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Abstract

There is serious data sparseness problem
in Chinese dictionary stored in a double-
array trie. This paper proposes six com-
pression methods by code mapping and
code dividing to make it more compact,
and a metric called Resource Consump-
tion Ratio is proposed to evaluate these
methods. Under the proposed criteria, five
of the six methods are better than the base-
line. The best method maps the character
code into its frequency order, and then di-
vides it into two jump codes. It achieves a
space usage reduction of 39.88% and takes
only 0.20% time of the baseline on the
construction while it takes 13.21% more
time on the retrieval. As preprocessing
methods, these methods can be used to re-
duce more space by combining to other
compression method which improves the
double-array structure itself.

1 Introduction

In many applications of processing strings, a trie
search is very useful because it enables fast re-
trieval and longest prefix matching with a smal-
I dictionary (Fredkin, 1960). Tries are used in a
broad range of applications to represent a set of
strings in fields such as information retrieval sys-
tems (Brain and Tharp, 1994; Nelson, 1997; Oka-
da et al., 2001), lexical analyses (Aho et al., 2007;
Lesk, 1975), morphological analyses (Aoe et al.,
1996), natural language processing (Baeza-Yates
and Gonnet, 1996; Peterson, 1980), bibliographic
search (Aho et al., 1975), pattern matching (Flajo-
let and Puech, 1986), for IP address routing tables
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(Fu et al., 2007; Nilsson and Karlsson, 1999; Pao
and Li, 2003), and text indexing (Navarro, 2004).

Double-array is a trie implementation which is
proposed by (Aoe, 1989), and it is widely used in
many applications at present because it combines
the fast access of a matrix form with the compact-
ness of a list form. However, there is a serious data
sparseness problem when the double-array is used
to store Chinese dictionary (Chinese double-array,
hereafter, and similarly, English double-array for
English dictionary). For a typical English dic-
tionary with 45,373 words, the compression ra-
tio of the double-array reaches 94.48%, but for
a Chinese dictionary with 343,103 words, it’s on-
ly 43.95%. In this paper, we analyze the reason-
s which lead to the data sparseness, and propose
several methods to reduce the space usage of the
Chinese double-array.

This paper is organized as follows: Section 2
introduces related work. Section 3 describes the
outline of the double-array. In Section 4, we ana-
lyze the reasons resulting in the data sparseness.
In Section 5, we give a baseline double-array,
and propose six methods to make the double-array
more compact. We propose the evaluation metric
in Section 6. We make experiment and evaluate
the six methods in Section 7. Section 8 concludes
this paper.

2 Related work

Aoe (1989) presented an efficient digital search
algorithm by introducing the structure called a
double-array, which combines the fast access of
a matrix form with the compactness of a list form.

Aoe (1992) proposed an implementation of the
double-array which stores only as much of the pre-
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fix in the trie as is necessary to disambiguate the
key, and the tail of the key is stored in a string
array, denoted as TAIL. This structure is called a
minimal prefix (MP) double-array.

Andersson and Nilsson (1993) introduced level-
compressed (LC) trie to compress parts of the trie
that are densely populated (Nilsson and Karlsson,
1999). A recent improvement in the LC trie is pro-
posed by Fu et al. (2007).

Bentley and Sedgewick (1997) first presented
the Ternary Search Tree (TST). TST combines the
attributes of binary search trees and digital search
tries.

Heinz (2002) proposed the burst trie, which is
a collection of “containers” that are accessed via a
conventional trie. It achieves high space efficiency
by selectively collapsing chains of trie nodes into
small containers of strings that share a common
prefix. Askitis and Sinha (2007) proposed an im-
provement of burst trie called the HAT-trie which
uses cache-conscious hash tables. Compared with
a TST, the burst trie is 25% faster and uses only
50% of the memory, though it was found to be s-
lower than TST with genomic data (Heinz et al.,
2002).

Oono (2003) presented a method of dividing a
key into several parts and defining link informa-
tion between keys. It turned out that the double-
array is 30% smaller than old method.

