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Abstract

Existing work for abstractive multi-
document summarization utilise existing
phrase structures directly extracted from
input documents to generate summary
sentences. These methods can suf-
fer from lack of consistence and coher-
ence in merging phrases. We introduce
a novel approach for abstractive multi-
document summarization through partial
dependency tree extraction, recombination
and linearization. The method entrusts
the summarizer to generate its own topi-
cally coherent sequential structures from
scratch for effective communication. Re-
sults on TAC 2011, DUC- 2004 and 2005
show that our system gives competitive
results compared with state-of-the-art ab-
stractive summarization approaches in the
literature. We also achieve competitive re-
sults in linguistic quality assessed by hu-
man evaluators.

1 Introduction

Multi-document summarization generates a tex-
tual summary from a corpus of documents deal-
ing with a set of related topics. An optimum
generated summary should encompass the most
relevant and topically diverse content, which can
represent the input corpus in stipulated summary
space. Extractive multi-document summarization
approaches pick out a subset of sentences to con-
stitute the summary, which can be noisy and inco-
herent, as all the portions of a sentence may not be
relevant for summary generation (Lin and Bilmes,
2011).

An abstractive multi-document summarizer, in
contrast, infers the most relevant information and
generates summary sentences exhibiting coher-

ence and fluency. There has been relatively little
existing work on abstractive multi-document sum-
marization. Bing et al. (2015) merge phrases that
are extracted from input documents into a coher-
ent summary. Banerjee et al. (2015) utilize multi-
sentence compression for summarization. Both of
the above approaches rely on sequential arrange-
ment of phrasal or subsentential structures existing
in the input corpus to generate summary. How-
ever, an ideal abstractive multi-document summa-
rizer should enjoy the freedom to exhibit its own
writing style and to generate the sentences from
scratch.

We build a model to this end by leveraging syn-
tactic dependencies. Input for our model is the set
of syntactic dependency trees obtained by parsing
sentences in the corpus to be summarized. Rel-
evant and noise pruned partial tree structures are
extracted from the set of dependency trees and dif-
ferent subsets of maximally relevant partial depen-
dency structures are identified. Partial trees in dif-
ferent subsets are linearized to generate individ-
ual summary sentences. In this work, we utilize
transition-based syntactic linearization approach
proposed by Puduppully et al. (2016) to linearize a
combination of partial trees and to generate a noise
free summary sentence. The combinability of a
set of partial trees to form a full dependency tree
of a valid sentence is estimated using a generative
model of syntactic dependency trees (Zhang et al.,
2016). As a result, the model is allowed to exhibit
its own learnt writing style while generating sum-
mary sentences.

The summaries generated by our system are
evaluated on the DUC 2004, DUC 2007 and TAC
2011 muti-document summarization data-sets. In
addition, we relied on human evaluation to evalu-
ate factual accuracy and linguistic quality of gen-
erated summary sentences. To our knowledge
this is the first work on multi-document abstrac-
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tive summarization with syntactic dependency
trees, which entrust the summarization model to
generate summary sentences without exploiting
any kind of subsentential or phrasal sequential
structures originally present in the input corpus.
Our code is released at https://bitbucket.
org/litton_kurisinkel/tree_sum

2 Related Work

Text summarization can be achieved using ex-
tractive (Takamura and Okumura, 2009; Lin and
Bilmes, 2011; Wang et al., 2008) and abstractive
methods (Bing et al., 2015; Li, 2015). Extrac-
tive summarization has the advantage of output
fluency due to direct use of human-written texts.
However, extractive summarization cannot ensure
a noise free and coherent summary. It can also re-
sult in a wrong inference to the reader due to out
of context sentence usage. In contrast, abstractive
summarization techniques can generate a noise-
free summary out of most relevant information in
the input corpus.

A subset of previous extractive summarization
approaches utilized parsed sentence structures to
execute noise pruning while extracting content for
summary (Morita et al., 2013; Berg-Kirkpatrick
et al., 2011). As a first step towards abstracting
content for summary generation, sentence com-
pression techniques were introduced (Lin, 2003;
Zajic et al., 2006; Martins and Smith, 2009; Wood-
send and Lapata, 2010; Almeida and Martins,
2013), but these techniques can merely prune
noise, and cannot combine related facts from dif-
ferent sentences to generate new ones. (Baner-
jee et al., 2015) suggests a better way of doing
sentence compression without harming linguistic
quality.

