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Abstract
This paper presents a graph-based model
that integrates prosodic features into
an unsupervised speech summarization
framework without any lexical informa-
tion. In particular it builds on previous
work using mutually reinforced random
walks, in which a two-layer graph struc-
ture is used to select the most salient ut-
terances of a conversation. The model
consists of one layer of utterance nodes
and another layer of prosody nodes. The
random walk algorithm propagates scores
between layers to use shared information
for selecting utterance nodes with highest
scores as summaries. A comparative eval-
uation of our prosody-based model against
several baselines on a corpus of academic
multi-party meetings reveals that it per-
forms competitively on very short sum-
maries, and better on longer summaries
according to ROUGE scores as well as the
average relevance of selected utterances.

1 Introduction

Automatic extractive speech summarization (Hori
and Furui, 2001) has garnered considerable in-
terest in the natural language processing research
community for its immediate application in mak-
ing large volumes of multimedia documents more
accessible. Several variants of speech summa-
rization have been studied in a range of tar-
get domains, including news (Hori et al., 2002;
Maskey and Hirschberg, 2003), lectures (Glass et
al., 2007; Chen et al., 2011) and multi-party meet-
ings (Banerjee and Rudnicky, 2008; Liu and Liu,
2010; Chen and Metze, 2012b).

Research in speech summarization – unlike its
text-based counterpart – carries intrinsic difficul-
ties, which draw their origins from the noisy na-
ture of the data under consideration: imperfect

ASR transcripts due to recognition errors, lack of
proper segmentation, etc. However, it also of-
fers some advantages by making it possible to
leverage extra-textual information such as emo-
tion and other speaker states through an incorpo-
ration of prosodic knowledge into the summariza-
tion model.

A study by Maskey and Hirschberg (2005) on
the relevance of various levels of linguistic knowl-
edge (including lexical, prosodic and discourse
structure) showed that enhancing a summarizer
with prosodic information leads to more accurate
and informed results.

In this work we extend the model proposed by
Chen and Metze (2012c), where a random walk
is performed on a lexico-topical graph structure to
yield summaries. They exploited intra- and inter-
speaker relationships through partial topic shar-
ing for judging the importance of utterances in the
context of multi-party meetings. This paper, on the
other hand, enriches the underlying graph struc-
ture with prosodic information, rather than lexico-
topical knowledge, to model speaker states and
emotions.

Also different from Maskey and Hirschberg
(2005), we model the multimedia document struc-
ture as a graph, which allows for flexibility as
well as expressive power in representation. This
graph structure provides the easy incorporation
of targeted features into the model as well as in-
depth analyses of individual feature contributions
towards representing speaker information.

To the best of our knowledge this paper presents
the first attempt at performing speech summariza-
tion using no lexical information in a completely
unsupervised setting. Maskey and Hirschberg
(2006) use an HMM to perform summarization by
relying solely on prosodic features. However, their
model – unlike ours – is supervised. The only
requirement of the model in this paper is a pre-
processing step that segments the audio into “ut-
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terances”.
While utterance segmentation may be a non-

trivial problem, the possibility of an unsupervised
speech summarization model that relies solely on
acoustic input is advantageous. Importantly, it
does not rely on any training data and circumvents
the primary difficulties that plague most speech
summarization techniques — namely the noise
introduced into the system by imperfect speech
recognition.

We evaluate our model on a dataset consist-
ing of multi-party academic meetings (Chen and
Metze, 2012b; Banerjee and Rudnicky, 2008). We
perform evaluation using the ROUGE metric for
automatic summarization, which counts n-gram
overlap between reference and candidate sum-
maries. We also run a post-hoc analysis, which
measures the average relevance score of utterances
in a candidate summary.

Evaluation results indicate that our model out-
performs a number of baselines across varying
experimental settings in all but the shortest sum-
maries. We hence claim that our model is a robust,
flexible, and effective framework for unsupervised
speech summarization.

