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1 Tutorial Overview

Until recently, the goal of developing open-
domain dialogue systems that not only emulate hu-
man conversation but fulfill complex tasks, such
as travel planning, seemed elusive. However, we
start to observe promising results in the last few
years as the large amount of conversation data
is available for training and the breakthroughs in
deep learning and reinforcement learning are ap-
plied to dialogue. In this tutorial, we start with
a brief introduction to the history of dialogue re-
search. Then, we describe in detail the deep learn-
ing and reinforcement learning technologies that
have been developed for two types of dialogue
systems. First is a task-oriented dialogue system
that can help users accomplish tasks, ranging from
meeting scheduling to vacation planning. Second
is a social bot that can converse seamlessly and
appropriately with humans. In the final part of the
tutorial, we review attempts to developing open-
domain neural dialogue systems by combining the
strengths of task-oriented dialogue systems and
social bots. The tutorial material is available at
http://opendialogue.miulab.tw.

2  Outline

1. Introduction & Background [15 min.]
e Brief history of dialogue research
e Challenges of developing dialogue
agents
Task-oriented dialogue systems
Social chat bots
How to evaluate dialogue systems
Neural network basics
e Reinforcement learning (RL) basics
2. Task-Oriented Dialogue System [75 min.]
o Natural language understanding (NLU)
— Domain and intent classification
— Slot tagging
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— Joint semantic frame parsing

— Contextual language understanding

— Structural language understanding
Dialogue management (DM) — Dialogue
state tracking (DST)

— Neural belief tracker

— Multichannel tracker
Dialogue management (DM) — Dialogue
policy optimization

— Dialogue RL signal

— Deep Q-network for learning policy

— Hierarchical RL for learning policy
Natural language generation (NLG)

— Rule-based NLG

— Learning-based NLG

— Structural NLG

— Contextual NLG
End-to-end task-oriented dialogue sys-
tems

— Joint learning of NLU and DM

— Supervised learning for dialogues

— Memory networks for dialogues

— RL-based InfoBot

— LSTM-based dialogue control

— RL-based task-completion bots

3. Social Chat Bots [75 min.]

Neural response generation models
Making the response diverse

Making the response consistent

Deep reinforcement learning for re-
sponse generation

Image-grounded response generation

e Knowledge-grounded response genera-

tion

Generative seq2seq for task-oriented di-
alogues

Combining task-oriented bots and social
bots

4. Challenges & Conclusions [15 mins]
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Figure 1: Pipeline framework of task-oriented dialog system.

3 Task-Oriented Dialogue Systems

The architecture of a task-oriented dialogue sys-
tem is illustrated in Figure 1 (Tur and De Mori,
2011). It consists of three components, natu-
ral language understanding (NLU), dialogue man-
agement (DM), and natural language generation
(NLG) (Rudnicky et al., 1999; Zue et al., 2000;
Zue and Glass, 2000).

Natural Language Understanding NLU tradi-
tionally consists of domain identification and in-
tent prediction, which are framed as utterance
classification problems, and slot filling, framed as
a sequence tagging task.

With the advances on deep learning, recent de-
velopment has been focused on neural approaches.
Ravuri and Stolcke (2015) proposed an RNN
architecture for intent determination. Xu and
Sarikaya (2013) incoporated features generated
using neural approaches into the CRF framework
for slot filling. Yao et al. (2013) and Mesnil et al.
(2015) later employed soly the RNN-based se-
quence labeling model for slot filling. Such an
architecture has been further extended to jointly
model intent detection and slot filling in mul-
tiple domains (Hakkani-Tiir et al., 2016; Jaech
et al., 2016). End-to-end memory networks have
shown to provide a good mechanism for integrat-
ing global knowledge context and local dialogue
context into these models (Chen et al., 2016a,b).
In addition, the importance of the NLU module is
investigated in Li et al. (2017a), showing that dif-
ferent types of errors from NLU can degrade the
whole system’s performance in a reinforcement
learning setting.

Dialogue Management DM plays two roles,
tracking the dialogue state and performing the dia-
logue policy (i.e., telling the agent how to act given
the dialogue state.)

