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Abstract

We propose a neural network model for
coordination boundary detection. Our
method relies on two common properties
— similarity and replaceability in con-
juncts — in order to detect both sim-
ilar and dissimilar pairs of conjuncts.
The model improves the identification of
clause-level coordination using bidirec-
tional recurrent neural networks incorpo-
rating two properties as features. We show
that our model outperforms existing state-
of-the-art methods for the coordination an-
notated Penn Treebank and Genia corpus
without any syntactic information from
parsers.

1 Introduction

Coordination is a common structure and one of
major ambiguities in human languages. Although
coordination gives a large amount of syntactic or
semantic information of coordinated phrases, dis-
ambiguating coordination still remains one of the
difficult problems that state-of-the-art parsers can-
not cope with.

Given a coordinator word, how can we find
conjuncts? Coordinate structures are character-
ized by two properties: (1) similar structures of-
ten appear in conjuncts, and (2) one conjunct can
be replaced with another conjunct without los-
ing sentence consistency in syntax or semantics.
However, many previous studies of coordination
disambiguation rely only on the similarities be-
tween conjuncts, despite the fact that similarities
are not always helpful (Shimbo and Hara, 2007;
Hara et al., 2009; Hanamoto, 2012). For example,
the sentence “[at least two commercial versions
have been put on the U.S. market], and [an esti-
mated 500 have been sold].” does not have sim-

ilar phrases around the coordinating conjunction
“and.” Thus, existing methods sometimes fail to
capture coordination. In addition to the case where
there is a lack of similarities, many similarity-
based methods use handcrafted features, heuristic
rules, or external resources such as thesauri.

To overcome these problems, Ficler and Gold-
berg (2016) proposed a neural network model with
the replaceability feature as well as the similar-
ity feature. Their model produces candidate pairs
of conjuncts using probabilities assigned by the
Berkeley Parser. All candidate pairs are scored
on the basis of the similarity, replaceability and
parser-derived features, and then the best scored
pair is picked. Their approach outperforms ex-
isting constituent parsers for the Penn Treebank
and similarity-based coordination disambiguation
methods such as those by Shimbo and Hara (2007)
and Hara et al. (2009) for the Genia treebank. Al-
though Ficler and Goldberg’s (2016) method im-
proves performance significantly, it heavily de-
pends on the syntactic parser. They use the outputs
from the parser not only for candidates generation
and the feature for scoring, but also for computa-
tion of the similarities. The problems of propa-
gated errors from the parser and dependencies on
external resources still remain in their work.

In this work, we propose a neural network
model for coordination disambiguation that does
not require any external syntactic parser. Our
model exploits both the similarity and replaceabil-
ity properties to avoid suffering from an absence of
these properties (Section 2). We use bidirectional
recurrent neural networks (RNNs) to obtain the
contextual information of candidate conjuncts and
then compute similarity and replaceability fea-
tures without syntactic information (Section 3).
We show that our model performs well for both
types of coordination: NP coordination (whose
conjuncts tend to be similar) and S coordination
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(whose conjuncts make sense individually) and
outperforms the methods by Ficler and Goldberg
(2016) and Hara et al. (2009) in Section 4.

The contributions of our work include the fol-
lowing:

(i) Our model can capture dissimilar conjuncts
as well as similar ones using the similarity
and replaceability features.

(ii) Our model performs better than others with-
out any thesauri, feature engineering, or syn-
tactic parsers to extract conjunct features.

2 Coordinate Structure Analysis

2.1 Task Description

Coordination is a frequently occurring syntactic
structure along with several phrases, known as
conjuncts. The task of coordination disambigua-
tion is identifying the boundaries of each conjunct
with a single coordinator word as one coordinate
structure instance. Given a coordinator word (e.g.,
“and,” “or,” or “but”), a system must return each
conjunct span if the word actually plays the role of
a coordinator; otherwise, NONE is output for the
absence of coordination. The task sounds simple,
yet is difficult because two complex phenomena
appear in coordination.

