
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 1216–1224,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Incremental Joint POS Tagging and Dependency Parsing in Chinese

Jun Hatori1 Takuya Matsuzaki1 Yusuke Miyao3 Jun’ichi Tsujii4
1University of Tokyo / 7-3-1 Hongo, Bunkyo, Tokyo, Japan

2National Institute of Informatics / 2-1-2 Hitotsubashi, Chiyoda, Tokyo, Japan
3Microsoft Research Asia / 5 Danling Street, Haidian District, Beijing, P.R. China

{hatori,matuzaki}@is.s.u-tokyo.ac.jp
yusuke@nii.ac.jp jtsujii@microsoft.com

Abstract
We address the problem of joint part-of-speech
(POS) tagging and dependency parsing in Chi-
nese. In Chinese, some POS tags are often
hard to disambiguate without considering long-
range syntactic information. Also, the traditional
pipeline approach to POS tagging and depen-
dency parsing may suffer from the problem of
error propagation. In this paper, we propose the
first incremental approach to the task of joint POS
tagging and dependency parsing, which is built
upon a shift-reduce parsing framework with dy-
namic programming. Although the incremental
approach encounters difficulties with underspeci-
fied POS tags of look-ahead words, we overcome
this issue by introducing so-called delayed fea-
tures. Our joint approach achieved substantial
improvements over the pipeline and baseline sys-
tems in both POS tagging and dependency pars-
ing task, achieving the new state-of-the-art per-
formance on this joint task.

1 Introduction

The tasks of part-of-speech (POS) tagging and de-
pendency parsing have been widely investigated
since the early stages of NLP research. Among
mainstream approaches to dependency parsing, an
incremental parsing framework is commonly used
(e.g. Nivre (2008); Huang and Sagae (2010)),
mainly because it achieves state-of-the-art ac-
curacy while retaining linear-time computational
complexity, and is also considered to reflect how
humans process natural language sentences (Fra-
zier and Rayner, 1982).

However, although some of the Chinese POS
tags require long-range syntactic information in
order to be disambiguated, to the extent of our
knowledge, none of the previous approaches have
addressed the joint modeling of these two tasks in
an incremental framework. Also, since POS tag-
ging is a preliminary step for dependency parsing,
the traditional pipeline approach may suffer from
the problem of error propagation.

In the example sentence in Figure 1, � has
POS ambiguity between DEG (a genitive marker),
which connect two noun phrases as “’s” in En-
glish, and DEC (a complementizer), which intro-
duces a relative clause. Since both can take the
form of NP-�-NP (NP: noun phrase), it is hard
to distinguish these two tags only by considering
local context. Based only on local context, a stan-
dard n-gram tagger is likely to assign the wrong
tag DEG to �, which inevitably makes the fol-
lowing parsing step fail to process the sentence
correctly. However, knowing that the NP preced-
ing � is the object of ��/VV (VV: verb), we
can assume that � is a complementizer because
�/DEG is unlikely to follow a verb phrase.

In this paper, we propose the first incremental
approach to the task of joint POS tagging and de-
pendency parsing. Given a segmented sentence,
our model simultaneously considers possible POS
tags and dependency relations within the given
beam, and outputs the best parse along with POS
tags. However, the combined model raises two
challenges: First, since the combined search space
is huge, efficient decoding is difficult while the
naı̈ve use of beam is likely to degrade the search
quality. Second, since the proposed model per-
forms joint POS tagging and dependency parsing
in a left-to-right manner, the model cannot exploit
look-ahead POS tags to determine the next action.

To deal with the increased search space, we
adopt a recently-proposed dynamic programming
(DP) extension to shift-reduce parsing (Huang and
Sagae, 2010), which enables the model to pack
equivalent parser states, improving both speed and
accuracy. Also, we overcome the lack of look-
ahead POS information by introducing a concept
of delayed features. The delayed features are those
features that include underspecified POS tags, and
shall be evaluated at the step when the look-ahead
tags are determined. Based on experiments on the
Chinese Penn Treebank (CTB) 5, we show that
our joint models substantially improve over the

1216



Figure 1: An example sentence from the Chinese Penn Treebank (CTB) 5.
(“The river-side area is the pivot that links China’s across-the-country economic cooperation.”)

wj tj−1 tj−1 ◦ tj−2 wj+1
1)

wj ◦ E(wj−1)2) wj ◦B(wj+1)2)

E(wj−1) ◦ wj ◦B(wj+1)3)

B(wj) E(wj) P (B(wj)) P (E(wj))
Cn(wj) (n ∈ {2, . . . , len(wj)− 1})
B(wj) ◦ Cn(wj) (n ∈ {2, . . . , len(wj)})
E(wj) ◦ Cn(wj) (n ∈ {1, . . . , len(wj)− 1})
Cn(wj) (if Cn(wj) equals to Cn+1(wj))

1) if len(wj+1) < 3; 2) if len(wj) < 3; 3) if len(wj) = 1.

