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Abstract

In this paper, we model the document revi-
sion detection problem as a minimum cost
branching problem that relies on comput-
ing document distances. Furthermore, we
propose two new document distance mea-
sures, word vector-based Dynamic Time
Warping (wDTW) and word vector-based
Tree Edit Distance (wTED). Our revision
detection system is designed for a large
scale corpus and implemented in Apache
Spark. We demonstrate that our system
can more precisely detect revisions than
state-of-the-art methods by utilizing the
Wikipedia revision dumps 1 and simulated
data sets.

1 Introduction

It is a common habit for people to keep several
versions of documents, which creates duplicate
data. A scholarly article is normally revised sev-
eral times before being published. An academic
paper may be listed on personal websites, digital
conference libraries, Google Scholar, etc. In major
corporations, a document typically goes through
several revisions involving multiple editors and
authors. Users would benefit from visualizing the
entire history of a document. It is worthwhile to
develop a system that is able to intelligently iden-
tify, manage and represent revisions. Given a col-
lection of text documents, our study identifies re-
vision relationships in a completely unsupervised
way. For each document in a corpus we only use
its content and the last modified timestamp. We
assume that a document can be revised by many
users, but that the documents are not merged to-
gether. We consider collaborative editing as revis-
ing documents one by one.

1https://snap.stanford.edu/data/wiki-meta.html

The two research problems that are most rele-
vant to document revision detection are plagiarism
detection and revision provenance. In a plagiarism
detection system, every incoming document is
compared with all registered non-plagiarized doc-
uments (Si et al., 1997; Oberreuter and VeláSquez,
2013; Hagen et al., 2015; Abdi et al., 2015). The
system returns true if an original copy is found in
the database; otherwise, the system returns false
and adds the document to the database. Thus, it
is a 1-to-n problem. Revision provenance is a 1-
to-1 problem as it keeps track of detailed updates
of one document (Buneman et al., 2001; Zhang
and Jagadish, 2013). Real-world applications in-
clude GitHub, version control in Microsoft Word
and Wikipedia version trees (Sabel, 2007). In con-
trast, our system solves an n-to-n problem on a
large scale. Our potential target data sources, such
as the entire web or internal corpora in corpora-
tions, contain numerous original documents and
their revisions. The aim is to find all revision doc-
ument pairs within a reasonable time.

Document revision detection, plagiarism detec-
tion and revision provenance all rely on compar-
ing the content of two documents and assessing
a distance/similarity score. The classic document
similarity measure, especially for plagiarism de-
tection, is fingerprinting (Hoad and Zobel, 2003;
Charikar, 2002; Schleimer et al., 2003; Fujii and
Ishikawa, 2001; Manku et al., 2007; Manber et al.,
1994). Fixed-length fingerprints are created us-
ing hash functions to represent document features
and are then used to measure document similar-
ities. However, the main purpose of fingerprint-
ing is to reduce computation instead of improv-
ing accuracy, and it cannot capture word seman-
tics. Another widely used approach is comput-
ing the sentence-to-sentence Levenshtein distance
and assigning an overall score for every docu-
ment pair (Gustafson et al., 2008). Neverthe-
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less, due to the large number of existing docu-
ments, as well as the large number of sentences
in each document, the Levenshtein distance is not
computation-friendly. Although alternatives such
as the vector space model (VSM) can largely re-
duce the computation time, their effectiveness is
low. More importantly, none of the above ap-
proaches can capture semantic meanings of words,
which heavily limits the performances of these
approaches. For instance, from a semantic per-
spective, “I went to the bank” is expected to be
similar to “I withdrew some money” rather than
“I went hiking.” Our document distance measures
are inspired by the weaknesses of current doc-
ument distance/similarity measures and recently
proposed models for word representations such as
word2vec (Mikolov et al., 2013) and Paragraph
Vector (PV) (Le and Mikolov, 2014). Replacing
words with distributed vector embeddings makes
it feasible to measure semantic distances using ad-
vanced algorithms, e.g., Dynamic Time Warping
(DTW) (Sakurai et al., 2005; Müller, 2007; Ma-
tuschek et al., 2008) and Tree Edit Distance (TED)
(Tai, 1979; Zhang and Shasha, 1989; Klein, 1998;
Demaine et al., 2007; Pawlik and Augsten, 2011,
2014, 2015, 2016). Although calculating text dis-
tance using DTW (Liu et al., 2007), TED (Sidorov
et al., 2015) or Word Mover’s Distance (WMV)
(Kusner et al., 2015) has been attempted in the
past, these measures are not ideal for large-scale
document distance calculation. The first two al-
gorithms were designed for sentence distances in-
stead of document distances. The third measure
computes the distance of two documents by solv-
ing a transshipment problem between words in the
two documents and uses word2vec embeddings
to calculate semantic distances of words. The
biggest limitation of WMV is its long computa-
tion time. We show in Section 5.3 that our wDTW
and wTED measures yield more precise distance
scores with much shorter running time than WMV.