1. A coordinator does not always connect two
conjuncts. Sometimes, a coordinate structure
consists of three or more consecutive con-
juncts. For example1,

“It was not an unpleasant evening, certainly,
thanks to [the high level of performance],
[the compositional talents of Mr. Douglas],
and25 [the obvious sincerity with which Mr.
Stoltzman chooses his selection].”

2. Two or more coordinate structures can be
found in the same sentence. In addition, one
coordinate structure can be nested inside an-
other. For example,

“Aside from [the Soviet economic plight]
and7 [talks on cutting (strategic) and12

(chemical) arms], one other issue the Sovi-
ets are likely to want to raise is naval force
reduction.”

1We write coordinator words with their position in a sen-
tence in the form of wordposition to distinguish them.

Figure 1: The coordination identification task and
our subtask.

In this work, we solve this task by focusing on
identifying the beginning and end of an entire co-
ordinate structure. Figure 1 shows our task. We at-
tempt to identify two conjuncts to the left and right
sides of a conjunction. We call these conjuncts the
preconjunct and post-conjunct, respectively2. In
addition, we assume that the end of the precon-
junct and the beginning of the post-conjunct adjoin
a coordinator word; thus it appears that we work
on the subtask of coordinate structure span identi-
fication. After identifying a coordination span, we
recover individual conjuncts within the span.

2.2 Conjunct Properties

Coordination has many unique traits other than its
structure. We focus on the key properties between
conjuncts that can be helpful to disambiguate a co-
ordination boundary.

(a) Similarity: Conjuncts in a coordination have
a similar structure or meaning.

(b) Replaceability: A conjunct can be replaced
with another conjunct in the same coordina-
tion.

Conjuncts tend to have similar semantic or syn-
tactic constituents. For example, the three con-
juncts “the high level of performance,” “the com-
positional talents of MR. Douglas,” and “the ob-
vious sincerity with which Mr. Stolzman chooses
his selection” have part-of-speech (POS) tag se-
quences starting with “DT JJ NN(S) IN NN(P)

2If two or more conjuncts appear before a conjunction, we
regard them as one conjunct.
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(a) Similar structures between conjuncts

1. Aside from [the Soviet economic plight], one other . . .

2. Aside from [talks on cutting (strategic) arms], one other . . .

3. Aside from [talks on cutting (chemical) arms], one other . . .

(b) Replaceability

Figure 2: Characteristic of conjuncts

. . . ” in common. At a phrase level, they all are
categorized as NP and have identical tree struc-
tures (Figure 2 (a)). Many previous works exploit
this characteristic to detect conjuncts (Shimbo and
Hara, 2007; Hara et al., 2009).

The replaceability of conjuncts is also often ob-
served. A sentence is still consistent even if one
conjunct is replaced with another one. For exam-
ple, the coordination “Aside from [the Soviet eco-
nomic plight] and [talks on cutting (strategic) and
(chemical) arms]” can be transformed into “Aside
from [talks on cutting (chemical) and (strategic)
arms] and [the Soviet economic plight]” by ex-
changing conjuncts. Using this property, we can
expand a coordinate structure as one sentence by
one conjunct (Figure 2 (b)). Replaceability has re-
cently been used to capture conjuncts (Ficler and
Goldberg, 2016).

The two properties described above are essen-
tial clues to identify conjunct spans; however, they
are not always available. Coordination sometimes
has different types of conjuncts or an ellipsis in
conjuncts. For similarity, when conjuncts belong
to the S type or are different types of syntactic
categories, their semantic and syntactic structures
can be apart from each other (e.g., “[We turned
the trading system on]S, and [it did whatever it
was programmed to do]S.” ; “Bill is [in trou-
ble]PP and [trying to come up with an excuse]VP.”).
For replaceability, when words are omitted in a
latter conjunct, we cannot replace one conjunct
with another unless we supplement omitted words
(e.g., “[Honeywell’s contract totaled $69.7 mil-
lion], and [IBM’s $68.8 million].”). To cope with
the case where there is a lack of similarity or
replaceability, our proposed method incorporates
both features.