Recent work attempts to solve the problem of
abstractive multi-document summarization (Bing
et al., 2015; Li, 2015), claiming that the method
has the advantage of generating new sentences.
Bing et al. (2015) extracts relevant noun phrases
and verb phrases and recombines them to generate
new sentences while Li (2015) system make use
of semantic link network on basic semantic units
(BSUs) to generate summary. Neither of these
methods employ a learnt model to generate sum-
mary sentences. Instead, they make use sequen-
tial structures in the source text itself to construct
the summary sentences. Cheng and Lapata (2016)
propose a fully data driven approach using neu-

Figure 1: Overall approach

ral network for single document summarization by
extracting words. They have treated highlighted
text in news articles consisting of very short bul-
leted lines on the web as summary of the corre-
sponding article.

A major challenge of using a fully data driven
approach for multi-document abstractive summa-
rization using neural network is the expensive task
of creating dataset which can be used to jointly
model extraction of relevant content and genera-
tion good quality summary sentences. But multi-
document abstractive summarization becomes an
achievable task, by disintegrating the extraction of
knowledge granules from the input corpus and us-
ing a separate language generation model trained
in a sophisticated dataset which can take a sub-
set of extracted knowledge granules and gener-
ate a summary sentence of high linguistic quality.
To this end, we leverage partial tree linearization
(Zhang, 2013) synthesizing summaries from ex-
tracted treelets.

3 Approach

The overall approach (Figure 1) for abstractive
multi-document summarization detailed in the
current work starts with extracting the most rel-
evant set of partial trees of varying sizes from the
set of all syntactic dependency trees in the corpus
using maximum density sub-graph cut algorithm
(Su et al., 2008). In parallel, generative model for
syntactic dependency trees is trained (Zhang et al.,
2016) so that it can be leveraged for estimating
the combinability of a set of partial trees for con-
structing a whole or part of a full dependency tree
of a valid sentence during summary generation.
Also, the transition based syntactic linearization
model Puduppully et al. (2016) is trained using
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a dataset, consisting of dependency trees of sen-
tences in Penn-tree bank and corresponding sen-
tence.

The set of extracted partial dependency trees are
clustered to ensure topical diversity. We identify a
subset of partial trees from each cluster, which can
be linearized to a single sentence which represents
the cluster in the final summary. Integer linear pro-
gramming is used for locating the most accurate
subset of partial trees out of which representative
sentence can be generated.

The objective function consists of linear com-
ponents for maximising total relevance and to-
tal combinability of the subset of partial trees se-
lected. total combinability is measured using the
generative model Zhang et al. (2016). Here we try
to jointly model the human summarizers method
of collecting relevant knowledge granules and de-
ciding the combinable set of information. Clus-
ter representative sentence are generated using the
linearization model of Puduppully et al. (2016)
from the subset of partial trees identified earlier.
The following sections explain how the system
achieves each one of the tasks listed above in de-
tail.

3.1 Extracting Relevant Partial Trees

For each dependency tree in the input corpus, there
is a subtree rooted at every node. Each subtree do
not necessarily contain extractable information to
generate a summary. The method used to create a
noise pruned subset of subtrees containing cogniz-
able information from the set of all subtrees in the
corpus can be split into two steps.

• Identify the roots of valid subtrees contain-
ing cognizable information in all the syntac-
tic dependency trees in the input corpus.

• Prune the identified subtrees so that it con-
tains nodes relevant for generating summary.

3.1.1 Identify Subtree Roots
The level of granularity at which syntactic ele-
ments chosen to generate summary sentence con-
siderably decides factual accuracy of a generated
sentence. As extracted set of subtrees are basic
building units for summary sentence generation,
the structure of subtrees extracted should be suit-
able for generating factually correct summary sen-
tences with respect to the corpus to be summa-
rized. We observe that a node containing subject

Figure 2: Marking relevant subtree roots

relationship with its child node is a valid candi-
date. Consequently any node in a dependency tree
sharing dependency relations such as nsubj, csubj,
nsubjpass or xsubj with any of its child node is
treated as the root node of a subtree which contains
extractable and cognizable information. In Figure
2, for example, subtrees rooted at words visited
and happened are valid subtrees to contribute for
summary generation as per the linguistic criteria
discussed above.

