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Abstract

Building a persona-based conversation
agent is challenging owing to the lack of
large amounts of speaker-specific conver-
sation data for model training. This pa-
per addresses the problem by proposing
a multi-task learning approach to train-
ing neural conversation models that lever-
ages both conversation data across speak-
ers and other types of data pertaining to the
speaker and speaker roles to be modeled.
Experiments show that our approach leads
to significant improvements over baseline
model quality, generating responses that
capture more precisely speakers’ traits and
speaking styles. The model offers the ben-
efits of being algorithmically simple and
easy to implement, and not relying on
large quantities of data representing spe-
cific individual speakers.

1 Introduction

Conversational engines are key components of
intelligent “personal assistants” such as Apple’s
Siri and Amazon’s Alexa. These assistants can
perform simple tasks, answer questions, pro-
vide recommendations, and even engage in chit-
chats (De Mori et al., 2008; Chen et al., 2015,
2016). The emergence of these agents has
been paralleled by burgeoning interest in train-
ing natural-sounding dialog systems from conver-
sational exchanges between humans (Ritter et al.,
2011; Sordoni et al., 2015; Luan et al., 2014, 2015;
Vinyals and Le, 2015). A major challenge for
data-driven systems is how to generate output that
corresponds to specific traits that the agent needs
to adopt, as they tend to generate “consensus” re-

* This work was performed at Microsoft.

User input: I am getting a loop back to login page.
Baseline model: Ah, ok. Thanks for the info.
Our model: I’m sorry to hear that. Have you tried
clearing your cache and cookies?

Figure 1: Existing neural conversational models
(baseline) tend to produce generic responses. The
system presented in this paper better represents the
speaker role (support person), domain of expertise
(technical), and speaking style (courteous).

sponses that are often commonplace and uninter-
esting (Li et al., 2016a; Shao et al., 2017).

This is illustrated in Fig. 1, where the output
of a standard Sequence-to-Sequence conversation
model is contrasted with that of the best system
presented in this work. The baseline system gen-
erates a desultory answer that offers no useful in-
formation and is unlikely to inspire user confi-
dence. The output of the second system, how-
ever, strongly reflects the agent’s role in providing
technical support. It not only evidences domain
knowledge, but also manifests the professional po-
liteness associated with a speaker in that role.

The challenge for neural conversation systems,
then, is that an agent needs to exhibit identifi-
able role-specific characteristics (a ‘persona’). In
practice, however, the conversational data needed
to train such systems may be scarce or unavail-
able in many domains. This may make it diffi-
cult to train a system represent a doctor or nurse,
or a travel agent. Meanwhile, appropriate non-
conversational data (e.g., blog and micro-blog
posts, diaries, and email) are often abundant and
may contain much richer information about the
characteristics of a speaker, including expressive
style and the role they play. Yet such data is dif-
ficult to exploit directly, since, not being in con-
versational format, it does not mesh easily with
existing source-target conversational models.
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In this paper we address the joint problems of
blandness and data scarcity with multi-task learn-
ing (Caruana, 1998; Liu et al., 2015; Luan et al.,
2016a). This is a technique that has seen success in
machine translation, where large monolingual data
sets have been used to improve translation models
(Sennrich et al., 2016). The intuition is that if two
tasks are related, then joint training and parameter
sharing can enable one task to benefit the other. In
our case, this sharing is between two models: On
one hand, a standard Sequence-to-Sequence con-
versational models is trained to predict the cur-
rent response given the previous context. On the
other hand, using the non-conversational data, we
introduce an autoencoder multi-task learning strat-
egy that predicts the response given the same se-
quence, but with the target parameters tied with
the general conversational model.

Our experiments with 4M conversation triples
show that multi-task adaptation is effective in that
the generated responses capture speaker-role char-
acteristics more precisely than the baseline. Ex-
periments on a corpus of Twitter conversations
demonstrate that multi-task learning can boost per-
formance up to 46.2% in BLEU score and 23.0%
in perplexity, with a commensurate consistency
gains in human evaluation.

