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Abstract 

Mentions of event-argument relations, in par-

ticular dependency paths between event-

referring words and argument-referring words, 

can be decomposed into meaningful compo-

nents arranged in a regular way, such as those 

indicating the type of relations and the others 

allowing relations with distant arguments (e.g., 

coordinate conjunction). We argue that the 

knowledge about arrangements of such com-

ponents may provide an opportunity for mak-

ing event extraction systems more robust to 

training sets, since unseen patterns would be 

derived by combining seen components. How-

ever, current state-of-the-art machine learning-

based approaches to event extraction tasks 

take the notion of components at a shallow 

level by using n-grams of paths. In this paper, 

we propose two methods called pseudo-count 

and Bayesian methods to semi-automatically 

learn PCFGs by analyzing paths into compo-

nents from the BioNLP shared task training 

corpus. Each lexical item in the learned 

PCFGs appears in 2.6 distinct paths on aver-

age between event-referring words and argu-

ment-referring words, suggesting that they 

contain recurring components. We also pro-

pose a grounded way of encoding multiple 

parse trees for a single dependency path into 

feature vectors in linear classification models. 

We show that our approach can improve the 

performance of identifying event-argument re-

lations in a statistically significant manner. 1 

1 Introduction 

Event extraction tasks can be viewed as identify-

ing event-argument relations between tokens by 

mapping events onto tokens, to be called hence-

forth triggers, even though events may have oth-

                                                 
1 All the datasets and codes used in this study are available 

at http://www.biopathway.org/ijcnlp2013 

er events as arguments in contrast to average re-

lation extraction tasks, leading to interdependen-

cies between events. On looking into mentions of 

event-argument relations, in particular the short-

est dependency path between triggers and argu-

ments, one may find that they can be decom-

posed into intuitively meaningful components 

arranged in a regular way, such as core compo-

nents indicating the type of relations and subor-

dinate components making it possible for events 

to take arguments further away from triggers 

(e.g., coordinate conjunction). We anticipate that 

the knowledge about arrangements of compo-

nents provides an invaluable opportunity for 

making event extraction systems more robust to 

the choice of training sets, for example by as-

sembling seen components into unseen patterns. 

Towards this goal, we propose in this paper a 

way of automatically learning and exploiting in-

ternal structures of dependency paths for a robust 

extraction of biological events from the biologi-

cal literature with the corpora provided by a se-

ries of BioNLP shared tasks (Kim et al., 2009 

and Kim et al., 2011). 

For example, the following sentence has anno-

tated positive regulation events, including the 

induction of IP-10 by IFN, in the training corpus. 

 

(1) IL-10 preincubation resulted in the inhibition 

of gene expression for several IFN-induced 

genes, such as IP-10, ISG54, and intercellu-

lar adhesion molecule-1. (PMID: 10029571) 

 

From this sentence, we may formulate the pattern 

“X-induced genes, such as Y” with slots X and Y 

to detect the THEMEs of positive regulation 

events based on the underlined expression. This 

pattern can also be decomposed into a core com-

ponent “X-induced Y” and a subordinate compo-

nent “genes such as Y”. These two components 

have different roles. That is, the core component 
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alone can be used to detect the THEMEs of posi-

tive regulation events (e.g., “IFN-induced IP-

10”), but the subordinate component alone can-

not. Core components may not appear together in 

a pattern, but subordinate components may (e.g., 

there are two other involved subordinate compo-

nents “genes such as Y” and “[PROTEIN] and 

Y”, where “[PROTEIN]” would be replaced with 

any protein or gene name, in “IFN-induced genes, 

such as IP-10, ISG54 and intercellular adhesion 

molecule-1”). From this observation it is possible 

to come up with an unseen pattern “X-induced Y 

and Z”. 

However, current state-of-the-art machine 

learning-based approaches exploit the notion of 

components of patterns only at a shallow level 

using n-grams encoding partial structures of de-

pendency graphs (including unigrams used in 

bag-of-words models), not to mention the notion 

of regularity in arrangements of components (e.g., 

Björne et al., 2009; Miwa et al., 2010; Riedel et 

al., 2011). Therefore, their approaches would be 

biased towards dependency paths that contain a 

number of components even overlapping with 

one another, even though such paths may have 

undesired meanings due to the arrangements of 

components. 

