
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 644–653,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

An Ensemble Method with Sentiment Features and Clustering Support

Nguyen Huy Tien
Japan Advanced Institute of

Science and Technology (JAIST)
ntienhuy@jaist.ac.jp

Nguyen Minh Le
Japan Advanced Institute of

Science and Technology (JAIST)
nguyenml@jaist.ac.jp

Abstract

Deep learning models have recently been
applied successfully in natural language
processing, especially sentiment analysis.
Each deep learning model has a particu-
lar advantage, but it is difficult to com-
bine these advantages into one model, es-
pecially in the area of sentiment analy-
sis. In our approach, Convolutional Neu-
ral Network (CNN) and Long Short Term
Memory (LSTM) were utilized to learn
sentiment-specific features in a freezing
scheme. This scenario provides a novel
and efficient way for integrating advan-
tages of deep learning models. In addi-
tion, we also grouped documents into clus-
ters by their similarity and applied the pre-
diction score of Naive Bayes SVM (NB-
SVM) method to boost the classification
accuracy of each group. The experiments
show that our method achieves the state-
of-the-art performance on two well-known
datasets: IMDB large movie reviews for
document level and Pang & Lee movie re-
views for sentence level.

1 Introduction

The emergence of web 2.0, which allows users to
generate content, is causing the rapid increase in
the amount of data. This platform, which enables
millions of users to share information and com-
ments, has a high demand for extracting knowl-
edge from user-generated content. An important
information to be analyzed from those comments
is opinions/sentiments, which express subjective
opinions of particular users. Sentiment analysis
is a fundamental task and has attracted a huge
amount of research in recent years (Pang and Lee,
2008; Liu, 2012). The task calls for identifying the

sentiment polarity (positive, negative) of a com-
ment or review.

Wang (2012) used a Support Vector Machine
variant with Naive Bayes feature (NBSVM). Pre-
senting a document or a sentence with Bag of
bi-gram features, NBSVM consistently performs
well across datasets of long and short reviews.
Recently, the success of deep learning in natu-
ral language processing has led to many efficient
methods for sentiment analysis such as Paragraph
Vector (Le and Mikolov, 2014), CNN (Kalch-
brenner et al., 2014; Kim, 2014; Zhang and Wal-
lace, 2015), LSTM (Wang et al., 2015; Liu et al.,
2015). In Paragraph Vector, Le and Mikolov em-
ployed the technique of Word embedding repre-
sentation using neural networks (Bengio et al.,
2003; Collobert and Weston, 2008; Mnih and Hin-
ton, 2009; Turian et al., 2010; Mikolov et al.,
2013) to represent a document or paragraph as a
vector. This document modeling outperformed the
Bag of Words model in sentiment analysis and in-
formation retrieval. Li (2015) has enhanced the
architecture of Paragraph Vector by allowing the
model to predict not only words but also n-gram
features (DVngram). CNN is capable of capturing
local relationships between neighbor words in a
sentence but fails for long-distance dependencies.
LSTM can handle CNN’s limitation because it is
able to memorize information for a long period of
time. Our motivation is to build a combination ap-
proach taking the advantages of these methods.

In this paper, we separately designed CNN
and LSTM models to encode sentiment informa-
tion into feature vectors. To apply for senti-
ment classification, these sentiment-specific vec-
tors and the semantic-specific DVngram vector
were passed into the 3-layer neural network. In
sentiment analysis, two sentences with a slight dif-
ference could provide opposite sentiments. Gener-
ative models, however, have a tendency to encode

644

Figure 1: The proposed framework for sentiment analysis

similar sentences/documents into similar vectors.
For that reason, we designed an autoencoder
model to learn representation vectors for sen-
tences/documents and used these vectors for clus-
tering. The prediction score of NBSVM method
is provided to enhance the sentiment prediction of
each cluster. Figure 1 shows the architecture of
our framework.