3.1.2 Pruning Subtrees
Identified subtrees are dissected out from their
original dependency trees after pruning away their
noisy portions which are irrelevant for summary
generation. Su et al. (2008) introduced a dy-
namic programming approach to find a length-
constrained maximum-density subtree containing
the root r, from a tree rooted at r for which weight
and length is preset for all edges. The density of a
tree T is defined as follows.

density =
∑

eεEW (e)∑
eεE Len(e)

(1)

where E is the set of all edges in T, W(e) is the
weight of edge e and Len(e) is the length of edge e.
The constraint on length implies that total length
of all edges in the resultant maximum density sub-
tree should be between lower bound L and upper
bound U which are taken arguments by the algo-
rithm. We leverage multi density subtree extrac-
tion algorithm for dissecting out a noise pruned
subtree from an identified valid subtree in a depen-
dency tree after setting values for edge weights,
edge lengths, L and U.

The weight of an edge in a syntactic dependency
in the input corpus should represent its topical rel-
evance for summary generation. Consequently the
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weight depends on the frequency of bigram con-
stituted by words on either side of the dependency
edge(Dbigram). We set the weight of edge e as,

W (e) =
log(1 + fdbigram)

depth(e)2
, (2)

where fdbigram is the frequency of the Dbigram of
e in the corpus and depth(e) is the depth of depen-
dent node of e in the tree. Summary should prefer
general information over context specific informa-
tion. The specificity of the information contained
increases with depth in dependency tree and the
denominator term in Equation 2 penalizes deeper
edges.

The length of the edge is set as the size of the
word in the dependent node in bytes so that length
of all edges in the tree equals the total size of all
words in the tree. Length constraint U is the total
length of all edges in the tree and L is calculated
as follows

L = α ∗ tanh(β ∗ twe− σ) ∗ TL,

where twe is the total weight of all edges in the
subtree, TL is the total length of all edges in the
subtree and σ, α and β are constants optimized
empirically. σ sets the universal upper bound for
all subtrees minimum length while α and β set the
slope and position of tanh curve. The value of L
ensures that subtrees containing more relevant in-
formation are pruned lesser. We enforce a rule to
retain the tree nodes to maintain grammaticality
while pruning. If the grammatical relation point-
ing to a node from its parent is nsubj, csubj, nsub-
jpass, xsubj, aux, xcomp, pobj, acomp, dobj, case,
det, poss, possessive, auxpass, ccomp, neg, expl,
cop, prt, mwe, pcomp, iobj, number, quantmod,
predet, dep or mark, then the node cannot be re-
moved without also removing its parent to main-
tain grammatical and factual correctness.

For the rest of this paper, we refer to a noise-
pruned subtree extracted out of a dependency tree
as a partial tree. The partial trees pruned out of
subtrees sharing anscestor-descendant relationship
may contain overlapping information (eg: subtrees
rooted at ‘visited’ and ‘happened’ in Figure 2).
So ancestor-descendant relationship between cor-
responding partial trees is recorded to avoid redun-
dant information during summary sentence gener-
ation.

Figure 3: Combine(pt1, pt2)

3.2 Estimation of Combinability of Partial
trees using Generative Model of
Dependency Trees

During the final stage of summary sentence gener-
ation, each of the summary sentence is generated
from a precisely identified subset of relevant par-
tial trees. To arrive at such a precise subset, along
with information regarding topical relevance, due
consideration should be given to the combinability
of partial trees in the subset to form a full depen-
dency tree of a valid sentence w.r.t to the syntactic
and semantic information contained in them. As a
primitive measure upon which total combinability
of a set of partial trees can be built upon, we esti-
mate the combinability of any two partial trees to
form whole or a part of a valid dependency tree as
follows

DepTree→ Combine(pt1, pt2) (3)