We recast the problem of detecting document
revisions as a network optimization problem (see
Section 2) and consequently as a set of document
distance problems (see Section 4). We use trained
word vectors to represent words, concatenate the
word vectors to represent documents and combine
word2vec with DTW or TED. Meanwhile, in or-
der to guarantee reasonable computation time in
large data sets, we calculate document distances at
the paragraph level with Apache Spark. A distance

score is computed by feeding paragraph represen-
tations to DTW or TED. Our code and data are
publicly available. 2

The primary contributions of this work are as
follows.

• We specify a model and algorithm to find the
optimal document revision network from a
large corpus.

• We propose two algorithms, wDTW and
wTED, for measuring semantic document
distances based on distributed representa-
tions of words. The wDTW algorithm calcu-
lates document distances based on DTW by
sequentially comparing any two paragraphs
of two documents. The wTED method rep-
resents the section and subsection structures
of a document in a tree with paragraphs being
leaves. Both algorithms hinge on the distance
between two paragraphs.

The rest of this paper is organized in five parts. In
Section 2, we clarify related terms and explain the
methodology for document revision detection. In
Section 3, we provide a brief background on ex-
isting document similarity measures and present
our wDTW and wTED algorithms as well as the
overall process flow. In Section 4, we demonstrate
our revision detection results on Wikipedia revi-
sion dumps and six simulated data sets. Finally,
in Section 5, we summarize some concluding re-
marks and discuss avenues for future work and im-
provements.

2 Revision Network

The two requirements for a document D̄ being a
revision of another document D̃ are that D̄ has
been created later than D̃ and that the content of
D̄ is similar to (has been modified from) that of
D̃. More specifically, given a corpus D , for any
two documents D̄, D̃ ∈ D , we want to find out
the yes/no revision relationship of D̄ and D̃, and
then output all such revision pairs.

We assume that each document has a creation
date (the last modified timestamp) which is read-
ily available from the meta data of the document.
In this section we also assume that we have aDist
method and a cut-off threshold τ . We represent a
corpus as network N0 = (V 0, A), for example

2https://github.com/XiaofengZhu/wDTW-wTED
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(a) Revision network N0 (b) Cleaned revision network N (c) Possible solution R

Figure 1: Revision network visualization

Figure 1a, in which a vertex corresponds to a doc-
ument. There is an arc a = (D̄, D̃) if and only
if Dist(D̄, D̃) ≤ τ and the creation date of D̄
is before the creation date of D̃. In other words,
D̃ is a revision candidate for D̄. By construction,
N0 is acyclic. For instance, d2 is a revision candi-
date for d7 and d1. Note that we allow one docu-
ment to be the original document of several revised
documents. As we only need to focus on revision
candidates, we reduce N0 to N = (V,A), shown
in Figure 1b, by removing isolated vertices. We
define the weight of an arc as the distance score
between the two vertices. Recall the assumption
that a document can be a revision of at most one
document. In other words, documents cannot be
merged. Due to this assumption, all revision pairs
form a branching inN . (A branching is a subgraph
where each vertex has an in-degree of at most 1.)
The document revision problem is to find a mini-
mum cost branching in N (see Fig 1c).