In this paper, we propose two methods (called 

pseudo-count and Bayesian methods) to semi-

automatically learn three types of probabilistic 

context-free grammars (PCFGs) that assume dif-

ferent internal structures of paths, with the help 

of which dependency paths will be analyzed into 

components. All the learned PCFGs contain lexi-

cal items covering an average of about 2.6 dis-

tinct paths between triggers and arguments in the 

training corpus, suggesting that the methods suc-

cessfully identified recurring components. To 

exploit multiple parse trees derived from a single 

path, we also propose a linear classification 

model whose output score approximates the dif-

ference between the log probabilities of the path 

being derived from positive and negative rela-

tions. We find that the use of PCFGs learned by 

our pseudo-count method improves the perfor-

mance of classifiers in a statistically significant 

manner, compared to a baseline classifier with n-

grams encoding partial structures of paths. 

2 Related Work 

The literature on information extraction (IE) con-

tains a number of studies in which dependency 

paths are found to play a significant role (Johans-

son and Nugues, 2008; Miwa et al., 2010b; Qiu 

et al., 2011). Likewise, the biological event ex-

traction research, a branch of information extrac-

tion, stresses the importance of the role of de-

pendency paths in identifying event-argument 

relations due to the resemblance of event-

argument relations to dependency relations 

(Björne et al., 2008). For this reason, most of the 

event extraction studies have to use dependency 

path features, such as n-grams (n=1~4) of de-

pendencies and words, the length of dependency 

paths and so on, in identifying event-argument 

relations (Björne et al., 2009 and Miwa et al., 

2010b). 

It is thus not surprising that while there are 

many studies on dependency paths in the IE lit-

erature, most of them focus on identifying the 

type of dependency graph representations that is 

most suitable to their problem (cf. Johansson and 

Nugues, 2008, Miwa et al., 2010a), with few ex-

ceptions including Kilicoglu and Berger (2009) 

and Joshi and Penstein-Rosé (2009). In particular, 

Kilicoglu and Bergler (2009) manually con-

structed a total of 27 dependency path patterns 

by examining dependency paths between triggers 

and arguments. Joshi and Penstein-Rosé (2009) 

first generated sequences of triples of dependen-

cy relations and the baseform/POS of their to-

kens and then generalized the sequences by con-

cealing one of the elements of the triples. They 

find that the use of such generalized sequences 

improves the performance of the task of identify-

ing opinions from product reviews. However, 

there are no studies on automatically learning 

and using the internal structure of the dependen-

cy paths that express semantic relations between 

tokens, as addressed in this paper, to the best of 

our knowledge. 

3 Problem Setting 

Our proposal is tested on the event extraction 

task as defined in the 2009 BioNLP shared task 1 

(Kim et al., 2009), which was later renamed as 

GENIA Event Task 1 and extended to cover full 

papers in the 2011 Bio-NLP shared task (Kim et 

al., 2011). Their task is to extract structured in-

formation on events from sentences in the bio-

logical literature, including their event type and 

participants encoded with a controlled vocabu-

lary that has nine event types and two role types 

(“THEME” and “CAUSE”). This task can be 

considered to consist of two sub-tasks, one of 

identifying triggers and another of identifying 

event-argument relations. In this study, we focus 

on the latter and use the gold-standard annota-
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tions of triggers in the training and development 

corpora (including full papers) to generate de-

pendency paths for training and testing. 

In order to identify event-argument relations, 

we use twelve binary classifiers for all the possi-

ble combinations of event and role types. One 

may argue that multi-class classifiers are more 

suitable for this setting than binary classifiers, 

but there is no conclusive evidence for their ad-

vantage (cf. Baek and Park, 2012). Note also that 

our present focus is on assessing the benefit from 

the use of the knowledge about internal struc-

tures of dependency paths and not on assessing 

the whole event extraction systems. 

4 Method 

4.1 Preparation of Training Sequences 

The shortest dependency paths between triggers 

and argument candidate words (e.g., “-induced” 

and “IP-10” in (1)) over basic Stanford depend-

ency graphs2 (de Marneffe et al., 2006) are first 

computed, from which the three types of se-

quences are extracted in turn: token sequences, or 

a sequence of the surface forms of the visited 

tokens (e.g., “induced gene as IP-10”), depend-

ency sequences, or a sequence of the visited de-

pendencies (or more precisely, their type and 

direction; e.g., “-amod +prep +pobj”), and com-

bined sequences, or a sequence of the visited to-

kens and dependencies (e.g., “induced -amod 

genes +prep as +pobj IP-10”). 