C(pt1, pt2)→ Pdepgen(DepTree), (4)

where Combine(pt1, pt2) combines two partial
trees pt1 and pt2 as represented in Figure 3 by
adding a dummy root containing ‘,’ with ‘comma’
as the dependency relation of edges and pt1 comes
before pt2 in breadth first order. C(pt1, pt2) is the
Combinability of any two partial trees and Pdepgen
represents a generative distribution of syntactic
dependency trees trained with a large set of de-
pendency trees. Combine(pt1, pt2) need not ex-
actly represent a substep in the final process of
combination and linearization of a set of selected
partial trees to generate a summary sentence. But
Pdepgen(DepTree) acts as an indicative measure
on how much pt1 and pt2 can together participate
in the construction of a full-dependency tree of a
valid sentence with respect to the syntactic and se-
mantic information contained in them.

3.2.1 Learning Pdepgen
Zhang et al. (2016) introduced Tree Long Short-
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Term Memory (TreeLSTM), a neural network
model based on LSTM, which is designed to pre-
dict a tree rather than a linear sequence. They
define probability of a sentence as the generation
probability of its dependency tree. Under the as-
sumption that each word w in a dependency tree is
only conditioned on its dependency path, the prob-
ability of a sentence S given its dependency tree T
is:

P (S|T ) =
∏

wεBFS(T )\ROOT
P (w|D(w)) (5)

where D(w) is the dependency path of w and how
dependency path for each node is identified is de-
tailed in the paper Zhang et al. (2016) and each
word w is visited according to its breadth-first
search order (BFS(T)). P (S|T ) can be restated as
a generative probability Pdepgen(T

′
) where T

′
is

a restricted syntactic dependency tree structure in
which, for all nodes, left and right dependants and
breadth first order of its children are fixed. As
the above mentioned structural restrictions can be
fixed in parameter for partial trees for Combine in
Equation 3, we can directly use TreeLSTM net-
work to estimate Pdepgen in Equation 4.

The sentence dataset shared by Zhang et al.
(2016) is parsed using Standford parser for train-
ing a TreeLSTM network. The negative log prob-
ability values produced by the network is normal-
ized for partial tree pairs in the corpus.

3.3 Syntactic Linearization

We make use of the syntactic linearization model
proposed by Puduppully et al. (2016) to linearize
the input set of partial trees. Puduppully et al.
(2016) and Liu et al. (2015) propose a transition-
based word ordering model, which takes a bag
of words, together with optional POS and depen-
dency arcs on a subset of input words, yields a sen-
tence together with its dependency parse tree that
conforms to input syntactic constraints (Zhang,
2013). The system is flexible with respect to in-
put constraints, performing abstract word ordering
when no constraints are given, but gives increas-
ingly confined outputs when more POS and de-
pendency relations are specified. We retrain their
model1 using autoparsed data obtained using Stan-
ford Dependency Parser.

1https://github.com/SUTDNLP/ZGen

Figure 4: Cluster graph of partial trees

3.4 Clustering for Topical Diversity

To ensure topical diversity we apply K-means
clustering in the set of partial trees with an aim
of generating a sentence from each of the cluster
as a topical representative of the respective clus-
ter. Cosine similarity between Dbigram frequency
vectors of partial trees is treated as the similarity
metric during clustering. Number of clusters (K)
is decided using the relation,

K = bq ∗ ShannonEntc (6)

where ShannonEnt is the Shannon entropy of uni-
gram distribution of the corpus and q is a constant.

3.5 Generating Cluster Representative
Sentence

Our system generates a single sentence from each
of the partial tree clusters identified as described
in section 3.4 to represent the cluster in final sum-
mary. Here we search for a subset of partial trees
from each cluster which maximise the total rel-
evance and total combinability of the partial trees
in the selected subset. Relevance of a partial tree is
defined as the total weight of all dependency edges
calculated using the Equation 2.

A data structure which searchably organizes the
relevance and combination probabilities of partial
trees belonging to a cluster is essential for formu-
lating the partial tree subset selection as an integer
linear programming problem. For this purpose we
visualize the entire partial tree information orga-
nized in a cluster graph (CG) as shown in Figure
4 in which nodes represent partial trees, and edge
weights represent the combination probability of
partial trees represented by the edge nodes calcu-
lated using the Equation 4. An edge exists between
two nodes if the partial trees at the nodes contain
mention about same named entity.