Wang (2006) proposed an improved strategy for
the double-array. The node with most child n-
odes is inserted firstly while constructing, which
reduces the data sparseness and keeps the search
efficiency. Li (2006) designed and implemented
a Chinese dictionary based on the double-array.
Wang et al. (2009) introduced the idea of Sher-
wood random thoughts and mutation of genet-
ic algorithms to improve the performance of the
method proposed by Wang (2006) to avoid catch-
ing the trap of local optimal solution.

Yata (2007) presented two compaction method-
s for a static MP double-array, an element com-
paction and a trie compaction. The element com-
paction reduces the size of each element. The trie
compaction reduces the number of nodes (a de-
scended trie) and the length of the array keeping
suffixes. The space usage for the new double-array
is under the half of that for the original one, but
the compaction methods little degrade the retrieval
speed of the double-array.

Dorji (2010) presented three methods to com-

press the MP double-array. The first two meth-
ods accommodate short suffixes inside the leaf n-
odes, and prune leaf nodes corresponding to the
end marker symbol. They achieve size reduction
of up to 20%, making insertion and deletion faster
at the same time while keeping the retrieval time
of O(1). The third method eliminates empty s-
paces in the array that holds suffixes, and improves
the size reduction further by about 5% at the cost
of increased insertion time. Compared to a TST,
the key retrieval of the compressed double-array
is 50% faster and its size is 3-5 times smaller.

All the compression methods are focusing on
the corresponding trie or the double-array struc-
ture itself. However, the space usage of a double-
array is very relevant to the content which is stored
in it. We will compress the double-array by pre-
processing the content.

3 Outline of double-array

A double-array is an array form of a trie (Aoe,
1989). It uses two one-dimensional arrays, named
BASE and CHECK, to represent a trie. An ele-
ment of the trie consists of the two array units with
the same index in BASE and CHECK. Every ele-
ment corresponds to a node of the trie, except emp-
ty elements, and we will also take the nonempty
element as a node in this paper. For a certain n-
ode, the unit in BASE indicates the offset to child
nodes, while the unit in CHECK normally stores
the index of the parent node.

base[r]

N

index 0 1 2 .. r S S .. N

n Eamn=

N _ checklt] '”/

base .| ‘

check ‘

Figure 1: Relation between a node t and its parent
node r in the double-array

As shown in Figure 1, in a double-array, a node
tis a child of another node r, if and only if there is
a relation between the two nodes.

BASE[r|+c¢ =t 1
CHECK[] =—r M

where ¢ is a numerical value corresponding to a
character in a key, which we call ”jump code” be-
cause it leads to a jump (state transition) from a
node to its child node.

The retrieval of a key is just a walk from the root
node to a leaf node, which is done fast by array op-
erations in the double-array. The time complexity
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for a state transition from node r to its child node
tis O(1) in the double-array, thus the time com-
plexity for retrieving a key is O(k) for the length
k of that key.

4 Data sparseness problem analysis

Unlike alphabetic writing script, Chinese is an
ideographic script which has a large character set.
There are more than 70,000 coded Chinese char-
acters in Unicode 6.0. Although most of them are
historic characters, there are still a large amount of
characters that are frequently used. As in the Chi-
nese dictionary mentioned above, there are more
than 14,000 characters used.

The data sparseness problem of Chinese
double-array mainly results from the large char-
acter set. First, jump codes vary in a large inter-
val. In Unicode 6.0, the code of Chinese charac-
ter varies from 3400 to 9FCB, and there are stil-
| a large amount of characters out of the range
because they are out of the basic multilingual
plane and should be represented by surrogate pairs
which are in the interval from D800 to DFFF.
But, not all of the characters are used in the dic-
tionary. As a result, there are many empty ele-
ments between the most left child node and the
most right one from the same parent in the double-
array while inserting, although some of them may
be used to store other nodes soon after. Second,
a node has much more child nodes in Chinese trie
than in English. In the Chinese dictionary, there
are more than 800 words which begin with the
same character ””’ meaning “one”, which indicates
that the corresponding node will have more than
800 children. However, in an English trie, the
number of child nodes for any node doesn’t ex-
ceed 52 for there are only 26 letters in the alphabet.
More child nodes lead to more collision, which re-
sults in more empty elements indirectly.