2 Related Work

2.1 Conversational Models

In contrast with much earlier work in dialog, our
approach to conversation is wholly data-driven
and end-to-end. In this respect, it follows a line
of investigation begun by (Ritter et al., 2011),
who present a statistical machine translation based
conversation system. End-to-end conversation
models have been explored within the frame-
work of neural networks (Sordoni et al., 2015;
Vinyals and Le, 2015; Li et al., 2016a,b; Luan
et al., 2017). The flexibility of these Sequence-
to-Sequence (SEQ2SEQ) encoder-decoder neural
models opens the possibility of integrating differ-
ent kinds of information beyond the single previ-
ous turn of the conversation. For example, (Sor-
doni et al., 2015) integrate additional contextual
information via feed-forward neural networks. (Li
et al., 2016a) use Maximum Mutual Information
(MMI) as the objective function in order to pro-
duce more diverse and interesting responses. (Mei
et al., 2017) introduce an attention mechanism
into an encoder-decoder network for a conversa-

tion model.
(Wen et al., 2015) introduced a Dialog-Act

component into the LSTM cell to guide generated
content. (Luan et al., 2016b) use a multiplicative
matrix on word embeddings to bias the word dis-
tribution of different speaker roles. That work,
however, assumes only two roles (questioner and
answerer) and is less generalizable than the model
proposed here.

Most relevant to the present work, (Li et al.,
2016b) propose employing speaker embeddings to
encode persona information and allow conversa-
tion data of similar users on social media to be
shared for model training. That work focused on
individuals, rather than classes of people. The
approach, moreover, is crucially dependent on
the availability of large-scale conversational cor-
pora that closely match the persona being mod-
eled—data that, as we have already observed, may
not be readily available in many domains. In this
work, we circumvent these limitations by bringing
non-conversation corpora (analogous to the use of
monolingual data in machine translation) to bear
on a general model of conversation. Doing so al-
lows us to benefit in terms of representing both the
role of the agent and domain content.

2.2 Multi-Task Learning

Multi-task learning has been successfully used to
improve performance in various tasks, including
machine translation (Sennrich et al., 2016) and im-
age captioning (Luong et al., 2016). (Sennrich
et al., 2016) report methods of exploiting mono-
lingual data—usually available in much larger
quantities—to improve the performance of ma-
chine translation, including multi-task learning of
a language model for the decoder. Autoencoders
are widely used to initialize neural networks (Dai
and Le, 2015). (Luong et al., 2016) show that an
autoencoder of monolingual data can help improve
the performance of bilingual machine translation
in the form of multi-task learning. In our models,
we share the decoder parameters of a SEQ2SEQ

model and autoencoder to incorporate textual in-
formation through multi-task learning.

3 Background

3.1 Task definition

The task of response generation is to generate a
response given a context. In this paper, follow-
ing (Sordoni et al., 2015), each data sample is
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represented as a (context,message,response) triple,
where context is the response of the previous turn,
and the message is the input string of the cur-
rent turn. The response, then, is the sequence to
be predicted given these two strings of informa-
tion. In addition to the triple, large-scale non-
conversational data from the responder is provided
as side information.

3.2 Sequence-to-Sequence Conversational
Models

Given a sequence of inputs X =
{x1, x2, . . . , xnX} and the corresponding output
Y = {y1, y2, . . . , ynY }, Sequence-to-Sequence
(SEQ2SEQ) models use a Long Short-Term
Memories (LSTM) (Hochreiter and Schmidhuber,
1997) to encode the input sequence, taking the last
hidden state of encoder hnX to represent output
sequence. The decoder is initialized by hnX , and
predict output yt given hnX and yt−1.

Our input is context followed by message, de-
limited by an EOS token. The LSTM cell includes
an input gate, a memory gate and an output gate,
respectively denoted as it, ft and ot.