We compared our method with NBSVM, CNN,
LSTM, Paragraph Vector, LinearEnsemble (Mes-
nil et al., 2014), DSCNN (Zhang et al., 2016)
on three well-known datasets: IMDB large movie
reviews (Maas et al., 2011) for document level,
Pang & Lee (2005) movie reviews and Stanford
Sentiment Treebank (Socher et al., 2013) for sen-
tence level. The experimental results show that our
method consistently performs well on both docu-
ment and sentence level data. The main contribu-
tions of this work are as follows:

• We applied a freezing scheme to CNN and
LSTM models for encoding sentiment infor-
mation into vectors. These vectors provide
a simple and efficient way to integrate the
strong abilities of deep learning models.

• We proposed a scenario to divide data
into groups of similar sentences/documents.

Then, each sentence/document in each group
is represented by the prediction score of NB-
SVM method and the prediction score of the
proposed 3-layer neural network. We pro-
posed an ensemble method to employ these
scores.

2 Sentiment representation learning

In this section, we describe the freezing scheme to
generate sentiment vectors from two models: (i)
CNN, (ii) LSTM; and a method to employ these
vectors. To feed into LSTM/CNN model, each
word of a sentence/document is transformed into
a word embedding vector using Word2Vec1.

Le and Mikolov (2014) extended the word em-
bedding learning model by incorporating para-
graph information. Given a paragraph, Le’s
method captures and encodes semantics into a rep-
resentation vector or a semantic feature.

This work inspired us to develop a document
representation learning model to capture senti-
ment information. In our work, we proposed an
approach to generating sentiment representation
from CNN and LSTM models. Our idea is to train
CNN and LSTM models under the sentiment clas-
sification task. In a deep learning network, we

1https://code.google.com/p/word2vec/

645

Figure 2: Illustration of our CNN framework to generate sentiment features. Given a sequence of d-
dimension word embeddings (d = 4), the model applies 4 filters: 2 filters for region size h = 2 and 2
filters for region size h = 3 to generate 4 feature maps. During the training process, the parameters of
the last neural network layer (blue one) are frozen (untrained)

could separate the model into two parts: (i) Build-
ing target feature - from input samples, the first
part encodes target information into vectors, (ii)
Classifying layer - the second part tries to learn
a layer (or a boundary) for classifying these vec-
tors into target labels. Sentiment vectors gener-
ated by a model, however, are much fitting to the
classifying layer of this model. It is not efficient
to combine two sentiment vectors generated from
two models because each sentiment vector is fit-
ting to its particular classifying layer. To address
this problem, we proposed a freezing scheme. Ac-
cording to this scheme, the parameters of the clas-
sifying layer are initialized from the uniform dis-
tribution and in the training phase, these param-
eters are kept unchanged. This technique makes
sentiment vectors not too fit to a particular classi-
fying layer.

2.1 LSTM for sentiment feature engineering
- LSTM feature

The LSTM architecture was introduced by
Hochreiter (1997). By designing a memory cell
preserving its state over a long period of time
and non-linear gating units regulating information
flow into and out of the cell, Hochreiter made
LSTM able to capture efficiently long distance de-

Figure 3: Illustration of our LSTM model to gen-
erate sentiment vectors. During the training pro-
cess, the parameters of the neural network layer
(blue one) are frozen (untrained)

pendencies of sequential data without suffering the
exploding or vanishing gradient problem of Recur-
rent neural network (Goller and Kuchler, 1996).

Figure 3 explains how to employ the LSTM ar-
chitecture for memorizing sentiment information

646

over sequential data. The model contains two
parts: (i) Building sentiment feature - the LSTM
layer encodes sentiment information of input into
a fixed-length vector; (ii) Classifying layer - this
sentiment-specific representation vector will be
classified by the last neural network (NN) layer
(the blue layer in Figure 3). As applying the freez-
ing scheme, this NN layer’s parameters are un-
changed during the training process.