Training sequences are derived from the ex-

tracted sequences by preprocessing them as fol-

lows. First, the last tokens of sequences, namely 

arguments, are dropped, because of the observa-

tion that this makes it easy to convert the com-

ponents of patterns into sequences and their sub-

sequences in a systematic way. For example, the 

two components “-induced Y” and “genes, such 

as Y” of the pattern “-induced genes, such as Y” 

can be converted into the sequences “-induced -

amod” and “genes +prep as +pobj”, which are 

combined into a sequence corresponding to the 

pattern, namely, “induced -amod genes +prep as 

+pobj”. Second, protein names are replaced with 

a special token “[PROTEIN]” to help learn gen-

eralized patterns, since there are a considerable 

amount of different types of proteins. Third, the 

first occurrence of each word in the training cor-

pus is replaced with a special token “[UN-

                                                 
2 Since arguments and triggers may be hyphenated, we pre-

process dependency graphs, so that hyphenated words are 

separated into their component words. 

KNOWN]” to simulate encounters with un-

known words in the test corpus during learning. 

Its downside is that all the tokens in the first 

training sequence are replaced with “[UN-

KNOWN]”. 

Note that it is a natural extension of our work 

to additionally generate other types of sequences, 

for example by replacing the surface forms of 

tokens with their other attributes (e.g., POSs and 

surface forms concatenated with POSs) in se-

quences mentioned above and by dropping func-

tional tokens (e.g., prepositions) within token 

sequences, even though we do not consider them 

here. 

4.2 PCFG Induction 

A PCFG consists of production rules (of the form 

Ax), each indicating that a nonterminal symbol 

A (a parent symbol) is replaced with a sequence x 

of symbols (child symbols) with a predefined 

probability. Our PCFGs have two types of pro-

duction rules, those that produce a sequence of 

nonterminal symbols (non-lexical production 

rules) and the others that produce a lexical item 

(lexical production rules). In our PCFGs, non-

lexical production rules are crafted manually and 

lexical production rules are learned. The proba-

bility of each rule is determined by maximum-

likelihood estimation (MLE), which divides the 

total number of the occurrences of the rule in 

training parse trees by the total number of the 

occurrences of its parent symbol in training parse 

trees. 

We build two sets of non-lexical rules, one 

generating positive sequences and another gener-

ating negative sequences, together with the fol-

lowing two non-lexical rules, where “S” stands 

for the start symbol and “Positive” and “Nega-

tive” symbols are the ones to be expanded into 

positive and negative sequences, respectively. 

 

(2) SPositive 

(3) SNegative 

 

We come up with the following three types of 

non-lexical rules for positive sequences, where 

the underlined symbols are lexical symbols, or 

the ones to be expanded into single lexical items, 

and asterisks indicate that the marked symbols 

may occur zero or more times in a row. 

 

(4) Unigram Rules 

PositiveComponent Component* 

(5) Uni-directionally Growing Rules 

PositiveCore Component* 
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(6) Bi-drectionally Growing Rules 

PositiveComponent* Core Component* 

 

These rules assume that sequences consist of 

components that may appear independently of 

one another (independence constraint), but also 

that they cannot overlap with one another (non-

overlapping constraint). The second and third 

types of rules assume that sequences should have 

core components as indicated by the “Core” 

symbols. The independence constraint may not 

capture the nature of dependency paths, but 

makes it cheaper to learn lexical rules. We leave 

the question about the effect of the independence 

constraint open for future research. The uni-

directionally growing rules are most consistent 

with our observation that triggers and their de-

pendencies play a significant role in determining 

the type of event-argument relations. 

Since lexical items are allowed to span across 

more than one element in positive sequences but 

are not annotated on training sequences, we need 

to make a guess at parse trees for each sequence 

to count the occurrences of rules. To address this 

problem, we propose two methods. One is called 

a pseudo-count method that assigns all possible 

parse trees for each training sequence an equal 

probability (i.e., one divided by the number of all 

possible parse trees) of the sequence being gen-

erated from them, and accumulates the assumed 

probability (i.e., pseudo-count) of parse trees 

containing each rule. 

Another is called a Bayesian method that con-

verts our non-lexical rules into an adaptor gram-

mar, or a description of non-parametric Bayesian 

models with Chinese Restaurant Processes (CRP) 

and Pitman-Yor Processes (PYP) (Johnson et al., 

2007), by adding production rules, to be called 

lexical item production rules, that replace lexical 

symbols with a sequence of terminal symbols, 

such as tokens and dependencies (e.g., “To-

kensToken Token*”), and by labeling lexical 

symbols as an adaptor symbol, whose expansion 

to terminal symbols is collected during learning. 