3.3 Persona-based conversational model

The persona-based conversational model is a vari-
ant of standard SEQ2SEQ models, with user in-
formation encoded at decoder. As in standard
SEQ2SEQ models, the persona-based conversa-
tional model presented in (Li et al., 2016b) first
encodes the source message into a vector represen-
tation using the source LSTM. Then, for each el-
ement in the target side, hidden units are obtained
by combining the representation produced by the
target LSTM at the previous time step ht−1, the
word representations et at the current time step,
and the embedding si for user i.

it
ft

ot

lt

 =


σ
σ
σ

tanh

W ·
ht−1

et
si

 (1)

ct = ft · ct−1 + it · lt (2)

ht = ot · tanh(ct) (3)

where W ∈ R4K×3K . This model assigns one K
dimensional vector representation to each of the
speakers in the corpus. It thus relies on the avail-
ability of sufficient conversational training data

of each speaker to learn meaningful speaker em-
beddings. Since this type of data is usually hard
to obtain in real application scenarios, we need
a method that can leverage easier-to-obtain non-
conversational personal data in order to incor-
porate richer personal information into conversa-
tional models.

4 A Multi-task Learning Approach

Given the limitations of previous methods, we pro-
pose the following multi-task learning approach
in order to simultaneously leverage conversational
data across many users on the one hand, and per-
sonal but non-conversation data (written text) of a
specific user on the other. We define the following
two tasks:

• A SEQ2SEQ task that learns conversational
models described in Section 3 using conver-
sation data of a large general population of
speakers.
• An AUTOENCODER task that utilizes large

volumes of non-conversational personal data
from target speakers.

AUTOENCODER: An AUTOENCODER is an un-
supervised method of obtaining sequence embed-
dings based on the SEQ2SEQ framework. Like a
SEQ2SEQ model, it comprises encoding and de-
coding components built by an LSTM sequen-
tial model as in Section 3.2. Instead of mapping
source to target as in a SEQ2SEQ model, the AU-
TOENCODER predicts the input sequence itself.

Parameter sharing: Given the same context,
we want to generate a response that can mimic
a particular target speaker. Therefore, we share
only the decoder parameters of SEQ2SEQ and AU-
TOENCODER while performing multi-task learn-
ing, so that the language model for generation can
be adapted to the target-speaker . Since the context
is not constrained and can be from any speaker,
the encoder parameters are not tied and are learned
separately by each task. (See Fig. 2.)

Training Procedure The training procedure is
shown in Fig. 3. In each iteration, the gradi-
ent of each task is calculated according to the
task-specific objective. The training process fin-
ishes when perplexity performance converges in
dev set and the best model is selected according to
SEQ2SEQ perplexity performance.
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Figure 2: Framework of Multi-task learning. The parameters of decoder are shared across the two tasks.

Training procedure of Multi-task learning:
1. Randomly initialize SEQ2SEQ and AUTOEN-

CODER encoder parameters.
2. Train SEQ2SEQ model until dev set performance

converges in perplexity.
3. While not dev set performance converged in per-

plexity do:
(a) Randomly pick a batch of samples from gen-

eral conversational data.
(b) Compute loss and gradient for SEQ2SEQ

task and update parameters.
(c) Randomly pick a batch of samples from non-

conversational data of the target user.
(d) Compute loss and gradient for AUTOEN-

CODER task and update parameters.
4. Choose the best model based on SEQ2SEQ per-

plexity performance on dev set.

Figure 3: Training Procedure

5 Single v.s. Multiple speaker Settings

Two variants of SEQ2SEQ task are explored:

• MTASK-S Personalized response generation
for a single user, which uses the basic
SEQ2SEQ conversational model as described
in Section 3.2.
• MTASK-M Response generation for mul-

tiple users, which uses the persona-based
SEQ2SEQ model described in Section 3.3.

MTASK-S: We train a personalized conversa-
tional model for one speaker at a time. For each
target user, we need to perform separate multi-task
training which results in N models for N users.
This is inefficient in both memory and computa-
tional cost.

MTASK-M: In order to address the memory
and computation issue of MTASK-S, we intro-
duce user embeddings to SEQ2SEQ model as in
Eq. 1. We first train a persona-based conversa-

tional model using conversational data for a gen-
eral population of speakers. This model differs
MTASK-S in that it introduces two parameter ma-
trices into the decoder: a speaker embedding si

and its corresponding weight matrix that can de-
couple speaker dependent information from gen-
eral language information. In the multi-task stage,
since the target users have never appeared in the
training data, we randomly initialize the user em-
beddings for those users and follow the training
procedure as in Figure 3.1 The embedding of the
unseen user is updated by AUTOENCODER train-
ing together with the decoder LSTM parameters.

