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Abstract

Convolutional Neural Networks (CNNs)
have recently achieved remarkably strong
performance on the practically important
task of sentence classification (Kim, 2014;
Kalchbrenner et al., 2014; Johnson and
Zhang, 2014; Zhang et al., 2016). How-
ever, these models require practitioners to
specify an exact model architecture and set
accompanying hyperparameters, includ-
ing the filter region size, regularization pa-
rameters, and so on. It is currently un-
known how sensitive model performance
is to changes in these configurations for
the task of sentence classification. We thus
conduct a sensitivity analysis of one-layer
CNNs to explore the effect of architecture
components on model performance; our
aim is to distinguish between important
and comparatively inconsequential design
decisions for sentence classification. We
focus on one-layer CNNs (to the exclu-
sion of more complex models) due to their
comparative simplicity and strong empiri-
cal performance, which makes it a modern
standard baseline method akin to Support
Vector Machine (SVMs) and logistic re-
gression. We derive practical advice from
our extensive empirical results for those
interested in getting the most out of CNNs
for sentence classification in real world
settings.

1 Introduction

Convolutional Neural Networks (CNNs) have re-
cently been shown to achieve impressive results
on the practically important task of sentence cate-
gorization (Kim, 2014; Kalchbrenner et al., 2014;
Wang et al., 2015; Goldberg, 2015; Iyyer et al.,

2015; Zhang et al., 2016, 2017). CNNs can cap-
italize on distributed representations of words by
first converting the tokens comprising each sen-
tence into a vector, forming a matrix to be used
as input (e.g., see Fig. 1). The models need not be
complex to realize strong results: Kim (2014), for
example, proposed a simple one-layer CNN that
achieved state-of-the-art (or comparable) results
across several datasets. The very strong results
achieved with this comparatively simple CNN ar-
chitecture suggest that it may serve as a drop-in
replacement for well-established baseline models,
such as SVM (Joachims, 1998) or logistic regres-
sion. While more complex deep learning models
for text classification will undoubtedly continue
to be developed, those deploying such technolo-
gies in practice will likely be attracted to simpler
variants, which afford fast training and prediction
times.

Unfortunately, a downside to CNN-based mod-
els – even simple ones – is that they require prac-
titioners to specify the exact model architecture
to be used and to set the accompanying hyperpa-
rameters. In practice, tuning all of these hyper-
parameters is simply not feasible, especially be-
cause parameter estimation is computationally in-
tensive. Emerging research has begun to explore
hyperparameter optimization methods, including
random search (Bengio, 2012), and Bayesian op-
timization (Yogatama and Smith, 2015; Bergstra
et al., 2013). However, these sophisticated search
methods still require knowing which hyperparam-
eters are worth exploring to begin with (and rea-
sonable ranges for each).

In this work our aim is to identify empirically
the settings that practitioners should expend effort
tuning, and those that are either inconsequential
with respect to performance or that seem to have
a ‘best’ setting independent of the specific dataset,
and provide a reasonable range for each hyperpa-
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rameter. We take inspiration from previous empir-
ical analyses of neural models due to Coates et al.
(2011) and Breuel (2015), which investigated fac-
tors in unsupervised feature learning and hyperpa-
rameter settings for Stochastic Gradient Descent
(SGD), respectively. Here we report the results
of a large number of experiments exploring differ-
ent configurations of CNNs run over nine sentence
classification datasets. Most previous work in this
area reports only mean accuracies calculated via
cross-validation. But there is substantial variance
in the performance of CNNs, even on the same
folds and with model configuration held constant.
Therefore, in our experiments we perform replica-
tions of cross-validation and report accuracy/Area
Under Curve (AUC) score means and ranges over
these.