The minimum branching problem was earlier
solved by Edmonds (1967) and Velardi et al.
(2013). The details of his algorithm are as follows.

– For each node select the smallest weighted
incoming arc. This yields a subgraph.

– If cycles are present in the selected subgraph,
then recursively find the replacing arc that has
the minimum weight among previously non-
selected arcs to eliminate cycles.

In our case, N is acyclic and, therefore, the sec-
ond step never occurs. For this reason, Algorithm
1 solves the document revision problem.

The essential part of determining the minimum
branching R is extracting arcs with the lowest dis-
tance scores. This is equivalent to finding the most
similar document from the revision candidates for
every original document.

Algorithm 1 Find minimum branching R for net-
work N = (V,A)

1: Input: N
2: R = ∅
3: for every vertex v ∈ V do
4: Set δ(u) to correspond to all arcs with head

u.
5: Select a = (v, u) ∈ δ(u) such that

Dist(v, u) is minimum
6: R = R ∪ a
7: end for
8: Output: R

3 Distance/similarity Measures

In this section, we first introduce the classic VSM
model, the word2vec model, DTW and TED. We
next demonstrate how to combine the above com-
ponents to construct our semantic document dis-
tance measures: wDTW and wTED. We also dis-
cuss the implementation of our revision detection
system.

3.1 Background

3.1.1 Vector Space Model
VSM represents a set of documents as vectors of
identifiers. The identifier of a word used in this
work is the tf-idf weight. We represent documents
as tf-idf vectors, and thus the similarity of two doc-
uments can be described by the cosine distance
between their vectors. VSM has low algorithm
complexity but cannot represent the semantics of
words since it is based on the bag-of-words as-
sumption.

3.1.2 Word2vec
Word2vec produces semantic embeddings for
words using a two-layer neural network. Specif-
ically, word2vec relies on a skip-gram model that
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uses the current word to predict context words in a
surrounding window to maximize the average log
probability. Words with similar meanings tend to
have similar embeddings.

3.1.3 Dynamic Time Warping
DTW was developed originally for speech recog-
nition in time series analysis and has been widely
used to measure the distance between two se-
quences of vectors.

Given two sequences of feature vectors: A =
a1, a2, ..., ai, ..., am and B = b1, b2, ..., bj , ..., bn,
DTW finds the optimal alignment for A and B by
first constructing an (m + 1) × (n + 1) matrix
in which the (i, j)th element is the alignment cost
of a1...ai and b1...bj , and then retrieving the path
from one corner to the diagonal one through the
matrix that has the minimal cumulative distance.
This algorithm is described by the following for-
mula.

DTW (i, j) = Dist(ai, bj) +min(
DTW (i− 1, j), //insertion

DTW (i, j − 1), //deletion

DTW (i− 1, j − 1)) //substitution

3.1.4 Tree Edit Distance
TED was initially defined to calculate the minimal
cost of node edit operations for transforming one
labeled tree into another. The node edit operations
are defined as follows.

– Deletion Delete a node and connect its chil-
dren to its parent maintaining the order.

– Insertion Insert a node between an existing
node and a subsequence of consecutive chil-
dren of this node.

– Substitution Rename the label of a node.

Let L1 and L2 be two labeled trees, and Lk[i]
be the ith node in Lk(k = 1, 2). M corresponds
to a mapping from L1 to L2. TED finds mapping
M with the minimal edit cost based on

c(M) = min{
∑

(i,j)∈M

cost(L1[i]→ L2[j])

+
∑
i∈I

cost(L1[i]→ ∧)

+
∑
j∈J

cost(∧ → L2[j])}

where L1[i] → L2[j] means transferring L1[i] to
L2[j] based on M , and ∧ represents an empty
node.