6 Experimental Setup

6.1 Datasets

As training data, we use a collection of 3-turn
conversations extracted from the Twitter FireHose.
The dataset covers the six-month period beginning
January 1, 2012, and was limited to conversations
where the responders had engaged in at least 60 3-
turn conversational Twitter interactions during the
period. In other words, these are people who rea-
sonably frequently engaged in conversation, and
might be experienced “conversationalists.”

We selected the top 7k Twitter users who had
most conversational data from that period (at least
480 turns, average: 571). This yielded a total of
approximately 4M conversational interactions. In
addition to these 7k general Twitter users, we also
selected the 20 most frequent users, employing
all of their conversation data for development and
test. Twitter users typically have many more sin-
gle posts than posts that interact with other people.

1The model can also be learned without pre-training
(omitting step 2), but we found that pre-training usually
helps.
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We therefore treat single posts as non-conversation
data. All single posts of the 20 top users (at least
9k per user, average 10.3k) were extracted for
multi-task learning. The 20 users were of diverse
backgrounds, including technical support person-
nel, novelists, and sports fans.

6.2 Evaluation
As in previous work (Sordoni et al., 2015), we
use BLEU and human evaluation for evaluation.
BLEU (Papineni et al., 2002) has been shown to
correlate fairly well with human judgment at a
document- and corpus-level, including on the re-
sponse generation task.2 We also report perplexity
as an indicator of model capability.

We additionally report degree of diversity by
calculating the number of distinct unigrams and
bigrams in generated responses. The value is
scaled by total number of generated tokens to
avoid favoring long sentences (shown as distinct-1
and distinct-2). Finally, we present a human eval-
uation that validates our main findings.

6.3 Baseline
Our baseline is our implementation of the LSTM-
MMI of (Li et al., 2016a). The MMI algorithm
reduced the blandness of SEQ2SEQ models by
scoring the generated N-best list with a function
that linearly combines a length penalty and the log
likelihood of source given target:

log p(R|M, v) + λ log p(M |R) + γ|R| (4)

where p(R|M,v) is the probability of the gener-
ated response given message M and the respon-
dents user ID. |R| is the length of the target and γ
is the associated penalty weight. We use MERT
(Och, 2003) to optimize γ and λ on BLEU us-
ing N-best lists of response candidates generated
from the development set. To compute p(M |R),
we train an inverse SEQ2SEQ model by swapping
messages and responses. The reverse SEQ2SEQ

models p(M |R) is trained with no user informa-
tion considered.

6.4 Training and Decoding
We trained two-layer SEQ2SEQ models on the
Twitter corpus, using the following settings:

2(Liu et al., 2016) suggest that BLEU doesn’t correlate
well with human judgment at the sentence level. Other work,
however, has shown that correlation increases substantially
with larger units of analysis (e.g., document or corpus) (Gal-
ley et al., 2015; Przybocki et al., 2009).

Baseline MTASK-S MTASK-M

Perplexity 56.33 32.27 44.96
(dev) (-42.7%) (-20.2%)

Perplexity 61.17 39.83 43.21
(test) (-34.9%) (-29.4%)

Table 1: Perplexity for standard SEQ2SEQ and the
user model on the Twitter Persona dev set.

Baseline MTASK-S MTASK-M

BLEU 1.32 1.76 2.52
(dev) (+33.3%) (+90.1%)

BLEU 1.31 1.69 2.25
(test) (+29.0%) (+71.7%)

distinct-1 1.69% 2.43% 2.44%
distinct-2 6.53% 10.2% 9.79%

Table 2: Performance on the Twitter dataset
of 2-layer SEQ2SEQ models and MMI models.
Distinct-1 and distinct-2 are respectively the num-
ber of distinct unigrams and bigrams divided by
total number of generated words.