2 Background and Preliminaries

Deep and neural learning methods are now well
established in machine learning (LeCun et al.,
2015; Bengio, 2009). They have been espe-
cially successful for image and speech process-
ing tasks. More recently, such methods have be-
gun to overtake traditional sparse, linear models
for NLP (Goldberg, 2015; Bengio et al., 2003;
Mikolov et al., 2013; Collobert and Weston, 2008;
Collobert et al., 2011; Kalchbrenner et al., 2014;
Socher et al., 2013).

Recently, word embeddings have been ex-
ploited for sentence classification using CNN ar-
chitectures. Kalchbrenner (2014) proposed a
CNN architecture with multiple convolution lay-
ers, positing latent, dense and low-dimensional
word vectors (initialized to random values) as in-
puts. Kim (2014) defined a one-layer CNN archi-
tecture that performed comparably. This model
uses pre-trained word vectors as inputs, which
may be treated as static or non-static. In the for-
mer approach, word vectors are treated as fixed
inputs, while in the latter they are ‘tuned’ for
a specific task. Elsewhere, Johnson and Zhang
(2014) proposed a similar model, but swapped in
high dimensional ‘one-hot’ vector representations
of words as CNN inputs. Their focus was on clas-
sification of longer texts, rather than sentences (but
of course the model can be used for sentence clas-
sification).

The relative simplicity of Kim’s architecture –
which is largely the same as that proposed by
Johnson and Zhang (2014), modulo the word vec-

tors – coupled with observed strong empirical per-
formance makes this a strong contender to sup-
plant existing text classification baselines such as
SVM and logistic regression. But in practice one
is faced with making several model architecture
decisions and setting various hyperparameters. At
present, very little empirical data is available to
guide such decisions; addressing this gap is our
aim here.

2.1 CNN Architecture
We begin with a tokenized sentence which we
then convert to a sentence matrix, the rows of
which are word vector representations of each to-
ken. These might be, e.g., outputs from trained
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014) models. We denote the di-
mensionality of the word vectors by d. If the
length of a given sentence is s, then the dimen-
sionality of the sentence matrix is s× d. Suppose
that there is a filter matrix w with region size h; w
will contain h · d parameters to be estimated. We
denote the sentence matrix by A ∈ Rs×d, and use
A[i : j] to represent the sub-matrix of A from row
i to row j. The output sequence o ∈ Rs−h+1 of
the convolution operator is obtained by repeatedly
applying the filter on sub-matrices of A:

oi = w ·A[i : i + h− 1], (1)

where i = 1 . . . s − h + 1, and · is the dot prod-
uct between the sub-matrix and the filter (a sum
over element-wise multiplications). We add a bias
term b ∈ R and an activation function f to each
oi, inducing the feature map c ∈ Rs−h+1 for this
filter:

ci = f(oi + b). (2)

One may use multiple filters for the same re-
gion size to learn complementary features from
the same regions. One may also specify multi-
ple kinds of filters with different region sizes (i.e.,
‘heights’). The dimensionality of the feature map
generated by each filter will vary as a function of
the sentence length and the filter region size. A
pooling function is thus applied to each feature
map to induce a fixed-length vector. A common
strategy is 1-max pooling (Boureau et al., 2010b),
which extracts a scalar from each feature map. To-
gether, the outputs generated from each filter map
can be concatenated into a fixed-length, ‘top-level’
feature vector, which is then fed through a softmax
function to generate the final classification. At this
softmax layer, one may apply ‘dropout’ (Hinton
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et al., 2012) as a means of regularization. This en-
tails randomly setting values in the weight vector
to 0. One may also impose an l2 norm constraint,
i.e., linearly scale the l2 norm of the vector to a
pre-specified threshold when it exceeds this. Fig.
1 provides a schematic illustrating the model ar-
chitecture just described. The training objective to
be minimized is the categorical cross-entropy loss.
The parameters to be estimated include the weight
vector(s) of the filter(s), the bias term in the acti-
vation function, and the weight vector of the soft-
max function. In the ‘non-static’ approach, one
also tunes the word vectors. Optimization is per-
formed using SGD and back-propagation (Rumel-
hart et al., 1988).