2.2 CNN for sentiment feature engineering -
CNN feature

We present a sentence of length s as a matrix d×s,
where each row is a d-dimension word embedding
vector of each word. Given a sentence matrix S,
CNN performs convolution on this input via lin-
ear filters. A filter is denoted as a weight ma-
trix W of length d and region size h. W will
have d × h parameters to be estimated. For an
input matrix S ∈ Rd×s, a feature map vector
O = [oo, o1, ..., os−h] ∈ Rs−h+1 of the convo-
lution operator with a filter W is obtained by ap-
plying repeatedly W to sub-matrices of S:

oi = W · Si:i+h−1 (1)

where i = 0, 1, 2, ..., s − h, (·) is dot product and
Si:j is the sub-matrix of S from row i to j.

Each feature map O is fed to a pooling layer to
generate potential features. The common strategy
is 1-max pooling (Boureau et al., 2010). The idea
of 1-max pooling is to capture the most important
feature v corresponding to the particular feature
map by selecting the highest value of that feature
map:

v = max
0≤i≤s−h

{oi} (2)

We have described in detail the process of one
filter. Figure 2 shows an illustration of apply-
ing multiple filters with variant region sizes to ob-
tain multiple 1-max pooling values. After pooling,
these 1-max pooling values from feature maps are
concatenated into a CNN feature carrying senti-
ment information. Intuitively, the CNN feature is
a collection of maximum values from the feature
maps. To make a connection to these values, we
provide an NN layer to synthesize a high-level fea-
ture from the CNN feature. Finally, this high-level
feature is passed to an NN layer with sigmoid acti-
vation to generate the probability distribution over
sentiment labels.

In the training phase, similar to the strategy in
our LSTM model, the last NN layer’s parameters

are kept untrained to make the sentiment vectors
not too fit to a particular classifying layer.

2.3 Classifying with sentiment vectors

Figure 4 visualizes the results of encoding senti-
ments into vectors using our CNN model. As we
can see in the development set, there are some un-
ambiguous cases. Therefore, we add more infor-
mation to CNN sentiment vectors by concatenat-
ing them with LSTM sentiment vectors or DVn-
gram semantic vectors.

As CNN and LSTM sentiment vectors are, how-
ever, generated from models of sentiment clas-
sification, these vectors are easily separated in
terms of sentimental categories by machine learn-
ing methods. In other words, a multi-layer NN
sentiment classifier using both of these vectors as
input reaches the state of perfect classification on
the training set after a few epochs. In this case,
the classifier’s parameters are not efficiently opti-
mized and the classifier’s performance has no im-
provement on the testing set, compared with using
LSTM or CNN for classification (or we call the
model overfitting).

To address this problem, we employ a 3-layer
NN with Dropout regularization (Hinton et al.,
2012) on the first and second layers. By randomly
dropping out each hidden unit with a probabil-
ity p on each presentation of each training case,
Dropout prevents overfitting and provides a way
to combine many variant NN architectures effi-
ciently. By applying Dropout, our model has an
ability to examine efficiently variant combination
ways from feature vectors.

3 Ensemble with clustering support

As we discussed in Section 1, a slight dif-
ference between two sentences could lead to
two opposite sentiments. However, similar sen-
tences/documents have a tendency to be encoded
into similar vectors by generative models. There-
fore, it causes some difficulties in sentiment clas-
sification. To address this problem, we divided
data into groups of similar sentences/documents
and then provided an additional feature to boost
the performance of classification in each group.
For dividing data, we applied autoencoder mod-
els to encode word embedding representations
of sentences/documents into fix-length vectors.
These vectors then were used for clustering sen-
tences/documents. For each sentence/document in

647

(a) Sentiment vectors in the train set

(b) Sentiment vectors in the development set

Figure 4: The t-SNE projection for IMDB
dataset’s sentiment vectors (positive and negative)
generated from our CNN model.

each cluster, the prediction score of the method in
section 2 are combined with the prediction score
of NBSVM. The reason for choosing NBSVM
is that NBSVM is an efficient method not based
on neutral network architectures, and using Bag
of Word model to represent sentences/documents,
which is different from the word embedding repre-
sentation. We consider NBSVM’s score as an ad-
ditional channel and expect it to support well for
each group of similarity sentences/documents in
terms of word embedding representation.