• 2 layer LSTM models with 500 hidden cells
for each layer.
• Batch size is set to 128.
• Optimization method is Adam (Kingma and

Ba, 2015).
• Parameters for SEQ2SEQ models are initial-

ized by sampling from uniform distribution
[−0.1, 0.1].
• Vocabulary size is limited to 50k.
• Parameters are tuned based on perplexity.

For decoding, the N-best lists are generated
with beam size B = 50. The maximum length
of the generated candidates was set at 20 tokens.
At each time step, we first examine all B×B pos-
sible next-word candidates, and add all hypothe-
ses ending with an EOS token to the N-best list.
We then preserve the top-B unfinished hypotheses
and move to the next word position. We then use
LSTM-MMI to rerank the N-best list and use the
1-best result of the re-ranked list in all evaluation.

7 Experimental Results

The perplexity and BLEU score results for three
models are shown in Tables 1 and 2. Compared
with the baseline model LSTM-MMI, we obtain
a 34.9% decrease in perplexity for the MTASK-
S model and a 29.4% decrease in perplexity for
the MTASK-M model. Significant gains are ob-
tained in BLEU score as well: MTASK-S gains
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Figure 4: Perplexity scores for the top 10 users with most (non-conversational) training data. Users
with obvious speaking styles or stronger user role characteristics (e.g., 1, 2, and 6) show much greater
perplexity reduction than the other ones.

29.0% relative increase compared with the base-
line and MTASK-M gains 71.7%. MTASK-S per-
formance is better than MTASK-M in perplexity,
but worse on BLEU score. Apart from the fact that
BLEU does not necessarily correlate with perplex-
ity, this result also indicates that MTASK-S has
more parameters (each user has a unique model for
MTASK-S) but tends to overfit on development set
perplexity. Another possible reason that MTASK-
M performs better than MTASK-S is the intro-
duction of user embeddings. The persona-based
conversational model can decouple the personal-
ized information from general language patterns
and can therefore encode user characteristic bet-
ter. We further report degree of diversity by calcu-
lating the number of distinct unigrams (distinct-1)
and bigrams (distinct-2) in generated responses as
in Table 2. To avoid biasing toward longer sen-
tences, this value is scaled by the total number of
tokens generated. Both MTASK-S and MTASK-
M models perform better than baseline in terms
of distinct-1 and distinct-2, which we interpret to
mean that our approach can help the system gen-
erate responses that are more diverse yet better ap-
proximate the targeted speaker or speaker type.

Fig. 4 shows the perplexities for the 10 in-
dividual users most represented in the non-
conversational training data. Our multi-task ap-
proaches consistently outperform baseline on per-
plexity. However, the performance between indi-
vidual target users can vary substantially.3

After inspecting dev set outputs, we observe
that users with obvious speaking styles or stronger
user role characteristics show much greater gain
than the others. For example, User 1 is a tech-

3We do not report BLEU scores for individual users, as
the dev and test set for each specific user tends to be small
(less than 500 samples) and BLEU is known to be unreliable
when evaluated on small datasets (Graham et al., 2015; Liu
et al., 2016).

nical support worker who answers web questions
for Twitter users, while User 2 always expresses
strong feelings and uses exclamation marks fre-
quently. Conversely, tweets from users that did
not show significant gain appear to be more about
daily life and chitchat, with no strong role charac-
teristics (e.g., Users 3 and 4). We present example
outputs for User 1 and 2 in Section 8.

7.1 Human Evaluation

Human evaluation of the outputs was performed
using crowdsourcing.4 Evaluation took the form
of a preference test in which judges were pre-
sented with a random sample of 5 tweets writ-
ten by the targeted user as example texts, and
asked which system output appeared most likely
to have been produced by the same person. A 5-
point scale that permitted ties was used, and sys-
tem pairs were presented in random order. A short
input message (the input that was used to gener-
ate the outputs) was also provided. We used 7
judges for each comparison; those judges whose
variances differed by more than two standard de-
viations from the mean variance were discarded.
Table 3 shows the results of pairwise evaluation,
along with 95% confidence intervals of the means.
MTASK-S and MTASK-M both perform better
on average than LSTM-MMI, consistent with the
BLEU results. MTASK-M’s gain over the LSTM-
MMI baseline is significant at the level of α =
0.05 (p = 0.026), indicating that judges were bet-
ter able to associate the output of that model with
the target author.