3 Datasets

We use nine sentence classification datasets in all;
seven of which were also used by Kim (2014).
Briefly, these are summarized as follows. (1)
MR: sentence polarity dataset from (Pang and
Lee, 2005). (2) SST-1: Stanford Sentiment Tree-
bank (Socher et al., 2013). To make input repre-
sentations consistent across tasks, we only train
and test on sentences, in contrast to the use in
(Kim, 2014), wherein models were trained on both
phrases and sentences. (3) SST-2: Derived from
SST-1, but pared to only two classes. We again
only train and test models on sentences, excluding
phrases. (4) Subj: Subjectivity dataset (Pang and
Lee, 2005). (5) TREC: Question classification
dataset (Li and Roth, 2002). (6) CR: Customer
review dataset (Hu and Liu, 2004). (7) MPQA:
Opinion polarity dataset (Wiebe et al., 2005). Ad-
ditionally, we use (8) Opi: Opinosis Dataset,
which comprises sentences extracted from user re-
views on a given topic, e.g. “sound quality of ipod
nano”. There are 51 such topics and each topic
contains approximately 100 sentences (Ganesan
et al., 2010). (9) Irony (Wallace et al., 2014): this
contains 16,006 sentences from reddit labeled as
ironic (or not). The dataset is imbalanced (rela-
tively few sentences are ironic). Thus before train-
ing, we under-sampled negative instances to make
classes sizes equal.1 For this dataset we report the
Area Under Curve (AUC), rather than accuracy,
because it is imbalanced.

1Empirically, under-sampling outperformed over-
sampling in mitigating imbalance, see also Wallace (2011).

4 Baseline Models

4.1 Baseline Configuration

We give a baseline CNN configuration described
in Table 1. We argue that it is critical to assess the
variance due strictly to the parameter estimation
procedure. Most prior work, unfortunately, has not
reported such variance, despite a highly stochastic
learning procedure. This variance is attributable to
estimation via SGD, random dropout, and random
weight parameter initialization.

Description Values
input word vectors Google word2vec
filter region size (3,4,5)

feature maps 100
activation function ReLU

pooling 1-max pooling
dropout rate 0.5

l2 norm constraint 3

Table 1: Baseline configuration. ‘feature maps’
refers to the number of feature maps for each filter
region size. ‘ReLU’ refers to rectified linear unit
(Maas et al., 2013), a commonly used activation
function in CNNs.

Then we consider the effect of different archi-
tecture decisions and hyperparameter settings. To
this end, we hold all other settings constant (as per
Table 1) and vary only the component of interest.
For every configuration that we consider, we repli-
cate the experiment 10 times, where each replica-
tion constitutes a run of 10-fold CV. We report av-
erage CV means and associated ranges achieved
over the replicated CV runs.

4.2 Effect of input word vectors

A nice property of sentence classification models
that start with distributed representations of words
as inputs is the flexibility such architectures afford
to swap in different pre-trained word vectors dur-
ing model initialization. Therefore, we first ex-
plore the sensitivity of CNNs for sentence classi-
fication with respect to the input representations
used. Specifically, we replaced word2vec with
GloVe representations. Google word2vec uses a
local context window model trained on 100 billion
words from Google News (Mikolov et al., 2013),
while GloVe is a model based on global word-
word co-occurrence statistics (Pennington et al.,
2014). We used a GloVe model trained on a cor-
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Figure 1: Illustration of a CNN architecture for sentence classification. We depict three filter region sizes:
2, 3 and 4, each of which has 2 filters. Filters perform convolutions on the sentence matrix and generate
(variable-length) feature maps; 1-max pooling is performed over each map, i.e., the largest number from
each feature map is recorded. Thus a univariate feature vector is generated from all six maps, and these
6 features are concatenated to form a feature vector for the penultimate layer. The final softmax layer
then receives this feature vector as input and uses it to classify the sentence; here we assume binary
classification and hence depict two possible output states.

pus of 840 billion tokens of web data. For both
word2vec and GloVe we induce 300-dimensional
word vectors. We report results achieved using
GloVe representations in Table 2. Here we only
report non-static GloVe results (which uniformely
outperformed the static variant).