The rest of the paper is organized as follows.
Section 2 describes the prosodic features encoded
in the model and how they are extracted. Section 3
presents the construction of the two-layer graph
and mutually reinforced random walk for propa-
gating information through the graph. Section 4
shows experimental results of applying the pro-
posed model to the dataset of academic meetings
and discusses the effects of prosody on summa-
rization. Section 5 concludes.

2 Prosodic Feature Extraction

As previously stated, the only pre-requisite of the
model proposed in this paper is a segmentation of
the input document into chunks that are dictated
by some meaningful notion of utterances. Once
the audio has been segmented utterance-wise, the
rest of the pipeline is effectively agnostic to all but
its acoustic properties.

Given a set of pre-segmented audio files, we ex-
tract the following prosodic features from them us-
ing PRAAT scripts (Huang et al., 2006).

• Number of syllables and number of pauses.

• Duration time, – which is the speaking time
including pauses – and the phonation time, –
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Figure 1: A simplified example of the two-layer
graph considered, where a type of prosody Pi is
represented as a node in prosody-layer and an ut-
terance Uj is represented as a node in utterance-
layer of the two-layer graph.

which is the speaking time excluding pauses.

• Speaking rate and articulation rate, which are
the number of syllables divided by the dura-
tion time and phonation time, respectively.

• The average, maximal and minimal funda-
mental frequencies measured in Hz (which
objectify the perceptive notion of pitch).

• The energy measured in Pa2/sec and the in-
tensity measured in dB.

The inclusion of the features above into the
model was motivated by their possible contribu-
tion to the notion of “important utterances” in a
dialogue. For example, intuitively, pitch is a vocal
channel for emotions, such as anger, or embarrass-
ment. It may thus contribute, via the emotional in-
vestment of the speaker to the importance of her
utterances. Similarly, the variation of energy over
an utterance results in its perceived loudness, thus
possibly permitting the inference of emphasis or
stress to particular utterances by speakers. Again,
speech rate often acts as a latent channel for com-
munication of information, where excitement or
emphasis is implicitly conveyed by a speaker.

3 Two-Layer Mutually Reinforced
Random Walk

In this section we describe our method for
modelling speech data as a two-layered inter-
connected graph structure and run the mutually re-
inforced random-walk algorithm for summariza-
tion.
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Given an input speech document that is suitably
segmented into utterance chunks, we construct a
linked two-layer graph G containing an utterance
set VU and a prosody set VP . Each node of the
graphUi ∈ VU corresponds to a single utterance as
obtained from the pre-processing “chunking” step.
Every node Pi ∈ VP illustrates a single prosodic
features incorporated into the model.

Figure 1 shows a simplified example of such a
two-layered graph. G = 〈VU , VP , EUP , EPU 〉,
where VU = {Ui}, VP = {Pi}, EUP = {eij |
Ui ∈ VU , Pj ∈ VP }, and EPU = {eij | Pi ∈
VP , Uj ∈ VU}. Here, EUP and EPU represent the
sets of directional edges between utterances and
prosodic nodes with different directions (Cai and
Li, 2012).

Based on these sets of directional edges we fur-
ther define LUP = [wi,j ]|VU |×|VP | and LPU =
[wj,i]|VP |×|VU |. The matrices LUP and LPU effec-
tively encode the directional relationship between
utterances and prosodic features. More concretely,
for example, the entry wi,j of LUP is the value
of the prosodic feature Pj extracted from the ut-
terance Ui. Row-normalization is performed on
LUP and LPU (Shi and Malik, 2000). It may
be noted that, as a consequence, LUP is different
from LT

PU .
Traditional random walk only operates on a sin-

gle layer of the graph structure and integrates the
initial similarity scores with the scores propagated
from other utterance nodes (Chen et al., 2011;
Chen and Metze, 2012a; Hsu et al., 2007). The
approach adopted in this paper, however, consid-
ers prosodic information by propagating informa-
tion between layers based on external mutual rein-
forcement (Chen and Metze, 2012c).

Effectively the working of the algorithm stems
from two interrelated intuitions. On the one hand,
utterances that evidence more pronounced signs
of important prosodic features should themselves
be judged as more salient. On the other hand,
prosodic features in salient utterances that are
recorded with higher values should themselves be
deemed as more important.