3 Proposed Method

Our proposed model calculates the scores of
all possible preconjunct and post-conjunct pairs.
Given a sentence x = {x1, x2, x3, . . . , xN} and
coordinator word xk, the preconjunct and post-
conjunct can be written as s1 = {xi, . . . , xk−1}
(1 ≤ i ≤ k − 1) and s2 = {xk+1, . . . , xj}
(k + 1 ≤ j ≤ N), respectively. As we mentioned
in Section 2, we fix the end of the preconjunct at
k − 1 and the beginning of the post-conjunct at
k + 1. Thus, our model learns and predicts a set
of spans (i, j), which indicate the two positions
of the beginning and end of a coordination. We
identify preconjuncts and post-conjuncts by pick-
ing the highest scoring pairs as predicted conjunct
spans.

Figure 3 shows an overview of our neural net-
work architecture. This model consists of four
components.

Input Layer: Map a sequence of one-hot words
and POS tags onto their representations from
embeddings.

RNN Layer: Produce a sequence of sentence-
level representations based on contexts using
a bidirectional RNN.

Feature Extractor: Generate the conjunct
phrase representations and feature vectors of
possible pairs of conjuncts.

Output Layer: Calculate the scores of pairs of
conjuncts using MLP.

In the following subsections, we describe these
components in detail.

3.1 Input Layer

The first step of our neural network model is to
represent a sequence of words and POS tags in
distributed vectors, known as embeddings (Ben-
gio et al., 2003). Our model receives a sequence of
one-hot encoded words and POS tags {xwordn }Nn=1,
{xtagn }Nn=1 and then looks them up in the matri-
ces Eword ∈ Rdword×|vword|, Etag ∈ Rdtag×|vtag |,
resulting in a sequence of real-valued vectors
hwordn ∈ Rd, htagn ∈ Rd, respectively. These real-
valued vectors are concatenated as the input of the
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Figure 3: Overview of the architecture for coordination analysis.

next layer.

hwordt = Wwordxwordt

htagt = W tagxtagt

h(0)
t = [hwordt ;htagt ]

h(0) =
{
h(0)

1 , . . . ,h(0)
N

} (1)

3.2 RNN Layer
A sequence of distributed vectors is transformed
into hidden state vectors using stacked bidirec-
tional RNNs. Bidirectional RNNs process a time
series of inputs from the past to a future direc-
tion and from the future to a past direction. We
can make use of left-to-right (forward) and right-
to-left (backward) contexts using these networks.
The output of the `-th layer of stacked bidirec-
tional RNNs at a time step t in the forward direc-
tion, which is denoted as hf`,t, is computed as

hf`,t = f(hf`,t−1,h`−1,t) (2)

where hf`,t−1 is the hidden state vector of the same
layer at the previous time step t−1 in the same di-
rection and h`−1,t is the hidden state vector of the
previous bidirectional layer at the same time step
t. The hidden vector of the `-th layer of stacked
bidirectional RNNs at a time step t in the back-
ward direction is also computed in the same way.
The stacked bidirectional RNNs that we use in this
work output hidden state vectors by concatenating

the vectors {hf`,t}Tt=1 from the forward direction
and {hb`,t}Tt=1 from the backward direction at each
time step t in every layer.

In general, an RNN has a function f(·) ex-
pressed as

f(xt,ht−1) = g(Wxt + Uht−1)

where g(·) is an arbitrary nonlinear function such
as the hyperbolic tangent tanh(·) or rectified lin-
ear unit (ReLU). We use the long short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
as the function f(·) to prevent backpropagated er-
rors from vanishing or exploding, which arise in
RNNs (Pascanu et al., 2013).

3.3 Feature Extractor
This component produces a feature vector based
on a representation of a preconjunct and post-
conjunct and a series of vectors {ht}Tt=1 from bidi-
rectional RNNs. We compute the preconjunct rep-
resentation vprei and post-conjunct vpostj using the
function g(·). In this work, we define element-
wise averaging as the function g(·).
g(hl:m) = average

(
hl,hl+1, . . . ,hm−1,hm

)
(3)

Thus, vprei and vpostj are expressed as

vprei = g(hi:k−1) (1 ≤ i ≤ k − 1)

vpostj = g(hk+1:j) (k + 1 ≤ j ≤ N)
(4)
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Then vprei and vpostj are fed into the following two
feature extraction functions.