We also experimented with concatenating
word2vec and GloVe representations, thus cre-
ating 600-dimensional word vectors to be used
as input to the CNN. Pre-trained vectors may
not always be available for specific words (ei-
ther in word2vec or GloVe, or both); in such
cases, we randomly initialized the correspond-
ing sub-vectors. Results are reported in the fi-
nal column of Table 2. The relative performance

achieved using GloVe versus word2vec depends
on the dataset, and, unfortunately, simply concate-
nating these representations does necessarily seem
helpful. For how to better utilize multiple sets of
embeddings, we refer to (Zhang et al., 2016).

We also experimented with using long, sparse
one-hot vectors as input word representations, in
the spirit of Johnson and Zhang (2014). In this
strategy, each word is encoded as a one-hot vec-
tor, with dimensionality equal to the vocabulary
size. Though this representation combined with
one-layer CNN achieves good results on docu-
ment classification, it is still unknown whether
this is useful for sentence classification. We keep
the other settings the same as in the basic con-
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Dataset Non-static word2vec-CNN Non-static GloVe-CNN Non-static GloVe+word2vec CNN
MR 81.24 (80.69, 81.56) 81.03 (80.68,81.48) 81.02 (80.75,81.32)

SST-1 47.08 (46.42,48.01) 45.65 (45.09,45.94) 45.98 (45.49,46.65)
SST-2 85.49 (85.03, 85.90) 85.22 (85.04,85.48) 85.45 (85.03,85.82)
Subj 93.20 (92.97, 93.45) 93.64 (93.51,93.77) 93.66 (93.39,93.87)

TREC 91.54 (91.15, 91.92) 90.38 (90.19,90.59) 91.37 (91.13,91.62)
CR 83.92 (82.95, 84.56) 84.33 (84.00,84.67) 84.65 (84.21,84.96)

MPQA 89.32 (88.84, 89.73) 89.57 (89.31,89.78) 89.55 (89.22,89.88)
Opi 64.93 (64.23,65.58) 65.68 (65.29,66.19) 65.65 (65.15,65.98)

Irony 67.07 (65.60,69.00) 67.20 (66.45,67.96) 67.11 (66.66,68.50)

Table 2: Performance using non-static word2vec-CNN, non-static GloVe-CNN, and non-static
GloVe+word2vec CNN, respectively. Each cell reports the mean (min, max) of summary performance
measures calculated over multiple runs of 10-fold cross-validation. We will use this format for all tables
involving replications

figuration, and the one-hot vector is fixed during
training. Compared to using embeddings as in-
put to the CNN, we found the one-hot approach
to perform poorly for sentence classification tasks.
We believe that one-hot CNN may not be suit-
able for sentence classification, likely due to spar-
sity: the sentences are perhaps too brief to provide
enough information for this high-dimensional en-
coding. Alternative one-hot architectures (John-
son and Zhang, 2015) might be more appropriate
for this scenario.

4.3 Effect of filter region size

Region size MR
1 77.85 (77.47,77.97)
3 80.48 (80.26,80.65)
5 81.13 (80.96,81.32)
7 81.65 (81.45,81.85)
10 81.43 (81.28,81.75)
15 81.26 (81.01,81.43)
20 81.06 (80.87,81.30)
25 80.91 (80.73,81.10)
30 80.91 (80.72,81.05)

Table 3: Effect of single filter region size. Due to
space constraints, we report results for only one
dataset here, but these are generally illustrative.