5 Compression of Chinese double-array

In this section, we first present a baseline double-
array, and then propose six methods of com-
paction. For each method, we only focus on the s-
pace usage, and compare it with the baseline from
node count (NC), array length (AL), auxiliary s-
pace and compression ratio (CR). CR is the ratio
of the number of non-empty elements to the total
number of elements in the double-array. It rep-
resents the compactness of the double-array. We
will use it to estimate how much room there is to

apply compression method to reduce the space us-
age. We evaluate each method by calculating the
space reduction rate (SRR), which is the ratio of
the total space usage of each method to that of the
baseline.

5.1 Baseline

Simply, we take the double-array proposed by
(Aoe, 1989) which uses directly the code of a char-
acter as the as the baseline. Generally, there is an
array called TAIL (Aoe et al., 1992) which stores
suffix strings in the MP double-array. But we use
the original double-array which store all the whole
keys rather than only the minimal prefixes as the
baseline to compute the space usage conveniently.
As each unit in the array is an integer which takes
up 4 bytes memory, the total space usage can be
calculated as follow: 8bytes x len, where len is
the length of the double-array.

We use the character code as the jump code in
the baseline. For the key set K={*1 [, “H1[H %
ML, crpa)”, « b7, < LV} in which it means
“China”, “Chinese chess”, “middle”, “Shanghai”
(a city of China), “floating upward” respective-
ly, the corresponding trie is as shown in Figure 2.
Note that a node with two concentric circles corre-
sponds to an acceptance state which indicates the
end of a word.

2 O\ _#
(8C61) O (68CB) @

£t N\ &

(4E0A) (6D77)

Figure 2: The trie of the key set K.

Based on the trie shown in Figure 2, a Chinese
double-array is built to store the Chinese dictio-
nary. As it will be represented by a surrogate pair
if a character is out of the basic multilingual plane,
we will take it as two characters for convenience.
The baseline takes 1,714,339 units for the BASE
and CHECK respectively, in which only 753,412
units are not empty, and the CR is 43.95%. As we
analyzed in the former section, the first method we
can think out is mapping the jump codes into a s-
mall interval.
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5.2 Code mapping methods

As shown in Figure 3, this method maps the codes
of all characters used in the dictionary into a s-
mall continuous interval. BASE stores the offsets
from each node to its child nodes, and differen-
t start points only lead to different offsets, which
hardly affect the space usage. So the start point of
the interval is not very important. In this paper, we
take 80 (hex) as the start point to make it compati-
ble with English script. The mapping just changes
the value of each jump code, while the trie keeps
unchanged.

0 3400 9FCB D800 DFFF  FFFF
code ‘ sparse ‘ ‘ ‘ ‘
. mapping
0o = pping FFFF
code ‘ compact [
I I
80 XXXX

Figure 3: Code mapping.

We have to use another array to store the map-
ping table. Each unit takes 2 bytes, and 65536
(10000 in hex) units are needed to include al-
1 codes in basic multilingual plane. The auxiliary
space is: 2 bytes x 65536 = 131072 bytes.

C2

index 0 1 2 .. 11 N . .. N

el 1]~ [FL - - -

et T |l T 1] \,..\‘\ B \‘\...

T T e

index 0 1 2 .. [ L’ ~ .. N

base { V). V|

check ]
| Shorter ] o

Figure 4: Double-arrays before and after applying
code mapping method.

As shown intuitively in Figure 4, before apply-
ing code mapping method, for every node in the
trie, there is a long distance between the most left
child node and the most right one. After apply
the method, the distance becomes much shorter.
The number of child nodes keeps the same, data
is more compact for the parent node, and the col-
lision is controlled in a small range in the double-
array while inserting other nodes. As child nodes
for every intermediate node are arranged more
compactly, it alleviates the data sparseness prob-
lem more or less.