Given a sentence/document, we will have two
prediction scores: one from the proposed method
in section 2 and one from NBSVM. To employ
these scores, we used a voting method. This
scheme allows each classifier fi to give a vote with
a confident ratio ri to the final probability score
over classes distribution as follows:

p(ci|x) =
1
N

N∑
k=1

pk(ci|x)rk (3)

where ci is the ith sentiment class, N is the num-
ber of classifiers, pk(ci|x) is the prediction score
of the classifier k on the ith class for a sen-
tence/document x.

(a) BiLSTM model

(b) CNN model. In MR-L dataset, each region size has
300 filters. In MR-S and SST dataset, each region size
has 100 filters

Figure 5: Autoencoder models

The objective of this ensemble method is to se-
lect a suitable confident ratio for each classifier
to optimize the performance of classification. In
our approach, a 2-layer NN is employed to define
a voting architecture. We consider a feedforward
process in NN as a scheme of voting and the NN’s
weights as confident ratios. Adamax algorithm
(Kingma and Ba, 2014) is applied to optimize the
weights of the model.

Dataset l train test |V |
MR-L 300 25000 25000 169940
MR-S 20 10662 cv 18765
SST 19 9613 1821 16185

Table 1: Summary statistic of datasets. l denotes
the average length of reviews, train and test are
sizes of the training set and the test set respec-
tively, cv is 10-fold cross validation, and |V | is
vocabulary size.

4 Dataset and Experiment setup

4.1 Dataset

We evaluated our models on three well-known
datasets. Table 1 shows the statistic summary of
datasets.

• For document level, IMDB large movie re-
view dataset MR-L is used. Each review con-
tains numerous sentences (Maas et al., 2011).

• For sentence level, Pang & Lee (2005) pro-
vided MR-S dataset having one sentence per

648

movie review. In addition, we also did exper-
iment on Stanford Sentiment Treebank SST
(Socher et al., 2013) - an extension of MR-
S with two labels (positive and negative). In
SST, all sentences and phrases of the training
set are used for training.

4.2 Experimental setup

To tune hyper-parameters of our models, we do a
grid search on 30% of each dataset.

• For MR-L:

– LSTM model has dimension d = 32.
– CNN model: using 3 region sizes of

3, 4, 5; the number of each region size
is 300 and the dimension of penultimate
NN layer is 100.

– 3-layer NN model for classification with
sentiment vectors: the first NN layer has
the same dimension as the input feature,
and the dropout ratio p = 0.9; the sec-
ond NN layer has the dimension of 64
and the dropout ratio p = 0.5.

– Autoencoder models: we examined two
autoencoder models - CNN and BiL-
STM. The details are in Figure 5.

– Clustering: k-mean is applied. The
number of clusters is k = 2.

– Ensemble model: the first NN layer has
the dimension of 3 × the input’s dimen-
sion or the number of classifiers.

• For MR-S and SST: the same configuration
as MR-L, except the number of each region
size is 100.

For word vectors, we obtained pre-trained word
vectors Word2Vec. Its vectors have the dimension
of 300. In our LSTM and CNN models, these
pre-trained word vectors are optimized during the
training process.

5 Results and Discussion

We compared our models against the other meth-
ods showed in table 2 on the binary sentiment clas-
sification task. In SST dataset, we could not re-
produce the result 88.1% of CNN (Kim, 2014).
According to the empirical results, our method
of combining feature vectors 3-layer NN outper-
forms the individual methods: LSTM, CNN, and

DVngram. That proves the efficiency of the fea-
ture combination strategy. In addition, our en-
semble method with clustering support outper-
forms the current state of the art method on MR-
L and MR-S datasets. As we mentioned in Sec-
tion 3, NBSVM uses a different way to present
sentences/documents and a different approach to
learning (a discriminative model), so it gives a
significant support in our ensemble method. On
document level, LSTM method produced a much
lower performance than DVngram method. As a
result, the feature vectors generated from LSTM
model does not support as well as DVngram’s vec-
tors when combining with CNN feature vectors.