From cluster graph we try to extract a con-
nected subgraph (SG) which maximizes the
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objective function which takes a binary indicator
vector representing a sub-graph of cluster graph
as argument.
F(x1, . . . , xn, e1,1, . . . , en−1,n)→

∑
iεNodesR(xi)∗

xi + λ ∗∑{i,j}εEdgesW ({i, j}) ∗ eij (7)

subject to constraints,

xi + xj − 2 ∗ eij >= 0→ C1

xi + xj − 2 ∗ eij <= 1→ C2

ei,j <= I(xi, xj)→ C3∑
i xi ∗ size(i) <= MaxLen→ C4

xi + ancestor(i) < 1→ C5

where λ is a constant, R(i) is the relevance of
partial tree at node i, W({i,j}) is the weight of the
edge {i,j} in CG, Nodes is the set of all nodes in
CG and Edges is the set of all edges in CG.

xi=
{

1 if node i is present in input SG
0 otherwise

eij=
{

1 if edge {i,j} is present in input SG
0 otherwise

I(xi, xj)=
{

1 if edge {i,j} is present in CG
0 otherwise

ancestor(i) indicator variable that represents a par-
tial tree that is extracted from a ancestor subtree of
the subtree from which i is extracted (Explained in
section 3.1). size(i) is the total size of all words in
subtree i and MaxLen is the maximum size of a
sentence in the input corpus.

The constraints C1 and C2 ensure that an edge
will be present if and only if the corresponding
edge nodes in CG are present in the input vector,
while C3 ensures that the input vector represents
a subgraph of CG. The constraint C4 keeps an up-
per bound on the size of sentence that is generated
from a single cluster, while C5 ensures that partial
trees with overlapping information are not present
together in the selected subset of partial trees in a
cluster.

The set of partial trees represented by the nodes
of the subgraph that maximizes the objective func-
tion in Equation 7 functions as the syntactic in-
gredients to generate the cluster’s representative
sentence. A selected subset of partial trees are
linearized using the transition based syntactic lin-
earization model detailed in Section 3.3 to gener-
ate cluster representative sentence.

4 Experiments

We evaluate our method using the test sets of DUC
2004, DUC-2007 and TAC-2011. In particular,
the set of attributes of the summary including con-
tent coverage of summaries and linguistic quality
and factuality of newly generated summary sen-
tences are evaluated. The content coverage is eval-
uated using ROUGE (Lin, 2004) and we relied on
human evaluation for evaluating linguistic quality
and factuality.

4.1 Data
DUC 2004, DUC-2007 and TAC-2011 consist of
several corpora, each of them consisting of 10 doc-
uments and four model summaries for those 10
documents. We have tuned our development pa-
rameters using DUC 2003 dataset.

4.2 Settings
The values of α, β, σ, q and λ are tuned on the de-
velopment set for optimum content coverage and
sentence quality. In order to objectively evaluate
a summary sentence generated by linearizing a set
of partial trees, we need a human written reference
sentence of high linguistic quality which is written
after carefully understanding the information con-
tained in selected partial trees. As it is timecon-
suming to create such reference sentences for each
of the combination constituted by the possible val-
ues of α, β, σ, q and λ, we choose to separate pa-
rameter tuning for optimal content coverage and
sentence quality. Optimal values of α, β, σ and q
contributes prominently for better content cover-
age while that of λ contributes for better sentence
quality as it weights combinability of partial trees.
In Subsections 4.2.1 and 4.2.2 we explain how we
tune different development parameters for optimal
content coverage and sentence quality.