Based on code mapping, we introduce the fol-
lowing two methods:

Method 1: Mapping each character code to it-
s original order number in Unicode. The method

takes the order number as the jump code for each
character used in the dictionary, and keeps their
original codes for others during the retrieval pro-
cess. The relation between the target jump code ¢’
and the original jump code c can be represented by
the following formula:

c = order(c) +C (2)

where order(c) is the order number of ¢ among all
the Chinese characters used in the dictionary when
they are sorted in ascending order by code, and C
is a constant which indicates the start point of the
target interval. We set C equal to 80 (hex).

This method is already used by many people
(Aoe, 1989; Aoe et al., 1992; Wang et al., 2006; Li
et al., 2006; Dorji et al., 2010). Wang (2006) and
Li (2006) used this method in their dictionary, but
they just simply map the Chinese characters coded
in the Chinese standard GB 2312 to 1~6763.

As shown in Table 1, after the mapping, the CR
is improved to 47.49%, and it reduces the space
usage of the double-array by 6.51% in total con-
sidering the auxiliary space. As the CR is still very
low, there is much room for improvement.

NC AL | AS (bytes) CR SRR
Baseline 753412 1714339 0 | 43.95%
Method 1 753412 1586337 131072 | 47.49% 6.51%

Table 1: Space usage of Method 1 compared with
the baseline.

In Method 1, we make code mapping according
to their original order in Unicode. However, dif-
ferent characters have different frequencies in the
dictionary, then what will happen if we map two
characters with the same frequency to two target
jump codes of which the numerical difference is
as small as possible?

Method 2: Mapping the jump codes to their fre-
quency orders. Then, all high frequency characters
will be mapped into a small interval. If two char-
acters leading to state transitions from the same n-
ode to its two child nodes are both frequency used
in the dictionary, then the distance between the t-
wo child nodes will be shorter than in Method 1.
The relation between the target jump code ¢’ and
the original one c is represented by the following
formula:

c = freqorder(c) + C 3)

where freqgorder(c) is the order number of ¢ a-
mong all the Chinese characters used in the dic-
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tionary when they are sorted by frequency in de-
scending order.

As shown in Table 2, after the mapping, the CR
is improved to 58.56%, and it reduces the space
usage of the double-array by 23.99% in total.

NC AL | AS (bytes) CR SRR
Baseline 753412 1714339 0 | 43.95%
Method 2 | 753412 1286622 131072 | 58.56% | 23.99%

Table 2: Space usage of Method 2 compared with
the baseline.

Compared with Method 1, Method 2 makes a
significant improvement, but there is still room for
improvement.

5.3 Code dividing methods

We make all jump codes varying in a small in-
terval by code mapping, but the interval is still
much larger than that in the English double-array.
It spreads from 80 (hex) to 3730 (hex), for there
are more than 14,000 Chinese characters are used
in the dictionary. However, in a English double-
array, the jump codes vary in a much smaller in-
terval, which is from 41 (hex of letter “A”) to 7A
(hex of letter “z”) originally. To compress the in-
terval equivalent to that of English, we divide each
original jump code into two or more jump codes to
break a long jump in the original double-array into
two much shorter jumps.

index 0 1 2 .. P .. N

base e R
check
L longer »‘
¢ S 23
index 0 1 2 .. [/ 4 N D .. N
base o || © e | 1] e o | M
check .
shorter

o horter
Figure 5: Double-arrays before and after applying

code dividing methods.

As shown in Figure 5, every original jump code
is divided into two jump codes. A state transi-
tion in the original double-array becomes two s-
tate transitions in the new double-array. The node
(state) count increases. But it becomes more com-
pact, it’s still possible to reduce the space usage.