Table 1: Feature templates for the baseline POS
tagger, where ti is the tag assigned to the i-th word
wi, B(w) and E(w) is the beginning and the end-
ing character of wordw, Cn(w) is the n-th charac-
ter of w, P (c) is the set of tags associated with the
single-character word c based on the dictionary.

pipeline and baseline systems in both POS tag-
ging and dependency parsing accuracy. We also
present some discussion on the results and error
analysis. Although we specifically focus on Chi-
nese in this work, our joint model is applicable to
any languages for which a projective shift-reduce
parser works well.

2 Baseline Models

First of all, we describe our baseline POS tag-
ger and dependency parsers. These models will
later be combined into pipelined models, which
are then used as the baseline models in Section 4.

2.1 Baseline POS Tagger

We build a baseline POS tagger, which uses the
same POS-tagging features as those used in the
state-of-the-art joint word segmentation and POS
tagging model for Chinese (Zhang and Clark,
2008a). The list of features are shown in Table 1.
We train the model with the averaged perceptron
(Collins, 2002), and the decoding is performed us-
ing the Viterbi algorithm with beam search.

Following Zhang and Clark (2008a), we use a
tag dictionary and closed-set tags, which lead to
improvement in both speed and accuracy. During
training, the model stores all word–tag pairs into a
tag dictionary, and for each word occurring more

thanN times in the training data, the decoder only
assigns one of the tags that have been seen in the
training data. For words that do not exist in the
dictionary, the decoder still considers every pos-
sible tag. We also construct a dictionary for the
closed-set tags (Xia, 2000), and allow the decoder
to assign these tags only to the words listed in the
dictionary.

2.2 Baseline Parsers

For the baseline parsers for experiments, we build
two dependency parsers: a reimplementation of
the parser by Huang and Sagae (2010) (here-
inafter Parser-HS), which is a shift-reduce depen-
dency parser enhanced with dynamic program-
ming (DP) using graph-structured stack (GSS;
Tomita (1991)), and our extension of Parser-HS
by incorporating a richer set of features taken from
Zhang and Nivre (2011) (hereinafter Parser-ZN),
which is originally a non-DP arc-eager depen-
dency parser and achieves the current state-of-the-
art performance for Chinese dependency parsing.
In this section, we briefly describe these models
since the features and DP formalism serve as a ba-
sis for the joint models described in Section 3.

2.2.1 Shift-reduce parsing

Shift-reduce dependency parsing algorithms in-
crementally process an input sentence from left to
right. In the framework known as “arc-standard”
(Nivre, 2008), the parser performs one of the fol-
lowing three actions at each step:

• SHIFT (SH): move the first word in the input
queue, q0, onto the stack
• REDUCE-RIGHT (RR): combine the top two

trees on the stack, (s0, s1), into a subtree sx0 s1
• REDUCE-LEFT (RL): combine the top two trees

on the stack, (s0, s1), into a subtree sy0 s1

where S = (. . . , s1, s0) is a stack of trees andQ =
(q0, q1, . . . , qn−j−1) = (wj , wj+1, . . . , wn−1) is
an input queue where j is the index of the first
word in the queue Q and n is the number of words
in the input sentence. Note that sy0 s1 denotes a
combined tree where s1 is a child of s0.

1217



To deal with conflicts between more than one
of these actions, each action is associated with a
score, and the score of a parser state is the total
score of the actions that have been applied. To
train the model, we adopt the averaged percep-
tron algorithm (Collins, 2002) with early update
(Collins and Roark, 2004), following Huang and
Sagae (2010). With the early update, whenever
the gold action sequence falls off from the beam,
the parameters are immediately updated with the
rest of the sentence neglected.

2.2.2 Merging equivalent states
Dynamic programming is enabled by merging
equivalent states: if two states produce the same
feature vector, they are merged into one state. For-
mally, a parser state (or configuration) ψ is de-
scribed by 〈`, i, j, S〉, where ` is the current step,
[i . . . j] is the span of the top tree s0 in the stack
S = (sd−1, . . . , s0), where d is the depth of the
stack. The equivalence of two states ψ : 〈`, i, j, S〉
and ψ′ : 〈`′, i′, j′, S′〉 is then defined as

ψ ∼ ψ′ iff j = j′ ∧ ~f(j, S) = ~f(j′, S′), (1)

where ~f(j, S) is the feature vector of the state
〈`, i, j, S〉. In practice, just remembering a min-

imal set of features called kernel features ~̃f(j, S)
suffices to evaluate the equivalence of states:

~̃f(j, S) = ~̃f(j′, S′)⇒ 〈`, i, j, S〉 ∼ 〈`′, i′, j′, S′〉.
(2)

By merging equivalent states based on this con-
dition, we only need to remember relevant infor-
mation from the top d (d = 3 in our models) trees
on the stack to evaluate the score of the next ac-
tions. However, since the stack shrinks when a
REDUCE-LEFT/RIGHT action is applied, you of-
ten need to recover the last element of the stack
from the history. Following Huang and Sagae
(2010), we use a concept of predictor states Π(ψ)
to retain the links to multiple different histories.