We first explore the effect of filter region size
when using only one region size, and we set the
number of feature maps for this region size to 100
(as in the baseline configuration). We consider re-
gion sizes of 1, 3, 5, 7, 10, 15, 20, 25 and 30, and
record the means and ranges over 10 replications
of 10-fold CV for each. We report results in Ta-
ble 3 and Fig. 2. Because we are only interested
in the trend of the accuracy as we alter the region
size (rather than the absolute performance on each
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Figure 2: Effect of the region size (using only
one).

task), we show only the percent change in accu-
racy (AUC for Irony) from an arbitrary baseline
point (here, a region size of 3).

From the results, one can see that each dataset
has its own optimal filter region size. Practically,
this suggests performing a coarse grid search over
a range of region sizes; the figure here suggests
that a reasonable range for sentence classification
might be from 1 to 10. However, for datasets
comprising longer sentences, such as CR (max-
imum sentence length is 105, whereas it ranges
from 36-56 on the other sentiment datasets used
here), the optimal region size may be larger. We
also explored the effect of combining different fil-
ter region sizes, while keeping the number of fea-
ture maps for each region size fixed at 100. We
found that combining several filters with region
sizes close to the optimal single region size can
improve performance, but adding region sizes far
from the optimal range may hurt performance. For
example, when using a single filter size, one can
observe that the optimal single region size for the
MR dataset is 7. We therefore combined several
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different filter region sizes close to this optimal
range, and compared this to approaches that use
region sizes outside of this range. From Table
5, one can see that using (5,6,7),and (7,8,9) and
(6,7,8,9) – sets near the best single region size –
produce the best results. The difference is espe-
cially pronounced when comparing to the base-
line setting of (3,4,5). Note that even only using
a single good filter region size (here, 7) results in
better performance than combining different sizes
(3,4,5). The best performing strategy is to sim-
ply use many feature maps (here, 400) all with re-
gion size equal to 7, i.e., the single best region size.
However, we note that in some cases (e.g., for the
TREC dataset), using multiple different, but near-
optimal, region sizes performs best. We report its
results in table 4.

Multiple region size Accuracy (%)
(3) 91.21 (90.88,91.52)
(5) 91.20 (90.96,91.43)

(2,3,4) 91.48 (90.96,91.70)
(3,4,5) 91.56 (91.24,91.81)
(4,5,6) 91.48 (91.17,91.68)
(7,8,9) 90.79 (90.57,91.26)

(14,15,16) 90.23 (89.81,90.51)
(2,3,4,5) 91.57 (91.25,91.94)
(3,3,3) 91.42 (91.11,91.65)

(3,3,3,3) 91.32 (90.53,91.55)

Table 4: Effect of filter region size with several
region sizes using non-static word2vec-CNN on
TREC dataset

In light of these observations, we believe it ad-
visable to first perform a coarse line-search over a
single filter region size to find the ‘best’ size for
the dataset under consideration, and then explore

Multiple region size Accuracy (%)
(7) 81.65 (81.45,81.85)

(3,4,5) 81.24 (80.69, 81.56)
(4,5,6) 81.28 (81.07,81.56)

(10,11,12) 81.52 (81.27,81.87)
(11,12,13) 81.53 (81.35,81.76)
(3,4,5,6) 81.43 (81.10,81.61)
(6,7,8,9) 81.62 (81.38,81.72)
(7,7,7) 81.63 (81.33,82.08)

(7,7,7,7) 81.73 (81.33,81.94)

Table 5: Effect of filter region size with several
region sizes on the MR dataset.
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Figure 3: Effect of the number of feature maps.

the combination of several region sizes nearby this
single best size, including combining both differ-
ent region sizes and copies of the optimal sizes.

4.4 Effect of number of feature maps for
each filter region size

We again hold other configurations constant, and
thus have three filter region sizes: 3, 4 and 5. We
change only the number of feature maps for each
of these relative to the baseline of 100; we con-
sider values ∈ {10, 50, 100, 200, 400, 600, 1000,
2000}. We report results in Fig. 3.