Similarity feature vector
In order to capture the similarity between the pre-
conjunct and the post-conjunct, the feature vector
is computed as follows:

fsim(vprei ,vpostj ) =
[|vprei − vpostj |;vprei � vpostj

]
(5)

where |vprei − vpostj | is the absolute value of
element-wise subtraction, and vprei � vpostj is
element-wise multiplication. These subtraction
and multiplication operations are intended to
model the semantic distance and relatedness (Ji
and Eisenstein, 2013; Tai et al., 2015; Hashimoto
et al., 2016).

Replaceability feature vector
We define a feature vector based on the conjunct
replaceability as follows.

frepl(h1:N , i, j, k) =[|hi−1 � hi − hi−1 � hk+1|;
|hj � hj+1 − hk−1 � hj+1|

] (6)

where hi−1 is the context vector that is linked to
the heads of conjuncts and hj+1 is the context vec-
tor that is linked to the tails of conjuncts. The first
subtraction |hi−1�hi−hi−1�hk+1| is the differ-
ence between two context-conjunct connections at
the beginning of coordination. The second sub-
traction |hj � hj+1 − hk−1 � hj+1| is the differ-
ence between two context-conjunct connections at
the end of coordination. These distance measures
can be interpreted as difficulty in replacing con-
juncts. Note that the function frepl(h1:N , i, j, k)
returns a zero vector when i = 0 or j = N .

3.4 Output Layer
This layer computes the scores of pairs of con-
juncts based on the similarity feature vectors and
the replaceability feature vectors. The network is
a multilayered perceptron (MLP) that consists of
multiple layers of computational units intercon-
nected in a feed-forward way. The score of a pre-
conjunct (i, k − 1) and post-conjunct (k + 1, j)
candidate pair is calculated as

Score(i, j) =

MLP
([
fsim(vprei ,vpostj );

frepl(h1:N , i, j, k)
]) (7)

To cope with the absence of coordination
against a coordinator, we also calculate the score
for a candidate of NONE. The score NONE is sim-
ply computed as the product of a weight vector and
the sentence-level representation of the coordina-
tor from the RNN layer.

Score(NONE) = w · hk + b (8)

Using these scoring functions, we assign scores
to all possible pairs of conjuncts. Thus, when the
length of a sentence is N and a coordinator ap-
pears as the k-th word, we obtain (k − 1)× (N −
k)+1 candidates and choose the pair with the best
score as the predicted conjuncts with the softmax
function.

s = [Score(NONE); Score(1, k + 1); . . . ;
Score(1,N); . . . ; Score(k − 1, N)]

p̂θ(y|x) = softmax(s)
ŷ = arg max

y

(
p̂θ(y|x)

)
(9)

3.5 Learning

The loss function is the negative log-likelihood of
the true pair of conjuncts y(k):

J(θ) = −
D∑
d=1

log p̂θ(y(d)|x(d)) +
λ

2
‖θ‖2 (10)

where D is the number of occurrences of coor-
dinator words in a training dataset, θ is a set of
model parameters, and the hyperparameter λ ad-
justs the regularization strength. The model pa-
rameters are optimized by minimizing the loss us-
ing the stochastic gradient descent (SGD).

4 Experiments

We evaluate our proposed model using the coor-
dination annotated Penn Treebank (Ficler, 2016)
and the Genia treebank beta (Kim et al., 2003). We
present the number of occurrences of coordinator
words and the number of sentences with coordina-
tion in Table 13.

3We consider “and,” “or,” “but,” “nor,” and “and/or” in the
PTB and “and,” “or,” and “but” in the Genia as coordinator
words following Ficler and Goldberg (2016) and Hara et al.
(2009).
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# Coordinators # Sentences
Penn Treebank 27903 (24450) 21314 (19095)

Training 22670 (17893) 17282 (13932)

Development 953 (848) 742 (673)

Testing 1282 (1099) 985 (873)

Genia 3598 (3598) 2508 (2508)

Table 1: The number of coordinators in the
datasets. (#count) indicates the number of actual
presences of coordination.