Method 3: Divide the code of a Chinese char-
acter into two small codes. To ensure that the two
codes vary in equivalent interval, we take the high
byte of the code as the first target code, and the
low byte as the second. To make it compatible

with English, we also change the start point of the
interval to 80 (hex) as we do in Method 1. The
relation between the two target jump codes cl, c2
and the original jump code c can be represented by
Formula 4.Note that in the formula, (¢ > 8) and
(c& F'F') are just the high/low byte of the c.

cl

{ c2
Generally, the sum of c1 and c2 is much smaller
than c. For example, for a certain Chinese charac-
ter “—”, ¢ = 4E00, then c1 = CE(hex),c2 =
80(hex), and cl + ¢2 = 014FE(hex), which is
much smaller than cl. It results in shorter dis-
tance between a parent node and its child nodes,

and shorter distance between different child nodes
from the same parent.

+C
+C

=(c > 8)

_ (c& FF) @)

As every original jump code is divided into t-
wo jump codes, the corresponding trie changes.
For the key set K, the corresponding trie is shown
in Figure 6. Although each jump code is divided
into two, the total node count is smaller than the
twice of the original trie’s, because some nodes
are shared, just like the nodes 2 in Figure 6 be-
cause “H1” and “_I:” have the same high byte. It’s
similar to node 13.

Figure 6: The new trie of key set K.

NC AL AS (bytes) CR SRR
Baseline 753412 1714339 0 43.95%
Method 3 | 998995 1043342 0 | 9575% | 39.14%

Table 3: Space usage of Method 3 compared with
the baseline.

As shown in Table 3,every original code is
divided into two codes, the node count of the
double-array increases by 32.60% from 753412,
but the CR is improved to 95.75%, which is sim-
ilar to English double-array. So the length of
the double-array is still smaller than the baseline.
Meanwhile, Method 3 doesn’t use a mapping ta-
ble. It needs no auxiliary space. Thus, the space
reducing rate reaches 39.14% in total.
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Then what will happen if we divide the original
code into 3 or more codes?

Method 4: Take the UTF-8 sequence of Chi-
nese character as the corresponding jump codes.

NC AL | AS (bytes) CR SRR
Baseline 753412 1714339 0 | 43.95%
Method 3 998995 1043342 0 | 95.75% | 39.14%
Method 4 1200403 1264949 0 | 9490% | 26.21%

Table 4: Space usage of Method 3 and Method 4
compared with the baseline.

As shown in Table 4, after applying Method 4,
the node count increases nearly 60% compared
with the baseline, which leads to more space us-
age than Method 3. The CR of Method 4 is a little
smaller than that of Method 3. The space usage re-
duction rate is only 26.21%, which is much small-
er than Method 3. In a word, Method 3 is better
than Method 4.

5.4 Combined methods

Then, what will happen if we combine methods
of code mapping and code dividing? Let’s have
a try. Combining Method 3 to each of the code
mapping methods, we get Method 5 and Method
6. Method 4 is worse than Method 3. We won’t
try to combine it to the code mapping methods.
Method 5 (Method 1 + Method 3): First, map
the original character to its order number, and then
divide it into two target jump codes. The corre-
sponding formula of Method 5 is as follow:

cl

{ c2

Method 6 (Method 2 + Method 3): First, map

the original character to its frequency order num-

ber, and then divide it into two jump codes. The
corresponding formula of Method 6 is as follow:

cl

{ c2

Note that we don’t shift by 8 bits any longer like

in Method 3 and Method 4, because the total num-

ber of characters used in the dictionary is about

14 thousand, and so it needs only 14 valid bits to
represent all the order numbers.

As shown in Table 5, Method 5 and Method 6

both need auxiliary space to store the mapping ta-

ble like in Method 1 and Method 2. They both

+C
+C

= (order(c) > 7)

= (order(c) & TF) )

+C
+C

= (fregorder(c) > T)

= (freqorder(c) & 7F) ©)

NC AL | AS (bytes) CR SRR
Baseline 753412 1714339 0 | 43.95%
Method 5 972703 1014204 131072 | 95.91% 39.88%
Method 6 | 925643 962857 131072 | 96.14% | 42.88%

Table 5: Space usage of Method 5 and Method 6
compared with the baseline.

achieve a CR larger than 95% and reduce the s-
pace usage by a percentage near or even larger
than 40%, which is similar to Method 3. However,
Method 6 is slightly better than Method 5 from the
aspect of space usage, just like Method 2 is slight-
ly better than Method 1.