The ‘best’ number of feature maps for each fil-
ter region size depends on the dataset. However,
it would seem that increasing the number of maps
beyond 600 yields at best very marginal returns,
and often hurts performance (likely due to overfit-
ting). Another salient practical point is that it takes
a longer time to train the model when the number
of feature maps is increased.

In practice, the evidence here suggests perhaps
searching over a range of 100 to 600. Note that
this range is only provided as a possible standard
trick when one is faced with a new similar sen-
tence classification problem; it is of course possi-
ble that in some cases more than 600 feature maps
will be beneficial, but the evidence here suggests
expending the effort to explore this is probably not
worth it. In practice, one should consider whether
the best observed value falls near the border of the
range searched over; if so, it is probably worth ex-
ploring beyond that border, as suggested in (Ben-
gio, 2012).

4.5 Effect of activation function
We consider seven different activation functions in
the convolution layer, including: ReLU (as per the
baseline configuration), hyperbolic tangent (tanh),
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Sigmoid function (Maas et al., 2013), SoftPlus
function (Dugas et al., 2001), Cube function (Chen
and Manning, 2014), and tanh cube function (Pei
et al., 2015). We use ‘Iden’ to denote the iden-
tity function, which means not using any activa-
tion function.

We show the numerical results of tanh, Softplus,
Iden and ReLU in table 6. For 8 out of 9 datasets,
the best activation function is one of Iden, ReLU
and tanh. The SoftPlus function outperform these
on only one dataset (MPQA). Sigmoid, Cube, and
tanh cube all consistently performed worse than
alternative activation functions. The performance
of the tanh function may be due to its zero cen-
tering property (compared to Sigmoid). ReLU has
the merits of a non-saturating form compared to
Sigmoid, and it has been observed to accelerate
the convergence of SGD (Krizhevsky et al., 2012).
One interesting result is that not applying any acti-
vation function (Iden) sometimes helps. This indi-
cates that on some datasets, a linear transformation
is enough to capture the correlation between the
word embedding and the output label. However, if
there are multiple hidden layers, Iden may be less
suitable than non-linear activation functions. Prac-
tically, with respect to the choice of the activation
function in one-layer CNNs, our results suggest
experimenting with ReLU and tanh, and perhaps
also Iden.

4.6 Effect of pooling strategy

We next investigated the effect of the pooling strat-
egy and the pooling region size. We fixed the filter
region sizes and the number of feature maps as in
the baseline configuration, thus changing only the
pooling strategy or pooling region size.

In the baseline configuration, we performed 1-
max pooling globally over feature maps, inducing
a feature vector of length 1 for each filter. How-
ever, pooling may also be performed over small
equal sized local regions rather than over the en-
tire feature map (Boureau et al., 2011). Each small
local region on the feature map will generate a sin-
gle number from pooling, and these numbers can
be concatenated to form a feature vector for one
feature map. The following step is the same as 1-
max pooling: we concatenate all the feature vec-
tors together to form a single feature vector for the
classification layer. We experimented with local
region sizes of 3, 10, 20, and 30, and found that
1-max pooling outperformed all local max pooling

configurations. This result held across all datasets.
We also considered a k-max pooling strategy

similar to (Kalchbrenner et al., 2014), in which the
maximum k values are extracted from the entire
feature map, and the relative order of these values
is preserved. We explored the k ∈ {5, 10, 15, 20},
and again found 1-max pooling fared best, consis-
tently outperforming k-max pooling.

Next, we considered taking an average, rather
than the max, over regions (Boureau et al., 2010a).
We experimented with local average pooling re-
gion sizes {3, 10, 20, 30}. We found that aver-
age pooling uniformly performed (much) worse
than max pooling, at least on the CR and TREC
datasets.

Our analysis of pooling strategies shows that 1-
max pooling consistently performs better than al-
ternative strategies for the task of sentence clas-
sification. This may be because the location of
predictive contexts does not matter, and certain
n-grams in the sentence can be more predictive
on their own than the entire sentence considered
jointly.