3.2 Semantic Distance between Paragraphs

According to the description of DTW in Section
3.1.3, the distance between two documents can be
calculated using DTW by replacing each element
in the feature vectors A and B with a word vector.
However, computing the DTW distance between
two documents at the word level is basically as
expensive as calculating the Levenshtein distance.
Thus in this section we propose an improved algo-
rithm that is more appropriate for document dis-
tance calculation.

In order to receive semantic representations for
documents and maintain a reasonable algorithm
complexity, we use word2vec to train word vectors
and represent each paragraph as a sequence of vec-
tors. Note that in both wDTW and wTED we take
document titles and section titles as paragraphs.
Although a more recently proposed model PV can
directly train vector representations for short texts
such as movie reviews (Le and Mikolov, 2014),
our experiments in Section 5.3 show that PV is
not appropriate for standard paragraphs in general
documents. Therefore, we use word2vec in our
work. Algorithm 2 describes how we compute the
distance between two paragraphs based on DTW
and word vectors. The distance between one para-
graph in a document and one paragraph in another
document can be pre-calculated in parallel using
Spark to provide faster computation for wDTW
and wTED.

Algorithm 2 DistPara
Replace the words in paragraphs p and q with
word2vec embeddings: {vi}ei=1 and {wj}fj=1

Input: p = [v1, .., ve] and q = [w1, .., wf ]
Initialize the first row and the first column of
(e+ 1)× (f + 1) matrix DTWpara +∞
DTWpara(0, 0) = 0
for i in range (1, e+ 1) do

for j in range (1, f + 1) do
Dist(vi, wj) = ||vi − wj ||
calculate DTWpara(i, j)

end for
end for
Return: DTWpara(e, f)
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4 wDTW and wTED Measures

4.1 Word Vector-based Dynamic Time
Warping

As a document can be considered as a sequence of
paragraphs, wDTW returns the distance between
two documents by applying another DTW on top
of paragraphs. The cost function is exactly the
DistPara distance of two paragraphs given in Al-
gorithm 2. Algorithm 3 and Figure 2 describe our
wDTW measure. wDTW observes semantic in-
formation from word vectors, which is fundamen-
tally different from the word distance calculated
from hierarchies among words in the algorithm
proposed by Liu et al. (2007). The shortcomings
of their work are that it is difficult to learn seman-
tic taxonomy of all words and that their DTW al-
gorithm can only be applied to sentences not doc-
uments.

Algorithm 3 wDTW
Represent documents d1 and d2 with vectors
of paragraphs: {pi}mi=1 and {qj}nj=1

Input: d1 = [p1, .., pm] and d2 = [q1, .., qn]
Initialize the first row and the first column of
(m+ 1)× (n+ 1) matrix DTWdoc +∞
DTWdoc(0, 0) = 0
for i in range (1,m+ 1) do

for j in range (1, n+ 1) do
Dist(pi, qj) = DistPara(pi, qj)
calculate DTWdoc(i, j)

end for
end for
Return: DTWdoc(m,n)

Figure 2: wDTW visualization

4.2 Word Vector-based Tree Edit Distance

TED is reasonable for measuring document dis-
tances as documents can be easily transformed to
tree structures visualized in Figure 3. The docu-
ment tree concept was originally proposed by Si
et al. (1997). A document can be viewed at mul-
tiple abstraction levels that include the document
title, its sections, subsections, etc. Thus for each
document we can build a tree-like structure with
title→ sections→ subsections→...→ paragraphs
being paths from the root to leaves. Child nodes
are ordered from left to right as they appear in the
document.

Figure 3: Document tree

We represent labels in a document tree as
the vector sequences of titles, sections, subsec-
tions and paragraphs with word2vec embeddings.
wTED converts documents to tree structures and
then uses DistPara distances. More formally, the
distance between two nodes is computed as fol-
lows.