The advantage of the algorithm is that it is en-
tirely unsupervised and allows for the integration
of knowledge-rich target specific features. The
mathematical formulation of the algorithm is pre-
sented as follows.

Given some initial scores F (0)
U and F (0)

P for ut-
terance and prosody nodes respectively, the update

rule is given by:{
F

(t+1)
U = (1− α)F

(0)
U + α · LUPF

(t)
P

F
(t+1)
P = (1− α)F

(0)
P + α · LPUF

(t)
U

(1)

Here F (t)
U and F (t)

P integrate the initial importance
associated with their respective nodes with the
score obtained by between-layer propagation at a
given iteration t.

Hence, the scores in each layer are mutually
updated by the scores from the other layer, itera-
tively. In particular, utterances that exhibit more
pronounced signs of important prosodic feature
are progressively scored higher. At the same time,
prosodic features that appear with higher values in
salient utterances become progressively more im-
portant.

For the utterance set, the update rule incre-
ments the importance of nodes with the combina-
tion LUPF

(t)
P . This latter term can be considered

as the score from linked nodes in the prosody set,
weighted by prosodic feature values. Finally, an α
value encodes the trade-off between initial utter-
ance weight and information sharing via propaga-
tion. The algorithm converges satisfying (2).{

F ∗U = (1− α)F
(0)
U + α · LUPF

∗
P

F ∗P = (1− α)F
(0)
P + α · LPUF

∗
U

(2)

Additionally F ∗U has an analytical solution
which is given by:

F ∗U = (1− α)F
(0)
U (3)

+ α · LUP

(
(1− α)F

(0)
P + α · LPUF

∗
U

)
= (1− α)F

(0)
U + α(1− α)LUPF

(0)
P

+ α2LUPLPUF
∗
U

=
(
(1− α)F

(0)
U eT + α(1− α)LUPF

(0)
P eT

+ α2LUPLPU

)
F ∗U

= MF ∗U ,

where e = [1, 1, ..., 1]T . The closed-form so-
lution F ∗U of (3) is the dominant eigenvector of
M (Langville and Meyer, 2005).

It may be noted that for the practical implemen-
tation of the algorithm, we set the initial scores of
utterance nodes F (0)

U and prosodic nodes F (0)
P to

have equal importance. Also we empirically set
α = 0.9 for all our experiments because several
studies have shown that (1−0.9) is a proper damp-
ing factor (Hsu et al., 2007; Brin and Page, 1998).
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4 Experiments

4.1 Pre-processing – Time Alignment
We have previously stressed that while our model
is independent from the lexical representation
of an audio document, it does rely on a pre-
processing step that chunks the document into in-
dividual utterances. It is noted that this may not be
a trivial task.

Speaker diarization (Tranter and Reynolds,
2006) and utterance segmentation (Christensen et
al., 2005; Geertzen et al., 2007) are open areas of
research in the NLP community. Systems devel-
oped for these purposes may be used to produce
the initial chunking required by our model. In this
paper, however, we do not explore these methods
and instead rely on segmentation obtained from
manually produced textual transcripts. This is to
study the efficacy of our model in isolation.

A second reason for using textual transcripts
is the presentation of experimental evaluation.
This form of data allows for tangible results that
are obtained through evaluation metrics such as
ROUGE, which rely on measuring n-gram overlap
between reference and candidate summaries. Fur-
thermore, the resulting textual surface form and
summaries are more “semantically” interpretable
as well.

To associate prosodic information with the tex-
tual realization of each utterance in a manual tran-
script, a preprocessing step requires time align-
ments between the audio and the corresponding
text of each utterance. Note that this step is unnec-
essary in the case when manual transcripts are not
present, and utterance chunking is obtained from
some other, automatic means. The time alignment
is then implicitly obtained in the process of utter-
ance segmentation.