4.1 Evaluation Using the Penn Treebank

4.1.1 Experimental Setup
We use the coordination annotated Penn Treebank
and divide it into wsj 2-21 as the training set, wsj
22 as the development set, and wsj 23 as the test-
ing set. We use pretrained 200-dimensional word
embeddings from the New York Times section
in English Gigaword (fifth edition) (Parker et al.,
2011) using Word2Vec4 with its default parameter.
For the POS tags, we use 10-way jackknifing using
the Stanford POS Tagger (Toutanova et al., 2003)
and initialize the 50-dimensional embeddings with
the uniform distribution within [−1, 1]. We use
three-layer bidirectional LSTMs as an RNN layer.
The dimensionality of the LSTM hidden vectors
in each direction is selected from {400, 600}. Our
MLP consists of one hidden layer with ReLU ac-
tivation, and an output layer. The number of the
hidden layer units is selected from {1200, 2400}.
The model parameters are optimized by the mini-
batched SGD with a batch size of 20. The learning
rate is automatically tuned by Adam (Kingma and
Ba, 2014). When training, we apply dropout (Sri-
vastava et al., 2014) to the embeddings, input vec-
tors of each LSTM in bidirectional LSTMs (except
the first layer), and the hidden layer of the MLP.
Dropout ratio is selected from {0.33, 0.50}. We
choose the regularization strength λ from {0.0001,
0.0005, 0.001}. We train our model for 50 itera-
tions and choose the model that achieves the best
F1 score5 on the development set and evaluate it
with the testing set. We present the final hyperpa-
rameters choice in Table 2.

4.1.2 Evaluation Metrics
We evaluate our model on the basis of the abil-
ity to predict the beginning and end of each co-

4https://code.google.com/archive/p/word2vec/
5This F1 score is measured for the whole criterion, which

is mentioned later.

Parameter Value
Dimension of the LSTM hidden vector 600
MLP units in the hidden layer 2400
Dropout ratio (all) 0.50
Regularization term λ 0.0001

Table 2: The final hyperparameters in the experi-
ment for the Penn Treebank.

ordination (whole) with the precision, recall, and
F1 measures. In another setup, we focus on NP
coordination6. To compare the performance with
Ficler and Goldberg (2016), we also evaluate our
model with two conjunct spans that are adjacent
to the coordinator (inner), the first and last con-
juncts (outer), and all complete conjuncts (exact).
Furthermore, in order to investigate the effective-
ness of our proposed features, we perform the ex-
periment with a simple baseline model that uses
two averaged vectors as features (Eq. 3) and feeds
them into the MLP instead of the similarity and
replaceability features (Eq. 7).

Note that our proposed model learns and pre-
dicts the coordinate structure boundaries and not
each conjunct; thus, when evaluating the inner,
outer, and exact metrics, we simply divide the pre-
conjuncts into subconjuncts using the character “,”
as the divider.

4.1.3 Results
We present the results in Table 3. For all metrics,
the recall values are low compared with the preci-
sion values. Our model is likely to produce NONE

for some coordinators by mistake. The proposed
model suffers from a worse outer metric than the
inner metric. Intuitively, this is because the pre-
conjunct for the inner prediction is placed next to
a coordinator and it is easier to identify its span,
while outer conjuncts occur apart from the coordi-
nators.

Table 4 summarizes the performance of differ-
ent uses of features. The similarity and replace-
ability features work better than the baseline inde-
pendently. However, the joint model performs the
best by exploiting both features.

Table 5 presents a comparison with existing
methods. For all coordination, our proposed
method outperforms the state-of-the-art models
with a test set F1 score of 72.81 (0.11 better than

6We consider that NP and NX are NP coordination as in
Ficler and Goldberg (2016).
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All NP
P R F P R F

whole 75.92 72.87 74.36 77.90 75.05 76.45
outer 72.48 69.57 70.99 76.24 73.45 74.82
inner 74.07 71.10 72.56 77.43 74.59 75.99
exact 72.11 69.22 70.63 75.77 72.99 74.35

Table 3: Performance difference by the metrics for
the PTB development set.