– The cost of substitution is the DistPara value
of the two nodes.

– The cost of insertion is the DistPara value of
an empty sequence and the label of the in-
serted node. This essentially means that the
cost is the sum of the L2-norms of the word
vectors in that node.

– The cost of deletion is the same as the cost of
insertion.

Compared to the algorithm proposed by
Sidorov et al. (2015), wTED provides different
edit cost functions and uses document tree struc-
tures instead of syntactic n-grams, and thus wTED
yields more meaningful distance scores for long
documents. Algorithm 4 and Figure 4 describe
how we calculate the edit cost between two doc-
ument trees.
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Algorithm 4 wTED
1: Convert documents d1 and d2 to trees T1 and
T2

2: Input: T1 and T2

3: Initialize tree edit distance c = +∞
4: for node label p ∈ T1 do
5: for node label q ∈ T2 do
6: Update TED mapping cost c using
7: cost(p→ q) = DistPara(p, q)
8: cost(p→ ∧) = DistPara(p,∧)
9: cost(∧ → q) = DistPara(∧, q)

10: end for
11: end for
12: Return: c

Figure 4: wTED visualization

4.3 Process Flow

Our system is a boosting learner that is composed
of four modules: weak filter, strong filter, revision
network and optimal subnetwork. First of all, we
sort all documents by timestamps and pair up doc-
uments so that we only compare each document
with documents that have been created earlier. In
the first module, we calculate the VSM similar-
ity scores for all pairs and eliminate those with
scores that are lower than an empirical threshold
(τ̃ = 0.5). This is what we call the weak filter.
After that, we apply the strong filter wDTW or
wTED on the available pairs and filter out docu-
ment pairs having distances higher than a thresh-
old τ . For VSM in Section 5.1, we directly filter
out document pairs having similarity scores lower
than a threshold τ . The cut-off threshold esti-
mation is explained in Section 4.4. The remain-
ing document pairs from the strong filter are then
sent to the revision network module. In the end,
we output the optimal revision pairs following the
minimum branching strategy.

4.4 Estimating the Cut-off Threshold

Hyperprameter τ is calibrated by calculating the
absolute extreme based on an initial set of docu-
ments, i.e., all processed documents since the mo-
ment the system was put in use. Based on this set,
we calculate all distance/similarity scores and cre-
ate a histogram, see Figure 5. The figure shows the
correlation between the number of document pairs
and the similarity scores in the training process of
one simulated corpus using VSM. The optimal τ
in this example is around 0.6 where the number of
document pairs noticeably drops.

As the system continues running, new docu-
ments become available and τ can be periodically
updated by using the same method.

Figure 5: Setting τ

5 Numerical Experiments

This section reports the results of the experiments
conducted on two data sets for evaluating the per-
formances of wDTW and wTED against other
baseline methods.

5.1 Distance/Similarity Measures

We denote the following distance/similarity mea-
sures.

– wDTW: Our semantic distance measure ex-
plained in Section 4.1.

– wTED: Our semantic distance measure ex-
plained in Section 4.2.

– WMD: The Word Mover’s Distance intro-
duced in Section 1. WMD adapts the earth
mover’s distance to the space of documents.

– VSM: The similarity measure introduced in
Section 3.1.1.
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– PV-DTW: PV-DTW is the same as Algorithm
3 except that the distance between two para-
graphs is not based on Algorithm 2 but rather
computed as ||PV (p1) − PV (p2)|| where
PV (p) is the PV embedding of paragraph p.

– PV-TED: PV-TED is the same as Algorithm
4 except that the distance between two para-
graphs is not based on Algorithm 2 but rather
computed as ||PV (p1)− PV (p2)||.