4.2.1 Tuning α, β, σ and q for maximum
content coverage

The values α, β, σ and q are optimised for maxi-
mum content coverage where pruned partial trees
are extracted to fill the allotted summary space
without any combination to generate summary
sentences. Content coverage is measured as the
sum of ROUGE-1 and ROUGE-2 scores with ref-
erence summaries on the DUC-2003 dataset. The
values of α, β, σ and q optimized using grid search
to give maximum average ROUGE score for cor-
pora in DUC-2003 are 0.5, 0.15, 0.5 and 1 respec-
tively.
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System DUC 2004 DUC 2007 TAC 2011
Metric R-1 R-2 R-SU4 R-1 R-2 R-SU4 R-2 R-SU4
CompAbsum (Banerjee et al., 2015) - 0.120 0.148 - - - - -
PhraseAbSum (Bing et al., 2015) - - - - - - 0.117 0.147
Semantic (Li, 2015) - - - 0.421 0.110 0.150 - -
WordCoverage(Dbigram) 0.382 0.096 0.113 - - - - -
PartTreeAbSum(ours) 0.439 0.120 0.140 0.431 0.109 0.150 0.113 0.141

Table 1: Comparison with state of the art

λ ROUGE BLEU NCS
0 0.431 0.41 17%
9 0.429 0.41 27%
27 0.410 0.48 61%
42 0.403 0.54 70%
48 0.401 0.571 70%
75 0.373 0.579 77%
105 0.361 0.570 79%

Table 2: Optimizing λ for better topical coverage
sentence quality

4.2.2 Tuning λ for optimum content coverage
and sentence quality

The values of α, β, σ and q are preset to the opti-
mum values identified in the section above. The
value of λ is varied from 0 to 100 with an in-
crement of 3 and set partial trees to form each
of the summary sentences for all corpora in DUC
2003 is identified. We asked a human annotator to
write a linear sentence out of each of the selected
partial trees sets without using new words which
are not present in partial tree nodes in the set and
the BLEU score of generated summary sentences
with respect to the human written sentences is es-
timated. For each value of λ we estimate the aver-
age ROUGE-1 and BLEU for the generated sum-
maries and summary sentences respectively. The
value at which total value of average BLEU and
ROUGE-1 scores is maximum is set as the value
of λ during testing. Table 2 reports BLEU and
ROUGE-1 for different values of λ. Column NCS
in the Table 2 represents the percentage of com-
plex sentences generated by linearizing more than
one partial tree.

4.3 Final Results

4.3.1 Content coverage
While evaluating the relevant content coverage of
abstractive summarization system, we also have
to evidently substantiate the effectiveness of noise
pruning done using multi density partial tree ex-
traction algorithm. For this purpose we have
created extractive summarizer using maximum
weighted word coverage algorithm Takamura and

Okumura (2009), which tries to extract sentences
containing maximum weighted Dbigrams in their
dependency trees.

Table 1 shows the results on DUC-2004,
DUC-2007, TAC-2011 along with previous ap-
proaches. In the table R-1,R-2 and R-SU4
represents ROUGE-1, ROUGE-2 and ROUGE-
SU4 (skip-bigrams with unigrams), respectively.
WordCoverage(Dbigram) summarizer using max-
imum weighted word coverage algorithm repre-
sents the word coverage algorithm using Dbigram

weights while PartTreeAbSum abstractive summa-
rization approach detailed in the paper. Results on
DUC-2004 shows that noise-pruning using max-
imum weighted partial tree extraction was effec-
tive in terms of better content coverage. Despite
rephrasing content in many contexts, PartTreeAb-
Sum shows results comparable with previous ap-
proaches. CompAbsum (Banerjee et al., 2015) de-
mands high syntactic overlap between source sen-
tences to recombine and generate new sentences,
otherwise resembles an extractive summarization
system. Our system shows better ROUGE-1 and
equal ROUGE-2 values in DUC-2004 test set.
PhraseAbSum (Bing et al., 2015) which extracts
phrases from the corpus and phrases can enjoy
lower granularity in terms of information content
when compared to partial trees by compromising
topical coherence in summary sentence genera-
tion. Still our results are comparable with that
of PhraseAbSum in TAC 2011. Our results show
competitiveness with Semantic (Li, 2015) which
generate summary content from a corpus level se-
mantic network utilizing linear structures smaller
than a partial tree and does not employ explicit
means to ensure gramaticality.