2.2.3 Features
The feature templates used in the baseline parser
Parser-HS are listed in Table 2 (a), where s.w and
s.t are the form and tag of the root word of tree s,
s.rc and s.lc are the right- and left-most children of
s, and ◦ denotes conjunction of features. Note that
these features can be constructed by only using 13
kernel features listed in Table 2 (c). The baseline
parser Parser-ZN− additionally utilizes features in
Table 2 (b), where d denotes the distance between
the root nodes of s0 and s1, s.vr and s.vl are the
numbers of the right and left modifiers of s, s.rc2

(a) s0.w s0.t s0.w ◦ s0.t
s1.w s1.t s1.w ◦ s1.t
q0.w q0.t q0.w ◦ q0.t
s0.w ◦ s1.w s0.t ◦ s1.t
s0.t ◦ q0.t s0.w ◦ s0.t ◦ s1.t
s0.t ◦ s1.w ◦ s1.t s0.w ◦ s1.w ◦ s1.t
s0.w ◦ s0.t ◦ s1.w s0.w ◦ s0.t ◦ s1.w ◦ s1.t
s0.t ◦ q0.t ◦ q1.t s1.t ◦ s0.t ◦ q0.t
s0.w ◦ q0.t ◦ q1.t s1.t ◦ s0.w ◦ q0.t
s1.t ◦ s1.rc.t ◦ s0.t s1.t ◦ s1.lc.t ◦ s0.t
s1.t ◦ s1.rc.t ◦ s0.w s1.t ◦ s1.lc.t ◦ s0.w
s1.t ◦ s0.t ◦ s0.rc.t s1.t ◦ s0.w ◦ s0.lc.t
s2.t ◦ s1.t ◦ s0.t

(b) s0.w ◦ d s0.t ◦ d s1.w ◦ d s1.w ◦ d
s0.w ◦ s0.vl s0.t ◦ s0.vl
s1.w ◦ s1.vr s1.t ◦ s1.vr
s1.w ◦ s1.vl s1.t ◦ s1.vl
s0.lc.w s0.lc.t s1.rc.w s1.rc.t
s1.lc.w s1.lc.t s0.lc2.w s0.lc2.t
s1.rc2.w s1.rc2.t s1.lc2.w s1.lc2.t
s0.t ◦ s0.lc.t ◦ s0.lc2.t s1.t ◦ s1.rc.t ◦ s1.rc2.t
s1.t ◦ s1.lc.t ◦ s1.lc2.t

(c) j s2.t q0.w q0.t q1.t
s1.w s1.t s1.rc.t s1.lc.t
s0.w s0.t s0.rc.t s0.lc.t

(d) d s0.vl s1.vl s1.vr
s0.lc.w s1.rc.w s1.lc.w
s0.lc2.w s1.rc2.w s1.lc2.w
s0.lc2.t s1.rc2.t s1.lc2.t

Table 2: (a) Feature templates for Parser-HS; (b)
Additional feature templates for Parser-ZN−; (c)
Kernel features for Parser-HS; (d) Additional ker-
nel features for Parser-ZN−.

and s.lc2 are the second right- and left-most chil-
dren of s. Note that some of the features described
in Zhang and Nivre (2011), which are associated
with dependency labels and head information of
stack elements, are not included since our frame-
work is based on unlabeled dependencies and the
arc-standard strategy. The additional features for
Parser-ZN− require the features in Table 2 (d) to
be added into the set of kernel features.

2.2.4 Beam search with DP

In the shift-reduce parsing with dynamic program-
ming, we cannot simply apply beam search as in
a non-DP shift-reduce parsing, because each state
does not have a unique score any more. To de-
cide the ordering of states within the beam, the
concept of prefix score and inside score (Stolcke,
1995) is adopted. The prefix score ξ is the total
score of the best action sequence from the initial
state to the current state, while the inside score η

1218



is the score of the tree on the top of the stack. With
these scores and a set of predictor states Π(ψ) of
state ψ, the full description of state ψ takes the
form ψ : 〈`, i, j, S; ξ, η,Π〉. The calculation of the
prefix and inside scores is described in Huang and
Sagae (2010). By using these scores, the ordering
of states is defined as

〈`, . . . ; ξ, η, 〉 ≺ 〈`, . . . ; ξ′, η′, 〉
iff ξ < ξ′ ∨ (ξ = ξ′ ∧ η < η′),

where “ ” denotes “match anything”.

3 Joint POS Tagging and Parsing Model

In this section, we describe our models that jointly
solve POS tagging and dependency parsing, which
are based on the shift-reduce parsers described in
Section 2.2. Corresponding to the two baseline
parsers Parser-HS and Parser-ZN−, we investigate
two joint models: Joint-HS+ and Joint-ZN−. Al-
though the latter uses a richer set of features, the
formers can take more advantage of DP because a
compact representation of features results in more
frequent state packing.

3.1 POS Tagging with Modified Shift Action

Our joint parsers incorporate POS tagging during
the course of shift-reduce parsing, by modifying
the SHIFT action so that it assigns a tag to the word
when it is shifted:

• SHIFT(t) (SH(t)): move the head of the queue,
q0, onto the stack, and assign tag t to it.

Along with REDUCE-LEFT/RIGHT actions, our
joint model utilizes a total of n+2 actions, where n
is the number of tags in the given dataset (n = 33
for the CTB-5 tag set (Xia, 2000)). A trace of an
example joint parsing is illustrated in Figure 2.