5.1 Freezing vs Unfreezing in the last NN
layer of feature engineering phase

In the engineering phase, we freeze (untrain) the
last NN layer’s parameters to create efficient sen-
timent vectors. To evaluate the efficiency of
this technique, we compared our vector’s perfor-
mance against the sentiment-specific vector from
the unfreezing scheme. We passed these vec-
tors to our 3-layer NN model to achieve the re-
sults (details in table 3). One interesting obser-
vation is that the performance of a feature vec-
tor in freezing mode is better than one in un-
freezing mode for most of the cases. In addition,
we combined a sentiment-specific vector with the
semantic-specific vector - DVngram for evaluating
the performance. In general, our freezing scheme
provided a higher performance than the unfreez-
ing scheme. The experimental results show that
our freezing scheme works more efficiently on
CNN model than LSTM model, especially in a
case of combining a sentiment-specific vector and
a semantic-specific vector.

5.2 Evaluation on combining features
In this section, we compared in performance our
approach to combining features from variant mod-
els against Merging scheme which horizontally
merges variant models (details in figure 6).

From the result showed in table 4, we found
that our approach for feature vectors combination
is applied more efficiently to CNN model than
LSTM model. In the scheme of combining fea-
ture vectors, CNN feature vector provides a ro-
bust performance, while LSTM feature vector pro-
vides inconsistent results: better when combining
with CNN feature vector, worse when combin-
ing with DVngram vector (compared with Merg-

649

Method MR-S MR-L SST
LSTM 80.17 86.23 87.81
CNN (Kim, 2014) 81.31 91.18 86.33
DVngram (2015) 73.51 92.14 74.2
NBSVM (2012) 79.26 91.87 80.39
DV-Ensemble (2015) - 93.05 -
DAN (2015) 80.3 89.4 86.3
SA-LSTM (2015) 80.7 92.8 -
DSCNN-Pretrain (2016) 82.2 90.7 88.7

Proposed methods
3-layer NN (CNN-f+LSTM-f) (1) 81.59 91.16 88.41
3-layer NN (CNN-f+DVngram) (2) 81.11 92.98 86.66

Without clustering
Ensemble ((1) + NBSVM) 82.18 92.50 88.36
Ensemble ((2) + NBSVM) 81.1 93.25 87.31

CNN autoencoder
Ensemble ((1) + NBSVM) 82.2 92.55 88.46
Ensemble ((2) + NBSVM) 81.74 93.29 86.87

BiLSTM autoencoder
Ensemble ((1) + NBSVM) 82.22 92.54 88.58
Ensemble ((2) + NBSVM) 81.8 93.32 87.09

Table 2: Accuracy results on the binary sentiment classification task. 3-layer NN(F1 + F2) denotes
using feature vector F1 and F2 as input; CNN-f, LSTM-f denote sentiment-specific feature vectors gen-
erated from the proposed CNN, LSTM respectively; Ensemble(p1 + p2) denotes applying the proposed
Ensemble for the prediction scores of p1 and p2.

Feature MR-S MR-L SST
CNNorg 80.61 91.22 86.05
CNN-f 80.89 91.38 86.27
LSTMorg 78.97 85.5 86.99
LSTM-f 79.11 85.14 87.64
CNNorg + LSTMorg 80.95 90.34 87.31
CNN-f + LSTM-f 81.59 91.16 88.41
CNNorg + DVngram 80.6 92.66 85.34
CNN-f + DVngram 81.11 92.98 86.66
LSTMorg + DVngram 79.38 90.41 87.2
LSTM-f + DVngram 79.59 88.04 88.14

Table 3: Accuracy results of 3-layer NN method
on different features. CNNorg, LSTMorg denote
sentiment-specific features engineering from the
proposed CNN, LSTM without freezing the last
NN layer respectively

Method MR-S MR-L SST
3-layer NN (CNN-f + LSTM-f) 81.59 91.16 88.41
CNN-LSTM 81.07 91.07 86.49
3-layer NN (CNN-f + DVngram) 81.11 92.98 86.66
CNN-DVngram 80.79 92.12 85.39
3-layer NN (LSTM-f + DVngram) 79.59 88.04 88.14
LSTM-DVngram 80.61 92.08 86.49

Table 4: Accuracy results of features combining
scheme and Merging scheme.

ing scheme). In most of the cases in Merging
scheme, a composition model (i.e. CNN-LSTM)
try to reproduce the result of its child models (e.g.
CNN, LSTM) and does not provide a significant
improvement.