One advantage of this method is to penalize 

lengthy lexical items, and as a result, to facilitate 

analyzing sequences into more than one lexical 

item, since producing a lengthy lexical item re-

quires the use of many lexical item production 

rules with a probability below one. In practice, 

we use the adaptor grammar inference program 

(Johnson et al., 2007), which samples analyses of 

input sequences (i.e., sequences of dependency 

types). We assume that all production rules in 

our adaptor grammars have the same probability. 

We ran two thousand iterations of sampling 

analyses, but ignored samples during the first 

half, as these may not be significantly different 

from randomly assigned initial analyses. After-

wards, we counted the occurrences of lexical 

items and rules. As a result, 1,000 samples are 

taken for each sequence. 

Since negative training sequences can convey 

a variety of semantic types, it is unlikely that a 

training corpus contains all possible negative 

training sequences covering such semantic types, 

suggesting the risk of over-fitting of learned 

PCFGs to negative training sequences (cf. Li et 

al., 2010). To avoid it, we use a simple grammar, 

which is expected to be able to learn from a rela-

tively small amount of training instances, as 

shown below, where “NComponent” symbols 

produce single token and dependency types. In 

contrast to the positive sequences, it is straight-

forward to construct parse trees for negative se-

quences and to count production rules, since all 

negative sequences have only one possible parse 

tree. 

 

(7) NegativeNComponent NComponent* 

 

Finally, we filter out infrequent and lengthy 

lexical items, which may have the same form as 

the sequences from which they are learned, to 

prevent models from memorizing training se-

quences as they are (e.g., “induced -amod genes 

+prep as +pobj”), that is, assigning a high weight 

to them and to teach instead models ways of ana-

lyzing positive sequences into relatively small 

lexical items (e.g., “induced –amod” and “genes 

+prep as +pobj”). For each lexical symbol, we 

remove the least probable lexical items whose 

occurrences form a predefined percentage3 of the 

occurrences of the lexical symbol. Note that it is 

apparently a more reasonable option to learn 

PCFGs and linear classification models on two 

different disjoint subsets of randomly selected 

sequences. We leave this option for future work. 

4.3 Linear Classification Model 

Using the CKY algorithm with beam search, we 

generate the most probable k parse trees for three 

types of sequences extracted from a dependency 

path with the help of the learned PCFGs, each of 

which explicitly has a favorite label. One way to 

                                                 
3 The predefined percentage is 1% if the ratio of the number 

of distinct sequences to the number of sequences is below a 

third, 5% if the ratio is between a third and two third, and 10% 

otherwise. 
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combine their opinions is to let respective classi-

fiers S for the types of sequences vote for their 

favorite label 𝑧𝑠(𝑥) (+1 or −1) of a path x and to 

count their vote with a different weight propor-

tionate to their reported confidence 𝑤𝑠(𝑥)  and 

their credibility 𝑐𝑠, as follows: 

 

𝑦 = ∑ 𝑐𝑠𝑧𝑠(𝑥)𝑤𝑠(𝑥)

𝑆

= ∑ 𝑐𝑠𝑦𝑠(𝑥)

𝑆

 

 

If the output score y is positive, our classifier 

makes a final decision of labeling x as being pos-

itive. The term 𝑧𝑠(𝑥)𝑤𝑠(𝑥) can be regarded as 

the output score 𝑦𝑠(𝑥) given by a classifier S. 

We define 𝑦𝑠(𝑥) as follows, where the capital 

letters stand for random variables: 

 

ys(𝑥) = log (
P(𝑍 = +1, 𝑋 = 𝑥)

P(𝑍 = −1, 𝑋 = 𝑥)
) 

 

The log probability log (P(𝑍, 𝑋))  is written in 

terms of the probability P(𝑍, 𝑇)of our PCFGs 

generating 𝑇𝑧 parse trees supporting a value z of 

Z: 

 
log (P(𝑧, 𝑥)) = log (𝑇𝑧 × P(𝑧, 𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

 

where P(𝑧, 𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average of the probability 

of parse trees generating x and supporting z. Us-

ing Jensen’s inequality, it is easy to show that its 

lower bound 𝑙(𝑧, 𝑥) is: 

 
log(P(𝑧, 𝑥)) ≥ 𝑙(𝑧, 𝑥) = logP(𝑧, 𝑇𝑥) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  log 𝑇𝑧  

 

where the first term is the average of the log 

probability of parse trees under consideration. 