3.2 Training and Decoding

We formulate the task of POS tagging and depen-
dency parsing in a joint framework: given an input
segmented sentence x, the model tries to find the
best output y that satisfies:

ỹ = argmax
y∈Y(x)

~w · ~θ(y),

where Y(x) is a set of possible outputs for x, ~w
is the global feature vector, and ~θ(y) is the fea-
ture vector of y. As in the baseline parsers, we
train our models with the averaged perceptron; the
beam search and early update strategy is almost
the same except that the update is now caused by
an error in POS tagging as well as by an error in

(a) q0.t q0.w ◦ q0.t s0.t ◦ q0.t
s0.t ◦ q0.t ◦ q1.t s1.t ◦ s0.t ◦ q0.t
s0.w ◦ q0.t ◦ q1.t s1.t ◦ s0.w ◦ q0.t

(b) t ◦ s0.w t ◦ s0.t
t ◦ s0.w ◦ q0.w t ◦ s0.t ◦ q0.w
t ◦B(s0.w) ◦ q0.w t ◦ E(s0.w) ◦ q0.w
t ◦ s0.t ◦ s0.rc.t t ◦ s0.t ◦ s0.lc.t
t ◦ s0.w ◦ s0.t ◦ s0.rc.t t ◦ s0.w ◦ s0.t ◦ s0.lc.t

(c) j s2.t q0.w q−1.t q−2.t
s1.w s1.t s1.rc.w s1.lc.t
s0.w s0.t s0.rc.w s0.lc.t

Table 3: (a) List of delayed features for the joint
parsers. (b) Syntactic features for the joint parsers,
where t is the POS tag to be assigned to q0. (c)
Kernel features for the joint parser Joint-HS+.

dependency parsing. Similarly to the baseline tag-
ger, we use the tag dictionary and closed-set tags
to prune unlikely tags during decoding.

3.3 Features
For the features of the models, we incorporate the
union of the features in the baseline tagger and
the baseline parsers; features from Parser-HS are
used for Joint-HS, and features from Parser-ZN−

for Joint-ZN−. Furthermore, we additionally in-
corporate a set of syntactic features for POS tag-
ging that capture dependencies between syntactic
elements in the stack and the POS to be tagged
(described in Section 3.3.1).

The features for the baseline tagger (shown in
Table 1) and Parser-ZN− (shown in Table 2 (b))
can be used in situ, because they do not rely on
look-ahead POS tags (i.e. POS tags of the words
in the queue). However, it is not straightforward
to incorporate the features for Parser-HS: in the
joint framework, since the look-ahead POS tags
are unavailable when the model tries to determine
the next action, we cannot easily incorporate those
features that include look-ahead POS (listed in Ta-
ble 3 (a)). In order to deal with this issue, we intro-
duce a concept of delayed features, which enables
the model to incorporate the look-ahead informa-
tion by delayed evaluation of feature scores (de-
scribed in Section 3.3.2).

Note that the features from the baseline parsers
are used for all actions (i.e. SHIFT(t) and
REDUCE-LEFT/RIGHT) while the features from
the tagger are only used for SHIFT(t) actions in
the joint models. The addition of the tagging fea-
tures requires a few new elements to be added into
the set of kernel features; the new set of kernel
features for Joint-HS+ is shown in Table 3 (c).

1219



step action stack S queue Q translation
0 - φ �/? ó/? �/? . . .
1 SH(PN) �/PN ó/? �/? Ù/? . . . �: “I”
2 SH(VV) �/PNó/VV �/? Ù/? */? . . . ó: “want”
3 SH(BA) �/PNó/VV�/BA Ù/? */? åP/? . . . �: object marker
4 SH(DT) �/PNó/VV�/BAÙ/DT */? åP/? ûÑ/? . . . Ù: “this”
5 SH(M) �/PNó/VV�/BAÙ/DT*/M åP/? ûÑ/? �/? . . . *: quantifier
6 RL �/PNó/VV�/BAÙ/DTy[*/M] åP/? ûÑ/? �/? . . .
7 SH(NN) �/PNó/VV�/BAÙ/DTy[*/M]åP/NN ûÑ/? �/? ñí/? åP: “sentence”
8 RR �/PNó/VV�/BA [Ù/DTy[. . .]]xåP/NN ûÑ/? �/? ñí/?
9 RL �/PNó/VV�/BAy[[. . .]xåP/NN] ûÑ/? �/? ñí/?

10 SH(VV) �/PNó/VV�/BAy[[. . .]xåP/NN]ûÑ/VV �/? ñí/? ûÑ: “translate”

Figure 2: A trace of joint shift-reduce parsing for “�ó�Ù*åPûÑ�ñí” (“I want to translate
this sentence into English.”), where grandchildren of stack elements are omitted.

Specifically, q−1.t and q−2.t are added in order to
accommodate some of the tagging features, while
q0.t and q1.t are removed because the look-ahead
POS tags are not available when the equivalence
of the states are evaluated. Joint-ZN− additionally
requires kernel features in Table 2 (d).