Figure 6: The architecture of merging models.

5.3 Error analysis
To get a better sense of the limitation of the pro-
posed model, we manually inspect some cases of
the wrong prediction, which are showed in table
5. These sentences are good examples of the pro-
posed model’s weakness.

The first source of false hits is the lack of syn-
tactic information. The model tried to identify
sentiment words in a sentence (i.g. not, bad, at
all) but it failed to interpret the whole sentence.

650

The second reason of the wrong prediction comes
from missing context information. A word (i.g.
foul, freaky) carries a positive or negative senti-
ment depend on context or domains. We believe
that the promising direction in future work will be
to improve the model for capturing syntactic and
context information.

id Sentence L

1 Not a bad journey at all. 1
2 The best way to hope for any chance of

enjoying this film is by lowering your
expectations.

0

3 You’ve seen them a million times. 0
4 A whole lot foul, freaky and funny. 1

Table 5: Examples of the wrong prediction. L de-
notes the true label with 0,1 for negative, positive
sentiment labels respectively)

6 Related work

Sentiment analysis is a study of determining
people’s opinions, emotions toward to entities.
Taboada (2011) assigned sentiment labels to text
by extracting sentiment words. Liu (2012) formu-
lated the sentiment analysis as a classification task
and applied machine learning techniques for this
problem. In this approach, dominant research con-
centrated on designing effective features such as
word ngram (Wang and Manning, 2012), emoticon
(Zhao et al., 2012), sentiment words (Kiritchenko
et al., 2014). However, designing handcraft fea-
tures requires an intensive effort.

Recently, the emergence of deep learning mod-
els has provided an efficient way to learn contin-
uous representation vectors for sentiment classi-
fication. Bengio (2003) and Mikolov (2013) in-
troduced learning techniques for semantic word
representation. By using a neural network in the
context of a word prediction task, the authors gen-
erated word embedding vectors carrying seman-
tic meanings. Embedding vectors of words which
share similar meanings are close to each other. Se-
mantic information maybe provides opposite opin-
ions in different contexts. Therefore, some re-
search (Socher et al., 2011; Tang et al., 2014)
worked on learning sentiment-specific word rep-
resentation by employing sentiment text. For sen-
tence and document level, composition approach
attracted many studies. Yessenalina and Cardie
(2011) modeled each word as a matrix and used

iterated matrix multiplication to present a phrase.
Deep recursive neural networks (DRNN) over tree
structures were employed to learn sentence rep-
resentation for sentiment classification such as
DRNN with binary parse trees (Irsoy and Cardie,
2014), Recursive tensor neural network with sen-
timent treebank (Socher et al., 2013). CNN has re-
cently been applied efficiently for semantic com-
position (Kim, 2014; Zhang and Wallace, 2015).
This technique uses convolutional filters to capture
local dependencies in term of context windows
and applies a pooling layer to extract global fea-
tures. Le and Mikolov (2014) applied paragraph
information into the word embedding technique to
learn semantic representation. Tang et al. (2015)
used CNN or LSTM to learn sentence representa-
tion and encoded these semantic vectors in docu-
ment representation by Gated recurrent neural net-
work. Zhang (2016) proposed Dependency Sen-
sitive CNN to build hierarchically textual repre-
sentations by processing pretrained word embed-
dings. Wang (2016) used a regional CNN-LSTM
to predict the valence arousal ratings of texts.