Our experiments were conducted on an Apache
Spark cluster with 32 cores and 320 GB total
memory. We implemented wDTW, wTED, WMD,
VSM, PV-DTW and PV-TED in Java Spark. The
paragraph vectors for PV-DTW and PV-TED were
trained by gensim. 3

5.2 Data Sets

In this section, we introduce the two data sets
we used for our revision detection experiments:
Wikipedia revision dumps and a document revi-
sion data set generated by a computer simulation.
The two data sets differ in that the Wikipedia re-
vision dumps only contain linear revision chains,
while the simulated data sets also contains tree-
structured revision chains, which can be very com-
mon in real-world data.

5.2.1 Wikipedia Revision Dumps
The Wikipedia revision dumps that were previ-
ously introduced by Leskovec et al. (2010) con-
tain eight GB (compressed size) revision edits
with meta data.

We pre-processed the Wikipedia revision
dumps using the JWPL Revision Machine (Fer-
schke et al., 2011) and produced a data set
that contains 62,234 documents with 46,354 re-
visions. As we noticed that short documents
just contributed to noise (graffiti) in the data, we
eliminated documents that have fewer than three
paragraphs and fewer than 300 words. We re-
moved empty lines in the documents and trained
word2vec embeddings on the entire corpus. We
used the documents occurring in the first 80% of
the revision period for τ calibration, and the re-
maining documents for test.

5.2.2 Simulated Data Sets
The generation process of the simulated data sets
is designed to mimic the real world. Users open

3https://radimrehurek.com/gensim/models/doc2vec.html

Figure 6: Corpora simulation

some existing documents in a file system, make
some changes (e.g. addition, deletion or re-
placement), and save them as separate documents.
These documents become revisions of the original
documents. We started from an initial corpus that
did not have revisions, and kept adding new doc-
uments and revising existing documents. Similar
to a file system, at any moment new documents
could be added and/or some of the current docu-
ments could be revised. The revision operations
we used were deletion, addition and replacement
of words, sentences, paragraphs, section names
and document titles. The addition of words, ...,
section names, and new documents were pulled
from the Wikipedia abstracts. This corpus gener-
ation process had five time periods {t1, t2, ..., t5}.
Figure 6 illustrates this simulation. We set a Pois-
son distribution with rate λ = 550 (the number
of documents in the initial corpus) to control the
number of new documents added in each time pe-
riod, and a Poisson distribution with rate 0.5λ to
control the number of documents revised in each
time period.

We generated six data sets using different ran-
dom seeds, and each data set contained six cor-
pora (Corpus 0 - 5). Table 1 summarizes the first
data set. In each data set, we name the initial
corpus Corpus 0, and define T0 as the timestamp
when we started this simulation process. We set
Tj = Tj−1 + tj , j ∈ [1, 5]. Corpus j corre-
sponds to documents generated before timestamp
Tj . We extracted document revisions from Cor-
pus k ∈ [2, 5] and compared the revisions gen-
erated in (Corpus k - Corpus (k − 1)) with the
ground truths in Table 1. Hence, we ran four ex-
periments on this data set in total. In every exper-
iment, τk is calibrated based on Corpus (k − 1).
For instance, the training set of the first experi-
ment was Corpus 1. We trained τ1 from Corpus 1.
We extracted all revisions in Corpus 2, and com-
pared revisions generated in the test set (Corpus 2 -
Corpus 1) with the ground truth: 258 revised doc-
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uments. The word2vec model shared in the four
experiments was trained on Corpus 5.

Table 1: A simulated data set

Corpus Number of Number of Number of
documents new documents revision pairs

0 550 0 0
1 1347 542 255
2 2125 520 258
3 2912 528 259
4 3777 580 285
5 4582 547 258

5.3 Results

We use precision, recall and F-measure to evalu-
ate the detected revisions. A true positive case is a
correctly identified revision. A false positive case
is an incorrectly identified revision. A false nega-
tive case is a missed revision record.

