 
classes. 

As in the algorithm for sorted data, when a new word w is added, we search 
for the prefix of w already in the dictionary. This time, however, we cannot assume 

3 The exact number of the states that are processed in the procedure replace-or_register is equal to the 
number of states in the trie for the input language. 

10 
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a \b 

Figure 3 
The result of blindly adding the word bae to a minimized dictionary (appearing on the left) 
containing abd and bad. The rightmost dictionary inadvertently contains abe as well. The lower 
dictionary is correct--state 3 had to be cloned. 

that the states traversed by  this common  prefix will not  be changed by  the addit ion 
of the word.  If there are any preexisting states t raversed by  the common  prefix that 
are already targets of more  than one in-transition (known as confluence states), then 
blindly appending  another  transition to the last state in this path  (as we would  in the 
sorted algorithm) would  accidentally add more words  than desired (see Figure 3 for 
an example of this). 

To avoid generation of such spurious words,  all states in the common prefix path  
from the first confluence state must  be cloned. Cloning is the process of creating a new 
state that has outgoing transitions on the same labels and to the same destination states 
as a given state. If we compare the minimal  dictionary (Figure 1) to an equivalent  trie 
(Figure 2), we notice that a confluence state can be seen as a root of several original, 
isomorphic subtrees merged into one (as described in the previous section). One of 
the isomorphic subtrees now needs to be modif ied (leaving it no longer isomorphic),  
so it must  first be separated from the others by  cloning of its root. The isomorphic 
subtrees hanging off these roots are unchanged,  so the original root and its clone have 
the same outgoing transitions (that is, transitions on the same labels and to the same 
destination states). 

In Algori thm 1, the confluence states were never  traversed dur ing the search for 
the common  prefix. The common  prefix was not  only the longest common prefix of the 
word  to be added  and all the words  already in the automaton,  it was also the longest 
common  prefix of the word  to be added  and the last (i.e., the previous) word  added  to 
the automaton.  As it was the function replace_or_register that created confluence states, 
and that function was never  called on states belonging to the path  of the last word  
added  to the automaton,  those states could never  be found in the common  prefix 
path. 

Once the entire common  prefix is traversed, the rest of the word  must  be appended.  
If there are no confluence states in the common  prefix, then the method  of adding the 
rest of the word  does not  differ from the method  used in the algori thm for sorted 
data. However ,  we need to wi thdraw (from the register) the last state in the common  
prefix path in order  not  to create cycles. This is in contrast to the situation in the 
algori thm for sorted data where  that state is not  yet  registered. Also, CurrentSuffix 
could be matched with a path  in the au tomaton  containing states f rom the common  
prefix path  (including the last state of the prefix). 

11 
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b 
C 

a d e a ~  

Figure 4 
Consider an automaton (shown in solid lines on the left-hand figure) accepting abcde and 
fghde. Suppose we want to add fgh@de. As the common prefix path (shown in thicker lines) 
contains a confluence state, we clone state 5 to obtain state 9, add the suffix to state 9, and 
minimize it. When we also consider the dashed lines in the left-hand figure, we see that state 
8 became a new confluence state earlier in the common prefix path. The right-hand figure 
shows what could happen if we did not rescan the common prefix path for confluence states. 
State 10 is a clone of state 4. 

When  there is a confluence state, then we need  to clone some states. We start with 
the last state in the common  prefix path, append  the rest of the word  to that clone and 
minimize it. Note  that in this algorithm, we do not  wait  for the next  word  to come, so 
we can minimize (replace or register the states of) CurrentSuffix state by  state as they 
are created. Adding  and minimizing the rest of the word  m ay  create new confluence 
states earlier in the common  prefix path, so we need  to rescan the common  prefix path  
in order  not  to create cycles, as illustrated in Figure 4. Then we proceed with cloning 
and minimizing the states on the pa th  from the state immediate ly  preceding the last 
state to the current  first confluence state. 