3.3.1 Syntactic Features
Since our joint framework performs tagging and
parsing simultaneously, we can think of incorpo-
rating a combined feature of the next tag (to be as-
signed to q0) with syntactic information from stack
elements, which cannot be used in an n-gram POS
tagger. Specifically, we propose to use the features
shown in Table 3 (b). Intuitively, these features try
to capture dependencies between the POS to be as-
signed and syntactic structure encoded in the trees
being built in the stack. For example, at step 9 in
Figure 2, the next wordûÑ can be either a noun
or a verb. In determining the tag of this word to be
VV, the existence of the preceding phrase “�/BA
[. . .]” on the top of the stack plays an important
role, because the phrase headed by � represents
an object for the following verb; in contrast, in an
n-gram POS tagger, capturing this information is
not easy because�/BA is located at a distance of
four words. Note that the addition of those syn-
tactic features does not require the addition of any
elements to the set of kernel features.

3.3.2 Delayed Features
A challenge in the incremental joint approach is
that since the shift-reduce model processes an in-
put sentence in a left-to-right manner, it cannot ex-
ploit look-ahead POS tags, which a pipeline shift-
reduce parser can consider, to determine the next
action. In our experiment with Parser-HS, the ab-
lation of the features including look-ahead POS

results in 0.67% decrease in parsing performance
on the development set, suggesting that the look-
ahead POS information is indispensable to achieve
the state-of-the-art performance. In order to re-
lieve this problem, we introduce a concept of de-
layed features, which are a set of features that are
evaluated later when certain information becomes
available. In our model, the parser features that
require look-ahead POS information are defined as
the delayed features, and shall later be evaluated at
the step when the look-ahead POS are determined.

Let us see an example in Figure 2. At step 2, a
parser encounters a shift-reduce conflict: the next
action can be any of REDUCE-LEFT/RIGHT and
SHIFT(t). If this were a (non-joint) shift-reduce
parser, the model can utilize the look-ahead POS
information by features such as

(s0.t = VV) ◦ (s1.t = PN) ◦ (q0.t = BA),

to determine the next action, because the POS of
all words in the sentence are already given. How-
ever, in the joint parser, the POS of the first word
in the queue, �, remains undetermined until the
word is shifted. To deal with this, we define a de-
layed feature that takes look-ahead POS tag(s) as
argument(s), as in

(s0.t = VV)◦(s1.t = PN)◦(q0.t = λ1), λ1 = w2.t.

At step 3, after SHIFT(BA) is performed, the de-
layed features from the previous step becomes a
non-delayed feature

(s0.t = VV) ◦ (s1.t = PN) ◦ (q0.t = BA),

which can be evaluated in the same way as normal
(non-delayed) features.

More formally, each state carries with it a set of
delayed feature vectors 〈~d1, ~d2〉, where ~dn is the
n-th order delayed feature vector, which has n ar-

1220



guments to be filled in1. At each step, a REDUCE-
LEFT/RIGHT action a adds a set of delayed fea-
tures to the delayed feature vectors of state ψ:

〈~d1, ~d2〉 ← 〈~d1 + ~Φ1(ψ, a), ~d2 + ~Φ2(ψ, a)〉,
where ~Φ1(ψ, a) and ~Φ2(ψ, a) are the first-/second-
order delayed features generated by action a be-
ing applied to ψ. When a SHIFT(t) action is per-
formed, the model fills in the argument in the de-
layed features with the newly-assigned tag t, as
well as adding new delayed features it generates:

〈~d1, ~d2〉 ← 〈~Φ1(ψ, SH(t)) + T (t, ~d2), ~Φ2(ψ, SH(t))〉,
where T (t, ~d2) is the resulting feature vector af-
ter tag t is filled in to the first argument of the
features in ~d2. Note that action SH(t) also adds
~d0 = T (t, ~d1) to its (non-delayed) feature vector.

Note that the above formulation with the de-
layed features is equivalent to the model with full
look-ahead features if the exact decoding is per-
formed. Although the approximate search with
beam takes the risk of the gold derivation falling
off the beam before delayed features are evalu-
ated, we show in Section 4 that the current solution
works well in practice.

3.4 Deduction System with DP

With the delayed features, a parser state ψ takes
the form of 〈`, i, j, S, ~d1, ~d2; ξ, η,Π〉. Now, if two
equivalent states are still merged according to Eq.
(1), one state might have multiple sets of delayed
feature vectors depending on the previous action
sequences. In order to make the joint model still
tractable with the DP formalism, we modify the
equivalence condition in Eq. (1): in addition to
the condition in Eq. (1), two states now need to
share the same delayed feature vectors in order for
them to be merged:

j = j′ ∧ ~f(j, S) = ~f(j′, S′)∧ ~d1 = ~d′1 ∧ ~d2 = ~d′2.

This guarantees that a parser state has only one
unique set of delayed feature vectors.

We can prove by induction that the correctness
(i.e. the optimality of the deductive system) is still
assured (proof omitted due to limited space) even
with the delayed features incorporated. However,
because any number of REDUCE-LEFT/RIGHT
actions can occur between two SHIFT actions, the
delayed features might need to refer to unbound-
edly deep elements from stack trees; therefore, the

1In our joint models, the use of only the first- and second-
order delayed vectors suffices, because the feature templates
refer to the tags of the first two words in the queue at most.

boundedness (see Huang and Sagae (2010)) of the
kernel features no longer holds and the worst-case
polynomial complexity is not assured. Nonethe-
less, we show that our models work sufficiently
well in practice, with the aid of beam search.