4.7 Effect of regularization

Two common regularization strategies for CNNs
are dropout and l2 norm constraints; we explore
the effect of these here. ‘Dropout’ is applied to the
input to the penultimate layer. We experimented
with varying the dropout rate from 0.0 to 0.9, fix-
ing the l2 norm constraint to 3, as per the baseline
configuration. The results for non-static CNN are
shown in in Fig. 4, with 0.5 designated as the base-
line. We also report the accuracy achieved when
we remove both dropout and the l2 norm con-
straint (i.e., when no regularization is performed),
denoted by ‘None’.

Separately, we considered the effect of the
l2 norm imposed on the weight vectors that
parametrize the softmax function. Recall that the
l2 norm of a weight vector is linearly scaled to
a constraint c when it exceeds this threshold, so
a smaller c implies stronger regularization. (Like
dropout, this strategy is applied only to the penulti-
mate layer.) We show the relative effect of varying
c on non-static CNN in Figure 5, where we have
fixed the dropout rate to 0.5; 3 is the baseline here
(again, arbitrarily).

From Figures 4 and 5, one can see that non-zero
dropout rates can help (though very little) at some
points from 0.1 to 0.5, depending on datasets. But
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Dataset tanh Softplus Iden ReLU
MR 81.28 (81.07, 81.52) 80.58 (80.17, 81.12) 81.30 (81.09, 81.52) 81.16 (80.81, 83.38)

SST-1 47.02 (46.31, 47.73) 46.95 (46.43, 47.45) 46.73 (46.24,47.18) 47.13 (46.39, 47.56)
SST-2 85.43 (85.10, 85.85) 84.61 (84.19, 84.94) 85.26 (85.11, 85.45) 85.31 (85.93, 85.66)
Subj 93.15 (92.93, 93.34) 92.43 (92.21, 92.61) 93.11 (92.92, 93.22) 93.13 (92.93, 93.23)

TREC 91.18 (90.91, 91.47) 91.05 (90.82, 91.29) 91.11 (90.82, 91.34) 91.54 (91.17, 91.84)
CR 84.28 (83.90, 85.11) 83.67 (83.16, 84.26) 84.55 (84.21, 84.69) 83.83 (83.18, 84.21)

MPQA 89.48 (89.16, 89.84) 89.62 (89.45, 89.77) 89.57 (89.31, 89.88) 89.35 (88.88, 89.58)
Opi 65.69 (65.16,66.40) 64.77 (64.25,65.28) 65.32 (64.78,66.09) 65.02 (64.53,65.45)

Irony 67.62 (67.18,68.27) 66.20 (65.38,67.20) 66.77 (65.90,67.47) 66.46 (65.99,67.17)

Table 6: Performance of different activation functions
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Figure 4: Effect of dropout rate. The accuracy
when the dropout rate is 0.9 on the Opi dataset
is about 10% worse than baseline, and thus is not
visible on the figure at this point.

imposing an l2 norm constraint generally does not
improve performance much (except on Opi), and
even adversely effects performance on at least one
dataset (CR).

We then also explored dropout rate effect when
increasing the number of feature maps. We in-
crease the number of feature maps for each filter
size from 100 to 500, and set max l2 norm con-
straint as 3. The effect of dropout rate is shown
in Fig. 6. We see that the effect of dropout rate
is almost the same as when the number of feature
maps is 100, and it does not help much. But we
observe that for the dataset SST-1, dropout rate ac-
tually helps when it is 0.7. Referring to Fig. 3, we
can see that when the number of feature maps is
larger than 100, it hurts the performance possibly
due to overfitting, so it is reasonable that in this
case dropout would mitigate this effect.