To accomplish the alignment in our experimen-
tal framework, a speech recognizer is first used to
produce an ASR output of the audio document.
A by-product of this step is that each recognized
token contains an inherent time signature. Us-
ing Viterbi alignment between the ASR output and
manual transcription the time signatures from the
audio is projected onto each manually transcribed
utterance.

We experimented with Viterbi alignment at a
number of different levels of granularity includ-
ing token level, character level, and phoneme level
(via conversion of text to phonetic representation
using the CMU pronunciation dictionary (Weide,

1998)). The latter was empirically found to pro-
duce the most fine-grained and precise alignments,
and was consequently used in all our experiments.

4.2 Corpus
The dataset used in our evaluation is the same one
previously employed by Chen and Metze (2012b).
It consists of 10 meetings held between April and
June 2006, with largely overlapping participants
and topics of discussion. There were a total of 6
unique participants, with each meeting involving
between 2 and 4 individual speakers. SmartNotes
(Banerjee and Rudnicky, 2008) was use to record
both the audio and the notes for each meeting.

The average duration of a meeting in the dataset
was approximately 28 minutes, and the total num-
ber of utterances was 7123. We only use the man-
ual transcripts of the meetings to actually evaluate
our model, although ASR transcripts were used for
time alignment.

The reference summaries are produced by se-
lecting the set of the most “noteworthy” utter-
ances. Two annotators manually labelled the de-
gree of “noteworthiness” (on a relevance scale of
1 to 3) for each utterance. We extract all the utter-
ances with a “noteworthiness” level of 3 to form
the reference summary of each meeting.

4.3 Baselines
Several baselines were used for comparison
against our model and are described below.

1. Longest: The first baseline simply selects the
longest utterances to form a summary of a
document (where the length of the extracted
summary is based on the desired ratio). We
define the length of utterances by the number
of tokens they contain.

2. Begin: A second variant of this baseline se-
lects the utterances that appear in the begin-
ning of the document.

3. LTE: The third baseline is a summary
produced by using Latent Topic Entropy
(LTE) (Kong and Lee, 2011). This measure
essentially estimates the “focus” of an utter-
ance. Hence, theoretically, a lower topic en-
tropy relates to a more topically informative
utterance, which in turn translates into a note-
worthy utterance to include in a summary.

4. TF-IDF The final baseline uses basic TF-IDF
to measure the importance of utterances, by
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F-measure
ROUGE-1 ROUGE-L

10% 20% 30% 10% 20% 30%

Baseline

Longest 34.05 52.48 61.11 33.66 52.10 60.77
Begin 35.45 54.42 64.63 35.28 54.18 64.37
LTE 35.16 54.67 64.97 35.03 54.54 64.76

TFIDF 32.01 51.33 63.11 31.89 51.08 62.84
This Paper 35.33 55.17 65.60 35.09 54.90 65.36

Table 1: ROUGE scores (%) on multi-party meeting dataset

taking the averaged TF-IDF score over each
of its individual words.

It may be noted that the topic distribution of
words as well as their IDF scores were obtained
by computing statistics over all ten meetings in our
experimental dataset.

4.4 Evaluation Metrics
Our automated evaluation utilizes the stan-
dard DUC (Document Understanding Conference)
evaluation metric, ROUGE (Lin, 2004), which
measures recall over various n-gram statistics be-
tween a system-generated summary and a set of
summaries produced by humans. F-measures
for ROUGE-1 (unigram) and ROUGE-L (longest
common subsequence) can be evaluated in exactly
the same way.

We also use a post-hoc evaluation metric to
measure the average “importance” of utterances
in a summary. This metric associates a relevance
score to a summary by taking the averaged note-
worthiness score of each utterance, as obtained
from human annotators.

4.5 Results and Discussion
We ran each of the baseline summarizers as well as
the system proposed in this paper to produce 10%,
20% and 30% summaries of each of the meetings
in the dataset. The percentage of a summary was
determined by selecting the top k utterances (as
determined by a given system) until the desired
ratio between the number of tokens in the sum-
mary to the total length of its corresponding meet-
ing was met.