4 Experiment

4.1 Experimental Settings

We evaluate the performance of our joint parsers
and baseline models on the Chinese Penn Tree-
bank (CTB) 5 dataset. We use the standard split
of CTB-5 described in Duan et al. (2007) and the
head-finding rules in Zhang and Clark (2008b).

We iteratively train each of the models and
choose the best model, in terms of the tagging ac-
curacy (for tagger) or word-level dependency ac-
curacy (for parsers and joint parsers) on the devel-
opment set, to use in the final evaluation. When
building a tag dictionary, we discarded instances
that appear less than three times (tuned on the de-
velopment set) in the training data. An Intel Core-
i7 950 3.2GHz machine is used for evaluation.

4.2 Baseline Performance

First of all, we evaluate the performance of our
baseline tagger and parsers described in Section 2.
Based on our preliminary experiments, we set the
beam size to 16 for the baseline tagger and Parser-
HS, and to 32 for Parser-ZN−. Our baseline tagger
achieved a tagging accuracy of 94.15% on the de-
velopment set, and 93.82% on the test set. Since
most recent works on Chinese POS tagging (e.g.
Kruengkrai et al. (2009); Sun (2011)) are joint ap-
proaches integrating word segmentation, the only
directly-comparable work we could find is Li et al.
(2011), where they built a perceptron-based POS
tagger with the same feature set as we used (Zhang
and Clark, 2008a). They reported 93.51% accu-
racy on test set, which is slightly lower than ours.

The upper part of Table 7 shows the perfor-
mance of our baseline parsers with a comparison
to other state-of-the-art parsers, where (unlabeled)
attachment accuracies of word, root, and complete
match are shown (with punctuations excluded).
Our reimplementation of Huang and Sagae (2010)
has reproduced almost the same accuracy. Inter-
estingly, Parser-ZN− also has comparable perfor-
mance to that of Zhang and Nivre (2011) even
though we could not use some of their features (as
described in Section 3.3).

1221



beam Joint-HS+ Joint-ZN−

tag dep speed tag dep speed
4 94.37 79.98 37.5 94.26 80.55 25.4
8 94.57 80.56 19.3 94.64 81.47 13.5

16 94.56 80.97 10.1 94.48 81.50 7.0
32 94.66 80.72 4.7 94.40 81.68 3.3
64 94.50 81.09 2.0 94.50 81.88 1.5

128 - - - 94.43 81.89 0.69

Table 4: Tagging and word-level dependency ac-
curacies and parsing speed (in sentence/second)
on the development set with respect to beam size.

Model tag word non-root root compl.
Parser-HS (100) 85.15 85.61 75.76 34.50
Parser-ZN− 85.77 86.18 77.46 34.99
Pipeline-HS 94.15 78.10 78.49 70.03 26.77
Pipeline-ZN− 78.67 78.92 73.32 27.90
Joint-HS+ 94.56∗ 80.97∗ 81.32 73.64 29.51
Joint-ZN− 94.50∗ 81.88∗ 82.21 74.94 30.26

Table 5: Development result of the proposed mod-
els. Joint-HS+/ZN− perform better than Pipeline-
HS/ZN− in terms of both tagging and word-
level dependency accuracies, with statistical sig-
nificance of p < 0.05 (denoted by ∗) by MeNe-
mar’s test.

4.3 Development Results

Table 4 shows the tagging and word-level depen-
dency accuracies of the joint models with respect
to the beam size, where “tag” and “dep” show
the tagging and word-level dependency accura-
cies, and “speed” is the joint parsing speed (in
sentence per second). Based on this experiment,
we use the beam size of 16 for Joint-HS+ and 64
for Joint-ZN− in the following experiments.2 The
best dependency accuracies are achieved after 36-
th and 31-st iterations, respectively.

Table 5 shows the performance of the base-
line and joint models on the development set,
where “Pipeline-HS” and “Pipeline-ZN+” are the
pipeline combinations of the baseline tagger with
Parser-HS and Parser-ZN+, respectively. Joint-
HS+ and JointZN− have 0.35–0.41% (tagging)
and 2.87–3.21% (word-level dependency) higher
accuracies than the pipeline models.

Table 6 shows feature ablation results on the de-
velopment set, where “wo/delay”, “wo/dp”, and
“wo/syn” correspond to the models that do not
use the delayed features, dynamic programming,
and syntactic features, respectively. Overall, the

2Due to limited time, the beam size of 32 is used for Joint-
ZN− for the feature ablation experiment shown in Table 6.

Model default wo/delay wo/dp wo/syn
Joint-HS+ tag 94.56 ±0.00 −0.06 +0.04

dep 80.97 −0.26 −0.22 −0.60
Joint-ZN− tag 94.40 +0.10 +0.05 −0.07

dep 81.68 −0.16 −0.01 −0.23

Table 6: Feature ablation results for the joint mod-
els on the development set.