Another,  less complicated but  also less economical,  me thod  can be used to avoid 
the problem of creating cycles in the presence of confluence states. In that solution, we 
proceed from the state immediate ly  preceding the confluence state towards  the end of 
the c omm on  prefix path, cloning the states on the way. But first, the state immediate ly  
preceding the first confluence state should be r emoved  from the register. At the end 
of the c om mon  prefix path, we add  the suffix. Then, we call replace_or_register with the 
predecessor  of the state immediate ly  preceding the first confluence state. The following 
should be noted  about  this solution: 

m e m o r y  requirements  are higher, as we keep more  than one isomorphic 
state at a time, 

the function replace_or_register must  remain recursive (as in the sorted 
version), and 

the argument  to replace_or_register must  be a string, not  a symbol,  in 
order  to pass subsequent  symbols to children. 

When the process of traversing the commo n  prefix (up to a confluence state) and 
adding the suffix is complete,  further  modifications follow. We must  recalculate the 
equivalence class of each state on the pa th  of the new word.  If any equivalence class 
changes, we must  also recalculate the equivalence classes of all of the parents of all 
of the states in the changed class. Interestingly, this process could actually make the 
new dictionary smaller. For example,  if we add  the word  abe to the dict ionary at the 
bot tom of Figure 3 while maintaining minimality, we obtain the dict ionary shown in 

12 
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the r ight  of  Figure  3, w h i c h  is one  state smaller. The resul t ing  a lgo r i thm is s h o w n  in 
A l g o r i t h m  2. 

A l g o r i t h m  2. 

Register :=  0; 
do there is ano the r  w o r d  --* 

Word :=  next  w o r d ;  
CommonPrefix :=  common_prefix(Word); 
CurrentSuffix :=  Word[length(CommonPrefix) + 1 . . .  length(Word)I; 
if CurrentSuffix = c A 6" (qo, CommonPrefix) E F --* 

cont inue  
fi; 
FirstState :=  first_state( CommonPrefix); 
if FirstState = 0 --* 

LastState :=  6* (q0, CommonPrefix) 
else 

LastState :=  clone( 6* ( qo, CommonPrefix ) ) 
fi; 
add_suffix(LastState, CurrentSuffix); 
if FirstState ~ ~ --, 

FirstState :=  first~state(CommonPrefix); 
Currentlndex :=  (length(x): 6* (q0, x) = FirstState); 
for i from length(CommonPrefix) - 1 d o w n t o  Currentlndex --+ 

CurrentState :=  clone( 6* ( qo, CommonPrefix[1. . . i])); 
6( CurrentState, CommonPrefixli]) :=  LastState; 
replace_or_register( CurrentState); 
LastState :=  CurrentState 

rof 
else 

Currentlndex :=  length( CommonPrefix) 
fi; 
Changed :=  true; 
do Changed 

Currentlndex :=  Currentlndex - 1; 
CurrentState :=  6* (q0, Word[1... Currentlndex]); 
OldState :=  LastState; 
if Currentlndex > 0 --* 

Register :=  Register - {LastState} 
fi; 
replace_or_register( CurrentState); 
Changed :=  OldState ~ LastState 

od  
if ~Changed A Currentlndex > 0 --~ 

Register :=  Register U {CurrentState} 
fi 

od  

f u n c  replace Jar_register(State, Symbol) 
Child :=  6(State, Symbol); 
if  3q E Q(q c Register A q = Child) 

13 
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cnuf 

delete(Child); 
last_child(State) := q: (q E Register A q -- Child) 

else 
Register := Register u{Child} 

fi 

The main loop reads the words, finds the common prefix, and tries to find the 
first confluence state in the common prefix path. Then the remaining part  of the word 
(CurrentSuf-fi'x) is added. 

If a confluence state is found (i.e., FirstState points to a state in the automaton),  all 
states from the first confluence state to the end of the common prefix path are cloned, 
and then considered for replacement or registering. Note that the inner loop (with i as 
the control variable) begins with the penult imate state in the common prefix, because 
the last state has already been cloned and the function replace~r_register acts on a child 
of its argument  state. 

Addit ion of a new suffix to the last state in the common prefix changes the right 
languages of all states that precede that state in the common prefix path. The last part  
of the main loop deals with that situation. If the change resulted in such modification 
of the right language of a state that an equivalent state can be found somewhere else 
in the automaton,  then the state is replaced with the equivalent one and the change 
propagates towards the initial state. If the replacement of a given state cannot take 
place, then (according to our recursive definition of the right language) there is no 
need to replace any preceding state. 