All NP
P R F P R F

Baseline 70.83 68.75 69.77 74.27 72.87 73.57
fsim 71.79 69.92 70.84 74.76 73.22 73.98
frepl 74.29 71.58 72.91 76.12 73.68 74.88
Both 75.92 72.87 74.36 77.90 75.05 76.45

Table 4: Performance of different sets of features
for the PTB development set for the outer met-
ric. “fsim,” “frepl,” and “Both” indicate the use
of similarity feature vectors, replaceability feature
vectors, and both feature vectors, respectively.

the previously reported result). For NP coordina-
tion, our model achieves competitive results, de-
spite the rough extraction of conjuncts from pre-
conjuncts, even for inner-conjunct prediction.

4.2 Evaluation Using Genia

4.2.1 Experimental Setup
We also evaluate our model with the Genia tree-
bank beta to compare with the previous work of
Hara et al. (2009) and Ficler and Goldberg (2016).
The settings of this experiment are based on those
presented in Section 4.1.1, except for the follow-
ing hyperparameters: Word embeddings are ini-
tialized by the pretrained 200-dimensional repre-
sentation that BioASQ (Tsatsaronis et al., 2012)
provides. These embeddings are trained from
biomedical abstracts by using Word2Vec. We use
gold POS as in Hara et al. (2009), and the dimen-
sion of the POS embeddings is 50. For regulariza-
tion, we set λ = 0.0005 and train our model for
20 iterations.

4.2.2 Evaluation Metrics
As in Hara et al. (2009), we measure the recall val-
ues of coordinate structure boundary prediction,
disregarding individual conjunct spans7. Thus, we
do not decode conjuncts because our model can
be compared directly. Coordination phrases in the

7In the Genia corpus, all coordinator words are associated
with conjuncts; thus, there is no absence of coordination, as
described in Table 1.

Dev Test
P R F P R F

All Coordination
Berkeley 70.14 70.72 70.42 68.52 69.33 68.92
Zpar 72.21 72.72 72.46 68.24 69.42 68.82
Ficler16 72.34 72.25 72.29 72.81 72.61 72.7
Ours 74.07 71.10 72.56 73.46 72.16 72.81

NP Coordination
Berkeley 67.53 70.93 69.18 69.51 72.61 71.02
Zpar 69.14 72.31 70.68 69.81 72.92 71.33
Ficler16 75.17 74.82 74.99 76.91 75.31 76.1
Ours 77.43 74.59 75.99 75.87 74.76 75.31

Table 5: Performance of inner-conjunct prediction
on all coordination and on NP coordination for the
PTB. The results for the three methods other than
our method are reported in Ficler16 : (Ficler and
Goldberg, 2016).

COOD # Ours Ficler16 Hara09
Overall 3598 65.98 64.14 61.5

NP 2317 66.59 65.08 64.2
VP 465 63.87 71.82 54.2

ADJP 321 78.50 74.76 80.4
S 188 52.65 17.02 22.9

PP 167 53.89 56.28 59.9
UCP 60 50.00 51.66 36.7

SBAR 56 78.57 91.07 51.8
ADVP 21 85.71 80.95 85.7
Others 3 33.33 33.33 66.7

Table 6: Recall with Genia treebank beta. The
numbers in the columns “Ficler16” and “Hara09”
are taken from their papers; Ficler16 : (Ficler and
Goldberg, 2016) ; Hara09 : (Hara et al., 2009).

Genia treebank are explicitly annotated with a spe-
cial label (COOD). Making use of this label, we
also measure the performance for each type of co-
ordination, as reported in previous work. We eval-
uate our model by five-fold cross-validation, as in
Hara et al. (2009).

4.2.3 Results
We present the results in Table 6. For all coordina-
tion, our model outperforms the scores reported by
Hara et al. (2009) and Ficler and Goldberg (2016).
In the evaluation of each type, our method greatly
improves the performance for VP, SBAR, and es-
pecially the S type of coordination compared with
the similarity-based method of Hara et al. (2009).
Regarding the S type, our results are considerably
better than those of Ficler and Goldberg (2016).
As presented in Table 4, our proposed replaceabil-
ity feature significantly contributes to the detection
of this type of coordination, where only the simi-
larity feature does not work because of a collapse
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of similarity between conjuncts. The results for
NP coordination, which accounts for nearly 65%
of all coordination, are fairly good for the Genia
corpus; however, the model proposed by Ficler
and Goldberg (2016) exhibits better performance
than ours for the PTB for the inner metric.