In Table 3 the strength of the trends is obscured
by averaging. We therefore converted the scores
for each output into the ratio of judges who se-
lected that system for each output (Figs. 5 and
6). To read the charts, bin 7 on the left represents

4Two outputs were removed from the datasets owing to
offensive content in the examples.
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Baseline System

MTASK-S 0.491 ±0.011 0.504 ±0.011
MTASK-M 0.486 ±0.012 0.514 ±0.012

Table 3: Results of human evaluation, showing
relative gain of MTASK-S and MTASK-M sys-
tems over the LSTM-MMI baseline in pairwise
comparison, together with 95% confidence inter-
vals of the means.

the case where all 7 judges “voted” for the system,
bin 6 the case where 6 out of 7 judges “voted” for
the system, and so forth.5 Bins 3 through 0 are
not shown since these are a mirror image of bins
7 through 4. It can be seen that judge support for
MTASK-M (Figure 6) tends to be stronger than for
MTASK-S (Figure 5).

These differences are statistically significant,
but they also suggest that this was a challenging
task for crowd workers. In many cases, the 5 ran-
dom examples may not have been sufficed to dis-
tinguish individual styles,6, and even when dis-
tinctive, similar outputs from arbitrary inputs may
not be undesirable—indeed, different individuals
may legitimately respond similarly to the same in-
put, particularly when the input itself is bland or
commonplace.

8 Discussion

Fig. 7 presents responses generated by baseline
and multi-task (MTASK-M) response generation
systems. Both systems are presented with a con-
versation history of up to two dialog turns (con-
text and input message), and this larger context
helps produce responses that are more in line with
the conversation flow (Sordoni et al., 2015). The
first six response examples are generated for the
same underlying speaker (a technical support per-
son, User 1 in Fig. 4). The two last multi-task re-
sponses are generated for User 2.

We notice striking differences between the
baseline and the multi-task model. The six first
responses of Multitask in Fig. 7 represent a very
consistent register in three different aspects. First,
it is relatively clear from these responses that the
underlying speaker represented by the model is

5Partial scores were rounded up. This affects both sys-
tems equally.

6We limited the number to 5 with the intention of not
overwhelming judges with too much information, which may
have exacerbated the difficulty.
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Figure 5: Judge agreement counts for MTASK-S
versus Baseline. The difference between the two
systems is statistically significant.
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Figure 6: Judge agreement counts for MTASK-M
versus Baseline. The difference between the two
systems is statistically significant, and the prefer-
ence for MTASK-M is more evident.

a tech support employee. Interestingly, this em-
ployee appears to give help with fitness-related
software, and responds that the customer will be
“able to run a marathon”. On the other hand, the
output of the baseline system is relatively bland
and deflective. More crucially the baseline does
a relatively poor job producing content words that
are relevant to the speaker’s domain of expertise.
Finally, the tone of the baseline system is often in-
congruous, e.g., when it responds “I don’t know
what to do with it”, which is unlikely to be a
desirable response to offer a customer. In an-
other case, the baseline responds “thanks for the
info”. While this kind of response is appropriate
for many speaker roles, it is less appropriate here,
as the support employee is the one to give infor-
mation and helpful advice.

The figure also illustrates current limitations of
our speaker role model. For example, our response
in the fourth example shows that such systems can
be deflective (e.g., not giving any suggestion in
response to “any idea”), but at least the system

611



Context: have you tried uninstalling nike+ connec? how about docking it to a different computer?
Input: Tried both of those techniques. But nothing works. I can try the other computer again.
Baseline: Let me know if there’s anything else I can help you with. Thanks for the help.
Multitask: Have you tried using a different browser? Let us know if you have any other questions.