Several changes to the functions used in the sorted algorithm are necessary to 
handle the general case of unsorted data. The replace~r_register procedure needs to be 
modified slightly. Since new words are added  in arbitrary order, one can no longer 
assume that the last child (lexicographically) of the state (the one that has been added  
most recently) is the child whose equivalence class may  have changed. However, we 
know the label on the transition leading to the altered child, so we use it to access that 
state. Also, we do not  need to call the function recursively. We assume that add~uffix 
replaces or registers the states in the CurrentSuffix in the correct order; later we process 
one path of states in the automaton,  starting from those most distant from the initial 
state, proceeding towards the initial state q0. So in every situation in which we call 
replace_or_register, all children of the state Child are already unique representatives of 
their equivalence classes. 

Also, in the sorted algorithm, add_suffix is never passed ~ as an argument,  whereas 
this may  occur in the unsorted version of the algorithm. The effect is that the LastState 
should be marked as final since the common prefix is, in fact, the entire word. In the 
sorted algorithm, the chain of states created by add_suffix was left for further treatment 
until new words are added (or until the end of processing). Here, the automaton is 
completely minimized on-the-fly after adding a new word,  and the function add~suffix 
can call replace_or_register for each state it creates (starting from the end of the suffix). 
Finally, the new function first_state simply traverses the dictionary using the given 
word prefix and returns the first confluence state it encounters. If no such state exists, 
first_state returns 0. 

As in the sorted case, the main loop of the unsorted algorithm executes m times, 
where m is the number  of words  accepted by the dictionary. The inner loops are exe- 
cuted at most  Iwl times for each word. Putting a state into the register takes O(logn),  
a l though it may  be constant when  using a hash table. The same estimation is valid 
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for a removal from the register. In this case, the time complexity of the algorithm 
remains the same, but the constant changes. Similarly, hashing can be used to pro- 
vide an efficient method of determining the state equivalence classes. For sorted data, 
only a single path through the dictionary could possibly be changed each time a 
new word is added. For unsorted data, however, the changes frequently fan out and 
percolate all the way back to the start state, so processing each word takes more 
time. 

4.1 Extending the Algorithms 
These new algorithms can also be used to construct transducers. The alphabet of the 
(transducing) automaton would be G1 x G2, where G1 and ~2 are the alphabet of 
the levels. Alternatively, elements of G~ can be associated with the final states of the 
dictionary and only output once a valid word from G~ is recognized. 

5. Related Work 

An algorithm described by Revuz [1991] also constructs a dictionary from sorted data 
while performing a partial minimization on-the-fly. Data is sorted in reverse order 
and that property is used to compress the endings of words within the dictionary as 
it is being built. This is called a pseudominimization and must be supplemented by 
a true minimization phase afterwards. The minimization phase still involves finding 
an equivalence relation over all of the states of the pseudominimal dictionary. It is 
possible to use unsorted data but it produces a much bigger dictionary in the first 
stage of processing. However, the time complexity of the minimization can be reduced 
somewhat by using knowledge of the pseudominimization process. Although this 
pseudominimization technique is more economic in its use of memory than traditional 
techniques, we are still left with a subminimal dictionary that can be a factor of 8 times 
larger than the equivalent minimal dictionary (Revuz [1991, page 33], reporting on the 
DELAF dictionary). 

Recently, a semi-incremental algorithm was described by Watson (1998) at the 
Workshop on Implementing Automata. That algorithm requires the words to be sorted 
in any order of decreasing length (this sorting process can be done in linear time), 
and takes advantage of automata properties similar to those presented in this paper. 
In addition, the algorithm requires a final minimization phase after all words have 
been added. For this reason, it is only semi-incremental and does not maintain full 
minimality while adding words--al though it usually maintains the automata close 
enough to minimality for practical applications. 

6. Conclusions 

We have presented two new methods for incrementally constructing a minimal, deter- 
ministic, acyclic finite-state automaton from a finite set of words (possibly with corre- 
sponding annotations). Their main advantage is their minimal intermediate memory 
requirements. 4 The total construction time of these minimal dictionaries is dramati- 
cally reduced from previous algorithms. The algorithm constructing a dictionary from 
sorted data can be used in parallel with other algorithms that traverse or utilize the 
dictionary, since parts of the dictionary that are already constructed are no longer 
subject to future change. 

4 It is minimal in asymptotic terms; naturally compact data structures can also be used. 
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