5 Related Works

Approaches using the similarity property between
conjuncts have been developed in previous works.
Regarding the task of coordination identification
in Japanese, Kurohashi and Nagao (1994) used
a chart to compute the similarity between con-
juncts and identify conjunct spans with a dy-
namic programming technique. Shimbo and Hara
(2007) proposed a sequence alignment model with
dynamic programming to capture locally similar
structures in two conjuncts on the basis of the
set of features including word surfaces, POS tags,
and morphological characteristics. The similar-
ity score in their work is computed by a weighted
linear combination (perceptron) of manually de-
signed features assigned to edges and nodes in
graphs, while the score in the work of Kurohashi
and Nagao (1994) is calculated from a score func-
tion that uses some rules based on the observa-
tion of coordination. Although the method of
Shimbo and Hara (2007) could not handle nested
coordinate structures, Hara et al. (2009) extended
their work to cope with nested coordination as
well as three or more than consecutive conjuncts.
Their proposed method defined several production
rules to build consistent coordination trees with
discriminative functions based on the similarity
score. Hanamoto (2012) used dual decomposi-
tion to combine an HPSG parser with the model
of Hara et al. (2009).

The method of use of the replaceability prop-
erty has recently been adopted by Ficler and Gold-
berg (2016). They incorporated the replaceability
property between conjuncts into the feature repre-
sentations, as well as the similarity property. They
made use of these properties to assign scores to
candidate pairs of conjuncts. Their method con-
sists of three components: a binary classifier to
detect the presence of coordination, the parser ex-
tended from the Berkeley Parser (Petrov et al.,
2006) to generate candidate pairs, and a discrim-
inative neural network to identify conjuncts. As
similarity features, they compute the Euclidean
distance between the two representations of con-

juncts, which are computed from syntactic trees
generated by the parser, and this is more effi-
cient with respect to the time complexity com-
pared with the methods with graphs. The replace-
ability feature vectors are produced from bidirec-
tional LSTMs by processing two sentences that
are produced by leaving out one of two conjuncts.
Their model then scores all candidate pairs of con-
juncts from feature vectors including similarities,
replaceabilities, and additional three values de-
rived from the probabilities assigned by the parser.
The best scored pair is selected as the most prob-
able conjuncts. For the Genia corpus, their model
outperformed the method of Hara et al. (2009)
which only relied on the similarity property. Us-
ing neural networks, they overcame the problems
of manually elaborated features and of access to
external sources such as thesauri. However, their
method heavily depends on their extension of the
Berkeley Parser. Therefore, the problem of error
propagation between components and the parser
still remains.

Kawahara and Kurohashi (2008) tried to resolve
coordination disambiguation without any similar-
ities on the basis of the dependency relations and
generative probabilities of phrases including con-
juncts. Yoshimoto et al. (2015) extended the
graph-based dependency parsing algorithm to han-
dle coordinations.

6 Conclusions

We propose a neural network model to disam-
biguate coordinate structure boundaries. Our
method relies on two properties: (i) conjuncts tend
to have a similar structure in syntax or semantics
and (ii) conjuncts can be replaced with each other,
maintaining sentence consistency. On the basis of
these observations, we compute two feature vec-
tors from a sequence of vectors produced by bidi-
rectional RNNs. Our model can capture the con-
nections between conjuncts and other parts of sen-
tences and sentence-level coordination. As a re-
sult, our model outperforms existing methods and
achieves state-of-the-art performance. The biggest
contribution of our work is resolving dependency
on information from syntactic parsers.

We plan to improve our model to handle three or
more conjuncts in future work. In addition, since
our method treats nested coordinate structures in-
dividually, we expect to create constraints to build
non-overlapping coordination spans.
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