4.3.2 Linguistic quality and factual accuracy

In order to fully evaluate the effectiveness of an
abstractive summarization approach it is also use-
ful to evaluate the linguistic quality and factual
accuracy of generated sentences. Here linguistic
quality refers to the quality of sentences in terms
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Input Corpus Sentences
Hun Sen’s Cambodian People’s Party won 64 of the 122 parliamentary seats in July’s elections [1]

Sam Rainsy and a number of opposition figures have been under court investigation for a grenade attack on
Hun Sen’s Phnom Penh residence on Sep. [2]

Hun Sen was not home at the time of the attack. [3]

Ranariddh and Sam Rainsy have charged that Hun Sen’s victory in the elections was achieved
through widespread fraud. [4]

Sentence Generated by PhraseAbSum (Bing et al., 2015)
Sam Rainsy and a number of opposition figures, have been under court investigation for a grenade
attack on Hun Sen’s Phnom Penh residence on Sep, charged that Hun Sen’s victory
in the elections was achieved through widespread fraud (source sentences [2] and [4])
Sentences Generated by PartTreeSum (Current Work)
Sam Rainsy and a number of opposition figures have been under court investigation for attack on Hun Sen residence,
at the time of the attack Hun Sen (He) was not home
(source sentences [2] and [3])
Hun Sen’s party won 64 of the 122 parliamentary seats in elections,
victory in the elections was achieved through widespread fraud, Ranariddh and Sam Rainsy have charged
(source sentences [1] and [4])

Table 3: Tree Combination vs Phrase Combination

LQ FA
Human Summary 4.5 4.3
PartTreeSum(WC) 2.1 2.32
PartTreeSum 3.15 3.09

Table 4: Human Evaluation on sentence quality

of grammaticality and readability, and factual ac-
curacy refers to how much the information con-
veyed by the generated summary sentences are
true with respect to what is contained in the input
corpus. For this purpose we employed 4 manual
evaluators who are post-graduate students in En-
glish literature. 10 random corpora were chosen
for manual evaluation and we asked the evaluators
to read the documents in each corpus and rate cor-
responding summary sentences for their linguistic
quality and factual accuracy.

For each corpus the summaries participated in
manual evaluation include a randomly chosen hu-
man summary for corpus, current approach for ab-
stractive summarization (PartTreeSum), the cur-
rent approach without combinability measure by
setting λ to 0 (PartTreeSum(WC)). Human evalu-
ation results shown in Table 4 proves that linguis-
tic quality and factual accuracy have considerably
increased with the introduction of combinability
measure.

4.4 Discussions

Tree combination vs phrase combination: Ta-
ble 3 contains the fours input corpus sentences
in one test example and sentences generated by

PhraseAbSum (Bing et al., 2015) and the current
work (PartTreeSum), PhraseAbSum could gener-
ate only one sentence respectively, due to the hard
constraint for verb phrases to coincidentally share
same noun phrase in source sentences and the sen-
tence exhibit poor topical coherence. In contrast,
PartTreeSum is flexible to generate more sentences
and the Combinablity component in Equation 7
ensures that generated summary sentence contain
topically related content. The original content is
rephrased when required as observed in the sec-
ond half of generated sentences. In Table 3, the
summary sentences generated by PartTreeSum are
more topically coherent compared to those gener-
ated by PhraseAbSum.
Error analysis : We have analysed the low-rated
sentences from human evaluators with their cor-
responding set of partial trees. Though the par-
tial trees contained information which can be com-
bined in a single complex sentence, text aggre-
gation during linearization should be more effec-
tive to improve the quality of sentences. For fu-
ture work we plan to construct a neural genera-
tion model, which can aggregate and generate a
sentence from a set of partial trees while main-
taining factual accuracy with respect to the input
documents. Also there should be a means to treat
quotes separately apart from normal sentences.

5 Conclusion

We built a model for abstractive multi-document
summarization by extracting partial dependency
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trees to represent knowledge granules, and gen-
erating summary sentences using combinable
granules utilizing syntactic linearization. Com-
pared to existing methods for the task, our method
has the advantages of generating new sequential
sentential structures by rephrasing information if
required as decided by the linearization model.
On standard evaluation of using ROUGE metric
and human evaluation for qualitative aspects
of summary, this method showed competitive
accuracies to the state-of-the-art methods for
multi-document summarization.
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