We also experimented with applying dropout
only to the convolution layer, but still setting the
max norm constraint on the classification layer to
3, keeping all other settings exactly the same. This
means we randomly set elements of the sentence
matrix to 0 during training with probability p, and
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Figure 5: Effect of the l2 norm constraint on
weight vectors.
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Figure 6: Effect of dropout rate when using 500
feature maps.

then multiplied p with the sentence matrix at test
time. The effect of dropout rate on the convolu-
tion layer is shown in Fig. 7. Again we see that
dropout on the convolution layer helps little, and
large dropout rate dramatically hurts performance.

To summarize, contrary to some of the existing
literature (Srivastava et al., 2014), we found that
dropout had little beneficial effect on CNN perfor-
mance. We attribute this observation to the fact
that one-layer CNN has a smaller number param-
eters than multi-layer deep learning models. An-
other possible explanation is that using word em-
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Figure 7: Effect of dropout rate on the convolution
layer (The accuracy when the dropout rate is 0.9
on the Opi dataset is not visible on the figure at
this point, as in Fig. 4)

beddings helps to prevent overfitting (compared
to bag of words based encodings). However, we
are not advocating completely foregoing regular-
ization. Practically, we suggest setting the dropout
rate to a small value (0.0-0.5) and using a rela-
tively large max norm constraint, while increasing
the number of feature maps to see whether more
features might help. When further increasing the
number of feature maps seems to degrade perfor-
mance, it is probably worth increasing the dropout
rate.

5 Conclusions

We have conducted an extensive experimental
analysis of CNNs for sentence classification. We
conclude here by summarizing our main findings
and deriving from these practical guidance for re-
searchers and practitioners looking to use and de-
ploy CNNs in real-world sentence classification
scenarios.

From our experimental analysis we draw sev-
eral conclusions that we hope will guide future
work and be useful for researchers new to using
CNNs for sentence classification.

• We find that, even when tuning them to the
task at hand, the choice of input word vector
representation (e.g., between word2vec and
GloVe) has an impact on performance, how-
ever different representations perform better
for different tasks. At least for sentence
classification, both seem to perform better
than using one-hot vectors directly. Con-
sider starting with the basic configuration
described in Table 1 and using non-static
word2vec or GloVe.

• The filter region size can have a large ef-
fect on performance, and should be tuned.
Line-search over the single filter region size
to find the ‘best’ single region size. A rea-
sonable range might be 1∼10. However, for
datasets with very long sentences like CR, it
may be worth exploring larger filter region
sizes. Once this ‘best’ region size is iden-
tified, it may be worth exploring combining
multiple filters using regions sizes near this
single best size, given that empirically multi-
ple ‘good’ region sizes always outperformed
using only the single best region size.
• 1-max pooling uniformly outperforms other

pooling strategies.
• Consider different activation functions if pos-

sible: ReLU and tanh are the best overall can-
didates.
• Alter the number of feature maps for each fil-

ter region size from 100 to 600, and when this
is being explored, use a small dropout rate
(0.0-0.5) and a large max norm constraint.
Pay attention whether the best value found is
near the border of the range (Bengio, 2012).
If the best value is near 600, it may be worth
trying larger values.
• When assessing the performance of a model

(or a particular configuration thereof), it is
imperative to consider variance. Therefore,
replications of the cross-fold validation pro-
cedure should be performed and variances
and ranges should be considered.

Of course, the above suggestions are applicable
only to datasets comprising sentences with simi-
lar properties to the those considered in this work.
And there may be examples that run counter to our
findings here. Nonetheless, we believe these sug-
gestions are likely to provide a reasonable starting
point for researchers or practitioners looking to ap-
ply a simple one-layer CNN to real world sentence
classification tasks.

We recognize that manual and grid search over
hyperparameters is sub-optimal, and note that our
suggestions here may also inform hyperparameter
ranges to explore in random search or Bayesian
optimization frameworks.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Charles Dugas, Yoshua Bengio, François Bélisle,
Claude Nadeau, and René Garcia. 2001. Incorpo-
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