We illustrate the performances of wDTW,
wTED, WMD, VSM, PV-DTW and PV-TED on
the Wikipedia revision dumps in Figure 7. wDTW
and wTED have the highest F-measure scores
compared to the rest of four measures, and wDTW
also have the highest precision and recall scores.
Figure 8 shows the average evaluation results on
the simulated data sets. From left to right, the
corpus size increases and the revision chains be-
come longer, thus it becomes more challenging to
detect document revisions. Overall, wDTW con-
sistently performs the best. WMD is slightly bet-
ter than wTED. In particular, when the corpus size
increases, the performances of WMD, VSM, PV-
DTW and PV-TED drop faster than wDTW and
wTED. Because the revision operations were ran-
domly selected in each corpus, it is possible that
there are non-monotone points in the series.

wDTW and wTED perform better than WMD
especially when the corpus is large, because they
use dynamic programming to find the global opti-
mal alignment for documents. In contrast, WMD

relies on a greedy algorithm that sums up the min-
imal cost for every word. wDTW and wTED per-
form better than PV-DTW and PV-TED, which in-
dicates that our DistPara distance in Algorithm 2 is
more accurate than the Euclidian distance between
paragraph vectors trained by PV.

We show in Table 2 the average running time of
the six distance/similarity measures. In all the ex-
periments, VSM is the fastest, wTED is faster than
wDTW, and WMD is the slowest. Running WMD
is extremely expensive because WMD needs to
solve an x2 sequential transshipment problem for
every two documents where x is the average num-
ber of words in a document. In contrast, by split-
ting this heavy computation into several smaller
problems (finding the distance between any two
paragraphs), which can be run in parallel, wDTW
and wTED scale much better.

Combining Figure 7, Figure 8 and Table 2 we
conclude that wDTW yields the most accurate re-
sults using marginally more time than VSM, PV-
TED and PV-DTW, but much less running time
than WMD. wTED returns satisfactory results us-
ing shorter time than wDTW.

6 Conclusion

This paper has explored how DTW and TED can
be extended with word2vec to construct semantic
document distance measures: wDTW and wTED.
By representing paragraphs with concatenations of
word vectors, wDTW and wTED are able to cap-
ture the semantics of the words and thus give more
accurate distance scores. In order to detect revi-
sions, we have used minimum branching on an ap-
propriately developed network with document dis-
tance scores serving as arc weights. We have also
assessed the efficiency of the method of retriev-
ing an optimal revision subnetwork by finding the
minimum branching.

Furthermore, we have compared wDTW and

(a) Precision (b) Recall (c) F-measure

Figure 7: Precision, recall and F-measure on the Wikipedia revision dumps
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(c) F-measure

Figure 8: Average precision, recall and F-measure on the simulated data sets

Table 2: Running time of VSM, PV-TED, PV-DTW, wTED, wDTW and WMD

VSM PV-TED PV-DTW wTED wDTW WMD
Wikipedia revision dumps 1h 38min 3h 2min 3h 18min 5h 13min 13h 27min 515h 9min
corpus 2 2 min 3 min 3 min 7 min 8 min 8 h 53 min
corpus 3 3 min 4 min 5 min 9 min 11 min 12 h 45 min
corpus 4 4 min 6 min 6 min 11 min 12 min 14 h 34 min
corpus 5 7 min 9 min 9 min 14 min 16 min 17 h 31 min

wTED with several distance measures for revision
detection tasks. Our results demonstrate the effec-
tiveness and robustness of wDTW and wTED in
the Wikipedia revision dumps and our simulated
data sets. In order to reduce the computation time,
we have computed document distances at the para-
graph level and implemented a boosting learning
system using Apache Spark. Although we have
demonstrated the superiority of our semantic mea-
sures only in the revision detection experiments,
wDTW and wTED can also be used as semantic
distance measures in many clustering, classifica-
tion tasks.

Our revision detection system can be enhanced
with richer features such as author information and
writing styles, and exact changes in revision pairs.
Another interesting aspect we would like to ex-
plore in the future is reducing the complexities of
calculating the distance between two paragraphs.
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