Model tag word root compl. speed
Huang+ ’10

(100)

85.20 78.32 33.72 -
Zhang+ ’11 86.0 - 36.9 -
Li-11-2nd 86.18 78.58 34.02 5.8
Parser-HS 85.12 78.30 32.77 32.7
Parser-ZN− 85.96 80.87 35.03 9.0
Li-11(v2,3rd) 92.80 80.79 75.84 29.11 0.3
Li-11(v1,3rd) 92.89 80.69 75.90 29.06 0.5
Li-11(v1,2nd) 93.08 80.74 75.80 28.24 1.7
Pipeline-HS 93.82 77.13 72.59 25.13 32.7†

Pipeline-ZN− 78.04 75.55 26.07 9.0†

Joint-HS+ 94.01∗ 79.83∗ 73.86 27.85 9.5
Joint-ZN− 93.94 81.33∗ 77.93 29.90 1.5

Table 7: Final result of the proposed model and
the baseline. ∗ denotes the statistical significance
over the corresponding pipeline model (p < 0.05).
†Only the parsing speed is shown; the tagging
speed was 210.6 sentence/sec.

tagging accuracies are only slightly affected by
the ablation of these features (with differences no
larger than 0.10%), while the parsing accuracies
decreased in most settings. The ablation of the
delayed features resulted in 0.26% and 0.16% de-
creases of word-level dependency accuracies for
Joint-HS+ and Joint-ZN−, showing the effective-
ness of these features. The contribution of the
dynamic programming is clearly shown for Joint-
HS+ with 0.22% improvement in dependency ac-
curacy, although no meaningful effect for Joint-
ZN− is confirmed; this is probably because the use
of richer features results in less frequent packing
of states. Lastly, the ablation of the syntactic fea-
tures results in as much as 0.60% and 0.23% de-
creases of dependency accuracies for Joint-HS+

and Joint-ZN−. As opposed to our first expecta-
tion, the syntactic features made little effect on the
tagging accuracies; on the contrary, the result sug-
gests that capturing the dependencies between the
stack elements and the next word’s tag is quite ef-
fective to improve parsing accuracy.

4.4 Final Results
Table 7 shows the final result of the proposed
models compared to the baseline models. “Li-

1222



error pattern #↓ total error pattern #↑ total
NN→ VV 61 169 VV→ NN 29 128
DEC→ DEG 35 65 NN→ NR 16 64
DEG→ DEC 19 72 JJ→ NN 14 62
NN→ JJ 11 59 VA→ VV 8 12
P→ CC 8 13 JJ→ NR 6 2
P→ VV 8 18 NR→ JJ 6 4

Table 8: POS tagging error patterns that decrease
(left side) and increase (right side) by joint decod-
ing (on dev. set). The numbers of errors made by
the baseline tagger (“total”) and the increases and
decreases by Joint-ZN+ (#↓ and #↑) are shown.

11(. . .)” shows the graph-based models by Li et al.
(2011), where v1/2 and 2nd/3rdcorrespond to their
version 1/2 and second-/third-order models. The
joint models Joint-HS+ and Joint-ZN− achieve
improvements of 0.19% and 0.12% in tagging ac-
curacy over the baseline tagger, and 2.70% and
3.29% improvements in word-level dependency
accuracy over the pipeline models, showing the ef-
fectiveness of the joint approach. Furthermore, the
tagging and parsing accuracies of Joint-ZN− sur-
pass the graph-based models by Li et al. (2011),
achieving the new state-of-the-art performance on
this joint task. Since our framework is at least
comparable in speed to their models, these results
suggest that our incremental framework is suitable
to this joint task.

4.5 Discussion and Analysis

Table 8 shows the increase and decrease of er-
ror patterns of Joint-ZN− over the baseline tagger.
Notably, the joint model has a clear advantage in
the disambiguation of DEC and DEG and the dis-
crimination of NN from VV. While these tags are
those that critically influence the overall syntac-
tic structure, the increased error patterns include
those tags that are considered less important3 in
deciding the syntactic structure (e.g. NN/NR: gen-
eral/proper nouns); this observation is largely sim-
ilar to those reported by Li et al. (2011).

It is noteworthy that we obtained the first pos-
itive result that the joint decoding does improve
POS tagging, while, in contrast, Li et al. (2011)
have reported that the joint decoding has negative
effect on the tagging accuracy: their third-order
models have 0.6–0.7% lower tagging accuracies
than their baseline tagger. When comparing our
error patterns with those of their model, although
the overall increase and decrease of the error pat-

3although VV → NN errors look like an exceptional case

terns look largely similar, our model has a rela-
tively smaller number of increased error patterns
than the decreased ones. Therefore, by selectively
improving syntactically-important tags, our joint
model is considered to have improved the POS
tagging accuracy over the baseline tagger.