Evaluation results on the ROUGE metric are
presented in Table 1. They reveal that the perfor-
mance of our prosody-based model is competitive
with the other baselines on the shortest 10% sum-
maries. In fact it ranks second, only scoring lower
than the baseline that considers the beginning of
a document as a summary. Additionally, on the

longer 20% and 30% summaries, the system out-
performs all the baselines.

We believe that in the case of very short sum-
maries, the nature of the data under consideration
biases the evaluation of the “begin” baseline. This
is because the meetings generally commence with
a presentation of an agenda which contains key
terms that are likely to be discussed during the
course of the rest of the session. In this scenario a
metric such as ROUGE – which effectively mea-
sures n-gram overlap – would reward the “begin”
summary for including key terms that appear sev-
eral times in the gold standard summaries.

However for longer summaries, where lexical
variation is more pronounced, prosodic informa-
tion provides a robust source of intelligence to se-
lect noteworthy utterances. In fact we are sur-
prised that it outperforms the lexically derived
LTE and TF-IDF baselines in all evaluation con-
figurations.

Overall, these results seem to suggest that our
model is able to capture latent speaker information
and incorporate it effectively into the process of
extractive summarization.

We further test this conclusion by conducting a
post-hoc analysis, where we examine the average
“importance” of utterances in the summary pro-
duced by a particular system. More specifically,
we measure the average relevance score – ranging
on a scale of 1 to 3 – of the utterances, where the
score of each utterance is derived from its note-
worthiness level as judged by human annotators
(Banerjee and Rudnicky, 2008). The results of this
analysis are presented in Table 2.

While the “begin” baseline is able to produce
summaries with the highest relevance score for the
shortest 10% summaries, our model outperforms
all other systems on the longer 20% and 30% sum-
maries. Moreover, it is competitive with the “be-
gin” baseline even on the shortest summaries and
scores higher than the other baselines. These re-
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Avg. Relevance 10% 20% 30%

Baseline

Longest 2.299 2.272 2.283
Begin 2.464 2.402 2.398
LTE 2.334 2.369 2.367

TFIDF 2.355 2.363 2.375
This paper 2.454 2.422 2.411

Table 2: Avg. relevance scores on multi-party
meeting dataset

sults align with the findings in Table 1.
As an auxiliary analysis we also extract the con-

verged scores of prosody nodes and rank them in
order to analyze their effectiveness. The rank-
ing reveals that the number of pauses in an ut-
terance, its minimum and average pitch, and its
intensity tend to be the most predictive features.
In the context of academic meetings the number
of pauses may be indicative of the time a speaker
takes to formulate and articulate his/her thoughts.
Thus more pauses may indicate utterances that
have been more carefully crafted and therefore in-
clude more relevant content. Pitch and intensity
are generally good measures of important infor-
mation, because speakers tend to use them to ex-
press emotion. This fact has previously been suc-
cessfully leveraged for key term extraction (Chen
et al., 2010).

Conversely the duration time of the utterance,
the number of syllables, and the energy are the
least predictive features. With the exception of en-
ergy, the other two features can be considered as
a surrogate measure for the length of utterances.
This parallels what the “longest” utterance base-
line performs lexically. The finding corresponds
to the results from Tables 1 and 2, which show that
this baseline does not produce particularly relevant
summaries.

5 Conclusion

Our paper proposes a novel approach to integrat-
ing speaker-state information, through the incor-
poration of prosodic knowledge into an unsuper-
vised model for extractive speech summarization.
We have also shown the first attempt at performing
unsupervised speech summarization without using
lexical information.

We have presented experiments on a dataset of
academic meetings involving spoken interactions
between multiple parties. Evaluation results in-
dicate that our model extracts relevant utterances

as summaries, both from the perspective of auto-
matic evaluation metrics such as ROUGE as well
as a post-hoc metric that measured the average
relevance score of utterances within summaries.
In addition our model compared favorably with
a number of heuristic and lexically derived base-
lines outperforming them in all but one scenario.
This substantiates its claim to a robust and viable
method for completely unsupervised speech sum-
marization.
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