Now, we don’t think there is still much room for
improvement because the CR is close to 100% and
neither combined method makes big improvement
compared with Method 3.

6 Evaluation metric

If we evaluate several methods or systems from
n aspects of resources consumption such as space
usage and time cost, and then we denote the val-
ue on the ith aspect by Vj4; and the normalized
weight of the ith aspect by w;. We define the re-
source consumption ratio (RC R) of two methods
A and B as follow:

RCR(A,B) =] (VA"> i 7)

i \VBi
RC'R has the following properties:

e RCR(A,A) = 1.0, if a method A is com-
pared with itself;

e RCR(A,B) = 1.0 means the two methods
A and B are equally good or bad;

e RCR(A,B) > 1.0 means the method A is
worse than the reference method B, because
it consumes more resources.

e RCR(A,B) < 1.0 means the method A is
better than the reference method B because it
consumes fewer resources.

7 Experiment and Evaluation

In this section, We evaluate the six methods from
the following aspects:

1. Total space usage (TSU), including the space
for the double-array and the mapping table.

2. Construction time (CT), including the time
spent on making the code mapping or the
code dividing.
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3. Retrieval time (RT) on searching all words in
the dictionary.

7.1 Experiment

The dictionary used in this paper is the Modern
Chinese Dictionary in Traditional Chinese.

Normally, a double-array allocates space many
times to extend space to accommodate newly in-
serted nodes during the construction. As differ-
ent methods have different space usage, they may
need different times of space allocation, and thus
need different time cost. We simply allocate a
large enough space in advance for the double-array
before the construction to eliminate the difference
of time cost on space allocation.

It takes a short time to retrieve all words in the
dictionary once. If we execute the experiment
twice, the time costs will be very different from
each other if it is interfered by some accidental
factors. We do the retrieval 1000 times to alle-
viate the problem mostly and keep the time costs
comparable.

The experiment is performed on a computer
with an 8-core 2.80GHz Intel Core i7 CPU and
2.96GB memory. The experimental data is shown
in Table 6. Note that SUR, CTR, RTR is the ra-
tio of TSU, CT, RT in each method to that in the
baseline respectively.

7.2 Evaluation

2000000

1800000

El\ —a—\C
1600000 N
1400000
1200000 \//Q\\
1000000 — \Qﬁf

800000
600000

400000

200000
0

Method 5
972703
1014204

Method 6
925643
962857

Method 1
753412
1586337

Method 2
753412

1286622

Method 3 | Method 4
998995 1200403
1043342 1264949

Baseline
753412
1714339

——NC
—O—AL

Figure 7: Node count and array length.

As we see from Figure 7 and Figure 8, Method
1 and Method 2 achieve space usage reduction of
6.51% and 23.99% respectively, but they take too
much time on the construction. Method 3 achieves
a space usage reduction of 39.14% while it takes
very short time on the construction. It takes a
little longer time on the retrieval than the base-
line. Method 4 also takes very short time on the
construction, but much more time on the retrieval
and it only achieves a space usage reduction of

0.00

—o—(R

—8— SRR

—2—SIR

—e— (TR

—*— RIR

e\

|
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—
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—>—CR
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—&—SIR

1.0000

0.9349

0. 7601

0. 6036

0.7379

0.6012

0.5712

—8—CTR

1.0000

0.9284

1.1127
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0. 0020

0.0029

—%—RTR

1.0000

1.2522

1. 2664

1. 1443

1. 4673

1.1321

1. 2360

Figure 8: Comparison of the six methods.