One thing to note is that the equality always 

holds for  P(𝑍 = −1, 𝑋 = 𝑥) , since our PCFGs 

for negatively labeled sequences produce at most 

one parse tree for each sequence. For this reason, 

the lower bound 𝑦𝑠
𝑙𝑜𝑤(𝑥) of 𝑦𝑠(𝑥) is: 

 

𝑦𝑠
𝑙𝑜𝑤(𝑥) = ∑ ( ∑

𝑧logP(𝑇 = 𝑡)

𝑇𝑧
𝑡→ 𝑥|𝑧

+ 𝑧log 𝑇𝑧)

𝑧

 

 

Instead of 𝑦𝑠(𝑥), we use 𝑦𝑠
𝑙𝑜𝑤(𝑥) at risk of the 

deterioration of the performance of the resulting 

model, since it is apparently easier to handle 

than 𝑦𝑠(𝑥). 

In the worst case, the difference between 

log P(𝑍, 𝑋) and 𝑙(𝑧, 𝑥) can be: 

 

|log(P(𝑧, 𝑥)) − 𝑙(𝑧, 𝑥)| ≤ log
P(𝑧, 𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

P𝑚𝑖𝑛(𝑧, 𝑇𝑥)
 

 

where the denominator is the least probability of 

parse trees under consideration. It indicates that 

with a wide beam width the estimated value of 

 𝑦𝑠
𝑙𝑜𝑤(𝑥) may be significantly lower than the true 

value of 𝑦𝑠(𝑥), while with a narrow beam width 

the estimated value of 𝑦𝑠
𝑙𝑜𝑤(𝑥)  is likely to be 

similar to the estimated value of 𝑦𝑠(𝑥), which 

may be significantly higher than its true value. 

Thus the success of the use of 𝑦𝑠
𝑙𝑜𝑤(𝑥)  is de-

pendent on the beam width. 

Expanding the log probability  logP( 𝑇 = 𝑡) , 

𝑦𝑠
𝑙𝑜𝑤(𝑥) is rewritten: 

 

∑ ∑ 𝑧log(𝑝𝑟) ( ∑
𝑐𝑜𝑢𝑛𝑡(𝑟 𝑖𝑛 𝑡)

𝑇𝑧
𝑡→ 𝑋|𝑧

) + (∑ 𝑧log 𝑇𝑧
𝑧

)

𝑧𝑟

 

 

where 𝑝𝑟  is the probability of rule r, which is 

given by PCFGs, and 𝑐𝑜𝑢𝑛𝑡(𝑟 𝑖𝑛 𝑡) is the num-

ber of the occurrences of rule r in parse tree t. 

Introducing coefficients 𝑤𝑟 , 𝑤1  and 𝑤0  into the 

equation, 𝑦𝑠
𝑙𝑜𝑤(𝑥) can be generalized to a linear 

model as shown below. 

 

∑ 𝑤𝑟  ( ∑
𝑐𝑜𝑢𝑛𝑡(𝑟 𝑖𝑛 𝑡)

𝑇𝑧
𝑡→ 𝑋|𝑧

) + 𝑤1 (∑ 𝑧log 𝑇𝑧
𝑧

)

𝑟

+ 𝑤0 

 

Being their linear combination of the linear mod-

els 𝑦𝑠
𝑙𝑜𝑤(𝑥), the output score y is also a linear 

model. In this paper, we train our linear classifi-

ers using LIBLINEAR (Fan et al., 2008) 4. 

Finally, we note that as in the re-ranking 

parsers (e.g., Charniak and Johnson, 2005), it is 

possible to use global features, or features not 

allowed in the CKY algorithm, to calculate the 

log probability  logP( 𝑇 = 𝑡). In this paper, we 

leave the effect of the use of such global features 

for future research. 

5 Experiments 

We generated labeled training dependency paths 

for each event-argument relation type from the 

BioNLP training corpus with the help of the 

Charniak-Johnson parser (Charniak and Johnson, 

2005) with a self-trained biomedical parsing 

model (McClosky and Charniak, 2008). There 

are 7,009 positive paths and 10,603 negative 

paths. The ratio of the number of positive paths 

                                                 
4 Our linear classifiers are trained using the L2 regularized 

logistic regression solver with cost constants that are chosen 

among 0.01, 0.1, 1 and 100 with the help of five-fold cross 

validation. 
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to the number of negative paths is 0.66. We 

found that a majority of the relation types would 

have a balanced set of training instances, except 

for a few relation types with the imbalance be-

tween positive and negative instances. One way 

of correcting the imbalance is to give more 

weight to positive instances, but we leave out the 

imbalance in this experiment. 