The state-of-the-art dialogue managers monitor
the dialogue progress (state) using neural dialogue
state tracking models (Henderson et al., 2013).
Recent work shows that that Neural Dialog Man-
agers provide conjoint representations between the
utterances, slot-value pairs as well as knowledge
graph representations (Wen et al., 2016; Mrksic¢
et al., 2016; Liu and Lane, 2017), and thus make
the deployment of large-scale dialogue systems for
complex domain much easier.

A partially observable Markov decision process
(POMDP) has been shown to be an effective math-
ematical framework for dialogue policy learning
since it can model the uncertainty such as those
caused by speech recognition errors and seman-
tic decoding errors (Williams and Young, 2007;
Young et al., 2013). Under POMDP, dialogue pol-
icy is trained using reinforcement learning (RL)
where the agent learns how to act based on the re-
ward signals recieved from the environment (Sut-
ton and Barto, 1998).

Natural Language Generation NLG ap-
proaches can be grouped into two categories, one
focuses on generating text using templates or rules
(linguistic) methods, the other uses corpus-based
statistical methods (Oh and Rudnicky, 2002).

The RNN-based models have been applied to
language generation for both social bots and
task-orientated dialogue systems (Sordoni et al.,
2015; Vinyals and Le, 2015; Wen et al., 2015b).
The RNN-based NLG can learn from unaligned
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Figure 2: Illustration of a sequence-to-sequence model for chit-chat dialogues.

data by jointly optimizing sentence planning and
surface realization, and language variation can
be achieved by sampling from output candi-
dates (Wen et al., 2015a). Moreover, Wen et al.
(2015b) improved the prior work by adding a gat-
ing mechanism to control the dialogue act during
generation in order to avoid repetition.

End-to-End Task-Oriented Dialogue System
Awaring the representation power of deep neural
networks, there are more and more attempts to
learning dialogue systems in an end-to-end fash-
ion using different learning frameworks, includ-
ing supervised learning and reinforcement learn-
ing (Yang et al., 2017).

Wen et al. (2016) and Bordes and Weston
(2016) introduced a network-based end-to-end
trainable task-oriented dialogue system. The au-
thors treated training a dialogue system as learn-
ing a mapping from dialogue histories to sys-
tem responses, and applied an encoder-decoder
model.However, the system is trained in a super-
vised fashion that requires a lot of training data.
Thus, the agent cannot learn a robust dialogue pol-
icy since it never explore the unknown space that
is not covered by the limited training data.

Zhao and Eskenazi (2016) presented an end-to-
end reinforcement learning (RL) approach to di-
alogue state tracking and policy learning. They
show some promising results when applying the
agent to the task of guessing the famous person
a user is thinking of. Dhingra et al. (2017) pro-
posed an end-to-end differentiable KB-Infobot for
efficient information access. Li et al. (2017b) pre-
sented an end-to-end neural dialogue system for
task completion. The agent can handle a wide var-
ity of question types, including user-initated re-
quest.

4 Social Chat Bots

Social bots are of growing importance in facil-
itating smooth interaction between humans and
their electronic devices. Recently, researcher have
begun to explore data-driven generation of con-
versational responses within the framework of
nerual machine translation (NMT) in the form
of encoder-decoder or seq2seq models (Sordoni
et al., 2015; Vinyals and Le, 2015; Li et al.,
2016a), as illustrated in Figure 2.

However, the generated responses are often too
general to carry meaningful information, such as
“I don’t know.”, which can serve as a response to
any user questions. A mutual information based
model was proposed to address the issue, a mu-
tual information model is proposed by Li et al.
(20164a), and is later improved by using deep re-
inforcement learning (Li et al., 2016c). Further-
more, Li et al. (2016b) presented a persona-based
model to address the issue of speaker consistency
in neural response generation.

Although task-oriented dialogue systems and
social bots are originally developed for different
purposes, there is a trend of combining both as
a step towards building an open-domain dialogue
agent.

For example, on the one hand, Ghazvininejad
et al. (2017) presented a fully data-driven and
knowledge-grounded neural conversation model
aimed at producing more contentful responses
without slot filling. On the other hand, Zhao et al.
(2017) proposed a task-oriented dialogue agented
based on the encoder-decoder model with chatting
capability.

5 Instructors
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