Context: What do you see when you have a failed login attempt? Never ending spinner? Loop you back to login page?
Input: I am getting a loop back to login page, windows.
Baseline: Ah, ok. Thanks for the info. I’ll check it out. Thanks for the feedback.
Multitask: I’m sorry to hear that. Have you tried clearing your cache and cookies?

Context: To clarify: your first run after resetting your connection will not post to Facebook. Does this help? Let us know.
Input: That’s correct. I reset it twice! It still doesn’t work.
Baseline: Let me know if there’s anything else I can help you with. Thanks for the update.
Multitask: I’m sorry to hear that. Are you receiving any error messages? Let us know.

Context: To link your sensor to your iPod, from home screen go to settings>Nike+ iPod>sensor>link new. Any luck?
Input: not work.. Any idea?
Baseline: I’m not sure, I’ll check it out when i get home. Thanks for the update
Multitask: Let me know if you have any other questions. Let us know if the issue persists.

Context: You’re welcome. What generation of the iPod Nano are you using?
Input: 5 years old and bought the kit then but my new Nano touch also not detecting sensor maybe receiver broken
Baseline: Ah , I see. I’ll have to check it out. Thanks for the update.
Multitask: Ah, I see. I see. Have you been able to try a different network?

Context: Unfortunately you can’t transfer your Nike+ training program to your iPod at this time. Let us know if this helps!
Input: Oh! That’s a pity I bet I’d be able to run a couple more if this nice voice, told me to speed up in-between
Baseline: That’s what I’m hoping for, but I don’t know what to do with it.
Multitask: I’m sure you will be able to run a marathon at least once a week or so.

Context: So when are you going to post more n/d stuff?
Input: Soon I guess I have a chapter written, but it’s way too short and not good enough to post just yet.
Baseline: Let me know how you get on with it. I don’t know what to write.
Multitask: Ah, I see. Well, I’m sure it’ll be interesting to see what happens!

Context: Ah, no. Had kind of a crazy day, and I’ve been writing a lot tonight. I have a new one-shot almost finished!
Input: Alright. I’m sure you’ll read it eventually
Baseline: I don’t think I’ll be able to sleep tonight, but I’m going to sleep.
Multitask: I hope so! I can’t wait to read it, hehe.

Figure 7: Responses produced by our baseline and multi-task neural response generation system (Multi-
S), given a conversation history (context and input message.) The first 6 examples and last 2 examples
correspond respectively to Users 1 (tech support) and 2.

does respond in a customer-support register. In
the fifth example, response of the system seems
relatively irrelevant, but this kind of natural lan-
guage comprehension problem seems almost un-
avoidable. Semantic congruity aside, the response
strikes the right tone—it is pragmatically and so-
cially appropriate, which is the primary purpose of
this investigation. The final two examples of Fig. 7
show that the model is also able to learn a voice or
register for a completely different kind of charac-
ter. The underlying person is highly assertive—
reflected in their use of exclamation marks—and
speaks informally (e.g., “hehe”), in a way the tech
support person would typically not.

9 Conclusion

This paper introduces a multi-task learning ap-
proach to incorporate speaker role character-

istics into conversational models using non-
conversational data. Both models presented here
are relatively simple to implement, and show sig-
nificant improvement in perplexity and BLEU
score over a baseline system. Overall, MTASK-
M is more computationally efficient, and effective
in generating speaker-role-specific information, as
reflected in human evaluation. Responses gener-
ated by these models exhibit a marked ability to
capture speaker roles, expressive styles and do-
main expertise characteristic of the targeted user,
without heavy recourse to an individual speaker’s
conversational data.
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and Gregory Sanders. 2009. The NIST 2008 met-
rics for machine translation challenge—overview,
methodology, metrics, and results. Machine Trans-
lation 23(2):71–103.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proc. EMNLP.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proc. ACL.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017.
Generating high-quality and informative conversa-
tion responses with sequence-to-sequence models.
In Proc. EMNLP.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Meg Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A neural
network approach to context-sensitive generation of
conversational responses. In Proc. NAACL-HLT .

613



Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. In Proc. ICML Deep Learning Work-
shop.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
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