We extracted three types of sequences from 

them. We found that most distinct negative se-

quences appear once in the training corpus as 

shown in Table 1, where the bracketed figures 

are the ratios of the number of distinct sequences 

to the number of sequences, justifying the use of 

a simple grammar for negative sequences. 

Sequence Positive Negative Total 

Combined 3,703 

(1.89) 

9,781 

(1.08) 

13,484 

(1.31) 

Token 3,366 

(2.08) 

9,270 

(1.14) 

12,636 

(1.39) 

Dependency 1,816 

(3.86) 

7,419 

(1.43) 

9,235 

(1.91) 

Table 1. Distinct Training Sequences 

We use the pseudo-count and Bayesian meth-

ods to learn grammars. The learned PCFGs con-

tain the mentioned example lexical items, “-

induced -amod”, “genes +prep as +pobj” and 

“[PROTEIN] +conj”. They contain a number of 

intuitively correct core and subordinate compo-

nents. The learned subordinate components in-

clude “genes +prep like +pobj”, “[PROTEIN] 

+abbrev” and “[PROTEIN] +appos”. 

With three different beam widths, we parse 

sequences to generate feature vectors for our lin-

ear classification models and evaluate the result-

ing models in terms of accuracy, as shown below. 

Grammar Beam Width 

k=1 k=10 k=100 

Pseudo-Count 

Unigram 86.43% 85.97% 86.07% 

Uni-direct 86.94% 87.05% 87.03% 

Bi-direct 86.48% 86.43% 86.25% 

Bayesian 

Unigram 82.72% 83.39% 83.27% 

Uni-direct 82.95% 83.70% 82.88% 

Bi-direct 82.70% 83.45% 83.26% 

Table 2. Accuracy of Our Classifiers 

For each grammar, the best reported accuracy is 

set in bold. With PCFGs learned by the pseudo-

count method, the use of multiple parse trees 

does not affect or even decrease the performance 

of classifiers. One possible explanation is that the 

wider the beam is the more erroneous parse trees 

are likely to affect the final decision of classifiers. 

In contrast, the classifiers with PCFGs learned by 

the Bayesian model would slightly benefit from 

the use of multiple parse trees, even though their 

performance also drops when using the widest 

beam. To explain that we get only a slight benefit 

from a wide beam width, we looked at feature 

vectors, noticing that many positive training se-

quences have only a small number of possible 

parse trees. We also observed that as expected, 

classifiers with the uni-directionally growing 

PCFGs outperform the other classifiers, with one 

exception of classifiers with the widest beam and 

the ones learned by the Bayesian method. 

To compare with our classifiers, we imple-

ment linear baseline classifiers that use as fea-

tures all n-grams (n=1~4) of token, dependency 

and combined sequences extracted from the 

training instances. They first replace unknown 

words in an input sequence with a special token 

“[UNKNOWN]” and count the occurrence of n-

grams in the sequence. Like our classifiers, they 

are also trained by LIBLINEAR (Fan et al., 

2008). 

The accuracy of the baseline classifiers is 

85.76%, which is lower than that of the pseudo-

count classifiers with any beam width in use, but 

higher than that of the Bayesian classifiers with 

any used beam width. The superiority of the 

pseudo-count classifiers with any beam width 

over the baseline classifiers is statistically signif-

icant at the 10% significance level in terms of 

their accuracy (p-value=5.6~8.4%), according to 

the one-sided paired Student’s t-test with the ac-

curacy of classifiers for each relation type. 

6 Conclusion 

In this paper we proposed a way of exploiting 

internal structures of dependency paths for the 

extraction of biological events from the biologi-

cal literature with the BioNLP shared task corpo-

ra. We proposed pseudo-count and Bayesian 

methods to learn three types of PCFGs that as-

sume different internal structures of paths from 

dependency paths. To use multiple parse trees for 

a single path, we also developed a linear classifi-

cation model whose output score approximates 

the difference between the log probabilities of 

the path being derived from positive and nega-

tive relations. Finally, we have shown that our 

approach can improve the performance of identi-

fying event-argument relation in a statistically 

significant manner. 
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