5 Related Works

In recent years, joint segmentation and tagging
have been widely investigated (e.g. Zhang and
Clark (2010); Kruengkrai et al. (2009); Zhang and
Clark (2008a); Jiang et al. (2008a); Jiang et al.
(2008b)). Particularly, our framework of using a
single perceptron to solve the joint problem is mo-
tivated by Zhang and Clark (2008a). Also, our
joint parsing framework is an extension of Huang
and Sagae (2010)’s framework, which is described
in detail in Section 2.2. In constituency pars-
ing, the parsing naturally involves the POS tagging
since the non-terminal symbols are commonly as-
sociated with POS tags (e.g. Klein and Manning
(2003)). Rush et al. (2010) proposed to use dual
composition to combine a constituency parser and
a trigram POS tagger, showing the effectiveness of
taking advantage of these two systems.

In dependency parsing, Lee et al. (2011) re-
cently proposed a discriminative graphical model
that solves morphological disambiguation and de-
pendency parsing jointly. However, their main fo-
cus was to capture interaction between morphol-
ogy and syntax in morphologically-rich, highly-
inflected languages (such as Latin and Ancient
Greek), which are unlike Chinese. More recently,
Li et al. (2011) proposed the first joint model for
Chinese POS tagging and dependency parsing in
a graph-based parsing framework, which is one of
our baseline systems. On the other hand, our work
is the first incremental approach to this joint task.

6 Conclusion

In this paper, we have presented the first joint
approach that successfully solves POS tagging
and dependency parsing on an incremental frame-
work. The proposed joint models outperform the
pipeline models in terms of both tagging and de-
pendency parsing accuracies, and our best model
achieved the new state-of-the-art performance on
this joint task, while retaining competitive parsing
speed. Although we mainly focused on Chinese in
this work, our framework is generally applicable
to other languages including English; for future
work, we hope to further investigate the effective-
ness of our joint approach in those languages.

1223



References

Michael Collins and Brian Roark. 2004. Incre-
mental parsing with the perceptron algorithm.
In Proceedings of ACL.

Michael Collins. 2002. Discriminative training
methods for hidden markov models: Theory
and experiments with perceptron algorithms. In
Proceedings of EMNLP.

Xiangyu Duan, Jun Zhao, and Bo Xu. 2007.
Probabilistic parsing action models for multi-
lingual dependency parsing. In Proceedings
of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007.

Lyn Frazier and Keith Rayner. 1982. Making and
correcting errors during sentence comprehen-
sion: Eye movements in the analysis of struc-
turally ambiguous sentences. Cognitive Psy-
chology, 14:178–210.

Liang Huang and Kenji Sagae. 2010. Dynamic
programming for linear-time incremental pars-
ing. In Proceedings of ACL.

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan
Lu. 2008a. A cascaded linear model for joint
Chinese word segmentation and part-of-speech
tagging. In Proceedings of ACL/HLT.

Wenbin Jiang, Haitao Mi, and Qun Liu. 2008b.
Word lattice reranking for Chinese word seg-
mentation and part-of-speech tagging. In Pro-
ceedings of COLING.

Dan Klein and Christopher D. Manning. 2003.
Accurate unlexicalized parsing. In Proceedings
of ACL.

Canasai Kruengkrai, Kiyotaka Uchimoto, Jun’ichi
Kazama, Yiou Wang, Kentaro Torisawa, and
Hitoshi Isahara. 2009. An error-driven word-
character hybrid model for joint Chinese word
segmentation and POS tagging. In ACL, Pro-
ceedings of ACL.

John Lee, Jason Naradowsky, and David A. Smith.
2011. A discriminative model for joint morpho-
logical disambiguation and dependency pars-
ing. In Proceedings of ACL.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting
Liu, Wenliang Chen, and Haizhou Haizhou.
2011. Joint models for Chinese POS tagging
and dependency parsing. In Proceedings of
EMNLP.

Joakim Nivre. 2008. Algorithms for deterministic
incremental dependency parsing. Comput. Lin-
guist., 34:513–553.

Alexander M. Rush, David Sontag, Michael

Collins, and Tommi Jaakkola. 2010. On dual
decomposition and linear programming relax-
ations for natural language processing. In Pro-
ceedings of EMNLP.

Andreas Stolcke. 1995. An efficient probabilis-
tic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics,
21:165–201.

Weiwei Sun. 2011. A stacked sub-word model
for joint chineseword segmentation and part-of-
speech tagging. In Proceedings of ACL.

Masaru Tomita. 1991. Generalized LR Parsing.
Kluwer Academic Publishers.

Fei Xia. 2000. The part-of-speech tagging guide-
lines for the penn chinese treebank (3.0). Tech-
nical Report IRCS-00-07, University of Penn-
sylvania Institute for Research in Cognitive Sci-
ence Technical Report, October.

Yue Zhang and Stephen Clark. 2008a. Joint word
segmentation and POS tagging using a single
perceptron. In Proceedings of ACL-08: HLT.

Yue Zhang and Stephen Clark. 2008b. A tale
of two parsers: investigating and combining
graph-based and transition-based dependency
parsing using beam-search. In Proceedings of
EMNLP.

Yue Zhang and Stephen Clark. 2010. A fast
decoder for joint word segmentation and POS-
tagging using a single discriminative model. In
Proceedings of EMNLP.

Yue Zhang and Joakim Nivre. 2011. Transition-
based dependency parsing with rich non-local
features. In Proceedings of ACL-2011 (short
papers).

1224