26.21%. Method 5 achieves a better space usage
reduction, short time cost both on construction and
retrieval than Method 3. Method 6 achieves the
best space usage reduction by 42.88%, but it takes
longer time cost on the construction and retrieval
than Method 5. Method 3~6 have more nodes be-
cause they have divided original codes into two or
more codes, but they makes the double-array more
compact, so every one of them has a CR close to
97%. Method 6 takes more time on the construc-
tion than Method 5, which is similar to Method
2 and Method 1, because it has to spend time to
sort the characters by frequency. All the meth-
ods take more retrieval time, but result from dif-
ferent reasons. Method 1 and Method 2 have to
make the code mapping while Method 3~6 have
to make the code dividing and visit more nodes
while searching a key.

Now, we evaluate the six methods with the met-
ric proposed in the former section from three as-
pects: space usage, construction time, retrieval
time. We assign the three aspects with weights
(9/20, 1/10, 9/20) respectively. The construction is
only performed once but the retrieval is performed
many times for a double-array, so the construction
time is assigned a smaller weight, and the space
usage has an equal weight to retrieval time because
we can’t decide which is more important roughly
without any application scenarios. We compare
each method A with the baseline to calculate each
RCR:

RCR(A) = RCR(A,baseline)

— SUR% x CTR x RTR%
(8)

We calculate the RC R of each method with the
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NC AL CR SRR | TSU(byte) SUR | CT(ms) CTR | RT(ms) RTR RCR
Baseline 753412 1714339 | 43.95% 0.00% 13714712 1.0000 504437 1.0000 23172 1.0000 1.0000
Method 1 753412 1586337 | 47.49% 6.51% 12821768 | 0.9349 468328 | 0.9284 29015 1.2522 1.0655
Method 2 753412 1286622 | 58.56% | 23.99% 10424048 | 0.7601 561265 1.1127 29344 1.2664 | 0.9935
Method 3 998995 1043342 | 95.75% | 39.14% 8346736 | 0.6086 1140 | 0.0023 26516 1.1443 | 0.4621
Method 4 1200403 1264949 | 94.90% | 26.21% 10119592 | 0.7379 1015 | 0.0020 34000 1.4673 | 0.5570
Method 5 972703 1014204 | 9591% | 39.88% 8244704 | 0.6012 984 | 0.0020 26234 1.1321 0.4506
Method 6 925643 962857 | 96.14% | 42.88% 7833928 | 0.5712 1484 | 0.0029 28641 1.2360 | 0.4773

Table 6: Comparison of the six methods and the baseline.

values collected from the experiment, and the re-
sults are shown in Figure 9.

5
P [ o]

0.9935

1. 0000

Baseline Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

Figure 9: RCRs of the six methods.

As we see in Figure 9, most of the six meth-
ods are better than the baseline except Method 1,
whose RC'R is slightly larger than 1.0. Method 5
has the smallest RC' R and it outperforms others.

8 Conclusion

We propose six methods to reduce the space usage
of Chinese double-array. Method 1 and Method
2 achieve space usage reduction of 6.51% and
23.99% by code mapping into the order number
or frequency order number respectively, but they
take too much time on the construction. Method
3 achieves a space usage reduction of 39.14% by
dividing each original jump code into two codes
while it takes very short time on the construction.
It takes a little longer time on the retrieval than
the baseline. Method 4 divides the original jump
code into three codes. It also takes very short time
on the construction, but much more time on the re-
trieval and it only achieves a space usage reduction
0of 26.21%. Method 5 and Method 6 are the combi-
nations of Method 3 with Method 1 and Method 2
respectively. Method 5 achieves a better space us-
age reduction, short time cost both on construction
and retrieval than Method 3. Method 6 achieves
the best space usage reduction by 42.88%, but it
takes longer time cost on the construction and re-
trieval than Method 5.

Also, an approach is proposed to evaluate those

methods by a metric called Resource Consump-
tion Ratio (RC'R) which compares the total re-
source consumption of two methods such as space
usage and time cost. Under the proposed criteria,
five of the six methods are better than the base-
line, and the best one (Method 5) achieves a space
usage reduction by 39.88% and takes only 0.20%
time of the baseline on the construction, while it
takes 13.21% more time on the retrieval. As pre-
processing methods, these methods can be used
to reduce more space by combining to other com-
pression method which improves the double-array
structure itself.
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