In our work, we designed a freezing approach
for learning efficiently sentiment document rep-
resentation from two variant deep-learning mod-
els: CNN and LSTM. Afterward, these sentiment-
specific vectors and the semantic DVngram vector
were employed for sentiment classification. This
strategy captures the advantages of variant models
by using vectors, which each model generated. We
also used NBSVM in clustering mode to boost the
performance of classification.

7 Conclusion

In this work, we introduced a novel approach to
synthesize feature vectors for sentiment analysis
from CNN, LSTM. These vectors provide a sim-
ple and efficient way to integrate the strong abili-
ties of these models. For sentiment classification
with CNN, LSTM vectors, we proposed a 3-layer
neural network which efficiently takes advantages
of these vectors. In addition, we proposed a strat-
egy to cluster documents/sentences by their sim-
ilarity. In each cluster, we applied an ensemble
method of the 3-layer neural network and NB-
SVM. It achieves the state of the art results in the
datasets: MR-S and MR-L. In the current work,
we just focused on individual models. Research
on applying combination models for feature engi-
neering maybe provides interesting results.

651

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. journal of machine learning research,
3(Feb):1137–1155.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. 2010.
A theoretical analysis of feature pooling in visual
recognition. In Proceedings of the 27th interna-
tional conference on machine learning (ICML-10),
pages 111–118.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems, pages 3079–3087.

Christoph Goller and Andreas Kuchler. 1996. Learning
task-dependent distributed representations by back-
propagation through structure. In Neural Networks,
1996., IEEE International Conference on, volume 1,
pages 347–352. IEEE.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language.
In Advances in Neural Information Processing Sys-
tems, pages 2096–2104.

Mohit Iyyer, Varun Manjunatha, Jordan L Boyd-
Graber, and Hal Daumé III. 2015. Deep unordered
composition rivals syntactic methods for text classi-
fication. In ACL (1), pages 1681–1691.

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A convolutional neural net-
work for modelling sentences. arXiv preprint
arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML,
volume 14, pages 1188–1196.

Bofang Li, Tao Liu, Xiaoyong Du, Deyuan Zhang,
and Zhe Zhao. 2015. Learning document embed-
dings by predicting n-grams for sentiment classi-
fication of long movie reviews. arXiv preprint
arXiv:1512.08183.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural net-
works and word embeddings. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2015).

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Grégoire Mesnil, Tomas Mikolov, Marc’Aurelio Ran-
zato, and Yoshua Bengio. 2014. Ensemble of
generative and discriminative techniques for senti-
ment analysis of movie reviews. arXiv preprint
arXiv:1412.5335.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In
Advances in neural information processing systems,
pages 1081–1088.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
ACL.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 151–161. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models

652

for semantic compositionality over a sentiment tree-
bank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP),
volume 1631, page 1642. Citeseer.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational lin-
guistics, 37(2):267–307.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1422–1432.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL (1), pages 1555–1565.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

Jin Wang, Liang-Chih Yu, K Robert Lai, and Xuejie
Zhang. 2016. Dimensional sentiment analysis us-
ing a regional cnn-lstm model. In The 54th Annual
Meeting of the Association for Computational Lin-
guistics, volume 225.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

Xin Wang, Yuanchao Liu, Chengjie Sun, Baoxun
Wang, and Xiaolong Wang. 2015. Predicting po-
larities of tweets by composing word embeddings
with long short-term memory. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing, vol-
ume 1, pages 1343–1353.

Ainur Yessenalina and Claire Cardie. 2011. Compo-
sitional matrix-space models for sentiment analy-
sis. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
172–182. Association for Computational Linguis-
tics.

Rui Zhang, Honglak Lee, and Dragomir Radev. 2016.
Dependency sensitive convolutional neural networks
for modeling sentences and documents. arXiv
preprint arXiv:1611.02361.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

Jichang Zhao, Li Dong, Junjie Wu, and Ke Xu. 2012.
Moodlens: an emoticon-based sentiment analysis
system for chinese tweets. In Proceedings of the
18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1528–
1531. ACM.

653

